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LOWER BOUNDS FOR THE SMALLEST SINGULAR VALUE OF
STRUCTURED RANDOM MATRICES1

BY NICHOLAS COOK

University of California, Los Angeles

We obtain lower tail estimates for the smallest singular value of random
matrices with independent but nonidentically distributed entries. Specifically,
we consider n × n matrices with complex entries of the form

M = A ◦ X + B = (aij ξij + bij ),

where X = (ξij ) has i.i.d. centered entries of unit variance and A and B are
fixed matrices. In our main result, we obtain polynomial bounds on the small-
est singular value of M for the case that A has bounded (possibly zero) en-
tries, and B = Z

√
n where Z is a diagonal matrix with entries bounded away

from zero. As a byproduct of our methods we can also handle general per-
turbations B under additional hypotheses on A, which translate to connec-
tivity hypotheses on an associated graph. In particular, we extend a result of
Rudelson and Zeitouni for Gaussian matrices to allow for general entry dis-
tributions satisfying some moment hypotheses. Our proofs make use of tools
which (to our knowledge) were previously unexploited in random matrix the-
ory, in particular Szemerédi’s regularity lemma, and a version of the restricted
invertibility theorem due to Spielman and Srivastava.
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1. Introduction. Throughout the article, we make use of the following stan-
dard asymptotic notation: f = O(g), f � g, g � f all mean that |f | ≤ Cg for
some absolute constant C < ∞. We indicate dependence of the implied constant
on parameters with subscripts, for example, f �α g. C, c, c′, c0, etc. denote un-
specified constants whose value may be different at each occurrence, and are un-
derstood to be absolute if no dependence on parameters is indicated.

1.1. Background. Recall that the singular values of an n × n matrix M with
complex entries are the eigenvalues of

√
M∗M , which we arrange in nonincreasing

order:

‖M‖ = s1(M) ≥ · · · ≥ sn(M) ≥ 0.

(throughout we write ‖ · ‖ for the �n
2 → �n

2 operator norm). M is invertible if and
only if sn(M) > 0, in which case sn(M) = ‖M−1‖−1. We (informally) say that M

is “well-invertible” if sn(M) is well-separated from zero.
The largest and smallest singular values of random matrices with indepen-

dent entries have been intensely studied, in part due to applications in theoret-
ical computer science. Motivated by their work on the first electronic comput-
ers, von Neumann and Goldstine sought upper bounds on the condition number
κ(M) = s1(M)/sn(M) of a large matrix M with i.i.d. entries [44]. More recently,
bounds on the condition number of noncentered random matrices have been im-
portant in the theory of smoothed analysis of algorithms developed by Spielman
and Teng [32]. The smallest singular value has also received attention due to its
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connection with proving convergence of the empirical spectral distribution; see [6,
36].

Much is known about the largest singular value for random matrices with inde-
pendent entries. First, we review the i.i.d. case: we denote by X = Xn an n × n

matrix whose entries ξij are i.i.d. copies of a centered complex random variable
with unit variance, and refer to such X as an “i.i.d. matrix.” From the works [4,
45], it is known that 1√

n
s1(Xn) ∈ (2 − ε,2 + ε) with probability tending to one

as n → ∞ for any fixed ε > 0. In connection with problems in computer science
and the theory of Banach spaces, there has been considerable interest in obtain-
ing nonasymptotic bounds for matrices with independent but nonidentically dis-
tributed entries; see the recent works [5] and [42] and references therein for an
overview.

The picture is far less complete for the smallest singular value of random ma-
trices; however, recent years have seen much progress for the case of the i.i.d.
matrix X. The limiting distribution of

√
nsn(X) was obtained by Edelman for the

case of Gaussian entries [12], and this law was shown by Tao and Vu to hold for
all i.i.d. matrices with entries ξij having a sufficiently large finite moment [37].

Quantitative lower tail estimates for sn(X) proved to be considerably more chal-
lenging than bounding the operator norm. The first breakthrough was made by
Rudelson [28], who showed that if X has i.i.d. real-valued sub-Gaussian entries,
that is,

(1.1) E exp
(|ξ |2/K0

) ≤ 2

for some K0 < ∞, then

(1.2) P
(
sn(X) ≤ tn−3/2) �K0 t + n−1/2 for all t ≥ 0.

Around the same time, in [40] Tao and Vu used methods from additive combi-
natorics to obtain bounds of the form

(1.3) P
(
sn(X) ≤ n−β) � n−α

for any fixed α > 0 and β sufficiently large depending on α, for the case that the
entries of X take values in {−1,0,1}. Roughly speaking, their approach was to
classify potential almost-null vectors v according to the amount of additive struc-
ture present in the multiset of coordinate values {vj }nj=1. They extended (1.3) to
uncentered matrices with general entry distributions having finite second moment
in [36] (see Theorem 1.6 below), which was instrumental for their proof of the
celebrated circular law for the limiting spectral distribution of 1√

n
X.

Motivated by these developments, in [29] Rudelson and Vershynin found a dif-
ferent way to quantify the additive structure of a vector v called the essential least
common denominator, and obtained the following improvement of (1.2), (1.3) for
matrices with sub-Gaussian entries:

(1.4) P
(
sn(X) ≤ tn−1/2) �K0 t + e−cn.
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This estimate is optimal up to the implied constant and c = c(K0) > 0 [with K0 as
in (1.1)].

Finally, we mention that there has also been work on upper tail bounds for
the smallest singular value (see in particular [25, 30]) but we do not consider this
problem further in the present work.

1.2. A general class of non-i.i.d. matrices. In this paper, we are concerned
with bounds for the smallest singular value of random matrices with independent
but nonidentically distributed entries. The following definition allows us to quan-
tify the dependence of our bounds on the distribution of the matrix entries.

DEFINITION 1.1 (Spread random variable). Let ξ be a complex random vari-
able and let κ ≥ 1. We say that ξ is κ-spread if

(1.5) Var
[
ξ1

(|ξ −Eξ | ≤ κ
)] ≥ 1

κ
.

REMARK 1.2. It follows from the monotone convergence theorem that any
random variable ξ with nonzero second moment is κ-spread for some κ < ∞.
Furthermore, if ξ is centered with unit variance and finite pth moment μp for
some p > 2, then it is routine to verify that ξ is κ-spread with κ = 3(3μ

p
p)1/(p−2).

Our results concern the following general class of matrices.

DEFINITION 1.3 (Structured random matrix). Let A = (aij ) and B = (bij ) be
deterministic n × m matrices with aij ∈ [0,1] and bij ∈ C for all i, j . Let X =
(ξij ) be an n × m matrix with independent entries, all identically distributed to a
complex random variable ξ with mean zero and variance one. Put

(1.6) M = A ◦ X + B = (aij ξij + bij )
n,m
i,j=1

where ◦ denotes the matrix Hadamard product. We refer to A, B and ξ as the
standard deviation profile, mean profile and atom variable, respectively. We denote
the Lp norm of the atom variable by

(1.7) μp := (
E|ξ |p)1/p

.

Without loss of generality, we assume throughout that ξ is κ0-spread for some
fixed κ0 ≥ 1.

(While all of our results are for square matrices, we give the definition for the
general rectangular case as we will often need to consider rectangular submatrices
in the proofs.)
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REMARK 1.4. The assumption that the entries of M are shifted scalings of
random variables ξij having a common distribution is made for convenience, as it
allows us to access some standard anticoncentration estimates (see Section 2.2).
We expect the proofs can be modified to cover general matrices with independent
entries having specified means and variances (possibly with additional moment
hypotheses), but we do not pursue this here.

As a concrete example, one can consider a centered non-Hermitian band matrix,
where one sets aij ≡ 0 for |i − j | exceeding some bandwidth parameter w ∈ [n −
1]; see Corollary 1.16.

The singular value distributions for structured random matrices have been stud-
ied in connection with wireless MIMO networks [14, 41]. The limiting spectral
distributions and spectral radius for certain structured random matrices have been
used to model the dynamical properties of neural networks [1, 26]. In the recent
work [11] with Hachem, Najim and Renfrew, the limiting spectral distribution was
determined for a general class of centered structured random matrices. That work
required bounds on the smallest singular value for shifts of centered matrices by
scalar multiples of the identity, which was the original motivation for the results in
this paper (in particular, Corollary 1.20 below is a key input for the proofs in [11]).

The picture for the smallest singular value of structured random matrices is
far less complete than for the largest singular value. Here, we content ourselves
with identifying sufficient conditions on the matrices A,B and the distribution of
ξ for a structured random matrix M to be well-invertible with high probability.
Specifically, we seek to address the following.

QUESTION A. Let M be an n × n random matrix as in Definition 1.3. Un-
der what assumptions on the standard deviation and mean profiles A,B and the
distribution of the atom variable ξ do we have

(1.8) P
(
sn(M) ≤ n−β) = O

(
n−α)

for some constants α,β > 0?

The case that B = −z
√

nI for some fixed z ∈ C (where I denotes the n × n

identity matrix) is of particular interest for applications to the limiting spectral
distribution of centered random matrices. As we shall see in the next subsection,
existing results in the literature give lower tail bounds for sn(M) that are uniform
in the shift B under the size constraint ‖B‖ = nO(1), that is,

(1.9) sup
B∈Mn(C):‖B‖≤nC

P
(
sn(A ◦ X + B) ≤ n−β) = O

(
n−α)

for some constant C > 0 [results stated for centered matrices generally extend in a
routine manner to allow a perturbation of size ‖B‖ = O(

√
n)]. Such bounds can be
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viewed as matrix analogues of classical anticoncentration (or “small ball”) bounds
of the form

(1.10) sup
z∈C

P
(|Sn − z| ≤ r

) ≤ f (r) + o(1)

for a sequence of scalar random variables Sn (such as the normalized partial sums
of an infinite sequence of i.i.d. variables), where f : R+ → R+ is some continu-
ous function such that f (r) → 0 as r → 0. In fact, bounds of the form (1.10) are
a central ingredient in the proofs of estimates (1.9). Roughly speaking, the trans-
lation invariance of (1.10) causes the uniformity in the shift B in (1.9) to come for
free once one can handle the centered case B = 0 (the assumption ‖B‖ = nO(1) is
needed to have some continuity of the map u �→ ‖Mu‖ on the unit sphere in order
to apply a discretization argument). In light of this, we may pose the following.

QUESTION B. Let M be an n × n random matrix as in Definition 1.3, and
let γ > 0. Under what assumptions on the standard deviation profile A and the
distribution of the atom variable ξ do we have

(1.11) sup
B∈Mn(C):‖B‖≤nγ

P
(
sn(M) ≤ n−β) = O

(
n−α)

for some constants α,β > 0?

The following simple observation puts a clear limitation on the standard devia-
tion profiles A for which we can expect to have (1.11).

OBSERVATION 1.5. Suppose that A = (aij ) has a k × m submatrix of zeros
for some k,m with k + m > n. Then A ◦ X is singular with probability 1. Thus,
(1.11) fails (by taking B = 0) for any fixed α,β > 0.

Theorem 1.12 below (see also Theorem 1.10 for the Gaussian case) shows that
the above is in some sense the only obstruction to obtaining (1.11).

1.3. Previous results. Before stating our main results on Questions A and B,
we give an overview of what is currently in the literature.

For the case of a constant standard deviation profile A and essentially arbitrary
mean profile B , we have the following result of Tao and Vu.

THEOREM 1.6 (Shifted i.i.d. matrix [36]). Let X be an n×n matrix with i.i.d.
entries ξij ∈ C having mean zero and variance one. For any α,γ > 0, there exists
β > 0 such that for any fixed (deterministic) n × n matrix B with ‖B‖ ≤ nγ ,

(1.12) P
(
sn(X + B) ≤ n−β) = Oα,γ

(
n−α)

.
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A stronger version of the above bound was established earlier by Sankar, Spiel-
man and Teng for the case that X has i.i.d. standard Gaussian entries [32]. For the
case that B = 0, the bound (1.4) of Rudelson and Vershynin gives the optimal de-
pendence β = α + 1/2 for the exponents, but requires the stronger assumption that
the entries are real-valued and sub-Gaussian [we remark that their proof extends
in a routine manner to allow an arbitrary shift B with ‖B‖ = O(

√
n)]. Recently,

the sub-Gaussian assumption for (1.4) was relaxed by Rebrova and Tikhomirov to
only assume a finite second moment [27].

When the entries of M have bounded density the problem is much simpler. The
following is easily obtained by the argument in [6], Section 4.4.

PROPOSITION 1.7 (Matrix with entries having bounded density [6]). Let M

be an n × n random matrix with independent entries having density on C or R

uniformly bounded by ϕ > 1. For every α > 0, there is a β = β(α,ϕ) > 0 such
that

(1.13) P
(
sn(M) ≤ n−β) = O

(
n−α)

.

Note that above we make no assumptions on the moments of the entries of M—
in particular, they may have heavy tails. The following result of Bordenave and
Chafaï (Lemma A.1 in [6]) relaxes the hypothesis of continuous distributions from
Proposition 1.7 while still allowing for heavy tails, but comes at the cost of a worse
probability bound.

PROPOSITION 1.8 (Heavy-tailed matrix with nondegenerate entries [6]). Let
Y be an n × n random matrix with independent entries ηij ∈ C. Suppose that for
some p, r, σ0 > 0 we have that for all i, j ∈ [n],
(1.14) P

(|ηij | ≤ r
) ≥ p, Var

(
ηij1

(|ηij | ≤ r
)) ≥ σ 2

0 .

For any s ≥ 1, t ≥ 0, and any fixed n × n matrix B we have

(1.15) P

(
sn(Y + B) ≤ t√

n
,‖Y + B‖ ≤ s

)
�p,r,σ0

√
log s

(
ts2 + 1√

n

)
.

The nondegeneracy conditions (1.14) do not allow for some entries to be deter-
ministic. Litvak and Rivasplata [23] obtained a lower tail estimate of the form (1.8)
for centered random matrices having a sufficiently small constant proportion of
entries equal to zero deterministically. Below we give new results (Theorems 1.12
and 1.23) allowing all but an arbitrarily small (fixed) proportion of entries to be
deterministic.

Finally, we recall a theorem of Rudelson and Zeitouni [31] for Gaussian matri-
ces, showing that Observation 1.5 is essentially the only obstruction to obtaining
(1.11). To state their result, we need to set up some graph theoretic notation, which
will be used repeatedly throughout the paper.



INVERTIBILITY OF STRUCTURED RANDOM MATRICES 3449

To a nonnegative n × m matrix A = (aij ), we associate a bipartite graph �A =
([n], [m],EA), with (i, j) ∈ EA if and only if aij > 0. For a row index i ∈ [n], we
denote by

(1.16) NA(i) = {
j ∈ [m] : aij > 0

}
its neighborhood in �A. Thus, the neighborhood of a column index j ∈ [m] is de-
noted NAT(j). Given sets of row and column indices I ⊂ [n], J ⊂ [m], we define
the associated edge count

(1.17) eA(I, J ) := ∣∣{(i, j) ∈ [n] × [m] : aij > 0
}∣∣.

We will generally work with the graph that only puts an edge (i, j) when aij ex-
ceeds some fixed cutoff parameter σ0 > 0. Thus, we denote by

(1.18) A(σ0) = (aij 1aij≥σ0)

the matrix which thresholds out entries smaller than σ0.
Rudelson and Zeitouni work with Gaussian matrices whose matrix of standard

deviations A = (aij ) satisfies the following expansion-type condition.

DEFINITION 1.9 (Broad connectivity). Let A = (aij ) be an n×m matrix with
nonnegative entries. For I ⊂ [n] and δ ∈ (0,1), define the set of δ-broadly con-
nected neighbors of I as

(1.19) N (δ)
A (I ) = {

j ∈ [m] : ∣∣NAT(j) ∩ I
∣∣ ≥ δ|I |}.

For δ, ν ∈ (0,1), we say that A is (δ, ν)-broadly connected if:

(1) |NA(i)| ≥ δm for all i ∈ [n];
(2) |NAT(j)| ≥ δn for all j ∈ [m];
(3) |N (δ)

AT (J )| ≥ min(n, (1 + ν)|J |) for all J ⊂ [m].

THEOREM 1.10 (Gaussian matrix with broadly connected profile [31]). Let
G be an n × n matrix with i.i.d. standard real Gaussian entries, and let A be an
n×n matrix with entries aij ∈ [0,1] for all i, j . With notation as in (1.18), assume
that A(σ0) is (δ, ν)-broadly connected for some σ0, δ, ν ∈ (0,1). Let K ≥ 1, and
let B be a fixed n × n matrix with ‖B‖ ≤ K

√
n. Then for any t ≥ 0,

(1.20) P
(
sn(A ◦ G + B) ≤ tn−1/2) �δ,ν,σ0 KO(1)t + e−cn

for some c = c(δ, ν, σ0) > 0.

Note that the assumption of broad connectivity gives us an “epsilon of separa-
tion” from the bad example of Observation 1.5. Thus, Theorem 1.10 provides a
near-optimal answer to Question B for Gaussian matrices.
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REMARK 1.11. Since the dependence of the bound (1.20) on the parameters
δ and ν is not quantified, Theorem 1.10 only addresses Question B for dense stan-
dard deviation profiles, that is, when A has a nonvanishing proportion of large
entries. While it would not be difficult to quantify the steps in [31], the resulting
dependence on parameters is not likely to be optimal.

1.4. New results. Our first result removes the Gaussian assumption from The-
orem 1.10, though at the cost of a worse probability bound. Recall the parameter
κ0 from Definition 1.3.

THEOREM 1.12 (General matrix with broadly connected profile). Let M =
A ◦ X + B be an n × n matrix as in Definition 1.3, and assume that A(σ0) is
(δ, ν)-broadly connected for some σ0, δ, ν ∈ (0,1). Let K ≥ 1. For any t ≥ 0,

(1.21) P

(
sn(M) ≤ t√

n
,‖M‖ ≤ K

√
n

)
�K,δ,ν,σ0,κ0 t + 1√

n
.

REMARK 1.13. While we have stated no moment assumptions on the atom
variable ξ over the standing assumption of unit variance, the restriction to the
event {‖M‖ ≤ K

√
n} requires us to assume at least four finite moments to deduce

P(sn(M) ≤ t/
√

n) � t + o(1). Here, we give a lower tail estimate at the opti-
mal scale sn(M) ∼ n−1/2; however, the arguments in this paper can be used to
establish a polynomial lower bound on sn(M) of nonoptimal order under larger
perturbations B [similar to (1.28) below].

REMARK 1.14 (Improving the probability bound). We expect that the prob-
ability bound in (1.21) can be improved by making use of more advanced tools
of Littlewood–Offord theory introduced in [29, 36], though it appears these tools
cannot be applied in a straightforward manner. In the interest of keeping the paper
of reasonable length, we do not pursue this here.

REMARK 1.15 (Bounds on moderately small singular values). The methods
used to prove Theorem 1.12 together with an idea of Tao and Vu from [38] can be
used to give lower bounds of optimal order on sn−k(M) with nε ≤ k ≤ cn for any
ε > 0 and a sufficiently small constant c = c(κ0, σ0, δ, ν,K) > 0; see [10], The-
orem 4.5.1. Such bounds are of interest for proving convergence of the empirical
spectral distribution; see [6, 38].

In light of Observation 1.5, Theorem 1.12 gives an essentially optimal answer to
Question B for dense random matrices (see Remark 1.11). It would be interesting
to establish a version of this result that allows for only a proportion o(1) of the
entries to be random. Indeed, we expect a version of the above theorem to hold
when A has density as small (logO(1) n)/n. [Quantifying the dependence on δ, ν

in (1.21) would only allow a slight polynomial decay in the density.]
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We note that they broad connectivity hypothesis includes many standard devia-
tion profiles of interest, such as band matrices.

COROLLARY 1.16 (Shifted non-Hermitian band matrices). Let M = A ◦ X +
B be an n × n matrix as in Definition 1.3, and assume that for some fixed σ0, ε ∈
(0,1), aij ≥ σ0 for all i, j with min(|i − j |, n − |i − j |) ≤ εn. Let K ≥ 1. Then
(1.21) holds for any t ≥ 0 (with implied constant depending on K,σ0, ε and κ0).

We defer the proof of Corollary 1.16 to the Supplementary Material [9].
Having addressed Question B, we now ask whether we can further relax the as-

sumptions on the standard deviation profile A by assuming more about the mean
profile B . In particular, can we make assumptions on B that give (1.8) while al-
lowing A ◦ X to be singular deterministically?

Of course, a trivial example is to take A = 0 and B any invertible matrix. An-
other easy example is to take take B to be very well-invertible, with sn(B) ≥ K

√
n

for a large constant K > 0 (for instance, take B = K
√

nI , where I is the identity
matrix). Indeed, standard estimates for the operator norm of random matrices with
centered entries (cf. Section 5.2) give ‖A ◦ X‖ = O(

√
n) with high probability

provided the atom variable ξ satisfies some additional moment hypotheses. From
the triangle inequality,

sn(M) = inf
u∈Sn−1

∥∥(A ◦ X + B)u
∥∥ ≥ sn(B) − ‖A ◦ X‖,

so sn(M) � √
n with high probability if K is sufficiently large.

The problem becomes nontrivial when we allow B to have singular values of
size ε

√
n for small ε > 0 and A as in Observation 1.5. In this case, any proof of

a lower tail estimate of the form (1.8) must depart significantly from the proofs
of the results in the previous section by making use of arguments which are not
translation invariant.

Our main result shows that when the mean profile B is a diagonal matrix with
smallest entry at least an arbitrarily small (fixed) multiple of

√
n, then we do not

need to assume anything further about the standard deviation profile A.

THEOREM 1.17 (Main result). Fix arbitrary r0 ∈ (0, 1
2 ], K0 ≥ 1, and let Z be

a (deterministic) diagonal matrix with diagonal entries z1, . . . , zn ∈ C satisfying

(1.22) |zi | ∈ [r0,K0] ∀i ∈ [n].
Let M be an n×n random matrix as in Definition 1.3 with B = Z

√
n, and assume

μ4+η < ∞ for some fixed η > 0. There are α(η) > 0 and β(r0, η,μ4+η) > 0 such
that

(1.23) P
(
sn(M) ≤ n−β) = Or0,K0,η,μ4+η

(
n−α)

.
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REMARK 1.18 (Moment assumption). The assumption of 4 + η moments is
due to our use of a result of Vershynin, Theorem 5.8 below, on the operator norm of
products of random matrices. Apart from this, at many points in our argument we
use that an m×m submatrix of M has operator norm O(

√
m) with high probability

(assuming m grows with n), which requires at least four finite moments. Under
certain additional assumptions on the standard deviation profile, we only need to
assume two moments; see Remark 5.12.

REMARK 1.19 (Dependence of α,β on parameters). The proof gives α(η) =
1
9 min(1, η). If we were to assume ξ has finite pth moment for a sufficiently large
constant p, then we could take any fixed α < 1/2 in (1.23). The dependence of β

on μ4+η and r0 given by our proof is very bad, of the form

(1.24) β = twr
(
Oη(1) exp

(
(μ4+η/r0)

O(1))),
where twr(x) is a tower exponential 22. .

.2

of height x. [The factor Oη(1) comes
from Vershynin’s bound mentioned in the previous remark—we do not know the
precise dependence on η, but we expect it is relatively mild.] This is due to our use
of Szemerédi’s regularity lemma (specifically, a version for directed graphs due to
Alon and Shapira; see Lemma 5.2). It would be interesting to obtain a version of
Theorem 1.17 with a better dependence of β on the parameters.

As we remarked above, the case of a diagonal mean profile is of special interest
for the problem of proving convergence of the empirical spectral distribution of
centered random matrices with a variance profile.

COROLLARY 1.20 (Scalar shift of a centered random matrix). Let X = (ξij )

be an n × n matrix whose entries are i.i.d. copies of a centered complex random
variable ξ having unit variance and (4 + η)th moment μ4+η < ∞ for some fixed
η > 0. Let A = (aij ) be a fixed n × n nonnegative matrix with entries uniformly
bounded by σmax < ∞. Put Y = 1√

n
A ◦ X, and fix an arbitrary z ∈ C \ {0}. There

are constants α = α(η) > 0 and β = β(|z|, η,μ4+η, σmax) > 0 such that

(1.25) P
(
sn(Y − zI) ≤ n−β) = O|z|,σmax,μ4+η

(
n−α)

.

While our main motivation was to handle diagonal perturbations of centered
random matrices, we conjecture that Theorem 1.17 extends to matrices as in Defi-
nition 1.3 with more general mean profiles B:

CONJECTURE 1.21. Theorem 1.17 continues to hold for B ∈ Mn(C) not nec-
essarily diagonal, where the constraint (1.22) is replaced with 1√

n
si(B) ∈ [r0,K0]

for all 1 ≤ i ≤ n.
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1.5. Ideas of the proof. Here, we give an informal discussion of the main ideas
in the proof of Theorem 1.17.

Regular partitions of graphs. As with Theorem 1.12, the key is to associate the
standard deviation profile A with a graph. Since we want the diagonal of M to be
preserved under relabeling of vertices will will associate A with a directed graph
(digraph) which puts an edge i → j whenever aij exceeds some small threshold
σ0 > 0. Since A has no special connectivity structure a priori, we will apply a
version of Szemerédi’s regularity lemma for digraphs (Lemma 5.2) to partition
the vertex set [n] into a bounded number of parts of equal size I1, . . . , Im, together
with a small set of “bad” vertices Ibad, such that for most (k, l) ∈ [m]2 the subgraph
on Ik ∪ Il enjoys certain “pseudorandomness” properties. These properties will not
be quite strong enough to control the smallest singular value of the corresponding
submatrix MIk,Il

of M , but we can apply a “cleaning” procedure (as it is called
in the extremal combinatorics literature) to remove a small number of bad vertices
from each part in the partition (which we add to Ibad), after which we will be able to
control smin(MIk,Il

) for most (k, l) ∈ [m]2. We defer the precise formulation of the
pseudorandomness properties and corresponding bound on the smallest singular
value to Definition 1.22 and Theorem 1.23 below.

Schur complement formula. The task will then be to lift this control on the
invertibility of submatrices to the whole matrix M . The key tool here is the Schur
complement formula (see Lemma 5.4) which allows us to control the smallest sin-
gular value of a block matrix

(1.26)
(
M11 M12
M21 M22

)
assuming some control on the smallest singular values of (perturbations of) the di-
agonal block submatrices M11,M22 and on the operator norm of the off-diagonal
submatrices M12,M21. The control on the smallest singular value of the whole ma-
trix is somewhat degraded, but this is acceptable as we will only apply Lemma 5.4
a bounded number of times. If we can find a generalized diagonal of “good” block
submatrices that are well-invertible under additive perturbations, then after per-
muting the blocks to lie on the main diagonal we can apply the Schur complement
bound along a nested sequence of submatrices partitioned as in (1.26), where M11
is a “good” matrix and M22 is well-invertible by the induction hypothesis. We re-
mark that the strategy of leveraging properties of a small submatrix using the Schur
complement formula was recently applied in a somewhat different manner in [7]
to prove the universality of spectral statistics of random Hermitian band matrices.

Decomposition of the reduced digraph. At this point, it is best to think of
the regular partition I1, . . . , Im as inducing a “macroscopic scale” digraph R =
([m],E) (often called the reduced digraph in extremal combinatorics) that puts an
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edge (k, l) ∈ E whenever the corresponding submatrix AIk,Il
is pseudorandom and

sufficiently dense. If we can cover the vertices of R with vertex-disjoint directed
cycles, then we will have found a generalized diagonal of submatrices of M with
the desired properties, and we can finish with a bounded number of applications of
the Schur complement formula as described above.

Of course, it may be the case that R cannot be covered by disjoint cycles. For
instance, if A were to have all ones in the first n/2 columns and all zeros in the
last n/2 columns then roughly half of the vertices of R would have no incoming
edges. This is where we make crucial use of the diagonal perturbation Z

√
n (in-

deed, without this perturbation M would be singular in this example). The top left
n/2 × n/2 submatrix of M is dense, and we can apply Theorem 1.23 to control its
smallest singular vale. The bottom right n/2 × n/2 submatrix is a diagonal matrix
with diagonal entries of size at least r0

√
n, and hence its smallest singular value is

at least r0
√

n. This argument even allows for the bottom right submatrix of A to
be nonzero but sufficiently sparse: we can use the triangle inequality and standard
bounds on the operator norm of sparse random matrices to argue that the smallest
singular value of the bottom right submatrix is still of order � r0

√
n.

We handle the general case as follows. We greedily cover as many of the ver-
tices of R as we can with disjoint cycles—call this set of vertices Ucyc ⊂ [m]. At
this point, we have either covered the whole graph (and we are done) or the graph
on the remaining vertices Ufree is cycle-free. This means that the vertices of R can
be relabeled so that its adjacency matrix is upper-triangular on Ufree ×Ufree. Write
Jcyc = ⋃

k∈Ucyc
Ik , Jfree = ⋃

k∈Ufree
Ik and denote the corresponding submatrices of

A on the diagonal by Acyc,Afree, and likewise for M . We thus have a relabeling
of [n] under which Afree is close to upper triangular (there may be some entries
of Afree below the diagonal of size less than σ0, or which are contained in a small
number of exceptional pairs from the regular partition). Crucially, this relabel-
ing has preserved the diagonal, so the submatrix Mfree is a diagonal perturbation
of an (almost) upper-triangular random matrix. We then show that such a matrix
has smallest singular value of order �r0

√
n with high probability. With another

application of the Schur complement bound we can combine the control on the
submatrices Mcyc,Mfree (along with standard bounds on the operator norm for the
off-diagonal blocks) to conclude the proof. (Actually, the bad set Ibad of rows and
columns requires some additional arguments, but we do not discuss these here.)

This concludes the high level description of the proof of Theorem 1.17. We only
remark that the above partitioning and cleaning procedures will generate various
error terms and residual submatrices [such as the vertices in Ibad, or the small pro-
portion of pairs (Ik, Il) which are not sufficiently pseudorandom]. As the smallest
singular value is notoriously sensitive to perturbations, it will take some care to
control these terms. We will use some high-powered tools such as bounds on the
operator norm of sparse random matrices and products of random matrices due to
Latała and Vershynin; see Section 5.2.
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Invertibility from connectivity assumptions. Now we state the specific pseudo-
randomness condition on a standard deviation profile under which we have good
control on the smallest singular value. While “pseudorandom” generally means
that the edge distribution in a graph is close to uniform on a range of scales, we
will only need control from below on the edge densities (morally speaking, we
want the matrix A to be as far as possible from the zero matrix, the most poorly
invertible matrix). The following one-sided condition is taken from the combina-
torics literature (see [18], Definition 1.6). The reader should recall the notation
introduced in (1.16)–(1.18).

DEFINITION 1.22 (Super-regularity). Let A be an n×m matrix with nonneg-
ative entries. For δ, ε ∈ (0,1), we say that A is (δ, ε)-super-regular if the following
hold:

(1) |NA(i)| ≥ δm for all i ∈ [n];
(2) |NAT(j)| ≥ δn for all j ∈ [m];
(3) eA(I, J ) ≥ δ|I ||J | for all I ⊂ [n], J ⊂ [m] with |I | ≥ εn and |J | ≥ εm.

The reader should compare this condition with Definition 1.9. Conditions (1)
and (2) are are the same in both definitions, while it is not hard to see that condition
(3) above implies

(1.27)
∣∣N (δ)

AT (J )
∣∣ ≥ (1 − ε)n

whenever |J | ≥ εn [with notation as in (1.19)], which is stronger than condition
(3) in Definition 1.9 for such J . On the other hand, conditions (1) and (2) imply

that |N (
√

δ/2)

AT (J )| ≥ 1
2δn for any J ⊂ [m] (see Lemma 3.4), so super-regularity is

stronger than broad connectivity for ε, η sufficiently small depending on δ.

THEOREM 1.23 (Matrix with super-regular profile). Let M = A ◦ X + B be
an n × n matrix as in Definition 1.3. Assume that A(σ0) [as defined in (1.18)]
is (δ, ε)-super-regular for some δ, σ0 ∈ (0,1) and 0 < ε < c1δσ

2
0 with c1 > 0

a sufficiently small constant. For any γ ≥ 1/2, there exists β = O(γ 2) such
that

(1.28) P
(
sn(M) ≤ n−β,‖M‖ ≤ nγ ) �γ,δ,σ0,κ0

√
logn

n
.

Note that Theorem 1.23 allows for a mean profile B of arbitrary polynomial
size in operator norm, whereas in Theorem 1.12 we only allowed ‖B‖ = O(

√
n).

The ability to handle such large perturbations will be crucial in the proof of The-
orem 1.17, as the iterative application of the Schur complement bound discussed
above will lead to perturbations of increasingly large polynomial order.
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We defer discussion of the key technical ideas for Theorem 1.12 and Theo-
rem 1.23 to Sections 3 and 4. We only mention here that our proof of Theorem 1.23
makes crucial use of a new “entropy reduction” argument, which allows us to con-
trol the event that ‖Mu‖ is small for some u in certain portions of the sphere Sn−1

by the event that this holds for some u in a random net of relatively low cardinality.
The argument uses an improvement by Spielman and Srivastava [33] of the classic
restricted invertibility theorem due to Bourgain and Tzafriri [8]; see Section 3 for
details.

1.6. Organization of the paper. The rest of the paper is organized as follows.
Sections 2, 3 and 4 are devoted to the proofs of Theorems 1.12 and 1.23. We prove
these theorems in parallel as they involve many similar ideas. In Section 2, we col-
lect some standard lemmas on anticoncentration for random walks and products of
random matrices with fixed vectors, along with some facts about nets in Euclidean
space. In Section 3, we show that random matrices as in Theorems 1.12 and 1.23
are well-invertible over sets of “compressible” vectors in the unit sphere, and in
Section 4 we establish control over the complementary set of “incompressible”
vectors. Theorem 1.17 is proved in Section 5.

1.7. Notation. In addition to the asymptotic notation defined at the beginning
of the article, we will occasionally use the notation f = o(g) to mean that f/g → 0
as n → ∞, where the parameter n will be the size of the matrix under consideration
(this will only be for the sake of brevity, as all of our arguments are quantitative).

Mn,m(C) denotes the set of n×m matrices with complex entries. When m = n,
we will write Mn(C). For a matrix A = (aij ) ∈ Mn,m(C), we will sometimes
use the notation A(i, j) = aij . For I ⊂ [n], J ⊂ [m], AI,J denotes the |I | × |J |
submatrix with entries indexed by I × J . We abbreviate AJ := AJ,J .

‖ · ‖ denotes the Euclidean norm when applied to vectors, and the �m
2 → �n

2 op-
erator norm when applied to an n×m matrix. ‖A‖HS denotes the Hilbert–Schmidt
(or Frobenius) norm of a matrix A. We will sometimes denote the smallest singular
value of a square matrix M by smin(M) (in situations where M is a submatrix of a
larger matrix this will often be clearer than writing the dimension).

We denote the unit sphere in C
n by Sn−1. For J ⊂ [n], we denote by C

J ⊂ C
n

(resp., SJ ⊂ Sn−1) the set of vectors (resp., unit vectors) in C
n supported on J .

Given a vector v ∈ C
n, we denote by vJ ∈ C

n the projection of v to the coordinate
subspace C

J . For m ∈ N, x ∈ R,
([m]

x

)
denotes the family of subsets of [m] of size

�x�.
When considering a random matrix M as in Definition 1.3, we use Ri to denote

the ith row of M , and write

(1.29) FI,J := 〈{ξij }i∈I,j∈J

〉
for the sigma algebra of events generated by the entries {ξij }i∈I,j∈J of X. For
I ⊂ [n], we write PI (·) for probability conditional on F[n]\I,[n].
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2. Preliminaries.

2.1. Partitioning and discretizing the sphere. For the proofs of Theorems 1.12
and 1.23, we make heavy use of ideas and notation developed in [21, 22, 28, 29]
and related ideas from geometric functional analysis. In particular, in order to
lower bound

sn(M) = inf
u∈Sn−1

‖Mu‖
we partition the sphere into sets of vectors of different levels of “compressibility,”
which we presently define, and separately obtain control on the infimum of ‖Mu‖
over each set.

Recall from Section 1.7 our notation C
J ⊂ C

m for the set of vectors supported
on J ⊂ [m]. For a set T ⊂ C

n and ρ > 0, we write Tρ for the set of points within
Euclidean distance ρ of T . We recall also the following definitions from [31]. For
θ, ρ ∈ (0,1), we define the set of compressible vectors

(2.1) Comp(θ, ρ) := Sm−1 ∩ ⋃
J∈([m]

θm)

(
C

J )
ρ

and the complementary set of incompressible vectors

(2.2) Incomp(θ, ρ) := Sm−1 \ Comp(θ, ρ).

That is, Comp(θ, ρ) is the set of unit vectors within (Euclidean) distance ρ of a
vector supported on at most θm coordinates. On the other hand, incompressible
vectors enjoy the following property which will lead to good anticoncentration
properties for an associated random walk.

LEMMA 2.1 (Incompressible vectors are spread, cf. [29], Lemma 3.4). Fix
θ, ρ ∈ (0,1) and let v ∈ Incomp(θ, ρ). There is a set L+ ⊂ [m] with |L+| ≥ θm

such that |vj | ≥ ρ/
√

m for all j ∈ L+. Moreover, for all λ ≥ 1 there is a set L ⊂
[m] with |L| ≥ (1 − 1

λ2 )θm such that for all j ∈ L,

ρ√
m

≤ |vj | ≤ λ√
θm

.

PROOF. Take L+ = {j : |vj | ≥ ρ/
√

m} and denote L− = {j : |vj | ≤ λ/
√

θm}.
Since v lies a distance at least ρ from any vector supported on at most θm co-
ordinates, we must have |L+| ≥ θm, which gives the first claim. On the other
hand, since v ∈ Sm−1, by Markov’s inequality we have |(L−)c| ≤ θm/λ2, so tak-
ing L = L+ ∩ L− we have |L| ≥ (1 − 1

λ2 )θm. �

For fixed choices of θ, ρ, we informally refer to the coordinates of v ∈
Incomp(θ, ρ) where |vj | ≥ ρ/

√
n as the essential support of v.
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Now we recall a standard fact about nets of the sphere of controlled cardinality.
For ρ > 0, recall that a ρ-net of a set T ⊂ C

m is a finite subset � ⊂ T such that
for all v ∈ T there exists v′ ∈ � with ‖v − v′‖ ≤ ρ.

LEMMA 2.2 (Metric entropy of the sphere). Let V ⊂ C
m be a subspace of

(complex) dimension k, let T ⊂ V ∩ Sm−1, and let ρ ∈ (0,1). Then T has a ρ-net
� ⊂ T of cardinality |�| ≤ (3/ρ)2k .

PROOF. Let � ⊂ T be a ρ-separated (in Euclidean distance) subset that is
maximal under set inclusion. It follows from maximality that � is a ρ-net of T .
Let �ρ/2 denote the ρ/2 neighborhood of � in V . Noting that �ρ/2 is a disjoint
union of k-dimensional Euclidean balls of radius ρ/2, we have

|�|ck(ρ/2)2k ≤ volk(�ρ/2) ≤ ck(1 + ρ/2)2k,

where volk denotes the k-dimensional Lebesgue measure on V and ck is the vol-
ume of the Euclidean unit ball in C

k . The desired bound follows by rearranging.
�

2.2. Anticoncentration for scalar random walks. In this subsection, we collect
some standard anticoncentration estimates for scalar random walks, which are per-
haps the most central tool for proving that random matrices are (well-)invertible
with high probability.

DEFINITION 2.3 (Concentration probability). Let ξ be a complex-valued ran-
dom variable. For v ∈C

n, we let

(2.3) Sξ (v) =
n∑

j=1

ξj vj ,

where ξ1, . . . , ξn are i.i.d. copies of ξ . For r ≥ 0, we define the concentration
probability

(2.4) pξ,v(r) = sup
z∈C

P
(∣∣Sξ (v) − z

∣∣ ≤ r
)
.

Throughout this section, we operate under the following distributional assump-
tion on ξ .

DEFINITION 2.4 (Controlled second moment, cf. [36], Definition 2.2). Let
κ ≥ 1. A complex random variable ξ is said to have κ-controlled second moment
if one has the upper bound

(2.5) E|ξ |2 ≤ κ
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(in particular, |Eξ | ≤ κ1/2), and the lower bound

(2.6) E
[
Re(zξ − w)

]21
(|ξ | ≤ κ

) ≥ 1

κ

[
Re(z)

]2

for all z ∈C, a ∈ R.

Roughly speaking, a complex random variable ξ has controlled second moment
if its distribution has a one-(real-)dimensional marginal with fairly large variance
on some compact set. The following is a quantitative version of [36], Lemma 2.4,
and shows that by multiplying the matrices X and B in Definition 1.3 by a scalar
phase (amounting to multiplying M by a phase, which does not affect its singular
values) we can assume the atom variable ξ has O(κ0)-controlled second moment in
all of our proofs with no loss of generality. The proof is given in the Supplementary
Material [9].

LEMMA 2.5. Let ξ be a centered complex random variable with unit variance,
and assume ξ is κ0-spread for some κ0 ≥ 1 (see Definition 1.1). Then there exists
θ ∈R such that eiθ ξ has κ-controlled second moment for some κ = O(κ0).

Below we give two standard bounds on the concentration function pξ,v(r) when
ξ is a κ-controlled random variable and v ∈ Sn−1. The first gives a crude constant
order bound that is uniform in v ∈ Sn−1.

LEMMA 2.6 (Crude anticoncentration, cf. [39], Corollary 6.3). Let ξ be a
complex random variable with κ-controlled second moment. There exists r0 > 0
depending only on κ such that pξ,v(r0) ≤ 1 − r0 for all v ∈ Sn−1.

Note that Lemma 2.6 is sharp for the case that v is a standard basis vector. The
following gives an improved bound when v has small �∞ norm.

LEMMA 2.7 (Improved anticoncentration). Let ξ be a complex random vari-
able that is κ-controlled for some κ > 0, and let v ∈ Sn−1. For all r ≥ 0,

(2.7) pξ,v(r) �κ r + ‖v‖∞.

Lemma 2.7 can be deduced from the Berry–Esséen theorem (which is the ap-
proach taken in [21], for instance), but this would require ξ to have finite third mo-
ment, which we do not assume. (Generally speaking, higher moment assumptions
should only be necessary to prove concentration bounds as opposed to anticoncen-
tration.) Since we could not locate a proof in the literature for the case that ξ and
the coefficients of v take values in C, we provide a proof in the Supplementary
Material [9].
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2.3. Anticoncentration for the image of a fixed vector. In this subsection, we
boost the anticoncentration bounds for scalar random variables from the previous
sections to anticoncentration for the image of a fixed vector under a random matrix.
The following lemma of Rudelson and Vershynin is convenient for this task.

LEMMA 2.8 (Tensorization, cf. [29], Lemma 2.2). Let ζ1, . . . , ζn be indepen-
dent nonnegative random variables:

(a) Suppose that for some ε0,p0 > 0 and all j ∈ [n], P(ζj ≤ ε0) ≤ p0. There
are c1,p1 ∈ (0,1) depending only on p0 such that

(2.8) P

(
n∑

j=1

ζ 2
j ≤ c1ε

2
0n

)
≤ pn

1 .

(b) Suppose that for some K,ε0 ≥ 0 and all j ∈ [n], P(ζj ≤ ε) ≤ Kε for all
ε ≥ ε0. Then for all ε ≥ ε0,

(2.9) P

(
n∑

j=1

ζ 2
j ≤ ε2n

)
≤ (CKε)n.

Note that in part (a) we have given more specific dependencies on the parame-
ters than in [29]. For completeness, we provide the proof of this modified version
in the Supplementary Material [9].

Let M = A ◦ X + B be as in Definition 1.3. Recall that we denote by Ri the
ith row of M . In the following lemmas, we assume that the atom variable ξ has
κ-controlled second moment for some fixed κ ≥ 1. For v ∈ C

m and i ∈ [n], we
write

(2.10) vi := (vjaij )
m
j=1

For α > 0, we denote

(2.11) Iα(v) := {
i ∈ [n] : ∥∥vi

∥∥ ≥ α
}
.

LEMMA 2.9 (Crude anticoncentration for the image of a fixed vector). Fix
v ∈ C

m and let α > 0 such that Iα(v) �= ∅. For all I0 ⊂ Iα(v),

(2.12) sup
w∈Cn

PI0

(‖Mv − w‖ ≤ c0α|I0|1/2) ≤ e−c0|I0|,

where c0 > 0 is a constant depending only on κ [recall our notation PI0(·) from
Section 1.7].

PROOF. Fix w ∈C
n arbitrarily. For any i ∈ Iα(v) and any t ≥ 0, we have

P
(|Ri · v − wi | ≤ t

) ≤ pξ,vi (t) = pξ,vi/‖vi‖
(
t/

∥∥vi
∥∥) ≤ pξ,vi/‖vi‖(t/α).
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Taking t = αr0, by Lemma 2.6 we have

(2.13) P
(|Ri · v − wi | ≤ αr0

) ≤ 1 − r0,

where r0 > 0 depends only on κ .
Fix I0 ⊂ Iα(v) arbitrarily. We may assume without loss of generality that I0 is

nonempty. By Lemma 2.8(a), there exists c1 > 0 depending only on κ such that

(2.14) PI0

(∑
i∈I0

|Ri · v − wi |2 ≤ c1r
2
0α2|I0|

)
≤ e−c1|I0|.

Now for any τ ≥ 0,

PI0

(‖Mv − w‖ ≤ τ |I0|1/2) = PI0

(
n∑

i=1

|Ri · v − wi |2 ≤ τ 2|I0|
)

≤ PI0

(∑
i∈I0

|Ri · v − wi |2 ≤ τ 2|I0|
)

and the claim follows by taking τ = c
1/2
1 r0α =: c0α and applying (2.14). �

By similar lines, using Lemmas 2.8(b) and 2.7 in place of Lemmas 2.8(a) and
2.6, respectively, one obtains the following, which is superior to Lemma 2.9 for
vectors v with small �∞ norm. The details are omitted.

LEMMA 2.10 (Improved anticoncentration for the image of a fixed vector).
Fix v ∈ C

m. Let α > 0 such that Iα(v) �= ∅ and fix I0 ⊂ Iα(v) nonempty. For
all t ≥ 0,

(2.15) sup
w∈Cn

PI0

(‖Mv − w‖ ≤ t |I0|1/2) ≤ Oκ

(
1

α

(
t + ‖v‖∞

))|I0|
.

3. Invertibility from connectivity: Compressible vectors. In this section,
we combine the anticoncentration estimates from Section 2 with union bounds over
ε-nets (as obtained for instance from Lemma 2.2) to prove that with high proba-
bility, a random matrix M as in Theorem 1.12 or Theorem 1.23 is well-invertible
on the set of compressible vectors Comp(θ, ρ) [as defined in (2.1)] for appropriate
choices of θ, ρ. Hence, there will be a competition between the quality of the anti-
concentration estimates and the cardinality of the ε-nets. For small values of θ , we
can use ε-nets of small cardinality, but only have poor anticoncentration bounds
(namely, Lemma 2.9), while for large θ the nets are very large, but we have access
to the improved anticoncentration of Lemma 2.10.

In both cases, we start with a crude result, Lemma 3.3, giving control for the
vectors in Comp(θ0, ρ0) for some small value of θ0 (possibly depending on n). We
then use an iterative argument argument to obtain control on Comp(θ, ρ) for larger
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values of θ while lowering the parameter ρ. For Theorem 1.12, we want to take θ

close to 1, while for Theorem 1.23 a constant order value of θ will suffice.
It turns out that that while the standard ε-net from Lemma 2.2 suffices to prove

Lemma 3.3, it is insufficient to obtain control on Comp(θ, ρ) for the desired values
of θ . For the broadly connected case, this is essentially due to working in C

n rather
than R

n, which causes a factor 2 increase in metric entropies (this difficulty was not
present in the proof of Theorem 1.10 in [31] as they worked in R

n). The situation
is worse for the case of Theorem 1.23, the main source of difficulty being that
‖B‖ can be of arbitrary polynomial order. As a consequence, the starting point
θ0 for our iterative argument will be of size o(1). This prevents us from using the
third condition of the super-regularity hypothesis (see Definition 1.22), which only
“sees” vectors that are essentially supported on more than εn coordinates.

We deal with this by reducing the entropy cost of the nets over which we take
union bounds. In Section 3.2, we prove Lemma 3.5 which shows, roughly speak-
ing, that if we have already established control on vectors in Comp(θ, ρ) for some
θ, ρ, then we can control the vectors in Comp(θ + �,ρ′) for some small �,ρ′
using a random net of significantly smaller cardinality than the net provided by
Lemma 2.2. We can then increment θ from θ0 up to size � 1, taking steps of size
�. For the broadly connected case, we can continue and take θ as close to 1 as
desired. The entropy reduction argument for Lemma 3.5 makes use of a strong
version of the well-known restricted invertibility theorem due to Spielman and
Srivastava; see Theorem 3.7.

We now state the main results of this section. For K ≥ 1, we denote the bound-
edness event

(3.1) B(K) := {‖M‖ ≤ K
√

n
}
.

With a fixed choice of K , we write

(3.2) E(θ, ρ) := B(K) ∧ {∃u ∈ Comp(θ, ρ) : ‖Mu‖ ≤ ρK
√

n
}
.

PROPOSITION 3.1 (Compressible vectors: broadly connected profile). Let
M = A ◦ X + B be as in Definition 1.3 with n/2 ≤ m ≤ 2n, and assume that ξ

has κ-controlled second moment for some κ ≥ 1 (see Definition 2.4). Let K ≥ 1
and σ0, δ, ν ∈ (0,1). There exist θ0(κ, σ0, δ,K) > 0 and ρ(κ, σ0, δ, ν,K) > 0 such
that the following holds. Assume:

(1) |NA(σ0)
T(j)| ≥ δn for all j ∈ [m];

(2) |N (δ)

A(σ0)
T(J )| ≥ min((1 + ν)|J |, n) for all J ⊂ [m] with |J | ≥ θ0m.

Then for any 0 < θ ≤ (1 − δ
4)min( n

m
,1),

(3.3) P
(
E(θ, ρ)

) �κ,σ0,δ,ν,K exp
(−cκδσ 2

0 n
)
,

where cκ > 0 depends only on κ .
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The following gives control of compressible vectors for more general profiles
than in Proposition 3.1 [essentially removing the condition (2)]. However, we have
to take the parameter ρ much smaller, and we only cover vectors that are essentially
supported on a small (linear) proportion of the coordinates, rather than a proportion
close to one.

PROPOSITION 3.2 (Compressible vectors: general profile with large perturba-
tion). Let M = A ◦ X + B be as in Definition 1.3 with n/2 ≤ m ≤ 2n. Assume
ξ has κ-controlled second moment for some κ ≥ 1, and that for some a0 > 0 we
have

(3.4)
n∑

i=1

a2
ij ≥ a2

0n for all j ∈ [m].

Fix γ ≥ 1/2 and let 1 ≤ K = O(nγ−1/2). Then for some ρ = ρ(γ, a0, κ, n) �γ,a0,κ

n−O(γ 2) and a sufficiently small constant c0 > 0 we have

(3.5) P
(
E

(
c0a

2
0, ρ

)) �γ,a0,κ exp
(−cκa2

0n
)
,

where cκ > 0 depends only on κ .

3.1. Highly compressible vectors. In this subsection, we establish the follow-
ing crude version of Proposition 3.2, giving control on vectors in Comp(θ0, ρ0)

with θ0 sufficiently small depending on a0 and K .

LEMMA 3.3 (Highly compressible vectors). Let M = A ◦ X + B be as in
Definition 1.3 with m ≤ 2n. Assume that ξ has κ-controlled second moment for
some κ ≥ 1. Suppose also that there is a constant a0 > 0 such that for all j ∈ [m],∑n

i=1 a2
ij ≥ a2

0n. Let K ≥ 1. Then with notation as in (3.2) we have

(3.6) P
(
E(θ0, ρ0)

) ≤ e−cκa2
0n,

where θ0 = cκa2
0/ log(K/a2

0) and ρ0 = cκa2
0/K for a sufficiently small cκ > 0 de-

pending only on κ .

We will need the following lemma, which ensures that the set Iα(v) from (2.11)
is reasonably large when the columns of A have large �2 norm. A similar argument
has been used in [23] and [31].

LEMMA 3.4 (Many good rows). Let A be an n×m matrix as in Definition 1.3,
and assume that for some a0 > 0 we have

∑n
i=1 a2

ij ≥ a2
0n for all j ∈ [m]. Then for

any v ∈ Sm−1 we have |Ia0/2(v)| ≥ 1
2a2

0n.
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PROOF. Writing α = a0/
√

2, we have

a2
0n ≤

n∑
i=1

m∑
j=1

|vj |2a2
ij

= ∑
i∈Iα(v)

m∑
j=1

|vj |2a2
ij + ∑

i /∈Iα(v)

m∑
j=1

|vj |2a2
ij

≤ ∑
i∈Iα(v)

m∑
j=1

|vj |2 + ∑
i /∈Iα(v)

1

2
a2

0

≤ ∣∣Iα(v)
∣∣ + 1

2
a2

0n

and rearranging gives the claim. �

PROOF OF LEMMA 3.3. Fix J ⊂ [m] of size �θ0m� and let v ∈ SJ be arbitrary.
Writing α = a0/

√
2, by Lemma 2.9 and our choice of ρ0 (with cκ > 0 sufficiently

small depending on κ),

P
(‖Mv‖ ≤ ρ0K

√
n
) ≤ P

(‖Mv‖ ≤ cκa0
∣∣Iα(v)

∣∣1/2) ≤ e−cκ |Iα(v)|.

Applying Lemma 3.4, we obtain

(3.7) P
(‖Mv‖ ≤ ρ0K

√
n
) ≤ e−cκa2

0n ∀v ∈ SJ

(adjusting cκ ). By Lemma 2.2 we may fix �J ⊂ SJ a ρ0/4-net for SJ such that
|�J | ≤ (12/ρ0)

2k . Suppose that ‖M‖ ≤ K
√

n and that ‖Mu‖ ≤ ρ0K
√

n for some
u ∈ Sm−1 ∩ (CJ )ρ0/4. Let u′ ∈ C

J with ‖u − u′‖ ≤ ρ0/4, and let u′′ ∈ �J with
‖u′′ − u′

‖u′‖‖ ≤ ρ0/4. By the triangle inequality,

∥∥u − u′′∥∥ ≤ ∥∥u − u′∥∥ +
∥∥∥∥u′ − u′

‖u′‖
∥∥∥∥ +

∥∥∥∥ u′

‖u′‖ − u′′
∥∥∥∥ ≤ 3ρ0/4,

where the bound on the middle term follows from |‖u′‖ − 1| ≤ ρ0/4 (also by the
triangle inequality). We have∥∥Mu′′∥∥ ≤ ‖Mu‖ + ∥∥M(

u − u′′)∥∥ ≤ ρ0K
√

n + K
√

n · (3ρ0/4) ≤ 2ρ0K
√

n.

Applying the union bound and (3.7) (adjusting cκ to replace ρ0 by 2ρ0),

P
(∃u ∈ Sm−1 ∩ (

C
J )

ρ0/8 : ‖Mu‖ ≤ ρ0K
√

n
)

≤ P
(∃u′′ ∈ �J : ∥∥Mu′′∥∥ ≤ 2ρ0K

√
n
)

≤ O(1/ρ0)
2θ0me−cκa2

0n.
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From (2.1) and applying the union bound over all choice of J ∈ ( [m]
θ0m

)
,

P
(
E(θ0, ρ0/4)

) ≤ O(1/θ0)
θ0mO(1/ρ0)

2θ0me−cκa2
0n ≤ O

(
1

θ0ρ
2
0

)2θ0n

e−cκa2
0n,

where we used our assumption m ≤ 2n. The desired bound now follows from
substituting our choices of θ0, ρ0, and again adjusting the constant cκ to replace
ρ0/4 by ρ0 in the above. �

3.2. An entropy reduction lemma. The aim of this subsection is to establish
the following.

LEMMA 3.5 (Control by a random net of small cardinality). For every I ⊂
[n], J ⊂ [m], ε > 0, there is a random finite set �I,J (ε) ⊂ SJ , measurable with
respect to FI.J = 〈{ξij }i∈I,j∈J 〉, such that the following holds. Let ρ ∈ (0,1),
K > 0 and 0 < θ < n

m
. On B(K) ∧ E(θ, ρ)c, for all J ⊂ [m] with |J | > θm and

all β,ρ ′ ∈ (0,1), putting

(3.8) ρ′′ = 6ρ′

βρ

(
n

�θm�
)1/2

there exists I ⊂ [n] with |I | = �(1 − β)2�θm�� such that:

(1) |�I,J (ρ′′)| ≤ (C/ρ′′)2(|J |−|I |) for an absolute constant C > 0, and
(2) for any u ∈ Sm−1 ∩ (CJ )ρ′ such that ‖Mu‖ ≤ ρ′K

√
n, we have dist(u,

�I,J (ρ′′)) ≤ 3ρ ′′.

Furthermore, writing

(3.9) GI,J

(
ρ′′) :=

{∣∣�I,J

(
ρ′′)∣∣ ≤

(
C

ρ′′
)2(|J |−|I |)}

we have that for any θ ′ ∈ (θ,1],
E(θ, ρ)c ∧ E

(
θ ′, ρ′)

⊂ ∨
J∈( [m]

θ ′m)

∨
I∈( [n]

(1−β)2�θm�)

(
GI,J

(
ρ′′)(3.10)

∧ {∃u ∈ �I,J

(
ρ′′) : ‖Mu‖ ≤ 4ρ′′K

√
n
})

.

REMARK 3.6. We obtain the random set �I,J (ε) as the intersection of the
sphere SJ with an ε-net of the kernel of the submatrix MI,J . However, for our
purposes it only matters that it is fixed by conditioning on the rows {Ri}i∈I , has
small cardinality, and serves as a net for almost-null vectors of M that are sup-
ported on J .
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To prove Lemma 3.5, we use the following version of the restricted invertibility
theorem [33] (the version below is taken from [24], Theorem 3.1).

THEOREM 3.7 (Restricted Invertibility Theorem). Suppose v1, . . . , vn ∈ C
m

are such that
∑n

i=1 viv
∗
i = Im. For any β ∈ (0,1), there is a subset I ⊂ [n] of size

|I | = �(1 − β)2m� for which

(3.11) λ|I |
(∑

i∈I

viv
∗
i

)
≥ β2m/n,

where λk(A) denotes the kth largest eigenvalue of a Hermitian matrix A.

This has the following consequence, which can be seen as a robust quantitative
version of the basic fact from linear algebra that the row rank of a matrix is equal
to its column rank.

COROLLARY 3.8. Let M be an n × m matrix with n ≥ m, and assume
sm(M) ≥ ε0

√
n for some ε0 > 0. For any β ∈ (0,1), there exists I ⊂ [n] with

|I | = �(1 − β)2m� such that

s|I |(MI,[m]) ≥ βε0
√

m.

REMARK 3.9. The original restricted invertibility theorem of Bourgain and
Tzafriri [8] only gives |I | ≥ cm and s|I |(MI,[m]) ≥ cε0

√
m for some (small) abso-

lute constant c > 0, while it will be important for our purposes to be able to take I

of size close to m.

PROOF OF COROLLARY 3.8. By the singular value decomposition, it suffices
to consider M of the form M = U� where U is an n×m matrix with orthonormal
columns and � is an m×m diagonal matrix with entries bounded below by ε0

√
n.

Fix α ∈ (0,1). Letting v∗
1 , . . . , v∗

n ∈ C
m denote the rows of U , it follows from

orthonormality that

Im = U∗U =
n∑

i=1

viv
∗
i .

Hence, we can apply Theorem 3.7 to obtain a subset I ⊂ [n] with |I | = �(1 −
β)2m� such that

s|I |(UI,[m])2 = λ|I |
(∑

i∈I

viv
∗
i

)
≥ β2m/n.

Now we have

s|I |(MI,m) ≥ s|I |(UI,m)sm(�) ≥ β

√
m

n
ε0

√
n = βε0

√
m. �
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PROOF OF LEMMA 3.5. Let I ⊂ [n], J ⊂ [m], and write VI,J = C
J ∩

ker(MI,J ). Conditional on FI,J , for ε > 0 we let �I,J (ε) be an ε-net of Sm−1 ∩
VI,J . By Lemma 2.2, we may take

(3.12)
∣∣�I,J (ε)

∣∣ = O(1/ε)2 dim(VI,J ).

Let ρ,ρ′ ∈ (0,1), K > 0 and 0 < θ < n
m

. Fix β ∈ (0,1) and J ⊂ [m] with
|J | > θm. On E(θ, ρ)c, for all J0 ⊂ J with |J0| = �θm� we have

s�θm�(M[n],J0) ≥ ρK
√

n.

By Corollary 3.8, there exists I ⊂ [n] with |I | = �(1 − β)2�θm�� such that

s|I |(MI,J0) ≥ βρK
√�θm�.

By the Cauchy interlacing law,

(3.13) s|I |(MI,J ) ≥ βρK
√�θm�.

In particular, the submatrix (yij )i∈I,j∈J has full row-rank, which implies
dim(VI,J ) = |J | − |I |. From (3.12), we conclude

(3.14)
∣∣�I,J (ε)

∣∣ = O(1/ε)2(|J |−|I |)

for any ε > 0.
Now suppose there exists u ∈ Sm−1 ∩ (CJ )ρ′ such that

(3.15) ‖Mu‖ ≤ ρ′K
√

n.

Letting v′ ∈ C
J such that ‖u − v′‖ ≤ ρ′, and putting v := v′/‖v′‖ ∈ SJ , by the

triangle inequality we have ‖u − v‖ ≤ 2ρ′ and

(3.16) ‖Mv‖ ≤ ‖Mu‖ + ‖M‖‖u − v‖ ≤ 3ρ ′K
√

n.

On the other hand,

‖Mv‖ ≥ ‖MI,[m]v‖ = ∥∥MI,[m](I−PVI,J
)v

∥∥,
where PVI,J

is the matrix for orthogonal projection to the subspace VI,J . Applying
(3.13),

‖Mv‖ ≥ ∥∥(I−PVI,J
)v

∥∥βρK
√�θm�.

Together with (3.16) this implies that v lies within distance

(3.17)
3ρ′√n

βρ
√�θm� = ρ′′/2

of the subspace VI,J . Since v is a unit vector, we have dist(v, Sm−1 ∩ VI,J ) ≤ ρ ′′
by the triangle inequality, and

dist
(
u,�I,J

(
ρ′′)) ≤ ‖u − v‖ + ρ′′ + dist

(
v,Sm−1 ∩ VI,J

) ≤ 2ρ ′ + 2ρ′′ ≤ 3ρ ′′

as desired [that 2ρ′ ≤ ρ ′′ follows from inspection of (3.8)].
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Now to prove (3.10), let θ ′ ∈ (θ,1]. Intersecting with E(θ, ρ)c and applying the
first part of the lemma,

E(θ, ρ)c ∧ E
(
θ ′, ρ′)

= B(K) ∧ E(θ, ρ)c ∧ ∨
J∈( [m]

θ ′m)

{∃v ∈ (
SJ )

ρ′ : ‖Mv‖ ≤ ρ′K
√

n
}

(3.18)
⊂ ∨

J∈( [m]
θ ′m)

∨
I∈( [n]

(1−β)2�θm�)

(
GI,J

(
ρ′′)

∧ {∃u ∈ �I,J

(
ρ′′) : ‖Mu‖ ≤ 4ρ′′K

√
n
})

,

where in the last line we noted that for v ∈ (SJ )ρ′, u ∈ �I,J (ρ′′) such that ‖u −
v‖ ≤ 3ρ′′, we have

‖Mu‖ ≤ ‖Mv‖ + 3ρ ′′K
√

n ≤ (
ρ′ + 3ρ′′)K√

n ≤ 4ρ′′K
√

n. �

3.3. Broadly connected profile: Proof of Proposition 3.1. We will obtain
Proposition 3.1 from an iterative application of the following lemma.

LEMMA 3.10 (Incrementing compressibility: broadly connected profile). Let
M = A ◦ X + B be as in Definition 1.3 with m ≥ n/2. Assume ξ has κ-controlled
second moment for some κ ≥ 1, and that for some σ0, δ, ν, θ1 ∈ (0,1) we have:

(1) |NA(σ0)(j)| ≥ δn for all j ∈ [m];
(2) |N (δ)

A(σ0)
(J )| ≥ min((1 + ν)|J |, n) for all J ⊂ [m] with |J | ≥ (θ1/2)m.

Let K ≥ 1, ρ ∈ (0,1), and θ ∈ [θ1,1) such that (1 + ν
2 )θm < n. There exists ρ′ =

ρ′(κ, σ0, δ, ν, ρ, θ,K) > 0 such that

(3.19) P

(
E(θ, ρ)c ∧ E

((
1 + ν

10

)
θ, ρ′

))
= Oκ,σ0,δ,ν,ρ,θ,K

(
e−n)

.

PROOF. We may assume n is sufficiently large depending on κ , σ0, δ, ν, ρ,
θ , K . Write θ ′ = (1 + ν

10)θ and take β = ν
10 . Let ρ′ > 0 to be taken sufficiently

small depending on κ,σ0, δ, ν, ρ, θ,K and let ρ′′ be as in (3.8). Intersecting the
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right-hand side of (3.10) with E(θ, ρ)c, we have

E(θ, ρ)c ∧ E
(
θ ′, ρ′)

⊂ ∨
J∈( [m]

θ ′m)

∨
I∈( [n]

(1−β)2�θm�)

GI,J

(
ρ′′)

∧ E(θ, ρ)c ∧ {∃u ∈ �I,J

(
ρ′′) : ‖Mu‖ ≤ 4ρ ′′K

√
n
}

⊂ ∨
J∈( [m]

θ ′m)

∨
I∈( [n]

(1−β)2�θm�)

GI,J

(
ρ′′)

∧ {∃u ∈ �I,J

(
ρ′′) \ Comp(θ, ρ) : ‖Mu‖ ≤ 4ρ′′K

√
n
}
,

(3.20)

where the second line follows by taking ρ′ small enough that 4ρ′′ < ρ.
Fix J ⊂ [m] and I ⊂ [n] of sizes �θ ′m�, �(1−β)2�θm��, respectively, and con-

dition on FI,[n] [recall the notation (1.29)] to fix �I,J (ρ′′). Consider an arbitrary
element u ∈ �I,J (ρ′′) \ Comp(θ, ρ). By Lemma 2.1, there is a set L ⊂ [m] with
|L| ≥ (1 − ν

C2
0
)θm and

(3.21)
ρ√
m

≤ |uj | ≤ C0√
νθm

for all j ∈ L, where C0 > 0 is an absolute constant to be taken sufficiently large.
For any i ∈ N (δ)(L), we have

(3.22)
∥∥(uL)i

∥∥2 ≥ ∑
i∈L:aij≥σ0

|uj |2a2
ij ≥ ρ2

m
σ 2

0 δ|L| ≥ 1

2
ρ2σ 2

0 δθ =: α2,

where in the last inequality we took C0 sufficiently large. Hence,

(3.23)
∣∣Iα(uL)

∣∣ ≥ ∣∣N (δ)(L)
∣∣ ≥ min

(
n, (1 + ν)

(
1 − ν/C2

0
)
θm

) ≥
(

1 + ν

2

)
θm

taking C0 larger if necessary, where in the second inequality we used our assump-
tion θ ≥ θ1, and in the third inequality we used our assumption (1 + ν

2 )θm < n.
Fix I0 ⊂ Iα(uL) \ I of size n0 := �(1 + ν

2 )θm� − |I |. In particular,

ν

2
θm ≤ n0 ≤

(
1 + ν

2

)
θm − (1 − 2β)θm ≤ νθm(3.24)

and

n0 + 2|I | − 2|J |

≥
(

1 + ν

2

)
θm + (1 − 2β)θm − 2

(
1 + ν

10

)
θm − O(1)

= 1

10
νθm − O(1)

(3.25)



3470 N. COOK

by our choice of β . By Lemma 2.10,

PI0

(‖Mu‖ ≤ 4ρ′′K
√

n
) ≤ Oκ

(
1

α

(
ρ′′K

√
n√|I0| + 1√

νθm

))n0

≤ Oκ

(
ρ′′K
αθ1/2

)n0

,

(3.26)

where in the second inequality we applied the assumption m ≥ n/2 and assumed
that n is sufficiently large that ρ ′′ � 1/K

√
n [it follows from (3.8) and our as-

sumption that ρ ′ is independent of n that ρ′′ is bounded below independent of n].
Suppose that GI,J (ρ′′) holds. Since the bound (3.26) is uniform in the choice

of I0, we can undo the conditioning and apply the union bound over elements of
�I,J (ρ′′) \ Comp(θ, ρ) to find

P
(∃u ∈ �I,J

(
ρ′′) \ Comp(θ, ρ) : ‖Mu‖ ≤ 4ρ ′′K

√
n
)

≤ O

(
1

ρ′′
)2(|J |−|I |)

Oκ

(
ρ′′K
αθ1/2

)n0

= Oκ

(
K

αθ1/2

)n0

O
(
ρ′′)n0+2|I |−2|J |

= Oκ

(
K

αθ1/2

)νθm

O
(
ρ′′) 1

10 νθm−O(1)
,

where in the last line we applied the bounds (3.24) and (3.25). Since this is uniform
in I, J , we can undo the conditioning on FI,[n] and apply (3.20) with another union
bound over the choices of I, J to obtain

(3.27) P
(
E(θ, ρ)c ∧ E

(
θ ′, ρ′)) ≤ 2m+nOκ

(
K

αθ1/2

)νθm

O

(
ρ′

νρθ1/2

) 1
10 νθm−O(1)

,

where we have substituted the definition of ρ′′. The result now follows by taking
ρ′ sufficiently small. �

Now we conclude the proof of Proposition 3.1. From our assumptions, it follows
that for all j ∈ [m] we have

∑n
i=1 a2

ij ≥ δσ 2
0 n. Together with our assumption m ≤

2n, this means we can apply Lemma 3.3 to find that

(3.28) P
(
E(θ0, ρ0)

) ≤ e−cκδσ 2
0 n,

where θ0 = cκδσ 2
0 / log(K/δσ 2

0 ) and ρ0 = cκδσ 2
0 /K .

We may assume without loss of generality that ν ≤ δ/2. For l ≥ 1, set θl =
(1 + ν

10)lθ0, and let k be the smallest l such that θl ≥ θ . We have(
1 + ν

2

)
θk−1m ≤

(
1 + ν

2

)
θm ≤

(
1 − δ2

16

)
min(m,n) < n.



INVERTIBILITY OF STRUCTURED RANDOM MATRICES 3471

In particular, (1 + ν/10)kθ0 ≤ (1 + ν/10)θ ≤ 1, so

(3.29) k ≤ log 1
θ0

log(1 + ν
10)

�κ,σ0,δ,ν,K 1.

Applying Lemma 3.10 inductively, we have that for every 1 ≤ l ≤ k there is ρl > 0
depending only on κ,σ0, δ, ν and K such that

(3.30) P
(
E(θl, ρl) \ E(θl−1, ρl−1)

) = Oκ,σ0,δ,ν,K

(
e−n)

.

Together with (3.28) and the union bound,

P
(
E(θ, ρ)

) ≤ P
(
E(θ0, ρ0)

) +
k∑

l=1

P
(
E(θl, ρl) \ E(θl−1, ρl−1)

)
≤ e−cκδσ 2

0 n + Oκ,σ0,δ,ν,K

(
e−n)

= Oκ,σ0,δ,ν,K

(
e−cκδσ 2

0 n)
.

3.4. General profile: Proof of Proposition 3.2. For technical reasons (essen-
tially due to the fact that we want to allow the operator norm to have arbitrary
polynomial size), the anticoncentration argument from the previous section will
not suffice here, and we will need the following substitute. Roughly speaking,
while previously we argued by isolating a large set of coordinates on which the
vector u is “flat” [see (3.21)], here we will need to locate a set on which u is very
flat, only fluctuating by a constant factor. This is done by a simple dyadic decom-
position of the range of u, which is responsible for the loss of a logarithmic factor
in the probability bound. A similar argument will be used in Section 4.2.

LEMMA 3.11 (Anticoncentration for the image of an incompressible vector).
Let M be as in Proposition 3.2. Let v ∈ Incomp(θ, ρ) for some θ, ρ ∈ (0,1), and
fix I0 ⊂ [n] with |I0| ≤ 1

4a2
0n. Then for all t ≥ a0ρ/

√
m,

(3.31) sup
w∈Cn

P[n]\I0

(‖Mv − w‖ ≤ t
√

n
) = Oκ

( t log1/2(
√

m
ρ

)

a2
0ρθ1/2

) 1
4 a2

0n

.

REMARK 3.12. Proceeding as in the proof of Lemma 3.10 would yield

sup
w∈Cn

P[n]\I0

(‖Mv − w‖ ≤ t
√

n
)

= Oκ

(
t

a2
0ρθ1/2

) 1
4 a2

0n

for all t ≥ a0√
θm

.

(3.32)

The ability to take t down to the scale ∼ ρ/
√

m will be crucial in the proof of
Lemma 3.13 below.
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PROOF. We begin by finding a set of indices on which v varies by at most
a factor of 2. For k ≥ 0, let Lk = {j ∈ [m] : 2−(k+1) < |vj | ≤ 2−k}. Since v ∈
Incomp(θ, ρ), we have∣∣L+∣∣ := ∣∣{j ∈ [m] : |vj | ≥ ρ/

√
m

}∣∣ ≥ θm.

Indeed, were this not the case then v would be within distance ρ of the vector vL+
whose support is smaller than θm, implying v ∈ Comp(θ, ρ). Thus, L+ ⊂ ⋃�

k=0 Lk

for some � � log(
√

m
ρ

). By the pigeonhole principle, there exists k∗ ≤ � such that
L∗ := Lk∗ satisfies

(3.33)
∣∣L∗∣∣ ≥ θn

�
� θm

log(
√

m
ρ

)
.

Denote I ∗ := I a0
2 ‖vL∗‖(vL∗). By Lemma 3.4,

(3.34)
∣∣I ∗∣∣ ≥ 1

2
a2

0n.

Fix i ∈ I ∗. By definition of I ∗,

(3.35)
∥∥(

vi)
L∗

∥∥ ≥ 1

2
a0‖vL∗‖

and since |vj | � ρ/
√

m on L∗,

(3.36) ‖vL∗‖ � ρ√
m

∣∣L∗∣∣1/2
.

Furthermore, since aij ≤ 1 for all j ∈ [m] and v varies by a factor at most 2 on L∗,

(3.37)
∥∥(

vi)
L∗

∥∥∞ ≤ ‖vL∗‖∞ ≤ 2
‖vL∗‖
|L∗|1/2 .

Fix w ∈ C
n arbitrarily, and recall that Ri denotes the ith row of M . By

Lemma 2.7 and the above estimates, for all t ≥ 0 we have

P
(|Ri · v − wi | ≤ t

) �κ

t + ‖(vi)L∗‖∞
‖(vi)L∗‖

� 1

a0

(
t

‖vL∗‖ + ‖(vi)L∗‖∞
‖vL∗‖

)

� 1

a0

(
t

ρ

(
m

|L∗|
)1/2

+ 1

|L∗|1/2

)

= 1

a0

(
m

|L∗|
)1/2(

t

ρ
+ 1√

m

)
.
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By Lemma 2.8,

PI∗\I0

(‖Mv − w‖ ≤ t
∣∣I ∗ \ I0

∣∣1/2)
≤ PI∗\I0

( ∑
i∈I∗\I0

|Ri · v − wi |2 ≤ t2∣∣I ∗ \ I0
∣∣)

= Oκ

(
t
√

m

a0ρ|L∗|1/2

)|I∗\I0|

for all t ≥ ρ/
√

m. Substituting the lower bounds (3.33), (3.34) on |L∗| and |I ∗|
and our assumption |I0| ≤ 1

4a2
0n,

PI∗\I0

(
‖Mv − w‖ ≤ 1

2
ta0

√
n

)
= Oκ

( t log1/2(
√

m
ρ

)

a0ρθ1/2

) 1
4 a2

0n

for all t ≥ ρ/
√

m. The result now follows by replacing t with 2t/a0 as undoing the
conditioning on the remaining rows in [n] \ I0. �

Now we are ready to prove the analogue of Lemma 3.10 for general pro-
files. Whereas in the broadly connected case we obtained control on vectors
in Comp((1 + β)θ,ρ ′) after restricting to the event that we have control on
Comp(θ, ρ), for small β > 0, here we will also need to assume control on
Comp(θ0, ρ0) for a fixed small θ0 at each step. The control on Comp(θ, ρ) will
be used to obtain a net of low cardinality using Lemma 3.5, while the control
on Comp(θ0, ρ0) will be used to obtain good anticoncentration estimates using
Lemma 3.11. [In the broadly connected case, the control on Comp(θ, ρ) was suf-
ficient for both purposes.]

LEMMA 3.13 (Incrementing compressibility: general profile). Let M be as in
Proposition 3.2, fix γ > 1/2 and put K = nγ−1/2. Let θ0, ρ0 be as in Lemma 3.3,
and fix θ ∈ [θ0, c0a

2
0], where c0 is a sufficiently small constant (we may assume the

constant c in Lemma 3.3 is sufficiently small so that this interval is nonempty). We
have

(3.38) P
(
E(θ0, ρ0)

c ∧ E(θ, ρ)c ∧ E
(
θ + βa2

0, ρ′)) = Oγ,a0,κ

(
e−n)

for some ρ′ �γ,a0,κ n−O(γ )ρ, where we set

(3.39) β = c1 min
(

1,
1

γ − 1/2

)
for a sufficiently small constant c1 > 0.
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PROOF. Let ρ′ > 0 to be taken sufficiently small, and let ρ ′′ be as in (3.8). We
denote θ ′ = θ + βa2

0 . Intersecting both sides of (3.10) with E(θ0, ρ0)
c, we have

E(θ0, ρ0)
c ∧ E(θ, ρ)c ∧ E

(
θ ′, ρ′)

⊂ ∨
J∈( [m]

θ ′m)

∨
I∈( [n]

(1−β)2�θm�)

GI,J

(
ρ′′)

∧ {∃u ∈ �I,J

(
ρ′′) \ Comp(θ0, ρ0) : ‖Mu‖ ≤ 4ρ ′′K

√
n
}
,

(3.40)

where we have assumed ρ′ is small enough that 4ρ′′ < ρ0.
Fix J ⊂ [m] and I ⊂ [n] of size �θ ′m�, �(1 − β)2�θm��, respectively, and con-

dition on FI,[n] to fix �I,J (ρ′′). Fix an arbitrary u ∈ �I,J (ρ′′) \ Comp(θ0, ρ0).
From Lemma 3.11, we have

(3.41) P[n]\I
(‖Mu‖ ≤ 4ρ′′K

√
n
) = Oκ

(ρ′′K log1/2(
√

n
ρ0

)

a2
0ρ0θ

1/2
0

) 1
4 a2

0n

provided

(3.42) ρ′′ ≥ ca0ρ0

K
√

n

for some small constant c > 0 (note that we used our assumption n/2 ≤ m ≤ 2n).
Applying the union bound over the choices of u ∈ �I,J (ρ′′) \ Comp(θ0, ρ0), on

the event GI,J (ρ′′) we have

P
(∃u ∈ �I,J

(
ρ′′) \ Comp(θ0, ρ0) : ‖Mu‖ ≤ 4ρ ′′K

√
n
)

≤ O

(
1

ρ′′
)2(|J |−|I |)

Oκ

(ρ′′K log1/2(
√

n
ρ0

)

a2
0ρ0θ

1/2
0

) 1
4 a2

0n

= O

(
1

ρ′′
)2(|J |−|I |)

Oκ,a0

(
ρ′′K2 log(K

√
n)

) 1
4 a2

0n
,

where in the second line we substituted the expressions for ρ0, θ0 from Lemma 3.3.
Denoting ε = ρ′′K2, the above bound rearranges to

(3.43) Oκ,a0(logn)nnO(γ )nO(γ−1/2)(|J |−|I |)ε
1
4 a2

0n−2(|J |−|I |).

We can bound

|J | − |I | = θm + βa2
0m − (1 − β)2θm + O(1)

≤ βa2
0m + 2βθm + O(1)

= O
(
βa2

0m
) + O(1),
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where we used our assumption that θ ≤ c0a
2
0 . In particular, |J | − |I | ≤ 1

8a2
0n +

O(1) if the constant c1 in (3.39) is sufficiently small, and (3.43) is bounded by

(3.44) Oκ,a0(logn)nnO(γ )nO(γ−1/2)βa2
0mε

1
8 a2

0n−O(1).

Applying the union bound over the choices of I, J in (3.40), which incurs a harm-
less factor of 2m+n = O(1)n, and substituting the expression (3.39) for β we have

P
(
E(θ0, ρ0)

c ∧ E(θ, ρ)c ∧ E
(
θ + βa2

0, ρ′))
= Oκ,a0(logn)nnO(γ )ε−O(1)(nO(c1)ε1/8)a2

0n
.

(3.45)

It only remains to check that we can take ε sufficiently small to obtain (3.38). From
(3.42), we are constrained to take

ε = ρ′′K2 ≥ ca0ρ0K√
n

= c′a3
0√
n

for some constant c′ ∈ (0,1) sufficiently small. Taking ε = a3
0/

√
n and c1 suffi-

ciently small, we have

(3.46) P
(
E(θ0, ρ0)

c ∧ E(θ, ρ)c ∧ E
(
θ + βa2

0, ρ′)) ≤ Oκ,a0(1)nnO(γ )n−0.01a2
0n

which yields (3.38) as desired. With this choice of ε,

ρ′ � ρ′′βρθ ≥ ρ′′βρθ0 �κ,a0,γ ρn−2γ+1/2−o(1)

as desired [recall that θ0 �κ a2
0/ log(K/a0) �γ,a0,κ 1/ logn]. �

Now we conclude the proof of Proposition 3.2. Since the event B(K) is mono-
tone under increasing K , by perturbing γ and assuming n is sufficiently large we
may take K = nγ−1/2 with γ > 1/2. Let ρ0, θ0 be as in Lemma 3.3, and for l ≥ 1
we let θl = θ0 + lβa2

0 with β = β(γ ) as in (3.39). By Lemma 3.13, we can induc-
tively define a sequence ρl such that for each l ≥ 1 such that θl ≤ c0a

2
0 ,

ρl �γ,a0,κ n−O(γ )ρl−1

and

P
(
E(θ0, ρ0)

c ∧ E(θl−1, ρl−1)
c ∧ E(θl, ρl)

) = Oγ,a0,κ

(
e−n)

.

Applying the union bound, for some k = O(γ ) we have

P
(
E

(
c0a

2
0, ρ

)) ≤ P
(
E(θ0, ρ0)

) +
k∑

l=1

P
(
E(θ0, ρ0)

c ∧ E(θl−1, ρl−1)
c ∧ E(θl, ρl)

)
≤ e−cκa2

0n + Oγ,a0,κ

(
e−n)

= Oγ,a0,κ

(
e−cκa2

0n)
and ρ �γ,a0,κ n−O(γ 2). This concludes the proof of Proposition 3.2.
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4. Invertibility from connectivity: Incompressible vectors. In this section,
we conclude the proofs of Theorems 1.12 and 1.23 by bounding the event that
‖Mu‖ is small for some incompressible vector u (recall the terminology from
Section 2.1). We follow the (by now standard) approach of reducing to the event
that a fixed row Ri of M lies close to the span of the remaining rows, an idea
which goes back to the work of Komlós on the singularity probability for Bernoulli
matrices [15–17]. This can in turn be controlled by the event that a random walk
Ri · v concentrates near a particular point, where v is a fixed unit vector in the
orthocomplement of the remaining rows. Independence of the rows allows us to
condition on v, and our results from the previous section allow us to argue that v

is incompressible.
For the case that the entries of Ri have variances uniformly bounded below,

we could then complete the proof by applying the anticoncentration estimate of
Lemma 2.7. In the present setting, however, a proportion 1 − δ of the entries of
Ri may have zero variance. For the case of broadly connected profile, we follow
the argument of Rudelson and Zeitouni [31] and use Proposition 3.1 to show v

has essential support of size (1 − δ/2)n, and hence has nontrivial overlap with the
support of Ri .

For the case of a super-regular profile, Proposition 3.2 only gives that v has
essential support of size � δσ 2

0 . In Lemma 4.1, we make use of a double count-
ing argument to show that if we choose the row Ri at random, on average it will
have good overlap with the corresponding normal vector v(i) (which also depends
on i). Here is where we make crucial use of the super-regularity hypothesis on A.
Lemma 4.1 is a natural extension of a double counting argument used by Komlós
in his work on the singularity probability for Bernoulli matrices, and which was
applied to bound the smallest singular value of i.i.d. matrices by Rudelson and
Vershynin in [29]. We were also inspired by a similar refinement of the double
counting argument from the recent paper [20] on the singularity probability for
adjacency matrices of random regular digraphs.

4.1. Proof of Theorem 1.12. By Lemma 2.5 and multiplying X and B by a
phase (which does not affect our hypotheses), we may assume that ξ has O(κ0)-
controlled second moment. Fix K ≥ 1, and let ρ = ρ(κ, σ0, δ, ν,K) be as in Propo-
sition 3.1. We may assume n is sufficiently large depending on κ,σ0, δ, ν,K . For
the remainder of the proof, we restrict to the event B(K) = {‖M‖ ≤ K

√
n}.

For j ∈ [n], let M(i) denote the n − 1 × n matrix obtained by removing the ith
row from M . Define the good event

(4.1) G = {∀i ∈ [n],∀u ∈ Comp(1 − δ/2, ρ),
∥∥u∗M

∥∥,∥∥M(i)u
∥∥ > ρK

√
n
}
.

Applying Proposition 3.1 to M∗ and M(i) for each i ∈ [n] [using our restriction to
B(K)] and the union bound, we have

(4.2) P(G) = 1 − Oκ,σ0,δ,ν,K

(
ne−cκδσ 2

0 n) = 1 − Oσ0,δ,ν,K

(
e−cκδσ 2

0 n)
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adjusting cκ slightly. Let t ≤ 1, and define the event

(4.3) E(t) = G ∧ {∃u ∈ Incomp(1/10, ρ) : ∥∥u∗M
∥∥ ≤ t/

√
n
}
.

For n sufficiently large (larger than 1/ρK), it suffices to show

(4.4) P
(
E(t)

) �κ,σ0,δ,ν,K t + n−1/2.

Recalling that Ri denotes the ith row of M , we denote

(4.5) R−i = span
(
Rj : j ∈ [n] \ {i})

and let

(4.6) Ei (t) = G ∧ {
dist(Ri,R−i) ≤ t/ρ

}
.

We now use a double counting argument of Rudelson and Vershynin from [29]
to control E(t) in terms of the events Ei (t). Suppose that E(t) holds, and let u ∈
Incomp(1/10, ρ) such that ‖u∗M‖ ≤ t/

√
n. Then we must have |ui | ≥ ρ/

√
n for

at least n/10 elements i ∈ [n]. For each such i, we have

t√
n

≥ ∥∥u∗M
∥∥

=
∥∥∥∥∥

n∑
j=1

ujRj

∥∥∥∥∥
≥

∥∥∥∥∥PR⊥−i

n∑
j=1

ujRj

∥∥∥∥∥
= |ui |‖PR⊥−i

Ri‖

≥ ρ√
n

dist(Ri,R−i),

where we denote by PW the orthogonal projection to a subspace W . Thus, on E(t)

we have that Ei (t) holds for at least n/10 values of i ∈ [n], so by double counting,

(4.7) P
(
E(t)

) ≤ 10

n

n∑
i=1

P
(
Ei (t)

)
.

Now it suffices to show that for arbitrary fixed i ∈ [n],
(4.8) P

(
Ei (t)

) �κ,σ0,δ,ν,K t + n−1/2.

Fix i ∈ [n] and condition on {Rj : j ∈ [n] \ {i}}. Draw a unit vector u ∈ R⊥−i

independent of Ri , according to Haar measure (say). Since dist(Ri,R−i) ≤ |Ri ·u|,
it suffices to show

(4.9) P
(|Ri · u| ≤ t/ρ

) �κ,σ0,δ,ν,K t + n−1/2.
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Since u ∈ ker(M(i)), on G we have that u ∈ Incomp(1 − δ
2 , ρ). By Lemma 2.1,

there exists L ⊂ [n] of size |L| ≥ (1 − 3
4δ)n such that

ρ√
n

≤ |uj | ≤ 10√
δn

for all j ∈ L. By assumption, we have |NA(σ0)(i)| = |{j ∈ [n] : aij ≥ σ0}| ≥
δn, so letting J = NA(σ0)(i) ∩ L we have |J | ≥ δn/4. Denoting v = (ui)J =
(aijuj 1j∈J )j , we have

‖v‖2 = ∑
j∈J

a2
ij |uj |2 ≥ |J |σ 2

0 ρ2/n ≥ δσ 2
0 ρ2/4

and

‖v‖∞ ≤ ‖uJ ‖∞ ≤ 10√
δn

(recall that aij ≤ 1 for all i, j ∈ [n]). Conditioning on u and {ξij }j /∈J , we apply
Lemma 2.7 to conclude

P
(|Ri · u| ≤ t/ρ

) �κ

1

‖v‖
(

t

ρ
+ ‖v‖∞

)
� 1

ρσ0δ1/2

(
t

ρ
+ 1√

δn

)
which gives (4.9) as desired.

4.2. Proof of Theorem 1.23. By Lemma 2.5 and multiplying X and B by a
phase (which does not affect our hypotheses), we may assume that ξ has κ =
O(κ0)-controlled second moment. Fix γ ≥ 1/2 and let K = O(nγ−1/2). We will
show that for all τ ≥ 0,

(4.10) P

(
sn(M) ≤ τ√

n
,‖M‖ ≤ K

√
n

)
�γ,σ0,δ,κ nO(γ 2)τ +

√
logn

n
.

For the remainder of the proof, we restrict to the boundedness event

(4.11) B(K) = {‖M‖ ≤ K
√

n
}
.

By the assumption that A(σ0) is (δ, ε)-super-regular, we have
n∑

i=1

a2
ij ≥ δσ 2

0 n

for all j ∈ [n]. Let a0 = δ1/2σ0, and let ρ = ρ(γ, a0, κn) and c0 be as in Proposi-
tion 3.2. In particular,

(4.12) ρ �γ,δ,σ0 n−O(γ 2).

Denoting θ = c0δσ
2
0 , for τ > 0 we define the good event

(4.13) G(τ ) = {∀u ∈ Comp(θ, ρ),‖Mu‖,∥∥u∗M
∥∥ > τ/

√
n
}
.
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Applying Proposition 3.2 to M and M∗, along with the union bound, we have

(4.14) P
(
G(τ )

) = 1 − Oγ,δ,σ0,κ

(
e−cκδσ 2

0 n)
as long as τ ≤ ρKn.

Let 0 < τ ≤ 1 to be chosen later. Recalling our notation M(i) from Section 4.1,
we define the sets

(4.15) Si(τ ) =
{
u ∈ Sn−1 : ∥∥M(i)u

∥∥ ≤ τ√
n

}
.

Informally, for small τ this is the set of unit almost-normal vectors to the subspace
R−i spanned by the rows of M(i). In Lemma 4.1 below, we reduce our task to
bounding the probability that a row Ri is nearly orthogonal to a vector u(i) ∈ Si(τ )

that is independent of Ri , and also has many large coordinates in the support of
Ri . The reduction uses the super-regularity hypothesis together with a careful av-
eraging argument. It turns out that for this argument to work it is important to
consider almost-normal vectors rather than normal vectors (as in the proof of The-
orem 1.12).

Writing N (i) =NA(σ0)(i), we define the good overlap events

(4.16) Oi (τ ) = {∃u ∈ Si(τ ) : ∣∣N (i) ∩ L+(u,ρ)
∣∣ ≥ δθn

}
,

where

(4.17) L+(u) = {
j ∈ [n] : |uj | ≥ ρ/

√
n
}
.

On Oi (τ ) we fix a vector u(i) = u(i)(M(i), τ ) ∈ Si(τ ), chosen measurably with
respect to M(i), satisfying |N (i) ∩ L+(u,ρ)| ≥ δθn.

LEMMA 4.1 (Good overlap on average). Recall the parameter ε from our
super-regularity hypothesis (cf. Definition 1.22), and assume ε ≤ θ/2. Then

(4.18) P

(
G(τ ) ∧

{
sn(M) ≤ τ√

n

})
≤ 2

θn

n∑
i=1

P

(
Oi (τ ) ∧

{∣∣Ri · u(i)
∣∣ ≤ 2τ

ρ

})
.

PROOF. Suppose G(τ )∧{sn(M) ≤ τ/
√

n} holds. Then there exist u, v ∈ Sn−1

such that ‖Mu‖,‖M∗v‖ ≤ τ/
√

n. By our restriction to G(τ ), we must have
u, v ∈ Incomp(θ, ρ). With notation as in (4.17), we have |L+(u)|, |L+(v)| ≥ θn.
In particular, |L+(u)| ≥ εn, so

(4.19)
∣∣N (i) ∩ L+(u)

∣∣ ≥ δ
∣∣L+(u)

∣∣ ≥ δθn

for at least (1 − ε)n elements i ∈ [n]. Indeed, otherwise we would have

eA(σ0)

(
I,L+(u)

) = ∑
i∈I

∣∣N (i) ∩ L+(u)
∣∣ < δ|I |∣∣L+(u)

∣∣
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for some I ⊂ [n] with |I | > εn, which contradicts our assumption that A(σ0) is
(δ, ε)-super-regular. Since ‖M(i)u‖ ≤ ‖Mu‖ ≤ τ√

n
for all i ∈ [n], we have that

u ∈ Si(τ ) for all i ∈ [n]. Thus,

(4.20)
∣∣{i ∈ L+(v) :Oi (τ ) holds

}∣∣ ≥ θn − εn ≥ θn/2.

Fix i ∈ L+(v) such that Oi (τ ) holds. We have

τ√
n

≥ ∥∥v∗M
∥∥ ≥ ∣∣v∗Mu(i)

∣∣ ≥ |vi |
∣∣Ri · u(i)

∣∣ − ∣∣∣∣∑
j �=i

vjRj · u(i)

∣∣∣∣.
The first term on the right-hand side is bounded below by ρ√

n
|Ri · u(i)| since i ∈

L+(v). By Cauchy–Schwarz, the second term is bounded above by ‖M(i)u(i)‖ ≤
τ/

√
n, since u(i) ∈ Si(τ ). Rearranging we conclude |Ri · u(i)| ≤ 2τ/ρ for all i ∈

L+(v) such that Oi (τ ) holds. Letting Ei (t) = {|Ri · u(i)| ≤ t}, we have shown that
on the event G(τ )∧{sn(M) ≤ τ/

√
n}, the event Oi (τ )∧Ei(2τ/ρ) holds for at least

θn/2 values of i ∈ [n] [from (4.20)]. It follows that

n∑
i=1

1
(
Oi (τ ) ∧ Ei (2τ/ρ)

) ≥ θn

2
1
(
G(τ ) ∧ {

sn(M) ≤ τ/
√

n
})

.

Taking expectations on each side and rearranging yields the claim. �

Fix i ∈ [n] arbitrarily, and suppose that Oi (τ ) holds. We condition on the rows
{Rj }j∈[n]\{i} to fix u(i). We begin by finding a large set on which u(i) is flat, fol-
lowing a similar dyadic pigeonholing argument as in the proof of Lemma 3.11.
Letting Lk = {j ∈ [n] : 2−(k+1) < |u(i)

j | ≤ 2−k , since

δθn ≤ ∣∣N (i) ∩ L+(
u(i))∣∣ ≤

∣∣∣∣∣
�⋃

k=0

N (i) ∩ Lk

∣∣∣∣∣
for some � � log(

√
n/ρ), by the pigeonhole principle there exists k∗ ≤ � such that

J := N (i) ∩ Lk∗ satisfies

(4.21) |J | ≥ δθn/� � δθn

log(
√

n/ρ)
.

Let us denote v = (aiju
(i)
j 1j∈J )j . Since aij ≥ σ0 for j ∈ N (i) and |u(i)

j | � ρ/
√

n

for j ∈ Lk∗ ,

(4.22) ‖v‖ ≥ σ0
∥∥(

u(i))
J

∥∥ � σ0ρ
(|J |/n

)1/2

and since u(i) varies by at most a factor of 2 on J ,

(4.23) ‖v‖∞ ≤ ∥∥u(i)1J

∥∥∞ ≤ 2
∥∥u(i)

∥∥/|J |1/2.
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By further conditioning on the variables {ξij }j /∈J and applying Lemma 2.7 along
with the estimates (4.22), (4.23) we have

P
(∣∣Ri · u(i)

∣∣ ≤ 2τ/ρ
) �κ

τ/ρ + ‖v‖∞
‖v‖

� 1

σ0

(
τ/ρ

ρ(|J |/n)1/2 + 1

|J |1/2

)

= 1

σ0

(
n

|J |
)1/2(

τ

ρ2 + 1√
n

)
.

Inserting the bound (4.21) and undoing all of the conditioning, we have shown

P

(
Oi (τ ) ∧

{∣∣Ri · u(i)
∣∣ ≤ 2τ

ρ

})
�κ

1

σ0
√

δθ

(
τ

ρ2 + 1√
n

)
log1/2(

√
n/ρ).

Since the right-hand side is uniform in i, applying Lemma 4.1 (taking c1 = c0/2)
and substituting the expression for θ we have

(4.24) P

(
G(τ ) ∧

{
sn(M) ≤ τ√

n

})
�κ

1

σ 4
0 δ2

(
τ

ρ2 + 1√
n

)
log1/2(

√
n/ρ)

for all τ ≥ 0 [note that this bound is only nontrivial when τ ≤ ρ2, in which case
our constraint τ ≤ ρKn from (4.14) holds]. The bound (4.10) now follows by
substituting the lower bound (4.12) on ρ and the bound (4.14) on G(τ )c [which
is dominated by the O(n−1/2 log1/2 n) term]. This concludes the proof of Theo-
rem 1.23.

5. Invertibility under diagonal perturbation: Proof of main theorem. In
this final section, we prove Theorem 1.17. See Section 1.5 for a high level discus-
sion of the main ideas. In Sections 5.1 and 5.2, we collect the main tools of the
proof: the regularity lemma, the Schur complement bound and bounds on the op-
erator norm of random matrices. In Section 5.3, we apply the regularity lemma to
decompose the standard deviation profile A into a bounded number of submatrices
enjoying various properties. In Section 5.4, we apply the decomposition to prove
Theorem 1.17 on two technical lemmas, and in the final sections, we prove these
lemmas.

5.1. Preliminary tools. We begin by stating a version of the regularity lemma
suitable for our purposes. Recall that in Theorem 1.12 we associated the standard
deviation profile A with a bipartite graph. Here, it will be more convenient to
associate A with a directed graph. That is, to a nonnegative square matrix A =
(aij )1≤i,j≤n we associate a directed graph �A on vertex set [n] having an edge
i → j when aij > 0 (note that we allow �A to have self-loops, though the diagonal
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of A will have a negligible effect on our arguments). The notation (1.16)–(1.17)
extends to this setting. Additionally, we denote the density of the pair (I, J )

ρA(I, J ) := eA(I, J )

|I ||J | .

DEFINITION 5.1 (Regular pair). Let A be an n × n matrix with nonnegative
entries. For ε > 0, we say that a pair of vertex subsets I, J ⊂ [n] is ε-regular for
A if for every I ′ ⊂ I, J ′ ⊂ J satisfying∣∣I ′∣∣ > ε|I |, ∣∣J ′∣∣ > ε|J |
we have ∣∣ρA

(
I ′, J ′) − ρA(I, J )

∣∣ < ε.

The following is a version of the regularity lemma for directed graphs which fol-
lows quickly from a stronger result of Alon and Shapira [2], Lemma 3.1. Note that
[2], Lemma 3.1, is stated for directed graphs without loops, which in the present
setting means that it only applies to matrices A with diagonal entries equal to zero.
However, Lemma 5.2 follows from applying [2], Lemma 3.1, to the matrix A′
formed be setting the diagonal entries of A to zero, and noting that the diagonal
has a negligible impact on the edge densities ρA(I, J ) when |I |, |J | � n.

LEMMA 5.2 (Regularity lemma). Let ε > 0. There exists m0 ∈ N with ε−1 ≤
m0 �ε 1 such that for all n sufficiently large depending on ε, for every n × n

nonnegative matrix A there is a partition of [n] into m0 + 1 sets I0, I1, . . . , Im0

with the following properties:

(1) |I0| < εn;
(2) |I1| = |I2| = · · · = |Im0 |;
(3) all but at most εm2

0 of the pairs (Ik, Il) are ε-regular for A.

REMARK 5.3. The dependence on ε of the bound m0 ≤ Oε(1) is very bad: a
tower of exponentials of height O(ε−C). Indeed, as in Szemerédi’s proof for the
setting of bipartite graphs [34], the proof in [2] gives such a bound with C = 5. It
was shown by Gowers that for undirected graphs one cannot do better than C =
1/16 in general [13]. As remarked in [2], his argument carries over to give a similar
result for directed graphs.

We will apply this in Section 5.3 to partition the standard deviation profile into a
bounded number of manageable submatrices. The following elementary fact from
linear algebra will be used to lift the invertibility properties obtained for these
submatrices back to the whole matrix.
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LEMMA 5.4 (Schur complement bound). Let M ∈ MN+n(C), which we write
in block form as

M =
(
A B

C D

)
for A ∈ MN(C),B ∈ MN,n(C),C ∈ Mn,N(C),D ∈ Mn(C). Assume that D is
invertible. Then

sN+n(M) ≥
(

1 + ‖B‖
sn(D)

)−1(
1 + ‖C‖

sn(D)

)−1

× min
(
sn(D), sN

(
A − BD−1C

))
.

(5.1)

PROOF. From the identity(
A B

C D

)
=

(
IN BD−1

0 In

)(
A − BD−1C 0

0 D

)(
IN 0

D−1C In

)

we have(
A B

C D

)−1

=
(

IN 0
−D−1C In

)((
A − BD−1C

)−1 0
0 D−1

)(
IN −BD−1

0 In

)
.

We can use the triangle inequality to bound the operator norm of the first and third
matrices on the right-hand side by 1 + ‖BD−1‖ and 1 + ‖CD−1‖, respectively.
Now by submultiplicativity of the operator norm,∥∥M−1∥∥ ≤ (

1 + ∥∥BD−1∥∥)(
1 + ∥∥D−1C

∥∥)
max

(∥∥(
A − BD−1C

)−1∥∥,∥∥D−1∥∥)
≤

(
1 + ‖B‖

sn(D)

)(
1 + ‖C‖

sn(D)

)
max

(∥∥(
A − BD−1C

)−1∥∥,∥∥D−1∥∥)
.

The bound (5.1) follows after taking reciprocals. �

5.2. Control on the operator norm. The following lemma summarizes the
control we will need on the operator norm of submatrices and products of sub-
matrices of M .

LEMMA 5.5 (Control on the operator norm). Let ξ ∈C be a centered random
variable with E|ξ |4+η ≤ 1 for some η ∈ (0,1). Let θ ∈ (0,1). Then the following
hold for all n ≥ 1:

(a) (Control for sparse matrices) If A ∈ Mn([0,1]) is a fixed matrix and X =
(ξij ) is an n × n matrix of i.i.d. copies of ξ , then

(5.2) ‖A ◦ X‖ � τ
√

n
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except with probability Oτ(n
−η/8), where τ = τ(A) ∈ [0,1] is any number such

that

(5.3)
n∑

k=1

a2
ik,

n∑
k=1

a2
kj ≤ τ 2n

for all i, j ∈ [n], and

(5.4)
n∑

i,j=1

a4
ij ≤ τ 4n2.

(b) (Control for matrix products) Let m ∈ [θn,n]. If A ∈ Mn,m([0,1]) and D ∈
Mm,n(C) are fixed matrices with ‖D‖ ≤ 1, and X = (ξij ) is an n × m matrix of
i.i.d. copies of ξ , then

(5.5)
∥∥D(A ◦ X)

∥∥ �η

√
m

except with probability Oθ(n
−η/8).

REMARK 5.6. The probability bounds in the above lemma can be improved
under higher moment assumptions on ξ , and improve to exponential bounds under
the assumption that ξ is sub-Gaussian [see (1.1)].

We will use standard truncation arguments to deduce Lemma 5.5 from the fol-
lowing bounds on the expected operator norm of random matrices due to Latała
and Vershynin.

THEOREM 5.7 (Latała [19]). Let n,m be sufficiently large and let Y be an
n × m random matrix with independent, centered entries Yij ∈ R having finite
fourth moment. Then

(5.6) E‖Y‖ � max
i∈[n]

(
m∑

j=1

EY 2
ij

)1/2

+ max
j∈[m]

(
n∑

i=1

EY 2
ij

)1/2

+
(

n∑
i=1

m∑
j=1

EY 4
ij

)1/4

.

THEOREM 5.8 (Vershynin [43]). Let η ∈ (0,1) and n,m,N sufficiently large
natural numbers. Let D ∈ Mm,N(R) be a deterministic matrix satisfying ‖D‖ ≤ 1
and Y ∈ MN,n(R) be a random matrix with independent centered entries Yij sat-
isfying E|Yij |4+η ≤ 1. Then

(5.7) E‖DY‖ �η

√
n + √

m.

PROOF OF LEMMA 5.5. We begin with (a). By splitting X into real and imag-
inary parts and applying the triangle inequality we may assume ξ is a real-valued
random variable. Set η0 = min(1/4, η/32) and define the product event

(5.8) E =
n∧

i,j=1

Eij ; Eij = {|ξij | ≤ n1/2−η0
}
.
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By Markov’s inequality,

(5.9) P
(
Ec

ij

) ≤ n−(4+η)(1/2−η0) ≤ n−1

for all i, j ∈ [n]. By the union bound,

(5.10) P
(
Ec) ≤ n2n−(4+η)(1/2−η0) ≤ n−η/8.

We denote

X′ = (
ξ ′
ij

) = (ξij −Eξij1Eij
) = X −E(X1E).

First, we show

(5.11)
∥∥A ◦E(X1E)

∥∥ � τ
√

n.

Since the variables ξij are centered, |E(ξij1Eij
)| = |E(ξij1Ec

ij
)|. By two applica-

tions of Hölder’s inequality and (5.9),∣∣E(ξij1Ec
ij
)
∣∣ ≤ (

E|ξij |4)1/4
P

(
Ec

ij

)3/4 ≤ n−3/4.

Thus,

(5.12)
∥∥A ◦E(X1E)

∥∥ ≤ ∥∥A ◦E(X1E)
∥∥

HS ≤ n−3/4‖A‖HS ≤ τn1/4

which yields (5.11) with room to spare.
Now from (5.10), (5.11) and the triangle inequality it is enough to show

(5.13) P
(
E ∧ {∥∥A ◦ X′∥∥ ≥ Cτ

√
n
}) = Oτ

(
n−η/8)

for a sufficiently large constant C > 0 (we will actually show an exponential
bound). First, note that the variables ξ ′

ij1Eij
are centered and satisfy E|ξ ′

ij1Eij
|4 =

O(1). It follows from Theorem 5.7 that

E1E
∥∥A ◦ X′∥∥ � max

i∈[n]

(
n∑

j=1

a2
ij

)1/2

+ max
j∈[n]

(
n∑

i=1

a2
ij

)1/2

+
(

n∑
i,j=1

a4
ij

)1/4

� τ
√

n.

Thus, (5.13) will follow if we can show

(5.14) P
(∥∥A ◦ X′∥∥1E −E

∥∥A ◦ X′∥∥1E ≥ τ
√

n
) = Oτ

(
n−η/8)

.

This in turn follows in a routine manner from Talagrand’s inequality [35], The-
orem 6.6, (see also [3], Corollary 4.4.11): Observe that X �→ ‖A ◦ X‖ is a
convex and 1-Lipschitz function on the space Mn(R) equipped with the (Eu-
clidean) Hilbert–Schmidt metric. Since the matrix X′1E has centered entries that
are bounded by O(n1/2−η0), Talagrand’s inequality gives that the left-hand side of
(5.14) is bounded by

(5.15) O
(
exp

(−cτ 2n/
(
n1/2−η0

)2)) = O
(
exp

(−cτ 2n2η0
))

which gives (5.14) with plenty of room.
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Now we turn to part (b). The proof follows a very similar truncation argument to
the one in part (a), so we only indicate the necessary modifications. As before, by
splitting D and X into real and imaginary parts and applying the triangle inequality
we may assume D and X are real matrices. We define E as in (5.8), with Eij =
{|ξij | ≤ (n

√
m)1/3−η1} and

(5.16) η1 = 1

4

η

4 + η
.

With this choice of η1, Markov’s inequality and the union bound give
P(Ec) = Oθ(n

−η/8). Taking X′ = X − E(X1E) as before, we can bound ‖D(A ◦
E(X1E))‖ ≤ ‖A ◦ E(X1E)‖ by submultiplicativity of the operator norm, and the
same argument as before gives

(5.17)
∥∥A ◦E(X1E)

∥∥ ≤ nm(n
√

m)−
3
4 (4+η)(1/3−η1) = m1/2−η/32 = o(

√
m).

Since X′1E has centered entries with finite moments of order 4 + η, by Theo-
rem 5.8 we have

(5.18) E
∥∥D(

A ◦ X′1E
)∥∥ �η

√
m.

The mapping X �→ ‖D(A ◦ X)‖ is convex and 1-Lipschitz with respect to the
Hilbert–Schmidt metric on Mn(R) (since ‖D‖ ≤ 1) so using Talagrand’s inequal-
ity as in part (a) we find that

P
(∥∥D(

A ◦ X′1E
)∥∥ −E

∥∥D(
A ◦ X′1E

)∥∥ ≥ √
m

) � exp
(−cm/(n

√
m)2/3−2η1

)
≤ exp

(−c′(θ)ncη)
for some constant c > 0 and c′(θ) > 0 sufficiently small depending on θ . As the
last line is bounded by Oθ(n

−η/8), the result follows from the above, (5.17), (5.18)
and the triangle inequality by the same argument as for part (a). �

5.3. Decomposition of the standard deviation profile. We now begin the proof
of Theorem 1.17, which occupies the remainder of the paper. In the present subsec-
tion, we prove Lemma 5.9 below, which shows that the standard deviation profile
A can be partitioned into a bounded collection of submatrices with certain nice
properties. For the motivation behind this lemma (and the notation Jfree, Jcyc), see
Section 1.5.

LEMMA 5.9. Let A be an n × n matrix with entries aij ∈ [0,1]. Let ε, δ, σ0 ∈
(0,1), and assume ε is sufficiently small depending on δ. There exists 0 ≤ m �ε 1,
a partition

[n] = Jbad ∪ Jfree ∪ Jcyc

= Jbad ∪ Jfree ∪ J1 ∪ · · · ∪ Jm

(5.19)

and a set F ⊂ [n]2 satisfying the following properties:
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(1) εn � |Jbad| � δ1/2n.
(2) |F | � δn2, and for all i ∈ Jfree,

(5.20)
∣∣{j ∈ Jfree : (i, j) ∈ F

}∣∣, ∣∣{j ∈ Jfree : (j, i) ∈ F
}∣∣ ≤ δ1/2n.

(3) If Jfree �= ∅, then there is a permutation τ : Jfree → Jfree such that for all
(i, j) ∈ Jfree × Jfree \ F with τ(i) ≥ τ(j), aij < σ0.

(4) If m ≥ 1, then

(5.21) |J1| = · · · = |Jm| �ε n

and there is a permutation π : [m] → [m] such that for all 1 ≤ k ≤ m, A(σ0)Jk,Jπ(k)

is (2δ,2ε)-super-regular (see Definition 1.22).

PROOF. We begin by applying Lemma 5.2 to A(σ0) to obtain m0 ∈ N with
ε−1 ≤ m0 = Oε(1) and a partition [n] = I0 ∪ · · · ∪ Im0 satisfying the properties in
that lemma.

The partition I0, . . . , Im0 is almost what we need. In the remainder of the proof,
we perform a “cleaning” procedure (as it is commonly referred to in the extremal
combinatorics literature) to obtain a partition J0, . . . , Jm0 with improved proper-
ties, where Jk ⊂ Ik for each 1 ≤ k ≤ m0, and J0 ⊃ I0 collects the leftover elements.

We start by forming a reduced digraph R = ([m0],E) on the vertex set [m0]
with directed edge set

(5.22) E := {
(k, l) ∈ [m0]2 : (Ik, Il) is ε-regular and ρA(σ0)(Ik, Il) > 5δ

}
.

Next, we find a (possibly empty) set T ⊂ [m0] such that the induced subgraph
R(T ) is covered by vertex-disjoint directed cycles, and the induced subgraph
R([m0] \ T ) is cycle-free. Such a set can be obtained by greedily removing cycles
and the associated vertices from R until the remaining graph has no more directed
cycles. By relabeling I1, . . . , Im0 , we may take T = [m], where m ∈ [0,m0].

Assuming m �= 0, the fact that R([m]) is covered by vertex-disjoint cycles is
equivalent to the existence of a permutation π : [m] → [m] such that (k,π(k)) ∈ E

for all 1 ≤ k ≤ m. Now we will obtain the sets J1, . . . , Jm obeying the properties
in part (4) of the lemma. Let 1 ≤ k ≤ m. We have that (Ik, Iπ(k)) is ε-regular
with density ρk := ρA(σ0)(Ik, Iπ(k)) > 5δ, so if we assume ε ≤ δ then for every
I ⊂ Ik, J ⊂ Iπ(k) with |I |, |J | ≥ ε|Ik|,
(5.23) eA(σ0)(I, J ) ≥ (ρk − ε)|I ||J | ≥ 4δ|I ||J |.
It remains to ensure that conditions (1) and (2) from Definition 1.22 also hold,
which we will do by removing a small number of rows and columns. Letting

I ′
k = {

i ∈ Ik : ∣∣NA(σ0)(i) ∩ Iπ(k)

∣∣ < 4δ|Ik|}
we have eA(σ0)(I

′
k, Iπ(k)) < 4δ|I ′

k||Iπ(k)|, and it follows that |I ′
k| ≤ ε|Ik|. Similarly,

letting

I ′′
k = {

i ∈ Ik : ∣∣NA(σ0)
T(i) ∩ Iπ−1(k)

∣∣ < 4δ|Ik|}
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we have |I ′′
k | ≤ ε|Ik|. Letting I ∗

k ⊂ Ik be a set of size �2ε|Ik|� containing I ′
k ∪ I ′′

k ,
we take

(5.24) Jk = Ik \ I ∗
k .

With this definition, we have |J1| = · · · |Jm|, and for each 1 ≤ k ≤ m, i ∈ Jk ,

(5.25)
∣∣NA(σ0)(i) ∪ Jπ(k)

∣∣, ∣∣NA(σ0)
T(i) ∩ Jπ−1(k)

∣∣ ≥ (4δ − 2ε)|Ik| ≥ 2δ|Jk|.
Furthermore, for each 1 ≤ k ≤ m and I ⊂ Jk, J ⊂ Jπ(k) with |I |, |J | ≥ 2ε|Jk|, if
we assume ε ≤ 1/4 then |I |, |J | ≥ ε|Ik|, so by (5.23)

(5.26) eA(σ0)(I, J ) ≥ 4δ|I ||J |.
It follows that for every 1 ≤ k ≤ m the submatrix A(σ0)Jk,Jπ(k)

is (2δ,2ε)-super-
regular, which concludes the proof of part (4) of the lemma.

Now we prove parts (2) and (3). We will obtain Jfree by removing a small
number of bad elements from Ifree := ⋃m0

k=m+1 Ik . Since the induced subgraph
R([m + 1,m0]) is cycle-free, we may relabel Im+1, . . . , Im0 so that

(5.27) (k, l) /∈ E for all m < l ≤ k ≤ m0.

We take

(5.28) F = {
(i, j) ∈ [n]2 : (i, j) ∈ Ik × Il for some (k, l) /∈ E

}
.

The contribution to F from irregular pairs (Ik, Il) is at most εn2 by the regularity
of the partition I0, . . . , Im0 , and the contribution from pairs (Ik, Il) with density
less than 5δ is at most 5δn2. Hence,

(5.29) |F | ≤ εn2 + 5δn2 ≤ 6δn2

giving the first estimate in (2) (recall that we assumed ε ≤ δ). Setting

I ′
free = {

i ∈ Ifree : max
(∣∣{j ∈ [n] : (i, j) ∈ F

}∣∣,∣∣{j ∈ [n] : (j, i) ∈ F
}∣∣) ≥ δ1/2n

}(5.30)

it follows from (5.29) that

(5.31)
∣∣I ′

free
∣∣ ≤ 12δ1/2n.

Let I ∗
free ⊂ Ifree be any set containing I ′

free of size min(|Ifree|, �12δ1/2n�) and take
Jfree = Ifree \ I ∗

free. The bounds (5.20) now follow immediately from (5.30). For
part (3), from (5.27) we may take for τ any ordering of the elements of Jfree that
respects the order of the sets Jk := Ik \ I ∗

free, that is, so that τ(j) ≥ τ(i) for all
i ∈ Jk, j ∈ Jl and all m < l ≤ k ≤ m0.

Finally, taking

(5.32) Jbad = I0 ∪ I ∗
free ∪

m⋃
k=1

I ∗
k
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we have

|Jbad| ≤ εn + 12δ1/2n + 2εn ≤ 15δ1/2n

giving the upper bound in part (1). Now recalling that we took |I ∗
free| = min(|Ifree|,

�12δ1/2n�) and |I ∗
k | = �2ε|Ik|� for all 1 ≤ k ≤ m, we also have the lower bound

|Jbad| ≥ min

(∣∣I ∗
free

∣∣, ∣∣∣∣∣
m⋃

k=1

I ∗
k

∣∣∣∣∣
)

≥ min

(⌊
12δ1/2n

⌋
, |Ifree|,2ε

∣∣∣∣∣
m⋃

k=1

Ik

∣∣∣∣∣ − m

)

= min

(⌊
12δ1/2n

⌋
,

∣∣∣∣∣
m0⋃

k=m+1

Ik

∣∣∣∣∣,2ε

∣∣∣∣∣
m⋃

k=1

Ik

∣∣∣∣∣ − m

)

� εn,

where we used that at least one of the sets Ifree = ⋃m0
k=m+1 Ik , Icyc = ⋃m

k=1 Ik must
be of size at least n/4, say. This gives the lower bound in part (1) and completes
the proof. �

5.4. High level proof of Theorem 1.17. In this subsection, we prove Theo-
rem 1.17 on two lemmas (Lemmas 5.10 and 5.11) which give control on the small-
est singular values of the submatrices MJfree and (perturbations of) MJcyc , with
Jfree, Jcyc as in Lemma 5.9. The proofs of these lemmas are deferred to the re-
maining subsections.

By our moment assumptions on ξ , it follows that ξ is κ0-spread for some
κ0 = O(μ2

4+η) (see Remark 1.2). By Lemma 2.5 and multiplying X and B by

a phase, we may assume ξ has O(μ2
4+η)-controlled second moment. Without loss

of generality, we may assume η < 1. We introduce parameters σ0, δ, ε ∈ (0,1) to
be chosen sufficiently small depending on r0, η and μ4+η; specifically, we will
have the following dependencies:

(5.33) σ0 = σ0(r0,μ4+η), δ = δ(r0, η,μ4+η), ε = ε(σ0, δ).

For the remainder of the proof, we assume that n is sufficiently large depending on
all parameters (which will only depend on r0,K0, η and μ4+η).

We begin by summarizing the control we have on the operator norm of sub-
matrices of A ◦ X. From Lemma 5.5(a), we have that for any fixed B = (bij ) ∈
Mn([0,1]) and any I, J ⊂ [n] with |I | ≤ |J |,
(5.34) P

(∥∥(B ◦ X)I,J
∥∥ ≤ τK

√|J |) = 1 − Oτ

(|J |−η/8)
for some K = O(μ4+η), and any τ ≤ 1 satisfying

(5.35) τ ≥ 1

|J |1/2 max

(
max
i∈I

(∑
j∈J

b2
ij

)1/2
,max

j∈J

(∑
i∈I

b2
ij

)1/2
,

(
n∑

i,j=1

b4
ij

)1/4)
,
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and similarly with |J | replaced by |I | if |J | ≤ |I |. In particular, taking τ = 1 and
B = A we have∥∥(A ◦ X)I,J

∥∥ �μ4+η

√
max

(|I |, |J |)
(5.36)

with probability 1 − O
(
max

(|I |, |J |)−η/8)
.

(We state (5.34) for general B ∈Mn([0,1]) as at one point we will apply this to a
residual matrix obtained by subtracting off a collection of “bad” entries from A.)

We now apply Lemma 5.9 (assuming ε is sufficiently small depending on δ)
to obtain a partition [n] = Jbad ∪ Jfree ∪ Jcyc and a set F ⊂ [n]2 satisfying the
properties (1)–(4) in the lemma. In the following, we abbreviate Mfree := MJfree

and Mcyc := MJcyc .

LEMMA 5.10. Assume n1 := |Jfree| ≥ δ1/2n. If σ0, δ are sufficiently small de-
pending on r0 and μ4+η, then

(5.37) sn1(Mfree) �μ4+η,r0

√
n

except with probability Oμ4+η,r0,δ(n
−η/9).

(Note that while the definition of Mfree depends on ε, the bounds in the above
lemma are independent of ε.)

LEMMA 5.11. Assume n2 := |Jcyc| ≥ δ1/2n. Fix γ ≥ 1 and let W ∈ Mn2(C)

be a deterministic matrix with ‖W‖ ≤ nγ . There exists β = β(γ,σ0, δ) such that if
ε = ε(σ0, δ) is sufficiently small,

(5.38) P
(
sn2(Mcyc + W) ≤ n−β) �K0,γ,δ,σ0,μ4+η

√
logn

n
.

REMARK 5.12. We note that in the proof of Lemma 5.11 we do not make
use of the fact that the atom variable ξ has more than two finite moments [the
dependence on μ4+η is only through the parameter κ0 = O(μ2

4+η)]. In particular,
we can remove the extra moment hypotheses in Theorem 1.17 under the additional
assumption that the standard deviation profile A contains a generalized diagonal
of block submatrices which are super-regular and of dimension linear in n [i.e., if
we can take Jbad = Jfree =∅ in (5.19)].

We defer the proofs of Lemmas 5.10 and 5.11 to subsequent sections, and con-
clude the proof of Theorem 1.17. Note that at this stage (before we have applied
Lemma 5.10 or 5.11) the only constraint we have put on the parameters in (5.33) is
to assume ε is sufficiently small depending on δ for the application of Lemma 5.9.
We proceed in the following steps:
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Step 1: Bound the smallest singular value of Mfree using Lemma 5.10. In this
step, we fix σ(r0,μ4+η), while δ is assumed to be sufficiently small depending on
r0,μ4+η but is otherwise left free.

Step 2: Bound the smallest singular value of

(5.39) M1 := MJfree∪Jbad,Jfree∪Jbad =
(
Mfree B1
C1 M0

)
using the result of Step 1, the Schur complement bound of Lemma 5.4, (5.34) and
Lemma 5.5(b). In this step, we fix δ(r0, η,μ4+η).

Step 3: Bound the smallest singular value of

(5.40) M =
(
Mcyc B2
C2 M1

)
using the result of Step 2, the Schur complement bound of Lemma 5.4, and
Lemma 5.11. In this step, we fix ε(σ0, δ).

The case that one of Jfree or Jcyc is small (or empty) can be handled essentially
by skipping either Step 1 or Step 3. We will begin by assuming

(5.41) |Jfree|, |Jcyc| ≥ δ1/2n

and address the case that this does not hold at the end.

Step 1. By Lemma 5.10 and the assumption (5.41), we can take σ0 and δ suf-
ficiently small depending on r0 and μ4+η such that

(5.42) smin(Mfree) �μ4+η,r0

√
n

except with probability Oμ4+η,r0,δ(n
−η/9). We now fix σ0 = σ0(r0,μ4+η) once and

for all, but leave δ free to be taken smaller if necessary. By independence of the
entries of M , we may now condition on a realization of Mfree such that (5.42)
holds.

Step 2. By (5.36) and (5.41), we have ‖C1‖ = Oμ4+η
(
√

n) except with prob-
ability Oδ(n

−η/8). We henceforth condition on a realization of C1 satisfying this
bound. Together with (5.42), this gives

(5.43)
∥∥C1M

−1
free

∥∥ ≤ ‖C1‖
smin(Mfree)

�μ4+η,r0 1.

Since B1 is independent of C1 and Mfree, we can apply Lemma 5.5(b) to conclude

(5.44)
∥∥C1M

−1
freeB1

∥∥ �η,μ4+η

∥∥C1M
−1
free

∥∥|Jbad|1/2 �η,μ4+η,r0 |Jbad|1/2

except with probability Oε(n
−η/8
1 ) = Oδ,ε(n

−η/9), where we have used the lower
bound |Jbad| � εn from Lemma 5.9(1). On the other hand, by the triangle inequal-
ity and (5.36),

(5.45) smin(M0) = smin
(
ZJbad

√
n + (A ◦ X)Jbad

) ≥ r0
√

n − Oμ4+η

(|Jbad|1/2)
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except with probability O(|Jbad|−η/8) = Oε(n
−η/9). Again by the triangle inequal-

ity and the previous two displays,

(5.46) smin
(
M0 − C1M

−1
freeB1

) ≥ r0
√

n − Oη,μ4+η,r0

(|Jbad|1/2)
except with probability Oδ,ε(n

−η/9). Since |Jbad| � δ1/2n, we can take δ smaller,
if necessary, depending on r0, η,μ4+η to conclude that

(5.47) smin
(
M0 − C1M

−1
freeB1

) ≥ (r0/2)
√

n

except with probability Oδ,ε(n
−η/9). We may henceforth condition on the event

that (5.47) holds. Of an event with probability Oδ(n
−η/8), we may also assume

‖B1‖ = Oμ4+η
(
√

n). From Lemma 5.4 and the preceding estimates, we have

smin(M1) �
(

1 + Oμ4+η
(
√

n)

smin(Mfree)

)−2
min

[
smin(Mfree), smin

(
M0 − C1M

−1
freeB1

)]
�μ4+η,r0 min

[√
n, smin

(
M0 − C1M

−1
freeB1

)]
(5.48)

�μ4+η,r0

√
n.

At this point, we fix δ = δ(r0, η,μ4+η).

Step 3. Condition on a realization of M1 such that (5.48) holds. By (5.36),
we may also condition on realizations of the matrices B2,C2 in (5.40) such that
‖B2‖,‖C2‖ �μ4+η

√
n. Applying Lemma 5.4,

sn(M) �
(

1 + Oμ4+η
(
√

n)

smin(M1)

)−2
min

[
smin(M1), smin

(
Mcyc − B2M

−1
1 C2

)]
(5.49)

�μ4+η,r0 min
[√

n, smin
(
Mcyc − B2M

−1
1 C2

)]
.

By our estimates on ‖B2‖,‖C2‖ and smin(M1), we have

(5.50)
∥∥B2M

−1
1 C2

∥∥ �μ4+η

n

smin(M1)
�μ4+η,r0

√
n

[unlike in Step 2, here we did not need the stronger control on matrix products
provided by (5.5)]. Now since M2 is independent of M1,B2,C2, we can ap-
ply Lemma 5.11 with γ = 0.51 (say), fixing ε sufficiently small depending on
σ0(r0,μ4+η) and δ(r0, η,μ4+η), to obtain

(5.51) P
(
smin

(
Mcyc − B2M

−1
1 C2

) ≤ n−β) �K0,r0,η,μ4+η

√
logn

n

for some β = β(r0, η,μ4+η) > 0. The result now follows from the above and
(5.49), taking α = min(η/9,1/4).

It only remains to address the case that the assumption (5.41) fails. We may
assume that δ is small enough that only one of these bounds fails. In this case, we



INVERTIBILITY OF STRUCTURED RANDOM MATRICES 3493

simply redefine Jbad to include the smaller of Jcyc, Jfree. Note that we still have
|Jbad| = O(δ1/2n). If |Jcyc| < δ1/2n, then with this new definition of Jbad we have
M = M1, and the desired bound on sn(M) follows from (5.48) (with plenty of
room). If |Jfree| < δ1/2n, then we skip Step 2, proceeding with Step 3 using M0
in place of M1. The bound (5.48) in this case follows from (5.45) and the bound
|Jbad| � δ1/2n, taking δ sufficiently small depending on μ4+η, r0. This concludes
the proof of Theorem 1.17.

5.5. Proof of Lemma 5.10. We denote

(5.52) AF = (aij 1(i,j)∈F ).

By the estimates on F in Lemma 5.9, we can apply (5.34) with τ = O(δ1/4) to
obtain

(5.53)
∥∥(

AF (σ0) ◦ X
)
Jfree

∥∥ �μ4+η
δ1/4√n

except with probability at most Oδ(n
−η/8
1 ) = Oδ(n

−η/9). By another application
of (5.34) with τ = 1,

(5.54)
∥∥((

A − A(σ0)
) ◦ X

)
Jfree

∥∥ �μ4+η
σ0

√
n

except with probability at most Oδ(n
−η/9). Let

(5.55) M̃free := (Ã ◦ X)Jfree + ZJfree

√
n, Ã := A(σ0) − AF (σ0).

By the above estimates and the triangle inequality,

smin(Mfree) ≥ smin(M̃free) − ∥∥(
(A − Ã) ◦ X

)
Jfree

∥∥
≥ smin(M̃free) − Oμ4+η

(
δ1/4 + σ0

)√
n

(5.56)

except with probability Oδ(n
−η/9). Thus, it suffices to show

(5.57) smin(M̃free) �μ4+η,r0

√
n

except with probability Oμ4+η,r0,δ(n
−η/9)—the result will then follow from (5.57)

and (5.56) by taking δ, σ0 sufficiently small depending on μ4+η, r0. Furthermore,
by Lemma 5.9(3) and conjugating Mfree by a permutation matrix, we may assume
that Ã is (strictly) upper triangular. Now it suffices to prove the following.

LEMMA 5.13. Let M = A ◦ X + B be an n × n matrix as in Definition 1.3,
and further assume that for some r0 > 0,K ≥ 1, α > 0:

• A is upper triangular;
• B = Z

√
n = diag(zi

√
n)ni=1 with |zi | ≥ r0 for all 1 ≤ i ≤ n;

• ξ is such that for all n′ ≥ 1 and any fixed A′ ∈ Mn′([0,1]), ‖A′ ◦ X′‖ ≤ K
√

n′
except with probability O((n′)−α).

Then sn(M) �K,r0

√
n except with probability OK,r0(1)αn−α .
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REMARK 5.14. The proof gives an implied constant of order exp(−O(K/

r0)
O(1)) in the lower bound on sn(M).

To deduce Lemma 5.10, we apply the above lemma with M = M̃free, α = η/8,
K = O(μ4+η) [by (5.36)] and n1 �δ n in place of n, which gives that (5.57) holds
with probability

(5.58) 1 − Oμ4+η,r0

(
n

−η/8
1

) = 1 − Oμ4+η,r0,δ

(
n−η/9)

,

where in the first bound we applied our assumption that η < 1.

PROOF. First, we note that we may take n to be a dyadic integer, that is, n = 2q

for some q ∈ N. Indeed, if this is not the case, then letting 2q be the smallest
dyadic integer larger than n we can increase the dimension of M to 2q by padding
A out with rows and columns of zeros, adding additional rows and columns of
i.i.d. copies of ξ to X, and extending the diagonal of Z with entries zi ≡ r0 for
n < i ≤ 2q . The hypotheses on A and Z in the lemma are still satisfied, and the
smallest singular value of the new matrix is a lower bound for that of the original
matrix (since the original matrix is a submatrix of the new matrix).

Now fix an arbitrary dyadic filtration F = ⋃
p≥0{Js : s ∈ {0,1}p} of [n], where

we view {0,1}0 as labeling the trivial partition of [n], consisting only of the empty
string ∅, so that J∅ = [n]. Thus, for every 0 ≤ p < q and every binary string
s ∈ {0,1}p , Js has cardinality n2−p and is evenly partitioned by Js0, Js1. For a
binary string s, we abbreviate Ms := MJs and similarly define As,Xs,Zs . We also
write Bs = MJs0,Js1 , so that we have the block decomposition

(5.59) Ms =
(
Ms0 Bs

0 Ms1

)
.

For p ≥ 1, define the boundedness event

(5.60) B∗(p) = {‖A ◦ X‖ ≤ K
√

n
} ∧ {∀s ∈ {0,1}p,‖As ◦ Xs‖ ≤ K

√
n2−p

}
.

By our assumption on ξ , we have

(5.61) P
(
B∗(p)

) ≥ 1 − O
(
n−α) − 2pO

((
n2−p)−α) = 1 − O

(
2(1+α)pn−α)

.

For arbitrary s ∈ {0,1}p , by the triangle inequality we have that on B∗(p),

smin(Ms) ≥ smin(Zs) − ‖As ◦ Xs‖ ≥ (
r0 − K2−p/2)√

n.

Setting p0 = �2 log(2K/r0)� + 1 we have that on B∗(p0),

(5.62) smin(Ms) ≥ (r0/2)
√

n

for all s ∈ {0,1}p0 . For the remainder of the proof, we restrict the sample space
to the event B∗(p0) and will use the Schur complement bound (Lemma 5.4) to
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show that the desired lower bound on smin(M) holds deterministically [note that
by (5.61) and our choice of p0, B∗(p0) holds with probability 1 − OK,r0(n

−α)].
For 0 ≤ p ≤ p0, let

(5.63) λp = min
s∈{0,1}p

1√
n
smin(Ms).

From (5.62), we have

(5.64) λp0 ≥ r0/2.

Now let 1 ≤ p ≤ p0 and s ∈ {0,1}p−1. By the block decomposition (5.59) and
Lemma 5.4,

smin(Ms) �
(

1 + ‖Bs‖
smin(Ms0)

)−1
min

(
smin(Ms0), smin(Ms1)

)
≥ (1 + K/λp)−1λp

√
n

so λp−1 � (1+K/λp)−1λp

√
n for all 0 ≤ p ≤ p0. Applying this iteratively along

with (5.64), we conclude λ0 �K,r0 1, that is,

(5.65) smin(M) �K,r0

√
n

as desired. �

5.6. Proof of Lemma 5.11. We may assume throughout that n is sufficiently
large depending on the parameters K0, γ, δ, σ0 and μ4+η. Note we may also as-
sume γ > 2 without loss of generality. We will apply only the following crude
control on the operator norm of submatrices:

(5.66) P
(∥∥(A ◦ X)I,J

∥∥ ≥ n2) ≤ n−2 ∀I, J ⊂ [n].
Indeed, for any I, J ⊂ [n],

P
(∥∥(A ◦ X)I,J

∥∥ ≥ n2) ≤ P
(‖A ◦ X‖HS ≥ n2)

.

Furthermore, E‖A ◦ X‖2
HS ≤ E‖X‖2

HS = n2, and (5.66) follows from the above
display and Markov’s inequality.

By multiplying Mcyc by a permutation matrix, we may assume that Ak := AJk

is (2δ,2ε)-super-regular for 1 ≤ k ≤ m (unlike in the proof of Lemma 5.10 the
diagonal matrix Z

√
n plays no special role here). We denote J≤k = J1 ∪ · · · ∪ Jk ,

and for any matrix W of dimension at least |J≤k| we abbreviate

Wk = WJk
, W≤k = WJ≤k

,

W≤k−1,k = WJ≤k−1,Jk
, Wk,≤k−1 = WJk,J≤k−1

(5.67)

so that for 2 ≤ k ≤ m we have the block decomposition

(5.68) W≤k =
(

W≤k−1 W≤k−1,k

Wk,≤k−1 Wk

)
.
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Let us denote

(5.69) n′ = |J1| = · · · = |Jm| �ε n.

For 1 ≤ k ≤ m − 1, β > 0 and a fixed kn′ × kn′ matrix W , we denote the event

(5.70) Ek(β,W) := {
skn′(M≤k + W) > n−β}

.

Let γ > 2 and fix an arbitrary matrix W ∈ Mn′,n′(C) with ‖W‖ ≤ nγ . By
(5.66), we have

(5.71) ‖M1 + W‖ ≤ K0
√

n + n2 + nγ ≤ 2nγ

with probability 1 − O(n−2) if n is sufficiently large depending on K0 and γ .
By Theorem 1.23, there exists β1(γ ) = O(γ 2) such that if ε is sufficiently small
depending on σ0, δ, then

P
(
E1(β1,W)c

)
≤ P

(‖M1 + W‖ > 2nγ ) + P
(
E1(β1,W)c ∧ {‖M1 + W‖ ≤ 2nγ })

(5.72)

�γ,δ,σ0,ε,μ4+η

√
logn

n
,

where we have used (5.69) to write n in n−β1 rather than n′, and the fact that the
atom variable is O(μ2

4+η)-spread.
Now let 2 ≤ k ≤ m, and suppose we have found a function βk−1(γ ) such that

for any γ > 2 and any fixed (k − 1)n′ × (k − 1)n′ matrix W with ‖W‖ ≤ nγ ,

(5.73) P
(
Ek−1

(
βk−1(γ ),W

)c) �γ,δ,σ0,ε,μ4+η

√
logn

n
.

Fix a kn′ × kn′ matrix W with ‖W‖ ≤ nγ . By Lemma 5.4, we have

skn′(M≤k + W) �
(

1 + ‖(M + W)≤k−1,k‖
s(k−1)n′(M≤k−1 + W≤k−1)

)−1

×
(

1 + ‖(M + W)k,≤k−1‖
s(k−1)n′(M≤k−1 + W≤k−1)

)−1
(5.74)

× min
[
s(k−1)n′(M≤k−1 + W≤k−1), sn′(Mk + Bk)

]
,

where we have abbreviated

(5.75) Bk := Wk − (M + W)k,≤k−1(M≤k−1 + W≤k−1)
−1(M + W)≤k−1,k.

Suppose that the event Ek−1(βk−1(γ ),W≤k−1) holds. We condition on a real-
ization of the submatrix M≤k−1 satisfying

(5.76) s(k−1)n′(M≤k−1 + W≤k−1) ≥ n−βk−1(γ ).
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Moreover, from (5.66) we have

(5.77)
∥∥(M + W)≤k−1,k

∥∥,∥∥(M + W)k,≤k−1
∥∥ ≤ K0

√
n + n2 + nγ ≤ 2nγ

with probability 1 −O(n−2). Conditioning on the event that the above holds, from
the previous two displays we have ‖Bk‖ ≤ nγ + 4nγ+βk−1(γ ). Again by (5.66),

(5.78) ‖Mk + Bk‖ ≤ K0
√

n + n2 + 4nγ+βk−1(γ ) ≤ 5nγ+βk−1(γ )

with probability 1 − O(n−2) in the randomness of Mk . By Theorem 1.23 and
independence of Mk from M≤k−1,Mk,≤k−1,Mk,≤k−1, there exists β ′

k = O(γ 2 +
βk−1(γ )2) such that

(5.79) P
(
sn′(Mk + Bk) ≤ n−β ′

k
) �γ,δ,σ0,ε,μ4+η

√
logn

n
.

Restricting further to the event that sn′(Mk +Bk) > n−β ′
k and substituting the above

estimates into (5.74), we have

(5.80) skn′(M≤k + W) � n−2γ−2βk−1(γ ) min
(
n−βk−1(γ ), n−β ′

k
) ≥ n−βk(γ )

for some βk(γ ) = O(γ 2 + βk−1(γ )2). With this choice of βk(γ ), we have shown

(5.81) P
(
Ek

(
βk(γ ),W≤k

)c ∧ Ek−1
(
βk−1(γ ),W≤k−1

)) �γ,δ,σ0,ε,μ4+η

√
logn

n
.

Applying this bound for all 2 ≤ k′ ≤ k together with (5.72) and Bayes’ rule, we
conclude that for any fixed k and any square matrix W of dimension at least kn′
and operator norm at most nγ ,

(5.82) P
(
Ek

(
βk(γ ),W≤k

)c) �γ,δ,σ0,ε,μ4+η
k

√
logn

n
.

The result now follows by taking k = m and recalling that m = Oε(1).
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SUPPLEMENTARY MATERIAL

Supplement to “Lower bounds for the smallest singular value of struc-
tured random matrices” (DOI: 10.1214/17-AOP1251SUPP; .pdf). This supple-
ment contains the proofs of Corollary 1.16 and Lemmas 2.5, 2.7 and 2.8.
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