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MULTIDIMENSIONAL SDES WITH SINGULAR DRIFT AND
UNIVERSAL CONSTRUCTION OF THE POLYMER MEASURE

WITH WHITE NOISE POTENTIAL

BY GIUSEPPE CANNIZZARO1 AND KHALIL CHOUK2

University of Warwick and Technische Universität Berlin

We study the existence and uniqueness of solution for stochastic differ-
ential equations with distributional drift by giving a meaning to the Stroock–
Varadhan martingale problem associated to such equations. The approach we
exploit is the one of paracontrolled distributions introduced in (Forum Math.
Pi 3 (2015) e6). As a result, we make sense of the three-dimensional polymer
measure with white noise potential.
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1. Introduction. The aim of the present paper is to give a meaning to Stochas-
tic Differential Equations (SDEs) of the form

(1.1) dXt = V (t,Xt)dt + dBt, X0 = x,

where B is a d-dimensional Brownian motion, x a point in Rd and V is a function
of time taking values in the space of distributions S ′(Rd,Rd). Of course, as it
is written, (1.1) does not make any sense unless we impose certain restrictions
concerning the regularity or integrability (or both) of the drift V .

The case of V being a smooth enough vector-field has been deeply investigated
and is nowadays well understood. Upon assuming V ∈ L

p
loc((0,+∞) × Rd) for

p > d + 2, it is still possible to obtain local pathwise existence and uniqueness as
shown in [25]. When V is an effective distribution, the majority of results deals
with the time-homogenous situation (i.e., V is taken to be independent of time)
(see, e.g., [3, 10, 11]), and existence and uniqueness can be determined either in
the weak or strong sense, depending on the interplay between its regularity and
integrability.

When V ∈ C([0, T ],S ′(Rd,Rd)) with a nontrivial dependence on time, the
picture becomes even more blurred, since it is already unclear how to define a con-
venient notion of solution. Nevertheless, some advances have been recently made
in [9], where the authors investigate the case of a time dependent distributional drift
taking values in a class of Sobolev spaces with negative derivation order on Rd .

Our attempt is to generalize the work of F. Delarue and R. Diel. In [7], they con-
struct solutions to SDEs with V (t, ·) = ∂xY (t, ·) and Y a (1/3+ε)-Hölder function
in space on some interval I ⊆ R, by formulating a Stroock–Varadhan martingale
problem for (1.1). What we aim at is to go beyond the one-dimensional case and
consider a distributional drift on Rd for d ≥ 1. More precisely, we study the case
of V ∈ C([0, T ],C β(Rd,Rd)) for β < 0, where C β(Rd,Rd) is the Besov–Hölder
space of distributions on Rd [see (2.1) for the exact definition].

In the same spirit as [7], we prove well-posedness for the martingale problem
corresponding to the generator G V of the diffusion (1.1), which is given by

(1.2) G V = ∂t + 1

2
� + V · ∇.

In general, one would want to say that a probability measure P on � =
C([0, T ],Rd), endowed with the usual Borel σ -algebra B(C([0, T ],Rd)), solves
the martingale problem related to G V starting at x, if the canonical process X,
Xt(ω) = ω(t), satisfies:

1. P(X0 = x) = 1,
2. for any T 	 ≤ T and ϕ ∈ D, where D is a set of functions on [0, T 	] × Rd ,

the process

(1.3)
{
ϕ(t,Xt ) −

∫ t

0

(
G V ϕ
)
(s,Xs)ds

}
0≤t≤T 	

is a square integrable martingale with respect to P.



1712 G. CANNIZZARO AND K. CHOUK

The problem here lies in the fact that if we choose D simply as the space of smooth
functions and V ∈ C([0, T ],C β(Rd,Rd)), with β < 0, then G V ϕ is not a function
anymore but a distribution (with the same regularity as V ) and, once again, it is
not clear what meaning to attribute to (G V ϕ)(s,Xs). The point here is that we
need to determine a suitable domain D for which G V ϕ is a continuous function
of time, bounded in space. In other words, we need to solve the following partial
differential equation (PDE), that we will refer to as the generator equation,

(1.4) G V ϕ = f, ϕ(T , ·) = ϕT

for f ∈ C([0, T ],L∞(Rd)) and a sufficiently large class of terminal conditions
ϕT . Once this is done, we can replace the assertion (1.3) with the requirement that
the process

(1.5)
{
ϕ(t,Xt) −

∫ t

0
f (s,Xs)ds

}
t

is a square integrable martingale for every f ∈ C([0, T ],L∞(Rd)) and ϕ the solu-
tion of (1.4).

However, PDEs of the type (1.4), assuming β ∈ (−2
3 ,0), cannot be classically

handled since the presumed solution is not expected to be smooth enough to allow
to define the ill-posed term V · ∇ϕ. To bypass it, F. Delarue and R. Diel in [7]
adopt the technique exploited by M. Hairer in [18] and, more precisely, they make
use of Lyons rough path theory [26], or for an to interpret the ill-defined product as
a rough integral (we refer to [12, 13] for a thorough exposition on Rough Paths).

Despite the possibility of overcoming the well-posedness issues, rough path the-
ory has the dramatic disadvantage of being crucially attached to the one parameter
setting so that there is simply no hope to go beyond the one-dimensional case with
those techniques.

This is precisely the point in which the paracontrolled distributions approach,
developed in [16] (or alternatively the theory of regularity structures [19]), comes
into play. In this context though, the possibility of solving equations that are not
classically well-posed comes at a “price.” More specifically, in case β ∈ (−2

3 ,−1
2 ],

we are not allowed to take any V ∈ C([0, T ],C β(Rd,Rd)) but only those that can
be enhanced to a rough distribution, V (see Definition 3.6). In other words, we need
to be able to build in some way, starting from V , an additional object satisfying
suitable regularity requirements but depending only on V itself.

We refrain from detailing the construction here and we limit ourselves to loosely
state the result.

THEOREM 1.1. Let β ∈ (−2
3 ,0), γ ∈ (0, β + 2) and V ∈ C([0, T ],

C β(Rd,Rd)). If β ∈ (−2
3 ,−1

2 ], assume further that V can be enhanced to
a rough distribution V . Then there exists a nontrivial Banach space, D ⊆
C([0, T ],C γ (Rd)), such that for any ϕT ∈ C γ (Rd) and f ∈ C([0, T ],L∞(Rd)),
(1.4) admits a unique solution in D. Moreover, the map assigning to ϕT , f and V
the solution to the generator equation is jointly locally Lipschitz continuous.
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If we now formulate the Stroock–Varadhan martingale problem for the SDE
(1.1), by requiring point 1. stated before and (1.5) to be a square integrable mar-
tingale for every f ∈ C([0, T ],L∞(Rd)), with ϕ ∈ D and D the Banach space
determined in the previous theorem, then we can indeed prove its well-posedness.

THEOREM 1.2. Let β ∈ (−2
3 ,0) and V ∈ C([0, T ],C β(Rd,Rd)). If β ∈

(−2
3 ,−1

2 ], assume further that V can be enhanced to a rough distribution V . Then
there exists a unique probability measure P, which solves the martingale problem
with generator G V starting at x (as described above), for every x ∈ Rd .

The natural question at this point is if and when it is possible to build, given
V ∈ C([0, T ],C β(Rd,Rd)), its enhancement V . The examples are various (for
d = 1, the ones described in [7], Section 5, would do) but probably one of the
most interesting cases is the one that allows to construct the 2 and 3 dimensional
polymer measure with white noise potential.

The polymer measure with white noise potential is a singular measure on the
space of continuous functions that is formally given by

(1.6) QT (dω) = Z−1
0 exp

(∫ T

0
ξ(ωs)ds

)
WT (dω),

where W is the Wiener measure on C([0, T ],Rd), d = 2,3, ξ a spatial white noise
on the d-dimensional torus Td independent of W, and Z0 is an infinite renormal-
ization constant.

As it is written, the expression in (1.6) is of course senseless since we are ex-
ponentiating the integral in time of a white noise, which is a distribution, over a
Brownian path and dividing then by an infinite constant, all operations that require
to be given a meaning to.

Even if seemingly unrelated, we will see that, if it were well-posed, under the
polymer measure the canonical process, Xt(ω) = ωt has the same law as the solu-
tion to the SDE given by

(1.7) dXt = ∇h(T − t,Xt )dt + dBt,

where B is a Brownian motion with respect to W and h, the solution to the KPZ-
type equation

(1.8) ∂th = 1

2
�h + 1

2
|∇h|2 + ξ, h(0, ·) = 0

in which ξ is the same space white noise as the one appearing in (1.6). Summariz-
ing, if we are able to describe the law of (1.7) then we can also give a quenched
description of the infinitesimal dynamics of the polymer itself, in other words,
make sense of it.

It is not difficult to guess, from the KPZ-type equation above, that ∇h has reg-
ularity slightly less than 0 in dimension 2 and slightly less than −1

2 in dimension
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3 thus, in principle, falling into the scope of Theorem 1.2. But of course to be
able to apply it, we will need to prove well-posedness of (1.8), which is nontriv-
ial given the singularity of the noise, and for this, we will exploit once more the
paracontrolled distribution approach.

Once local existence and uniqueness for the previous Stochastic Partial Dif-
ferential Equation (SPDE) is established and one has shown that, in d = 3,

V (t, ·) def= ∇h(T − t, ·) can be enhanced to a rough distribution, we obtain the
following result.

THEOREM 1.3. Let ξε be a mollified version of the noise and Qε
T the polymer

measure defined in (1.6) with ξε replacing ξ . Then there exists a measure QT

and T 	 = T 	(ξ) > 0, independent of the choice of the mollifier, such that for all
T < T 	, Qε

T =⇒QT .

The last part of our work will consist in determining some of the properties of
the polymer measure built in the previous theorem. At first notice that, the con-
struction above is local in the sense that we can prove that the measure formally
given in (1.6) exists only up to a possibly finite explosion time T 	, depending, in
principle, on the features of the noise. We want to show that such an explosion does
not occur. Our proof relies on the strict positivity of the solution to the Parabolic
Anderson Equation (PAM), formally given by

∂tu = 1

2
�u + uξ

with initial condition identically equal to 1 and we provide a novel proof of this in
Section 7.2 valid for both d = 2 and 3.

At last, looking at the way in which the polymer measure (1.6) is written, it
might seem that QT is absolutely continuous with respect to the Wiener one. This
is definitely not the case. In principle, since QT is the measure describing the law
of the solution to (1.7), looking at the SDE one guesses (correctly) that the drift
cannot be of Cameron–Martin-type.

The actual proof does not make use of the previous heuristics but instead focuses
on the renormalization properties of (1.8) so that in the end we have the following
statement.

THEOREM 1.4. In the assumptions of Theorem 1.3, let T 	 and QT be as stated
above. Then, in both dimensions d = 2 and 3, T 	 can be chosen to be +∞ and the
measure QT is singular with respect to the Wiener one.

As a last remark, we point out that the construction of the polymer measure we
carried out before is rather universal in the sense that it does not rely on the specific
features of the noise. Indeed, given that we are able to prove well-posedness of an
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equation of the type (1.8) driven by a generic noise ξ̃ then the same arguments
apply.

The same holds true for the proof of the singularity. For the continuous directed
random polymer, that is, the one formally given by the expression (1.6), but with
a space-time white noise in spatial dimension 1, an analogous result was obtained
in [1]. Our proof follows a completely different approach, which in turn can be
straightforwardly adapted to recover their result.

PLAN OF THE PAPER. In Section 2, we introduce Besov spaces and the main
elements of paracontrolled calculus that will be needed in the rest of the paper.
Section 3 is dedicated to the generator equation. We prove that it admits a unique
solution and that the flow is a locally Lipschitz map. As anticipated in the Introduc-
tion, this is then crucial for Section 4, in which we define the martingale problem
associated to the SDE (1.1) and prove its well-posedness. The last three sections
are devoted to the polymer measure: its construction (Section 5), the KPZ-type
equation thanks to which it is possible (Section 6) and its properties (Section 7).

NOTATION. We collect here some notation we will use throughout the paper.
In the present work, we will always consider functions/distributions on Rd , d ≥
1 arbitrary but fixed, with values in Rn, so, in order to lighten the notation, if
B(Rd,Rn) is a space of functions/distributions from Rd to Rn, then we will denote
by

BRn
def= B
(
Rd,Rn) and B

def= B
(
Rd,R

)
.

Let δ ≥ 0, η ∈ R, T > 0 and T̄ ∈ [0, T ). Let (D,‖ · ‖D) be a Banach space and
ζ, ζ̄ : [T − T̄ , T ] → B be two functions. We will say that ζ ∈ Cδ

η,T̄ ,T
D and ζ̄ ∈

Cη,T̄ ,T D if ‖ζ‖Cδ
η,T̄ ,T

D < ∞ and ‖ζ̄‖Cη,T̄ ,T D < ∞, respectively, where

‖ζ‖Cδ
η,T̄ ,T

D

def= sup
s<t∈(T −T̄ ,T ]

(T − t)
η
2
‖f (t) − f (s)‖D

|t − s|δ ,

‖ζ̄‖Cη,T̄ ,T D
def= sup

t∈(T −T̄ ,T ]
(T − t)

η
2
∥∥f (t)

∥∥
D.

In case the norm on ζ does not depend on η, that is, η = 0, or T̄ = T , we will
simply remove the corresponding subscript.

We will say that a � b if there exists a constant C > 0 such that a ≤ Cb.

2. Besov spaces and paracontrolled calculus. In this first paragraph, we
want to introduce the definition of the function spaces we will be using throughout
the rest of the work and recall the main ingredients of the paracontrolled calculus.3

3For a thorough introduction on Besov spaces, see [2] or [16] for the main definitions and proper-
ties we will use from now on.
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Let χ,� ∈ D be nonnegative radial functions such that:

1. The support of χ is contained in a ball and the support of � is contained in
an annulus;

2. χ(ξ) +∑j≥0 �(2−j ξ) = 1 for all ξ ∈ Rd ;
3. supp(χ) ∩ supp(�(2−j ·)) = ∅ for i ≥ 1 and supp(�(2−i ·)) ∩

supp(�(2−j ·)) = ∅ when |i − j | > 1.

(χ,�) satisfying the above properties are said to form a dyadic partition of unity.
For the existence of a dyadic partition of unity, see [2], Proposition 2.10.

Let now F denote the Fourier transform and (χ,�) be a dyadic partition of
unity. Then the Littlewood–Paley blocks are defined as

�−1u = F−1(χFu), �ju = F−1(�j (·)Fu
)

for j ≥ 0,

where �j (·) def= �(2−j ·) and, for α ∈ R, p,q ∈ [1,+∞], the Besov space
Bα

p,q(R
d,Rn) is

(2.1)

Bα
p,q

(
Rd,Rn)= {u ∈ S ′(Rd,Rn);

‖u‖q
Bα

p,q
= ∑

j≥−1

2jqα‖�ju‖q

Lp(Rd ,Rn)
< +∞

}
.

We will often deal with the special case p = q = ∞, so we set C α(Rd,Rn)
def=

Bα∞,∞(Rd,Rn) and denote by ‖u‖α = ‖u‖Bα∞,∞ its norm. Such a notation is also

justified by the fact that, for noninteger α > 0, C α(Rd,Rn) coincides with the
usual space of α-Hölder continuous functions.

In order to manipulate stochastic terms and exploit properties of the elements
in Wiener chaos, we will bound their norm in Besov spaces with finite p = q and
then get back to the space C α . To do so, the following Besov embedding will prove
to be fundamental.

PROPOSITION 2.1. Let 1 ≤ p1 ≤ p2 ≤ +∞ and 1 ≤ q1 ≤ q2 ≤ +∞. For all

s ∈ R, the space Bs
p1,q1

is continuously embedded in B
s−d( 1

p1
− 1

p2
)

p2,q2 , in particular
we have ‖u‖

α− d
p
� ‖u‖Bα

p,p
.

2.1. Operations with Besov–Hölder distributions. Let f,g be two distribu-
tions in S ′(Rd). Upon using the Littlewood–Paley decomposition of f and g, we
can formally write their product as

fg = f ≺ g + f ◦ g + f � g,
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where the first and the last summand at the right-hand side are called paraproducts
while the second resonant term, and they are respectively defined by

f ≺ g = g � f = ∑
j≥−1

∑
i<j−1

�if �jg and f ◦ g = ∑
j≥−1

∑
|i−j |≤1

�if �jg.

With these notation at hand, we can state the following proposition.

PROPOSITION 2.2 (Bony’s estimates, [2, 4]). Let α, β ∈ R. Let f ∈ C α and
g ∈ C β :

• if α ≥ 0, then f ≺ g ∈ C β and ‖f ≺ g‖β � ‖f ‖L∞‖g‖β ,
• if α < 0, then f ≺ g ∈ C α+β and ‖f ≺ g‖α+β � ‖f ‖α‖g‖β ,
• if α + β > 0, then f ◦ g ∈ C α+β and ‖f ◦ g‖α+β � ‖f ‖α‖g‖β .

Summarizing, the previous proposition tells us that the product of general f ∈
C α and g ∈ C β is well defined if and only if α + β > 0 and in this case fg ∈ C δ ,
where δ = min{α,β,α + β} (see [16], Lemma 2.1, for the proof in this specific
context).

One of the key results of the paracontrolled analysis carried out in [16] is a
commutation relation between the operators ≺ and ◦ that we here recall (see [16],
Lemma 2.4).

PROPOSITION 2.3 (Commutator lemma). Let α,β, γ ∈ R be such that α ∈
(0,1), α + β + γ > 0 and β + γ < 0. Then, for f,g and h smooth, the operator

R(f, g,h) = (f ≺ g) ◦ h − f (g ◦ h)

allows for the bound ∥∥R(f, g,h)
∥∥
α+β+γ � ‖f ‖α‖g‖β‖h‖γ

hence, it can be uniquely extended to a bounded trilinear operator on C α × C β ×
C γ .

In the following proposition, which summarizes [6], Lemma 2.5, and [16],
Lemma A.8, we describe the action of the heat kernel on Besov–Hölder functions
and its relation with the paraproduct.

PROPOSITION 2.4 (Schauder’s estimates). Let Pt = e
1
2 t� be the heat flow,

θ ≥ 0 and α ∈ R. Let f ∈ C α and 0 ≤ s < t then we have

‖Ptf ‖α+2θ � t−θ‖f ‖α and
∥∥(Pt−s − Id)f

∥∥
α−2θ � |t − s|θ‖f ‖α.

If α ∈ [0,1], the latter bound becomes∥∥(Pt−s − Id)f
∥∥
L∞ � |t − s| α

2 ‖f ‖α
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Moreover, if α < 1 and β ∈ R, the following commutator estimate holds:

(2.2)
∥∥Pt(f ≺ g) − f ≺ Ptg

∥∥
α+β+2θ � t−θ‖f ‖α‖g‖β

for all g ∈ C β .

For notational convenience, let us define I(f )(t)
def= ∫ t0 Pt−sf (s)ds, where the

operator Pt was introduced in Proposition 2.4. Since we will be working with func-
tions exploding at a certain rate as t goes to 0 and we will need to understand what
happens when we convolve them with the heat kernel, we collect in the following
corollary some simple results.

COROLLARY 2.5. Let t ∈ [0, T ], α,β ∈ R, γ, δ ∈ [0,1), γ ′ ∈ (0, γ ] and ε ∈
(0,1]. Let f ∈ Cη,T C α . Then:

1. If α−β
2 > −1 and ϑ

def= α−β
2 − γ + δ + 1 > 0, we have

tδ
∥∥I(f )(t)

∥∥
β � T ϑ sup

s∈[0,T ]
sγ
∥∥f (s)

∥∥
α.

2. If α−ε
2 > −1, γ ′ < δ, α−ε

2 − γ + δ + 1 > 0 and 0 ≤ s < t , we have

sδ ‖I(f )(t) − I(f )(s)‖L∞

|t − s| ε
2

� T ϑ sup
s∈[0,T ]

sγ
∥∥f (s)

∥∥
α,

where ϑ = δ − γ if δ > γ and ϑ = δ − γ ′ otherwise.

PROOF. The proof is a rather straightforward application of Proposition 2.4,
so we omit it for the sake of conciseness (see Corollary 2.5 in [5]). �

REMARK 2.6. The reader should keep in mind that the convolution with Pt

allows to gain θ ≥ 0 regularity in space at the price of an explosion as time goes
to 0 of order θ/2. One has then to adjust the choice of the parameters so that
they fit the assumptions of the previous corollary and this will be done implicitly
throughout the paper not to heavy the presentation.

3. Solving the generator equation. The aim of this section is to show exis-
tence and uniqueness of solution for the generator equation connected to the SDE
(1.1), that is, the PDE

(3.1) ∂tu + 1

2
�u + V · ∇u = f, u(T , ·) = uT (·),

where T > 0 is arbitrary but fixed, uT is the terminal condition and f ∈ CT C β , for
β ∈ (−2

3 ,0]. Let (t, x) ∈ [0, T )×R and, for a function ψ , let J T (ψ) be defined by
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J T (ψ)(t) = ∫ Tt ∫Rd Pr−tψ(r)dr , where Pt
def= e

1
2 t� is the usual heat flow. Using

the previous notation, the mild formulation of our generator equation reads

(3.2) u(t) = PT −tu
T +J T (f + ∇u · V )(t).

Now, since V ∈ CT C
β

Rd , Schauder’s estimates (Proposition 2.4) suggest that the
solution u to the previous equation cannot have spatial regularity better than β +2.
According to Proposition 2.2, the product between ∇u and V is well-posed if
and only if the sum of the regularities of the factors is strictly positive, which, in
the present case, reads β + 1 + β = 2β + 1 > 0, that is, β > −1

2 . Therefore, for
β ∈ (−1

2 ,0), we can directly apply Bony’s and Schauder’s estimates and construct
the solution to the equation directly. Even if spaces, notation and tools might look
different, this case can be easily shown to correspond to the one treated in [9] (see
Remark 3.3). On the other hand, to overcome the −1

2 barrier, another method has
to be exploited and paracontrolled distributions must be introduced.

3.1. The Young case: β ∈ (−1
2 ,0). In order to construct the solution of the

generator equation, we will use a fixed-point argument, that is, we will introduce
a suitable map and prove it is a contraction on a suitable space, hence admitting a
unique fixed point according to the Banach fixed-point theorem. To do so, let us
fix a terminal time T > 0, α ∈ (1 − β,β + 2), a terminal condition uT ∈ C β+2

and f ∈ CT C β . Given a function u in CT̄ ,T C α , for T̄ ∈ [0, T ), we define the map
�T̄ (u) as

(3.3) �T̄ (u)(t)
def= PT −tu

T +J T (f + ∇u · V )(t),

where J T is the operator defined above and we omitted the dependence on space.
Notice that∥∥�T̄ (u)(t)

∥∥
α ≤ ∥∥PT −tu

T
∥∥
α + ∥∥J T (f + ∇u · V )(t)

∥∥
α

�
∥∥uT
∥∥
β+2 + T̄

β−α
2 +1‖f ‖CT C β + T̄

β−α
2 +1‖∇u · V ‖CT C β

�
∥∥uT
∥∥
β+2 + T̄

β−α
2 +1(‖f ‖CT C β + ‖V ‖

CT C
β

Rd

‖u‖CT̄ ,T C α

)
,

where the second inequality is a simple application of Corollary 2.5 and the last
follows by Bony’s estimates Proposition 2.2. Therefore, setting γ = β−α

2 + 1 we
have ∥∥�T̄ (u)

∥∥
CT̄ ,T C α �

∥∥uT
∥∥
C β+2 + T̄ γ (‖f ‖CT C β + ‖V ‖

CT C
β

Rd

‖u‖CT̄ ,T C α

)
.

The next proposition summarizes what we have obtained so far and shows how to
build a local in time solution to (3.2) for V ∈ C([0, T ],C β(Rd,Rd)), β ∈ (−1

2 ,0).
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PROPOSITION 3.1. Let T > 0, β ∈ (−1
2 ,0) and α ∈ (1 − β,β + 2). For

(uT , f,V ) ∈ C α × CT C β × CT C
β

Rd , let �T̄ be the map on CT̄ ,T C α defined by
(3.3). Then there exists γ > 0 such that the following bounds hold true:

(3.4)
∥∥�T̄ (u)

∥∥
CT̄ ,T C α �

∥∥uT
∥∥
C β+2 + T̄ γ (‖f ‖CT C β + ‖V ‖

CT C
β

Rd

‖u‖CT̄ ,T C α

)
and

(3.5)
∥∥�T̄ (u) − �T̄ (v)

∥∥
CT̄ ,T C α � T̄ γ ‖V ‖

CT C
β

Rd

‖u − v‖CT̄ ,T C α .

Hence, there exists T 	 ∈ [0, T ) depending only on ‖V ‖CT C β(Rd ), and a unique
function u ∈ C([T − T	, T ],C α) that solves the generator equation (3.2).

PROOF. The bound (3.4) is proved above and an analogous argument shows
that (3.5) holds true as well. Therefore, there exists T 	 ∈ (0, T ) sufficiently close
to T and depending only on ‖V ‖

CT C
β

Rd

such that the map �T 	 is a strict contraction

of C([T − T	, T ],C α
Rd ) in itself and, by the Banach fixed-point theorem, it admits

a unique fixed point. �

We have now all the elements in place to state and prove the following theorem.

THEOREM 3.2. Let β ∈ (−1
2 ,0), α ∈ (1 − β,β + 2) and T > 0. For any

(uT , f,V ) ∈ C α × CT C β × CT C
β

Rd , there exists a unique solution u ∈ CT C α

to the generator equation (3.1), where the product ∇u · V is defined according to
Proposition 2.2. Moreover, the solution u satisfies

‖u‖Cε
T C ρ �

∥∥uT
∥∥
α + ‖f ‖CT C β + ‖u‖CT C α‖V ‖

CT C
β

Rd

for every ρ and ε such that ρ + 2ε ≤ α. At last, the flow of the generator equation,
that is, the map assigning to every triplet (uT , f,V ) ∈ C α × CT C β × CT C

β

Rd the
solution u to (3.1), is a locally Lipschitz continuous map.

PROOF. Thanks to Proposition 3.1, we already know that there exists T 	 ∈
[0, T ) and a unique function u ∈ C([T − T	, T ],C α) that solves the generator
equation (3.2). Now, since the equation is linear and consequently the T 	 deter-
mined above depends only on V and not on uT , we can extend our solution to
the whole interval [0, T ], iterating the construction we just carried out, so that the
resulting u is defined on the whole interval [0, T ].

The time regularity of the solution can be easily obtained by an interpolation
argument. Finally, taking V, Ṽ ∈ CT C

β

Rd , f, f̃ ∈ CT C β , uT , ũT ∈ CT C β+2 and

denoting by uV (resp., uṼ ) the solution of the equation G V u = f (resp., G Ṽ u = f̃ )
with terminal condition uT (resp., ũT ), it is easy to show that, if

max
{∥∥uT
∥∥,∥∥ũT

∥∥,‖f ‖,‖f̃ ‖,‖V ‖,‖Ṽ ‖}≤ R
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then ∥∥uV − uṼ
∥∥
CT C α �R

∥∥uT − ũT
∥∥+ ‖f − f̃ ‖ + ‖V − Ṽ ‖

which proves that the flow is indeed a locally Lipschitz map (for more details see,
e.g., the proof of an analogous result in [15]). �

REMARK 3.3. As we pointed out before, the analysis performed in this sec-
tion corresponds to the case treated in [9] with the only difference that we preferred
to work with Hölder spaces of negative regularity instead of Sobolev spaces. There
is no doubt that we could have used the latter spaces as well since Bony’s and
Schauder’s estimates (Proposition 2.2 and 2.4) hold also for these spaces (see [2],
Chapter 2).

3.2. The rough case: β ∈ (−2
3 ,−1

2 ]. The analysis of the rough case is more
subtle and requires a better understanding of the structure of the solution to the
generator equation. Let us assume for the moment that V is a smooth function.
Thanks to Bony’s decomposition of the product, we can write (3.2) as

(3.6) u(t) = J T (f + ∇u ≺ V ) + u�(t),

where

u�(t)
def= PT −tu

T +J T (∇u � V + ∇u ◦ V ).

What we see at this point is that when V is a distribution in C([0, T ],C β(Rd,Rd))

the only ill-defined term of equation (3.6) is the resonant term contained in u�.
Nevertheless, Proposition (2.2) suggests that, if it were well-posed, u�(t) ∈ C 2θ−1

for θ < β + 2.
As we announced before, we need some insight regarding the expected structure

of the solution. Indeed, even if it is not possible to make sense of the ill-posed
product for all distributions belonging to spaces whose regularities do not sum up
to a strictly positive quantity, maybe it is possible to identify a suitable subspace
for which it is. To recognize such a subspace, we begin with the following lemma,
which allows to commute the heat kernel J T and the paraproduct ≺.

LEMMA 3.4. Let T > 0, θ ∈ [1, β + 2), ρ > θ−1
2 and h ∈ CT C

β

Rd . For T̄ ∈
[0, T ), let g ∈ CT̄ ,T C θ be such that ∇g ∈ C

ρ

T̄ ,T
L∞
Rd . Then the following inequality

holds: ∥∥J T (∇g ≺ h) − ∇g ≺ J T (h)
∥∥
CT̄ ,T C 2θ−1

� T̄ κ(‖g‖CT̄ ,T C θ + ‖∇g‖C
ρ

T̄ ,T
L∞
Rd

)‖h‖
CT C

β

Rd

with κ
def= min{1 − θ−β

2 , ρ − θ−1
2 } > 0.
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PROOF. By direct computation, for t ∈ [T − T̄ , T ], we can express the right-
hand side of the inequality as the sum of two terms I1 and I2, respectively, given
by

I1(t) =
∫ T

t

(
Pr−t

(∇g(r) ≺ h(r)
)− ∇g(r) ≺ Pr−th(r)

)
dr,

I2(t) =
∫ T

t

(∇g(r) − ∇g(t)
)≺ Pr−th(r)dr.

Using the commutation result in (2.2), we directly get

∥∥I1(t)
∥∥

2θ−1 �
∫ T

t
(r − t)−

θ−β
2
∥∥g(r)
∥∥
θ

∥∥h(r)
∥∥
β dr

� T̄ 1−(θ−β)/2‖g‖CT̄ ,T C θ ‖h‖
CT C

β

Rd

.

For I2, we apply Schauder’s estimates and obtain

∥∥I2(t)
∥∥

2θ−1 �
∫ T

t

∥∥∇g(r) − ∇g(t)
∥∥
L∞
Rd

(r − t)−(θ+1)/2 dr‖h‖CT C θ−2(Rd )

�
∫ T

t
(r − t)ρ−(θ+1)/2 dr‖∇g‖C

ρ

T̄ ,T
L∞
Rd

‖h‖
CT C β,Rd

� T̄ 1−(−ρ+ θ+1
2 )‖∇g‖C

ρ

T̄ ,T
L∞
Rd

‖h‖
CT C

β

Rd

and this completes the proof. �

The previous lemma suggests that, at least at a formal level, the solution u of
our equation admits the following expansion:

(3.7) u = J T (f ) + ∇u ≺ J T (V ) + u�,

where

u� = u� +J T (∇u ≺ V ) − ∇u ≺ J T (V )

should be more regular than u itself. On the one hand, equation (3.7) conveys the
algebraic structure we expect the solution of (3.2) to have and on the other, it tells
us that u, in terms of regularity exhibits the same behaviour as J T (V ). This is
exactly the core idea of the paracontrolled approach developed in [16] and it will
allow us to conveniently define the ill-posed term.

We are now ready to introduce the space of paracontrolled distributions associ-
ated to equation (3.1).

DEFINITION 3.5. Let T > 0, 4
3 < α < θ < β +2 and ρ > θ−1

2 . For f ∈ CT C β

and T̄ ∈ [0, T ), we define the space of paracontrolled distributions Dα,θ,ρ

T̄ ,T ,V
as the
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set of couples of distributions (u,u′) ∈ CT̄ ,T C θ × CT̄ ,T C α−1
Rd such that

u�(t)
def= u(t) − u′(t) ≺ J T (V )(t) −J T (f )(t) ∈ C 2α−1

for all T − T̄ ≤ t ≤ T . We equip D
α,θ,ρ

T̄ ,T ,V
with the norm

∥∥(u,u′)∥∥
D

α,θ,ρ

T̄ ,T ,V

def= ‖u‖CT̄ ,T C θ + ‖∇u‖C
ρ

T̄ ,T
L∞
Rd

+ ∥∥u′∥∥
CT̄ ,T C α−1

Rd
+ ∥∥u�

∥∥
Cα−1,T̄ ,T C 2α−1

and we introduce the metric d
D

α,θ,ρ

T̄ ,T ,V

, defined for all (u,u′), (v, v′) ∈ D
α,θ,ρ

T̄ ,T ,V
by

d
D

α,θ,ρ

T̄ ,T ,V

((
u,u′), (v, v′))= ∥∥(u,u′)− (v, v′)∥∥

D
α,θ,ρ

T̄ ,T ,V

.

Endowed with the metric d
D

α,θ,ρ

T̄ ,T ,V

, the space (Dα,θ,ρ

T̄ ,T ,V
, d

D
α,θ,ρ

T̄ ,T ,V

) is a complete metric

space.

The advantage of the paracontrolled formulation is that the problem of well-
posedness for the product can be transferred from the function u, that we have to
determine and is therefore unknown, to V , or better J T (V ), which on the other
hand is given. To see how this works, take (u,u′) ∈ D

α,θ,ρ

T̄ ,T ,V
. Differentiating u, for

j = 1, . . . , d , we get

(3.8)

∂ju = J T (∂jf ) +
d∑

i=1

u′,i ≺ J T (∂jV
i)+ U�,j ,U�,j

= ∂ju
� +

d∑
i=1

∂ju
′,i ≺ J T (V i)

so that the resonant term, for V smooth, can be written as

∂ju ◦ V j = J T (∂jf ) ◦ V j +
d∑

i=1

(
u′,i ≺ J T (∂jV

i)) ◦ V j + U�,j ◦ V j

By Bony’s paraproduct estimate, we immediately deduce that U�,j is (2α − 2)-
regular in space and, since α > 4

3 , we conclude that the last summand is well

defined even when V (t) ∈ C
β

Rd . In order to make sense of the second summand,
we need to exploit the commutator in Proposition 2.3 which gives

d∑
i=1

(
u′,i ≺ J T (∂jV

i)) ◦ V j =
d∑

i=1

u′,i(J T (∂jV
i) ◦ V i)

+
d∑

i=1

R
(
u′,i ,J T (∂jV

i),V j ),
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where the last summand of the previous can be extended in a continuous way
to V ∈ CT C

β

Rd since 3α − 4 > 0. The only terms which are still ill-posed are
J T (∂jV

i) ◦ V i for i, j = 1, . . . , d . Notice though that they do not depend on u

anymore but only on V , so if we can build them in some way, we are done and we
can make sense of the product. This is the reason why we introduce the notion of
rough distribution.

DEFINITION 3.6 (Rough Distribution). Let β ∈ (−2
3 ,−1

2 ], γ < β + 2 and

T > 0. Set H γ = CT C
γ−2
Rd × CT C

2γ−3

Rd2 . We define the space of rough distribu-
tions as

X γ def= clH γ

{
K(η)

def= (η,
(
J T (∂jη

i) ◦ ηj )
i,j=1,...,d

)
, η ∈ CT C ∞

Rd

}
,

where clH γ {·} denotes the closure of the set in brackets with respect to the topol-
ogy of H γ and, for a function ψ :Rd →R, J T (ψ) is the solution of the equation(

∂t + 1

2
�

)
J T (ψ) = ψ, J T (ψ)(T , ·) = 0.

We denote by V = (V1,V2) a generic element of X γ and whenever V1 = V we
say that V is a lift (or enhancement) of V .

REMARK 3.7. The reader familiar with rough path theory can appreciate the
similarity of the space introduced above with the space of rough paths associated
to a given path.

Let us point out that, as in the above-mentioned situation, there is in general no
canonical choice for the extra-term JT (∂jη

i) ◦ ηj when η has space regularity
γ − 2. However, there are several simple cases, as the ones in [7], Section 5, for
d = 1, in which this construction can be successfully carried out. To witness, let
us consider the time-independent one dimensional situation with V = ∂xY and
Y ∈ C β+1. Then, for x ∈ R,

J T (∂2
xY
)
(t, x) =

∫
R

∫ T

t
∂tPr−t (x − y)drY (y)dy = PT −tY (x),

where the first equality follows by the fact that Pt is the fundamental solution to
the heat equation. Then PT −tY ∈ C β+3 and PT −tY ◦∂xY is well-posed if and only
if β > −3

2 which is well beyond the −2
3 barrier.

In force of the previous definition and thanks to the computations above, ∇u◦V

can be decomposed as

∇u ◦ V =
d∑

j=1

J T (∂jf ) ◦ V j +
d∑

i,j=1

u′,i(J T (∂jV
i) ◦ V j )

+
d∑

i,j=1

R
(
u′,i ,J T (∂jV

i),V j )+ d∑
j=1

U�,j ◦ V j
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which suggests that the left-hand side of the previous should be a continuous func-
tional of (u,u′) ∈ Dα,θ,ρ

T̄ ,T ,V
and V ∈ X γ . This is exactly what the next proposition

proves.

PROPOSITION 3.8. Let T > 0 and 4
3 < α < θ < γ < β + 2. Let V =

(V1,V2) ∈ X γ be an enhancement of V , f be either a function in CT L∞ or
coincide with one of the components of V1, that is, f ∈ {V i

1, i = 1, . . . , d}, and, for

T̄ ∈ [0, T ), (u,u′) ∈ Dα,θ,ρ

T̄ ,T ,V
. Define ∇u ◦ V by

(3.9)

∇u ◦ V
def=

d∑
j=1

Hj(f,V) +
d∑

i,j=1

u′,iV i,j
2

+
d∑

i,j=1

R
(
u′,i ,J T (∂jV i

1
)
,Vj

1

)+ d∑
j=1

U�,j ◦ Vj
1 ,

where, in case f = Vj
1 , Hj(f,V)

def= Vj,j
2 , while if f ∈ CT L∞, Hj(f,V)

def=
J T (∂jf ) ◦ Vj

1 , and U� is given by the expression in (3.8). Then ∇u ◦ V is well
defined and the following estimate holds:∥∥(∇u ◦ V )

∥∥
Cα−1,T̄ ,T C 2γ−3 � 1F ‖f ‖CT L∞‖V1‖CT C

γ−2
Rd

+ (1 + ‖V‖X γ

)2(1 + ∥∥(u,u′)∥∥
D

α,θ,ρ

T̄ ,T ,V

)
,

where F
def= {f ∈ CT L∞}. At last, under the previous assumptions, the product

∇u · V , defined according to Bony’s decomposition and equation (3.9), is well
defined.

PROOF. In order to prove the bound in the statement, one has to consider
each of the summands in (3.9) separately. For the first three, it is an immediate
consequence of the assumption V ∈ X γ , Bony’s estimates (Proposition 2.2) and
the commutator lemma (Proposition 2.3), respectively. For the last, notice that, by
the definition of U� given in (3.8), the fact that (u,u′) ∈ D

α,θ,ρ

T̄ ,T ,V
and again Bony’s

paraproduct estimates, we have∥∥U�,j
∥∥

2α−2 � (T − t)−
α−1

2
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

+ T̄
γ−α

2
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

‖V ‖
CT C

β

Rd

which immediately gives, for α > 1

sup
t∈[T −T̄ ,T ]

(T − t)
α−1

2
∥∥U�,j (t)

∥∥
2α−2 �

∥∥(u,u′)∥∥
D

α,θ,ρ

T̄ ,T ,V

(
1 + T̄

γ−1
2 ‖V ‖

CT C
β

Rd

)
.

Hence, by applying Bony’s estimate for ◦ we get the expected bound on the fourth
summand as well. The last part of the statement is once more a consequence of
Proposition 2.2. �
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At this point, we have all we need in order to set up our fixed-point argument.
Indeed, let V = (V1,V2) ∈ X θ be an enhancement of V , that is, V = V1, and set
MT̄ to be the map from Dα,θ,ρ

T̄ ,T ,V
to CT C α given by

(3.10) MT̄

(
u,u′)= J T (f ) +J T (∇u · V ) + �T

t

for (u,u′) ∈ Dα,θ,ρ

T̄ ,T ,V
, α < θ and �T

t = PT −tu
T , where the term ∇u · V is defined

according to Proposition 3.8. Set

(3.11)
MT̄ : Dα,θ,ρ

T̄ ,T ,V
→ C
([T − T̄ , T ],C α(Rd))× C

([T − T̄ , T ],C α−1(Rd,Rd)),
(
u,u′) �→ (M(u,u′),∇u

)
.

We can now prove that this map is a contraction in the space D
α,θ,ρ

T̄ ,T ,V
and, therefore,

it admits a unique fixed point.

PROPOSITION 3.9. Let 0 < T < 1, 4
3 < α < θ < γ < β + 2, ρ ∈ ( θ−1

2 ,
γ−1

2 ).

Let uT ∈ C γ , V ∈ CT C
β

Rd , V = (V1,V2) ∈ X γ be an enhancement of V and f

be either a function in CT L∞ or coincide with one of the component of V1, that
is, f ∈ {V i

1, i = 1, . . . , d}. Then, for T̄ ∈ [0, T ), there exists κ > 0, depending only
on α, θ, ρ and γ , such that the map MT̄ defined by (3.11) satisfies the following
estimates:

(3.12)

∥∥MT̄

(
u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

� 1F ‖f ‖CT L∞
Rd

‖V ‖
CT C

β

Rd

+ ∥∥uT
∥∥
γ

+ (1 + ‖V‖X γ

)2(1 + T̄ κ
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

)
,

where F
def= {f ∈ CT L∞} and

(3.13)

∥∥MT̄

(
u,u′)− MT̄

(
v, v′)∥∥

D
α,θ,ρ

T̄ ,T ,V

�
(
1 + ‖V‖X γ

)2(1 + T̄ κ
∥∥(u,u′)− (v, v′)∥∥

D
α,θ,ρ

T̄ ,T ,V

)
and is therefore a strict contraction in Dα,θρ

T̄ ,T ,V
for T − T̄ small enough.

PROOF. Let (u,u′) ∈ D
α,θ,ρ

T̄ ,T ,V
. In order to prove that MT̄ (u, u′) = (MT̄ (u,u′),

∇u) ∈ Dα,θ,ρ

T̄ ,T ,V
, it suffices to estimate the terms

MT̄

(
u,u′)= �T

t +J T (f + ∇u ◦ V ), MT̄

(
u,u′)′ def= ∇u

and

MT̄

(
u,u′)� def= MT̄

(
u,u′)−J T (f ) − ∇u ≺ J T (V )
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in suitable norms. More precisely, we have to control the following quantity:∥∥MT̄

(
u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

def= ∥∥MT̄

(
u,u′)∥∥

CT̄ ,T C θ + ∥∥∇MT̄

(
u,u′)∥∥

C
ρ

T̄ ,T
L∞
Rd

+ ∥∥MT̄

(
u,u′)′∥∥

CT̄ ,T C α−1
Rd

+ ∥∥MT̄

(
u,u′)�∥∥

Cα−1,T̄ ,T C 2α−1 .

Let us begin with first. According to the definition of MT̄ (u,u′), we have to esti-
mate the CT̄ ,T C θ -norm of

(3.14) �T ,J T (f ),J T (∇u ≺ V ),J T (∇u � V ),J T (∇u ◦ V ).

Since the heat-flow Pt is a bounded linear operator from C θ to itself, we get im-
mediately that

sup
t≤T

∥∥�T
t

∥∥
θ �
∥∥uT
∥∥
θ �
∥∥uT
∥∥
γ .

By Corollary 2.5, we have

∥∥J T (f )(t)
∥∥
θ �

⎧⎨
⎩T̄

γ−θ
2 ‖f ‖CT L∞ if f ∈ CT L∞,

T̄
γ−θ

2 ‖f ‖CT C γ−2 if f ∈ {V k;k = 1, . . . , d
}
.

Let us focus on J T (∇u ≺ V ) and J T (∇u ≺ V ). Applying once more Corol-
lary 2.5 and Bony’s estimates, we obtain∥∥J T (∇u ≺ V )(t)

∥∥
θ � T̄

γ−θ
2 ‖∇u‖

CT̄ ,T C θ−1
Rd

‖V ‖
CT C

γ−2
Rd

� T̄
γ−θ

2
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

‖V‖X γ ,

∥∥J T (∇u � V )(t)
∥∥
θ � T̄

γ−1
2 ‖∇u‖

CT̄ ,T C θ−1
Rd

‖V ‖
CT C

γ−2
Rd

� T̄
γ−1

2
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

‖V‖X γ .

We will now treat the resonant term J T (∇u◦V ). By the first part of Corollary 2.5
and Proposition 3.8, we directly see that its C θ -norm is bounded by

T̄
2γ−α−θ

2 sup
t∈[T −T̄ ,T ]

(T − t)
α−1

2
∥∥∇u ◦ V (t)

∥∥
2γ−3

� T̄
2γ−α−θ

2
(
1F ‖f ‖CT L∞‖V1‖CT C

γ−2
Rd

+ (1 + ‖V‖X γ

)2(1 + ∥∥(u,u′)∥∥
D

α,θ,ρ

T̄ ,T ,V

))
,

where F
def= {f ∈ CT L∞} and this completes the study of the first term.

Consider now ‖∇MT̄ (u,u′)‖C
ρ
T L∞

Rd
. In this case, we have to bound the derivative

of the terms in (3.14) in the C
ρ

T̄ ,T
L∞
Rd -norm. Thanks to Proposition 2.4, we see that∥∥∇�T

t − ∇�T
s

∥∥∞ = ∥∥(Pt−s − 1)Ps∇uT
∥∥∞ � |t − s|ρ∥∥∇uT

∥∥
2ρ � |t − s|ρ∥∥uT

∥∥
γ .
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The second part of Corollary 2.5 guarantees that, for 0 ≤ s < t ≤ T ,

‖J T (∇f )(t) −J T (∇f )(s)‖∞
|t − s|ρ

�

⎧⎨
⎩T̄

γ−1
2 −ρ‖f ‖CT L∞ if f ∈ CT L∞,

T̄
γ−1

2 −ρ‖f ‖CT C γ−2 if f ∈ {V k;k = 1, . . . , d
}
.

Analogously, by Bony’s estimates we get

‖J T (∇(∇u ≺ V ))(t) −J T (∇(∇u ≺ V ))(s)‖∞
|t − s|ρ

� T̄
γ−1

2 −ρ‖∇u‖
CT̄ ,T C θ−1

Rd
‖V ‖

CT C
γ−2
Rd

and

‖J T (∇(∇u � V ))(t) −J T (∇(∇u � V ))(s)‖∞
|t − s|ρ

� T̄
θ+γ−2

2 −ρ‖∇u‖
CT̄ ,T C θ−1

Rd
‖V ‖

CT C
γ−2
Rd

which imply the correct bound. At last, by Corollary 2.5 we have

‖J T (∇(∇u ◦ V ))(t) −J T (∇(∇u ◦ V ))(s)‖∞
|t − s|ρ

� T̄
2γ−2ρ−α

2 sup
t∈[T −T̄ ,T ]

(T − t)
α−1

2
∥∥∇u ◦ V (t)

∥∥
2γ−3

which in turn can be bounded via Proposition 3.8. Concerning, the so-called
Gubinelli derivative, by definition, MT̄ (u,u′)′ = ∇u and, by assumption, u ∈
CT̄ ,T C θ . Hence∥∥MT̄

(
u,u′)′∥∥

CT̄ ,T C α−1
Rd

� ‖u‖CT̄ ,T C α � ‖u‖CT̄ ,T C θ �
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

.

However, this is not yet the needed bound due to the missing factor T̄ to some
positive power. Let us observe that∥∥∇u(t)

∥∥
α−1 �

∥∥∇u(t) − ∇u(T )
∥∥
α−1 + ∥∥uT

∥∥
α.

Now it suffices to notice that we can estimate the first summand in two different
ways

∥∥�i

(∇u(t) − ∇u(T )
)∥∥∞ �

⎧⎨
⎩

2−i(θ−1)‖u‖CT̄ ,T C θ ,

(T − t)ρ‖∇u‖C
ρ

T̄ ,T
L∞
Rd

,
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where �i is the ith Littlewood–Paley block. Then interpolating this two bounds
we get ∥∥∇u(t) − ∇u(T )

∥∥
α−1 � T̄ ρ(1−ε)‖u‖ε

CT̄ ,T C θ ‖∇u‖1−ε

C
ρ

T̄ ,T
L∞
Rd

� T̄ ρ(1−ε)
∥∥(u,u′)∥∥

D
α,θ,ρ

T̄ ,T ,V

with ε
def= α−1

θ−1 ∈ (0,1). Therefore,∥∥MT̄

(
u,u′)′∥∥

CT̄ ,T C α−1
Rd

= ‖∇u‖
CT̄ ,T C α−1

Rd
� T̄ ρ(1−ε)

∥∥(u,u′)∥∥
D

α,θ,ρ

T̄ ,T ,V

+ ∥∥uT
∥∥
θ

and we can now move to the term involving the remainder MT̄ (u,u′)�. By defini-
tion, MT̄ (u,u′)� is given by

MT̄

(
u,u′)� = MT̄

(
u,u′)−J T (f ) − ∇u ≺ J T (V )

= �T + (J T (∇u ≺ V ) − ∇u ≺ J T (V )
)

+J T (∇u � V ) +J T (∇u ◦ V ).

Now, by Schauder’s estimates we directly have

(T − t)
α−1

2
∥∥�T (t)

∥∥
2α−1 � (T − t)

γ−α
2
∥∥uT
∥∥
γ

which gives the needed bound for the term �T . Lemma 3.4 and the fact that α < θ

imply

(T − t)
α−1

2
∥∥J T (∇u ≺ V ) − ∇u ≺ J T (V )

∥∥
CT C 2α−1

Rd

� T̄ κ (T − t)
α−1

2
(‖u‖CT̄ ,T C θ + ‖∇u‖C

ρ

T̄ ,T
L∞
Rd

)‖V ‖CT C
γ

Rd
.

For J T (∇(∇u � V )), we exploit once more Corollary 2.5 and Bony’s estimates,
so that

(T − t)
α−1

2
∥∥J T (∇u � V )(t)

∥∥
2α−1 � T̄

θ+γ−α−1
2 ‖u‖CT̄ ,T C θ ‖V ‖CT C

γ

Rd
.

At this point, it remains only to bound the norm of the term J T (∇u ◦ V ). Again
by Corollary 2.5 and Proposition 3.8, we have

(T − t)
α−1

2
∥∥J T (∇u ◦ V )(t)

∥∥
2α−1

� T̄ γ−α sup
t∈[0,T ]

(T − t)
α−1

2
∥∥∇u ◦ V (t)

∥∥
2γ−3

� T̄ γ−α(1F ‖f ‖CT L∞‖V1‖CT C
γ−2
Rd

+ (1 + ‖V‖X γ

)2(1 + ∥∥(u,u′)∥∥
D

α,θ,ρ

T̄ ,T ,V

))
,



1730 G. CANNIZZARO AND K. CHOUK

where F
def= {f ∈ CT L∞}. Now, putting all the previous estimates together we con-

clude the validity of the bound (3.12). Notice that the map (u,u′) �→ MT̄ (u,u′) −
�T −J T (f ) is linear and, therefore, (3.13) can be obtained by the previous com-
putations, simply replacing u with u − v and u′ with u′ − v′.

At last, thanks to (3.13), we see that there exists T 	 = T 	(‖V‖X γ ) > 0 small
enough such that the map MT 	 is a strict contraction from D

α,θ,ρ
T 	,T ,V into itself. �

As in the Young case, the previous proposition represents the crucial technical
tool through which we can state and prove the following theorem.

THEOREM 3.10. Let β ∈ (−2
3 ,−1

2 ], 4
3 < θ < γ < β + 2 and T > 0. Let Sc

be the operator assigning to every triplet (uT , f, η) ∈ C γ × CT C 2 × CT C ∞
Rd the

solution u ∈ CT C θ to equation (3.1).
Then there exists a locally Lipschitz continuous map Sr : C γ × (CT L∞ ∪

{V k, k = 1, . . . , d}) × X γ → CT C θ that extends Sc in the following sense:

Sc

(
uT ,f, η

)
(t) = Sr

(
uT ,f,K(η)

)
(t),

for all t ≤ T and (uT , f, η) ∈ C γ × CT C 2 × CT C ∞
Rd . Moreover, for any ρ < θ−1

2 ,

Sr takes values in C
θ
2
T L∞ and ∇Sr ∈ C

ρ
T L∞

Rd .

PROOF. As in the proof of Theorem 3.2 and thanks to Proposition 3.9, we
can apply Banach fixed-point theorem and get the existence of a unique solu-
tion (u,∇u) ∈ D

α,θ,ρ
T 	,T ,V to (3.1). Moreover, for T > 0 fixed, T 	 is independent

on the terminal condition uT , hence we can iterate our fixed point procedure on
[T − 2T 	, T − T 	], [T − 3T 	, T − 2T 	], . . . and extend our solution to the whole
interval [0, T ].

Since the solution u is obtained through a fixed-point procedure on the space of
paracontrolled distributions, it is well known that it gives rise to a continuous flow
(uT , f,V) �→ Sr (u

T , f,V) (see [16] for more details).
Let V be a smooth function and V = (V ,J T (∂jV

i) ◦ V j )j its enhancement.
The algebraic expansion given by equation (3.9) implies that the term ∇u · V ,
defined in Proposition 3.8, coincides with the usual product and, therefore, the
solution u constructed via the fixed-point argument outlined above corresponds to
the classical one by uniqueness. Therefore, the relation

Sc

(
uT ,f,V

)= Sr

(
uT ,f,

(
V,J T (∂jV

i) ◦ V j ))
is justified, where we recall that Sc is the flow of the equation

G V u = h, u(T , ·) = uT

and this completes the proof of Theorem 3.10. �
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4. The martingale problem. In the previous section, we solved the generator
equation and Theorems 3.2 and 3.10 represent the formal version of what was
loosely stated in Theorem 1.1. As mentioned in the Introduction, this was the first
step we had to undertake in order to be able to formulate and prove well-posedness
for the SDE, formally given by

(4.1) dXt = V (t,Xt)dt + dBt, X0 = x,

where B is a d-dimensional Brownian motion, x a point in Rd and V is a function
of time taking values in C

β

Rd , for β ∈ (−2
3 ,0). Before proceeding, let us introduce

a simple convention that collects under one name the rough and the Young regime.

DEFINITION 4.1. Let β ∈ (−2
3 ,0). We say that V ∈ CT C

β

Rd is a ground drift

if either β ∈ (−1
2 ,0) or β ∈ (−2

3 ,−1
2 ] and that V can be lifted to an element

V ∈ X γ , for some γ < β + 2.

We are now ready to formulate a suitable Stroock–Varadhan martingale problem
for (4.1), namely the following.

DEFINITION 4.2. Let T > 0 and V ∈ CT C
β

Rd be a ground drift according to
Definition 4.1. Let � = C([0, T ],Rd) and F = B(C([0, T ],Rd)), the usual Borel
σ -algebra on it. We say that a probability measure P on (�,F), endowed with
the canonical filtration (Ft )0≤t≤T , solves the martingale problem with generator
G V starting at x ∈ Rd , if the canonical process Xt(ω) = ω(t) satisfies the two
following properties:

1. P(X0 = x) = 1.
2. For every τ ≤ T , f ∈ CT L∞ and every uτ ∈ C β+2 the process{

u(t,Xt) −
∫ t

0
f (s,Xs)ds

}
t∈[0,τ ]

is a square integrable martingale under P, where u is the solution of the generator
equation (3.1) constructed in Theorems 3.2 and 3.10.

The next theorem guarantees that the Stroock–Varadhan martingale problem
formulated in the previous definition is indeed well-posed (see also Theorem 1.2).

THEOREM 4.3. Let T > 0 and V ∈ CT C
β

Rd be a ground drift accord-
ing to Definition 4.1. Then there exists a unique probability measure P on
(�,F, (Ft )0≤t≤T ) which solves the martingale problem with generator G V start-
ing at x, for every x ∈ Rd . Moreover, the canonical process Xt(ω) = ω(t) under
P is strong Markov.
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PROOF. We will focus on the case β ∈ (−2
3 ,−1

2 ], the case β > −1
2 being

analogous. From now on, we will take (ρ, θ, γ ) ∈ R3 as in Theorem 3.10, V ∈
CT C

β

Rd such that there exists V n a smooth regularization of V for which, as n →
∞, K(V n) converges to V in H γ , where the operator K is defined according to
Definition 3.6.

Existence: Let Xn be the unique strong solution of the SDE

(4.2) dXn
t = V n(t,Xn

t

)
dt + dBt, X0 = x.

For i = 1, . . . , d , let un = (un,1, . . . , un,d) be such that for every i, un,i is the
unique solution of the equation

G V n

un,i = V n,i, uT (x) = 0.

Take 0 < s < t < T and apply Itô’s formula to the process {un(t,Xn
t )}t , so that

un(t,Xn
t

)− un(s,Xn
s

)= ∫ t

s
V n(r,Xn

r

)
dr +
∫ t

s
∇un(r,Xn

r

)
dBr

= Xn
t − Xn

s − (Bt − Bs) +
∫ t

s
∇un(r,Xn

r

)
dBr,

where the last equality is a direct consequence of the fact that Xn solves (4.2)
by construction. In order to prove tightness for the sequence (Xn)n, we want to
apply Kolmogorov’s criterion, therefore, we need to bound the pth moment of
the increments of Xn, uniformly in n. For p ≥ 1, by standard properties of the
Brownian motion B and Burkholder–Davis–Gundy inequality, we obtain

(4.3)

E
[∣∣Xn

t − Xn
s

∣∣p]� E
[∣∣un(t,Xn

t

)− un(s,Xn
s

)∣∣p]
+ |t − s|p/2 +E

[(∫ t

s

∣∣∇un(r,Xn
r

)∣∣2 dr

)p/2]
.

Notice that the last term of the previous can be bounded by∫ t

s

∣∣∇un(r,Xn
r

)∣∣2 dr �
∫ t

s

∥∥∇un(r, ·)∥∥2∞ dr � (t − s)
∥∥un
∥∥2
CT C θ ,

where we recall that θ > 1 and hence C θ−1 is continuously embedded in L∞(Rd).
Adding and subtracting un(s,Xt), the first summand in (4.3) becomes∣∣un(t,Xt) − un(s,Xs)

∣∣� ∥∥un(t) − un(s)
∥∥∞ + ∥∥∇un(s)

∥∥∞∣∣Xn
t − Xn

s

∣∣.
Now, for the first term we can exploit the regularity in time of our solution, while
for the second ‖∇un(s)‖∞ = ‖∇un(T ) − ∇un(s)‖∞ � T ρ‖∇un‖CρL∞

Rd
, since we

chose un as the solution to the generator equation with zero terminal condition.
Since un converges to the solution u constructed in the Theorem 3.10 in the

topology of D
α,θ,ρ
T ,V , each of the norms of un is bounded by the analogous of u and
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(4.3) becomes

E
[∣∣Xn

t − Xn
s

∣∣p]� |t − s|p θ
2 ‖u‖

C
θ
2
T L∞

+ T pρ‖∇u‖p

C
ρ
T L∞

Rd

E
[∣∣Xn

t − Xn
s

∣∣p]+ |t − s|p/2(1 + ‖u‖p

CT C θ

)
.

At this point, the bound (3.12) in Proposition 3.9 guarantees that it is possible to
choose T 	 > 0 such that T 	(1 + ‖V‖H γ )2 � 1. Pulling the second summand of
the right-hand side to the left-hand side, we obtain

E
[∣∣Xn

t − Xn
s

∣∣p]� |t − s|p θ
2 ‖u‖

C
θ
2
T L∞

+ |t − s|p/2(1 + ‖u‖p

CT C θ

)
for all 0 < s < t < T 	, uniformly in n (the right-hand side does not depend on
n anymore). Denote by Xn,1(t) = Xn(T 	 + t). Since T 	 does not depend on the
initial condition x and the solution u is defined on the whole interval [0, T ], we
can repeat the previous argument so that

E
[∣∣Xn

t+T 	 − Xn
s+T 	

∣∣p]= E
[∣∣Xn,1

t − Xn,1
s

∣∣p]� |t − s|p/2

for all s, t ≤ T 	, uniformly in n. Now, when s ≤ T 	 ≤ t ≤ 2T 	 we have that

E
[∣∣Xn

t − Xn
s

∣∣p]�p E
[∣∣Xn

t − Xn
T 	

∣∣p]+E
[∣∣Xn

T 	 − Xn
s

∣∣p]
�
∣∣T 	 − t

∣∣p/2 + ∣∣T 	 − s
∣∣p/2 � |t − s|p/2.

Iterating the procedure over [2T 	,3T 	], [3T 	,4T 	], . . . , we finally get

sup
n

E
[∣∣Xn

t − Xn
s

∣∣p]� |t − s|p/2

for all s, t ≤ T . At this point, we can apply Kolmogorov’s criterion which implies
tightness of the sequence (Xn)n in C([0, T ],Rd).

It remains to show that every limiting process solves our martingale problem. To
this purpose, let (Xn)n be a converging subsequence, τ ≤ T , (f,uτ ) ∈ CT L∞ ×
C γ and un be the solution to the generator equation G V n

un = f with terminal
condition uτ . Applying Itô’s formula to un(t,Xn

t ), we obtain

un(t,Xn
t

)− un(0, x) −
∫ t

0
f
(
s,Xn

s

)
ds =
∫ t

0
∇un(s,Xn

s

)
dBs.

Let Zn
t denote the left-hand side of the previous. Then

E
∣∣Zn

t

∣∣2 � T
∥∥∇un
∥∥
CT L∞

Rd
� T ‖∇u‖CT L∞

Rd

which implies that (Zn
t , t ≤ T ) is a bounded sequence of square integrable martin-

gales. Now, since for every n, Zn is a martingale, we have that

(4.4) E
[(

Zn
t − Zn

s

)
F
(
Xn

r , r ≤ s
)]= 0
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holds for any continuous functional F : C([0, s],Rd) → R. At this point, to com-
plete the proof, we only need to pass to the limit in the previous equality. Let
us observe that, thanks to the fact that Xn converges in distribution to X and
(un,∇un) converges uniformly to (u,∇u), also Zn converges in distribution to
Zt = u(t,Xt) − u(0, x) − ∫ t0 f (s,Xs)ds. Analogously, (Zn

t − Zn
s )F (Xn

r , r ≤ s)

converges in distribution to (Zt − Zs)F (Xr, r ≤ s) and, since (Zn
t , t ≤ T ) is a se-

quence with uniformly bounded second moment, which in particular implies that
((Zn

t − Zn
s )F (Xn

r , r ≤ s))n is a uniformly integrable family, we can interchange
limit and expectation in the identity (4.4) by the dominated convergence theorem
(and Skorohod representation theorem), so that at last we get

E
[
(Zt − Zs)F (Xr, r ≤ s)

]= 0

which proves the claim.
Uniqueness and strong Markov property: Let P1 and P2 be two solutions of the

martingale problem starting at x. Let f ∈ C([0, T ],L∞(Rd)) and u be the solution
of the generator equation G V u = f with zero terminal condition. Since under both
P1 and P2 the canonical process X is such that {u(t,Xt) − ∫ t0 f (s,Xs)ds}t∈[0,T ]
is a martingale, we have

u(0, x) = EPi

[
u(T ,XT ) −

∫ T

0
f (s,Xs)ds

]
= −EPi

[∫ T

0
f (s,Xs)ds

]
for i = 1,2. Therefore,

EP1

[∫ T

0
f (s,Xs)ds

]
= EP2

[∫ T

0
f (s,Xs)ds

]
.

Since the previous holds for every f ∈ C([0, T ],L∞(Rd)), we conclude that the
process X has the same marginals under P1 and P2. By a straightforward adapta-
tion of [8], Theorem 4.2, (the main difference lying on the fact that our generator is
time-dependent, but that does not affect the proof in any sense), we deduce that it
has the same finite dimensional distributions and it is Markov with respect to both
probability measures, which in turn guarantees uniqueness. For the strong Markov
property, we need instead [8], Theorems 4.6 and 4.2. �

5. Construction of the polymer measure. In this section, we will construct
the so-called polymer measure in dimension d = 2,3 and show how to exploit the
techniques developed so far to prove Theorem 1.3. More concretely, our purpose
is to make sense of

(5.1) QT (dω) = Z−1
0 exp

(∫ T

0
ξ(ωs)ds

)
WT (dω),

where W is the Wiener measure on C([0, T ],Rd), d = 2,3, ξ a spatial white noise
on the d-dimensional torus Td independent of W, and Z0 is an infinite renormal-
ization constant. Let us recall that the periodic space Gaussian white noise is a
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centered Gaussian random field which formally satisfies

(5.2) E
[
ξ(x)ξ(y)

]= δ(x − y)

for any two points x, y ∈ Td , where, again, Td is the d-dimensional torus and d =
2 or 3. As the covariance function in (5.2) suggests, the white noise is too singular
for (5.1) to make sense. In order to have an expression that we can manipulate, we
consider a mollified version of the noise, defined by

(5.3) ξε = ∑
k∈Zd

m(εk)ξ̂ (k)ek,

where {ξ̂ (k)}k∈Zd is a family of standard normal random variables with covariance
E[ξ̂ (k1)ξ̂ (k2)] = 1{k1=−k2}, ek is the Fourier basis L2(Td) and m a smooth radial
function with compact support such that m(0) = 1.

Now, given ξε , let Qε be the measure defined by

Qε
T (dω) = Z−1

ε exp
(∫ T

0
ξε(ωs)ds

)
W(dω),

Z̃ε = EW

[
exp
(∫ T

0
ξε(ωs)ds

)]

and hε :R+ ×Td →R be the local in time solution to the equation

(5.4) ∂th
ε = 1

2
�hε + 1

2

∣∣∇hε
∣∣2 + ξε − cε, h(0, x) = 0,

where cε is a constant that will be characterized in Theorem 6.12. For ξε smooth,
hε is known to exist and be regular, therefore, the process

Mε
t (ωs) =

∫ t

0
∇hε(T − s,ωs)dωs,

〈
Mε〉

t (ω) =
∫ t

0

∣∣∇hε(T − s,ωs)
∣∣2 ds,

where 〈M〉· is the quadratic variation of M , is clearly a square integrable martin-
gale. Girsanov’s theorem then implies that, under the measure defined by

Q̃ε
T (dω) = exp

(
Mε

T − 1

2

〈
Mε〉

T

)
W(dω),

the canonical process has the same law as the solution Xε to the SDE

dXε
t = V ε(t,Xε

t

)
dt + dBt, X0 = x

when one chooses V ε(t, x) to be ∇hε(T − t, x). But now, applying Itô’s formula
to hε(T − t,Xε

t ) and recalling that hε solves (5.4), we conclude that Q̃ε
T (dω) =

Qε
T (dω).
At this point, we can take advantage of Theorem 4.3, whose applicability is en-

sured by the next proposition, which guarantees the existence of a unique limiting
measure for the sequence (Q̃ε

T )ε , and consequently for the sequence (Qε
T )ε .
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PROPOSITION 5.1. Let hε be the local in time solution to (5.4) for d = 2,3
and V ε(t, x) = ∇hε(T − t, x). Then there exists T 	 > 0 such that for all T ≤ T 	,
V ε(t, x) is a ground drift according to definition 4.1, that is, we have:

1. For d = 2, the process V ε converges almost surely in C([0, T 	],C β(T2))

for all β < 0 to some element V .
2. For d = 3 and all β < −1/2, the process K(V ε) converges almost surely in

H β+2(T3) to some element V ∈ X β+2.

Moreover, in both cases, the limit is independent of the choice of the mollifier m.

REMARK 5.2. Notice that we are applying Theorem 4.3 to distributions de-
fined on the torus and not on the full space. This is completely harmless since the
space C γ (Td) can be seen as the space of periodic distributions lying in C γ (see
also [16], Appendix A, for a discussion on this aspect).

Let us stress the fact that the proof of Proposition 5.1 boils down to a well-
posedness result for the equation

(5.5) ∂th = 1

2
�h + 1

2
|∇h|2 + ξ, h(0, x) = 0.

In the one-dimensional case with ξ a space-time white noise, the previous is
nothing but the celebrated Kardar–Parisi–Zhang equation [24], which was suc-
cessfully studied by M. Hairer in [18] and subsequently by M. Gubinelli and
N. Perkowski in [17]. The regularity issues one encounters when dealing with the
three-dimensional version are morally the same these authors had to face and the
techniques we will exploit are somewhat similar to theirs (especially to [17]). For
the sake of completeness, we will prove Proposition 5.1 pointing out the difficulties
one has to overcome and illustrating the main steps one needs to undertake in or-
der to solve (5.5), still keeping it as concise as possible and referring the interested
reader to the quoted papers.

6. A KPZ-type equation driven by a purely spatial white noise. The aim
of this section is to prove well-posedness of the KPZ-type equation, introduced in
(5.5) to make sense of the polymer measure with white-noise potential. We will
focus on the three-dimensional case, since in dimension 2 the result follows by
analogous, but simpler arguments.

Let us consider the case of nonzero initial condition, h0, and write (5.5) in its
mild formulation

(6.1) h(t) = Pth0 + I
(|∇h|2)(t) + I(ξ)t ,

where Pt
def= e

1
2 t� is the heat flow, for a function f on (0, T ] × T3, I(f )(t)

def=∫ t
0 Pt−sf (s)ds and ξ is the usual space white noise on T3, that is, a centered Gaus-

sian random field whose covariance function is formally given as in (5.2).
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The problem with the previous equation lies in the fact that, since as a random
distribution, ξ ∈ C θ (Td) for θ < −d

2 (which in d = 2 means θ < −1 while in
d = 3, θ < −3

2 ) standard Schauder’s estimates suggest that the spatial regularity
of h cannot be better than θ + 2 and, therefore, the nonlinearity in (6.1), for both
d = 2 and 3, is not well defined. Now, let us point out that the term determining
the regularity of h is I(ξ), so maybe, upon subtracting it to the potential solution,

what remains is more regular. In other words, one defines h1
def= h − I(ξ), derives

the equation it should solve and, as before, guesses its regularity. For example,
setting X = I(ξ), h1 should satisfy

h1(t) = Pth0 + I
(|∇X|2)(t) + I

(∇X · ∇h1 + |∇h1|2)(t)
and its regularity should be as the one of I(|∇X|2). If it were well-posed, this
last term would be 2θ + 4-Hölder in space which is strictly greater than θ + 2 so
that indeed h1 is more regular than h. While in dimension 2, this is enough (given
that X and I(|∇X|2) can be constructed and belong to the correct Besov–Hölder
space, all the other terms satisfy Bony’s condition), it is still not sufficient in d = 3
and so, we proceed further in the expansion.

The problem is that after subtracting a finite number of terms, there will be no
more gain in regularity and something else is needed in order to define the ill-posed
product, and consequently solve the equation. This is exactly the point in which
the paracontrolled approach, as we will see in what follows, enters the game.

Now that we have given a heuristic idea of what is going on, let us be more
formal. We begin by defining the objects that will appear in our expansion. Let η

be a smooth function and set

(6.2)

Xt(η)
def= I(η)(t), Xt (η)

def= I
(|∇X|2)(t),

Xt (η)
def= I
(∇X · ∇X

)
(t), Xt (η)

def= I
(∇X · ∇X

)
(t),

Xt (η)
def= I
(∣∣∇X
∣∣2)(t).

As announced before, in case η is the space white noise, the previous stochastic
processes are not analytically well defined and we will have to exploit stochastic
calculus tools in order to make sense of them and prove that they satisfy certain
regularity requirements.

Now, let h be the solution of (6.1) driven by η and v be given by

v
def= h − X(η) − X (η) − 2X (η).

Plugging this expression back into (6.1), we see that v solves

(6.3) v(t) = Pth0 + 4Xt (η) + 2I
(∇v · ∇X(η)

)
(t) + Rv(t),

where Rv is defined as

(6.4) Rv(t)
def= Xt (η) + I

(
2∇X (η) · ∇(2X (η) + v

)+ ∣∣∇(2X(η) + v
)∣∣2)(t).
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At this point, we will split the analysis of the equation in two distinct modules. On
one side, with purely analytical arguments, we will identify a suitable subspace
of the space of distributions, depending on the processes defined above, for which
it is possible to make sense of the ill-posed operations in (6.3) and formulate a
fixed-point map that is continuous in these data. On the other, we will exploit
probabilistic techniques to construct such processes starting with a white noise ξ

and prove they have the expected regularity, through a regularization procedure.

NOTATION. From now on, all the functions and distributions we will consider
will live on the d-dimensional torus. Since no confusion can occur, we will indicate
the function spaces with the same notation introduced in Section 2, but the domain
will not be Rd but Td .

6.1. Analytic part. We begin by specifying the space in which our stochastic
processes live.

DEFINITION 6.1 (Rough distribution). Let �, r < 1
2 be such that � + 2r < 1

2 .
For (a, b, η) ∈ R2 × CT C 2 and t ≤ T set X(η, a, b) to be

(6.5) Xt (η, a, b) = (Xt,Xt − at,Xt ,Xt ,Xt − bt,Q ◦ ∇X(t)
)
(η),

where X , X , X , X are given by (6.2), and

Q(η)
def= I(∇X) and ∇Q ◦ ∇X(η) = (∂i(Q)j ◦ ∂iX

)
i,j=1,2,3.

We define the space X �,r of rough distributions as

X �,r = clH�,r

{
X(η, a, b), (a, b, η) ∈ R2 × C

([0, T ],C 2(T3))},
where clH�,r {·} denotes the closure of the set in brackets with respect to the
topology of H�,r and the space H�,r = Cr

T C � × Cr
T C 2� × Cr

T C 3� × Cr
T C �+1 ×

Cr
T C 4� × Cr

T C
2�−1
R3 equipped with its usual norm. We will denote by X a generic

6-uple given as in 6.5 belonging to this space. Moreover, if η ∈ CT C � coincides
with the first component of X ∈ X �,r we will say that X is a enhancement (or lift)
of η.

REMARK 6.2. The reason why in (6.5) we had to add an extra term to the
ones introduced in (6.2) will soon be clarified. Intuitively, this is the term we will
need to define the ill-posed product between the gradient of the expected solution
v of (6.3) and the gradient of X. This is very similar to what we have done for the
generator equation in Section 3.2.

REMARK 6.3. It is important to notice that the two constants a, b appearing
in Definition 6.1 play the role of renormalization constants. As we said at the be-
ginning of Section 6, if ξ denotes the three-dimensional space white noise, then
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there is simply no hope to define some of the terms of X(ξ) as the limit of smooth
approximations. However, we will see that, upon subtracting suitable diverging
constants, it is still possible to obtain a nontrivial limit. To exemplify, for X , if
Xε a mollification of X, then I(|∇Xε|2)(t) does not converge, but there exists
a diverging sequence of cε such that I(|∇Xε|2)(t) − cεt indeed does (see Theo-
rem 6.12 for a complete proof).

REMARK 6.4. One of the main differences with the KPZ equation studied in

[18] and [17] is the stochastic term X . Indeed, while in the latter case this term
requires a nontrivial renormalization, in our it does not (see again Theorem 6.12).

Given X ∈ X �,r , � < 1
2 , the goal of this section is to setup a fixed-point argument

for equation (6.3). Now, from the definition of X we see that the expected spatial
regularity of the solution v should be � + 1 and not better so that all the terms
are well defined, thanks to Proposition 2.2, with the exception of ∇v · ∇X, and, in
particular, the resonant part of it. This difficulty can be handled in the same way
as in Section 3.2, namely, we will exploit once more the idea of paracontrolled
distributions introduced in [16].

DEFINITION 6.5 (Paracontrolled distributions). Let 2
5 < α < 1

2 . For Q ∈
CT C α+1, we define the space of paracontrolled distributions Dα

Q,T as the set of

couple of functions (v, v′) ∈ CT C α+1 × CT C α
R3 such that

v�(t)
def= v(t) − (v′ ≺ Q

)
(t) ∈ C 4α

for all 0 ≤ t ≤ T . We equip Dα
Q,T with the norm∥∥(v, v′)∥∥
Dα

Q,T
= ‖v‖1 + ∥∥v′∥∥

2 + ∥∥v�
∥∥

3,

where, for β ∈ (0,3α − 1), γ ∈ (2α,α + 1
2), δ ∈ (2α − 1

2 , α), the norms ‖ · ‖i ,
i = 1,2,3 are defined by

‖v‖1
def= ‖v‖1,x + ‖v‖1,T

def= sup
t∈[0,T ]

t
α
2
∥∥v(t)
∥∥

3α + sup
0≤s<t≤T

s
1+δ−α

2
‖∇v(t) − ∇v(s)‖L∞

|t − s| δ
2

,

∥∥v′∥∥
2

def= sup
t∈[0,T ]

t
γ
2
∥∥v′(t)

∥∥
3α−1,

∥∥v�
∥∥

3
def= sup

t∈[0,T ]
t

β+1
2
∥∥v�(t)

∥∥
α+β+1.

For (u,u′) ∈ Dα
Q,T , we say that u is paracontrolled by Q and we endow Dα

Q,T

with the metric

dDα
Q,T

((
v1, v

′
1
)
,
(
v2, v

′
2
)) def= ‖v1 − v2‖1 + ∥∥v′

1 − v′
2
∥∥

2 + ∥∥v�
1 − v

�
2

∥∥
3

for (v1, v
′
1), (v2, v

′
2) ∈ Dα

Q,T .
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At this point, let (v, v′) ∈ Dα
Q,T . Then, upon decomposing the product in the

paraproduct and resonant part, and exploiting the paracontrolled structure of v, we
can write ∇X ◦ ∇v as

∇X ◦ ∇v = ∇X ◦ ∇(v′ ≺ Q
)+ ∇X ◦ ∇v�

= ∇X ◦ (∇v′ ≺ Q
)+ ∇X ◦ (v′ ≺ ∇Q

)+ ∇X ◦ ∇v�,

where, thanks to Bony’s estimates and since α > 2
5 , all the terms are well de-

fined apart from the second summand. But now thanks to the commutator lemma,
Proposition 2.3, ∇X ◦ ∇v equals

(6.6) ∇X ◦ (∇v′ ≺ Q
)

︸ ︷︷ ︸
5α−2

+v′(∇X ◦ ∇Q)︸ ︷︷ ︸
2α−1

+R
(
v′,∇X,∇Q

)
︸ ︷︷ ︸

2α−1

+∇X ◦ ∇v�︸ ︷︷ ︸
5α−2

.

Provided we can make sense of ∇Q ◦ ∇X through other means, the resonant term
is now well-posed and has spatial regularity given by 2α − 1. In the next propo-
sition, we will derive suitable estimates for the convolution of the latter with the
heat kernel, which is exactly what we need in the proof of the fixed point (see
Proposition 6.8).

PROPOSITION 6.6. Let 2
5 < α < � < 1

2 , X ∈ X �,r , v ∈ Dα
Q,T and assume

∇Q ◦ ∇X is well defined and belongs to CT C 2α−1. Then ∇X ◦ ∇v is well-posed
and is given by the expansion in (6.6). Moreover, when convolved with the heat
kernel, it satisfies the following estimate:

(6.7)

∥∥I(∇X ◦ ∇v)
∥∥

1 + ∥∥I(∇X ◦ ∇v)
∥∥

3

� T ϑ‖X‖X �,r

(
1 + ‖X‖X �,r

)(∥∥v′∥∥
2 + ∥∥v�

∥∥
3

)
,

where ϑ = 1+δ−α−γ
2 > 0 and ‖ · ‖i , for i = 1,2,3, are defined as in Definition 6.5.

PROOF. The argument above justifies the expansion we made and guarantees
the well-posedness of the resonant term. In order to obtain the required bounds,
it is sufficient to apply Corollary 2.5, Bony’s estimates (Proposition 2.2) and the
commutator lemma (Proposition 2.3). Indeed, its ‖ · ‖1,x -norm is bounded by

T
4α−γ

2 sup
s

s
γ
2
∥∥∇Xs ◦ (∇v′

s ≺ Qs

)∥∥
5α−2 + T

α+1−γ
2 sup

s
s

γ
2
∥∥v′(s)(∇X ◦ ∇Q)s

∥∥
2α−1

+ T
α+1−γ

2 sup
s

s
γ
2
∥∥C(v′,∇X,∇Q

)
(s)
∥∥

2α−1

+ T
α−β

2 sup
s

s
β+1

2
∥∥∇Xs ◦ ∇v�(s)

∥∥
5α−2

� T
α−β

2 ‖X‖X �

(
1 + ‖X‖X �

)
sup

s

(
s

γ
2
∥∥v′(s)

∥∥
3α−1 + s

β+1
2
∥∥v�(s)

∥∥
α+β+1

)
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and its ‖ · ‖3-norm by

T
4α−γ

2 sup
s

s
γ
2
∥∥∇Xs ◦ (∇v′

s ≺ Qs

)∥∥
5α−2 + T

α+1−γ
2 sup

s
s

γ
2
∥∥v′(s)(∇X ◦ ∇Q)s

∥∥
2α−1

+ T
α+1−γ

2 sup
s

s
γ
2
∥∥C(v′,∇X,∇Q

)
(s)
∥∥

2α−1

+ T
4α−β−1

2 sup
s

s
β+1

2
∥∥∇Xs ◦ ∇v�(s)

∥∥
5α−2

� T
4α−β−1

2 ‖X‖X �,0
(
1 + ‖X‖X �,0

)
sup

s

(
s

γ
2
∥∥u′(s)

∥∥
3α−1 + s

β+1
2
∥∥u�(s)

∥∥
α+β+1

)
,

where, in both cases, the first inequality follows by Corollary 2.5 part 1, and the
second by Propositions 2.2 and 2.3. As before, the ‖ · ‖1,T -norm is less or equal to

T
1+δ−α−γ

2

(
sup

s
s

γ
2
∥∥∇Xs ◦ (∇v′

s ≺ Qs

)∥∥
5α−2 + sup

s
s

γ
2
∥∥v′(s)(∇X ◦ ∇Q)s

∥∥
2α−1

+ sup
s

s
γ
2
∥∥C(v′,∇X,∇Q

)
(s)
∥∥

2α−1 + sup
s

s
β+1

2
∥∥∇Xs ◦ ∇v�(s)

∥∥
5α−2

)

� T
1+δ−α−γ

2 ‖X‖X �,0
(
1 + ‖X‖X �,0

)
sup

s

(
s

γ
2
∥∥v′(s)

∥∥
3α−1 + s

β+1
2
∥∥v�(s)

∥∥
α+β+1

)
but we apply the second part of Corollary 2.5 instead of the first. Since 1+δ−α−γ

2 <

min{4α−β−1
2 ,

α−β
2 }, the conclusion follows. �

At this point, we need to identify v′, Q and v� so that we can establish a fixed-
point map in the space of paracontrolled distributions. To do so, let (v, v′) ∈ Dα

Q,T

and notice that v solves (6.3) if and only if v� solves

v�(t) = Pt

(
u0 − v′ ≺ Q(0)

)+ I
(∇(4X + 2v

)≺ ∇X
)
(t) − v′ ≺ Q(t)

+ 2I(∇v ◦ ∇X)(t)

+ Rv(t),

where Rv was introduced in (6.4). Now, we expect v� to have spatial regularity
greater than the one of v but all the terms in the first line, not involving the initial
condition have regularity α + 1 and not better. The point here is to take advantage
of the difference and prove it is more regular than each of its summands. As the
next proposition shows, this is indeed the case upon choosing v′ and Q wisely.

PROPOSITION 6.7. Let α,β, γ and δ be as in Definition 6.5. Let X ∈ X �,r ,
for 2

5 < α < � < 1
2 , and f be such that

‖f ‖	 = ‖f ‖	,T + ‖f ‖2
def= ‖f ‖

C3α−1
1+δ−α,T L∞ + ∥∥f ′∥∥

Cγ,T C 3α−1
R3

< ∞
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then

(6.8)
∥∥I(f ≺ ∇X) − f ≺ I(∇X)

∥∥
3 � T

4α−1−δ
2 ‖f ‖	‖X‖�.

PROOF. Let us rewrite the left-hand side of (6.8) as

t
β+1

2
∥∥I(f ≺ ∇X)(t) − f (t) ≺ I(∇X)(t)

∥∥
α+β+1

≤ t
β+1

2

∫ t

0

∥∥Pt−s

(
f (s) − f (t)

)≺ ∇Xs

∥∥
α+β+1 ds(6.9)

+ t
β+1

2

∫ t

0

∥∥Pt−s

(
f (t) ≺ ∇Xs

)
ds − f (t) ≺ Pt−s∇Xs

∥∥
α+β+1 ds.(6.10)

Let us consider the two summands separately. Thanks to Proposition 2.4, (6.9) is
bounded by

t
β+1

2

∫ t

0
(t − s)−1− β

2
∥∥f (s) − f (t)

∥∥
L∞ ds‖X‖α

≤ t
β+1

2

∫ t

0
(t − s)−1− β

2 + 3α−1
2 s− 1+δ−α

2 ds‖f ‖	,T ‖X‖α

≤ T
4α−1−δ

2 ‖f ‖	,T ‖X‖�,

where we used the fact that β < 3α − 1 and δ < α < �.
For (6.10), we apply the commutator (2.2) in Proposition 2.4, so that we obtain

t
β+1

2

∫ t

0
(t − s)−

3−3α+β
2 ds

∥∥f (t)
∥∥

3α−1‖X‖α

� t
β+1−γ

2

∫ t

0
(t − s)−

3−3α+β
2 ds‖f ‖2‖X‖α

≤ T
3α−γ

2 ‖f ‖2‖X‖�

the last passage being justified by the fact that β < 3α − 1. Since 2α − 1
2 < δ, we

obtain (6.8). �

Proposition 6.7 conveys that if we take

Qt
def= I(∇X)(t), v′ def= 2∇v + 4∇X

we should be in business, that is, we should be able to determine a fixed-point map
in the space of paracontrolled distributions Dα

Q,T .
So far we have put all the elements in place and we have now the tools we need

in order to prove that, for a given rough distribution X ∈ X �,r , equation (6.3) has
a unique local in time solution.
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PROPOSITION 6.8. Let α, � ∈ (2
5 , 1

2) with α < �. Let X ∈ X �,r and h0 ∈ C α .
For (v, v′) ∈ Dα

Q,T , let G : Dα
Q,T → CT C α+1 × CT C α

R3 be the map defined by

G(v, v′) = (ṽ, ṽ′),

ṽ
def= Pth0 + 4Xt + 2I(∇v · ∇X)(t) + Rv(t), ṽ′ def= 2∇v + 4∇X ,

where the product term has to be understood according to Proposition 6.6 [see the
expansion (6.6)] and Rv is defined by (6.4). Then G(v, v′) ∈Dα

Q,T and there exists
ϑ > 0 such that

(6.11)
∥∥G (v, v′)∥∥

Dα
Q,T

�
(
1 + ‖X‖X �,r + ‖h0‖α

)2(1 + T ϑ
∥∥(v, v′)∥∥

Dα
Q,T

)2
and, for V1 = (v1, v

′
1),V2 = (v2, v

′
2) ∈Dα

Q,T ,

(6.12)
dDα

Q,T

(
G (V1),G (V2)

)
� T ϑdDα

Q,T
(V1,V2)

(
1 + ‖V1‖Dα

Q,T
+ ‖V2‖Dα

Q,T

)(
1 + ‖X‖X �,r

)2
.

PROOF. As already pointed out, G (v, v′) has indeed the algebraic structure of
a distribution paracontrolled by Q once we set

ṽ′ = 2∇v + 4∇X ,

ṽ� = Pth
Q
0 + I

(
ṽ′ ≺ ∇X

)
(t) − ṽ′ ≺ Q(t) + 2I(∇v ◦ ∇X)(t) + R̃v(t).

In order to obtain the bound (6.11), let us separately consider each term. Let us
begin with ‖ṽ′‖2:

(6.13) t
γ
2
∥∥ṽ′(t)

∥∥
3α−1 � t

γ
2
(∥∥v(t)

∥∥
3α + ∥∥X ∥∥

3α

)
� T

γ−2α
2 ‖v‖1,x + t

γ
2 ‖X‖X �,r .

For ‖ṽ�‖3, set Ii(t), i = 1, . . . ,4 to be the corresponding summand in the definition
of ṽ�, where I2 is the difference, so that

t
β+1

2
∥∥ṽ�(t)

∥∥
α+β+1 �

4∑
i=1

t
β+1

2
∥∥Ii(t)

∥∥
α+β+1.

Now, as a trivial consequence of Proposition 2.4 and since, by definition, Q0 = 0,
we have

t
β+1

2
∥∥I1(t)

∥∥
α+β+1 = t

β+1
2 ‖Pth0‖α+β+1 � ‖h0‖α.

For I2, Proposition 6.7 tells us that

t
β+1

2
∥∥I2(t)

∥∥
α+β+1 � T

4α−1−δ
2
(∥∥ṽ′∥∥

	,T + ∥∥ṽ′∥∥
2

)‖X‖X �,r .
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It remains to prove that ‖ṽ′‖	,T can be bounded in terms of ‖v‖Dα
Q,T

((6.13) is
taking care of ‖ṽ′‖2). But now

∥∥ṽ′∥∥
	,T = sup

0≤s<t≤T

s
1+δ−α

2
‖ṽ′(t) − ṽ′(s)‖∞

|t − s| 3α−1
2

� sup
0≤s<t≤T

s
1+δ−α

2
‖∇v(t) − ∇v(s)‖∞

|t − s| 3α−1
2

+ s
1+δ−α

2
∥∥∇X

∥∥
C

3α−1
2

T L∞

� T
δ+1−3α

2 ‖v‖1,T + ‖X‖X �,r .

I3 is covered by Proposition 6.6, while for I4 we have

t
β+1

2
∥∥I4(t)

∥∥
α+β+1

� t
β+1

2 ‖X‖X � + T
1−α

2 sup
s

sα
∥∥∇v(s) � ∇Xs

∥∥
2α−1

+ T
α+1−γ

2 sup
s

s
γ
2
∥∥∇Xs · ṽ′(s)

∥∥
2α−1 + T

2α−2γ+1
2 sup

s
sγ
∥∥ṽ′(s)

∥∥2
3α−1

�
(
1 + ‖X‖X �,r

)2(1 + T
2α−2γ+1

2
∥∥v(s)
∥∥

1,x

)2
,

where the first inequality follows by Corollary 2.5 while the second by Bony’s
estimate (Proposition 2.2) and (6.13). Hence, collecting the bounds obtained so
far, we conclude that ‖ṽ�‖3 satisfies (6.11).

By analogous arguments, we proceed with ‖ṽ‖1,x . Corollary 2.5 implies

tα
∥∥ṽ(t)
∥∥

3α � ‖h0‖α + tα‖X‖X �,r + T
1−2α

2 sup
s

sα
∥∥∇v(s) ≺ ∇Xs

∥∥
α−1

+ ∥∥I(∇v ◦ ∇X)(t)
∥∥

1,x + T
1−α

2 sup
s

sα
∥∥∇v(s) � ∇Xs

∥∥
2α−1

+ T
α+1−γ

2 sup
s

s
γ
2
∥∥∇Xs · ṽ′(s)

∥∥
2α−1 + T

2α+1−2γ
2 sup

s
sγ
∥∥ṽ′(s)

∥∥2
3α−1

while Proposition 6.6 takes care of the resonant term, Proposition 2.2 and (6.13)
allow us to conclude that ‖ṽ‖1,x satisfies (6.11) for ϑ = α−β

2 .
Finally, let us bound the last norm. Let 0 ≤ s < t ≤ T . At first, notice that a

straightforward application of Proposition 2.4 gives

s
1+δ−α

2
‖Pt∇h0 − Ps∇h0‖∞

|t − s| δ
2

= s
1+δ−α

2
‖(Pt−s − Id)Ps∇h0‖∞

|t − s| δ
2

� ‖h0‖α
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then, using the fact that Pt and ∇ commute and the second part of Corollary 2.5
we have

s
1+δ−α

2
‖∇ṽ(t) − ∇ṽ(s)‖∞

|t − s| δ
2

� ‖h0‖α + s
1+δ−α

2 ‖X‖X � + T
1+δ−α−γ

2 sup
s

sγ
∥∥ṽ′(s)

∥∥2
3α−1

+ s
1+δ−α

2
‖I(∇(∇v · ∇X))(t) − I(∇(∇v · ∇X))(s)‖∞

|t − s| δ
2

+ T
1+δ−α−γ

2 sup
s

s
γ
2
∥∥∇Xs · ṽ′(s)

∥∥
2α−1.

Now, Proposition 6.6 deals with the resonant term, while the paraproducts can be
bounded by

s
1+δ−α

2
‖I(∇(∇v ≺� ∇X))(t) − I(∇(∇v ≺� ∇X))(s)‖∞

|t − s| δ
2

� T
1−3α+δ

2 sup
s

s
α
2
∥∥∇v(s) ≺ ∇Xs

∥∥
α−1

+ T
1−3α+δ

2 sup
s

s
α
2
∥∥∇v(s) � ∇Xs

∥∥
2α−1,

where we used the more compact notation f ≺� g
def= f ≺ g + f � g. Arguing as

before, we conclude that (6.11) holds true. The second bound in the statement can
be obtained analogously. �

Summarizing what’s been achieved so far, we have the following statement.

THEOREM 6.9. Let 2
5 < α < � < 1

2 , η ∈ C ∞ and let ScKPZ : C 2 × R →
C([0,+∞),C 2) be the classical flow of the equation

(6.14) ∂th(t, x) = 1

2
�h(t, x) + 1

2

∣∣∇h(t, x)
∣∣2 + η(x) − (a + b), h(0, x) = 0

(t, x) ∈ [0,+∞[×T3. Then there exist a lower semi-continuous time T 	 : X �,r ×
R → (0,+∞] and a unique locally Lipschitz map SrKPZ : X �,r → C([0,∞[,C α)

such that SrKPZ extends ScKPZ in the following sense:

SrKPZ
(
X(η, a, b)

)
(t) = ScKPZ(η, a + b)(t)

for all t ≤ T 	(X(η, a, b)) and (η, a, b) ∈ C ∞ ×R2.

PROOF. Given the bounds in Proposition 6.8, the proof is completely analo-
gous to the one of Theorem 3.10 provided in Section 3.2. �
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REMARK 6.10. The fact that equation (6.14) is globally well-posed, that is, its
solution h does not explode in finite time, when η is a smooth function is ensured
by the fact that, thanks to the Cole–Hopf transform, eh is the solution of the linear
equation

∂te
h = 1

2
�eh + ehη

which is known to admit a unique global strictly positive solution when the initial
condition is identically equal to 1 (e.g., by the Feynmann–Kac formula).

REMARK 6.11. As we pointed out at the beginning of this section, we no-
tice that in d = 2, the space white noise belongs to C η for η < −1, and that an
expansion of order one is sufficient in order to make sense of the equation (5.4).
Moreover in this case the map SrKPZ is simply a locally Lipschitz functional of
(X,X )(η).

6.2. Stochastic part. Let ξ be a space white noise on T3 and ξε its regulariza-
tion as in Theorem 7.1, that is,

(6.15) ξε(x) = ∑
k∈Z3

0

m(εk)ξ̂ (k)eik·x,

where m is a smooth radial function with compact support such that m(0) = 1 and
(ξ̂ (k))k is a family of Gaussian random variables with covariance structure given
by

E
[
ξ̂ (k1)ξ̂ (k2)

]= 1{k1=−k2}.

In order to complete the study of equation (5.5), we have to prove that the process
X = I(ξ) can be indeed lifted to the space of rough distributions X �,r . To do so,

we will show that, upon defining the processes Xε , Xε, , Xε,, Xε, , Xε, ,∇Qε ◦
∇Xε according to (6.2) and Definition 6.1, we have the following theorem.

THEOREM 6.12. Let � < 1
2 and (�,F,Pξ ) be a probability space on which

the space white noise ξ is defined. Let m be a smooth radial function with compact
support such that m(0) = 1 and ξε be defined as in (6.15). Then, upon choosing
the constants cε , cε ∈ R as

(6.16) cε =∑
k �=0

|m(εk)|2
|k|2 , cε = 2

∑
k1,k2

m(εk1)
2m(εk2)

2 |k1 · k2|2
|k12|2|k1|4|k2|4

the sequence

Xε
t

def= (Xε
t ,X

ε,
t − cεt,X

ε,
t ,X

ε,
t ,X

ε,
t − cε t,∇Qε ◦ ∇Xε(x)

)
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converges to a process X = (X, X , X , X , X ,∇Q ◦ ∇X) ∈ H� in
Lp(�,H�) for every p > 1. The limiting process X is independent of the choice
of the mollifier and of the sequence of constants cε , cε .

Moreover, replacing ξε with δξε for δ > 0, the corresponding renormalizing
constants are such that cε,δ = δ2cε , cε,δ = δ4cε .

REMARK 6.13. The choice of the constants made in (6.16) is not unique.
Clearly, being them diverging, adding any real number would not prevent the se-
quence Xε from converging to X. What instead is unique, is their behaviour as ε

goes to 0 and it is possible to prove that they asymptotically satisfy

cε ∼ ε−1, cε = O
((

log(ε)
)2)

.

PROOF OF THEOREM 6.12. The proof of results of this type always makes
use of the same tools (see [6, 16, 17]) and follows a, by now, standard procedure.
For τ ∈ {·, , , , }, at first one obtains L2 bounds of the different Wiener-chaos
components (for a definition and additional properties, see [23]) of X

ε,τ
s,t − X

ε′,τ
s,t ,

where Xs,t
def= Xt − Xs , and then the conclusion is attained thanks to Besov em-

bedding (Proposition 2.1) and Garsia–Rodemich–Rumsey lemma (see [14]). For
τ ∈ { , , , , }, very similar estimates were already showed in [17], Section 9,
so we refrain from reproducing them here. Nevertheless, the interested reader can
consult [5] for a more complete version.

In the following paragraphs, we will prove only the L2 bounds for the time
increment of Xε, and ∇Qε ◦ ∇Xε(x) as well as the evaluation of the diverging
constants necessary to renormalize the KPZ-type equation presented above. �

NOTATION. Since we will run into long formulas, we reckon convenient to in-
troduce some notation we will exploit in the rest of the chapter. As already pointed

out, the time increment of a process X will be abbreviated as Xs,t
def= Xt − Xs

and for a function of time f (·) we will write f (s, t)
def= f (t) − f (s). For vectors

k1, k2 ∈ Rd , we will indicate by k12
def= k1 + k2, by k1 · k2 their scalar product and

k1k
	
2 ∈ Rd×d the matrix generated by the column by vector product.

Definition of X. By definition,

Xε
t (x) = I

(
ξε)(t, x) =

∫ t

0
Pt−sξ

ε(x)ds

= ∑
k∈Z3

0

Fε
t (k)ξ̂ (k)eik·x = ∑

k∈Z3
0

m(εk)
1 − e− 1

2 |k|2t

|k|2 ξ̂ (k)eik·x.

The well-posedness of this term is straightforward and has already been shown in
a slightly different context, for example, in [6, 16].
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Definition of X . As before, we have

X
ε,
t (x) = I

(∣∣∇Xε
∣∣2)(t, x) = −∑

k∈Z3

∑
k1,k2∈Z3

0
k12=k

F
ε,
t (k, k1, k2)(k1 · k2)ξ̂ (k1)ξ̂ (k2)ek,

where F
ε,
t (k, k1, k2) = ∫ t0 e− 1

2 |k|2(t−s)F ε
s (k1)F

ε
s (k2)ds, for k1, k2 ∈ Z3

0 and t ≥ 0.

0th-chaos. The 0th chaos component of Xε, is given by

cε (t) = E
[
X

ε,
t (x)

]
= − ∑

k1,k2∈Z3
0

k12=k

F
ε,
t (k, k1, k2)(k1 · k2)E

[
ξ̂ (k1)ξ̂ (k2)

]
ek12

= ∑
k∈Z3

0

F
ε,
t (0, k, k)|k|2,

where the first equality follows by Wick’s theorem. Expanding the kernel, we ob-
tain

cε (t) = t
∑
k∈Z3

0

m(εk)2

|k|2 − 4
∑
k∈Z3

0

m(εk)2 1 − e− 1
2 |k|2t

|k|4 + ∑
k∈Z3

0

m(εk)2 1 − e−|k|2t

|k|4

and the latter two summands converge for every t ≥ 0. This means that, in or-
der to renormalize X

ε,
t it is enough to subtract the first term cε t , where cε =∑

k∈Z3
0

m(εk)2

|k|2 .

2nd-chaos. Thanks again to Wick’s theorem, the second moment of the second
chaos component of Xε, is

E
∣∣�q

(
X

ε,
s,t − cε(s, t)

)∣∣2 = 2
∑
k∈Z3

0

�q(k)2
∑

k12=k

∣∣Fε,
s,t (k, k1, k2)

∣∣2|k1 · k2|2,

where we recall that �q(·) def= �(2−q ·). Now, the modulus of the kernel Fε, can
be bounded by∫ t

s
e− 1

2 |k|2(t−r)F ε
r (k1)F

ε
r (k2)dr

+ ∣∣1 − e− 1
2 |k|2(t−s)

∣∣ ∫ s

0
e− 1

2 |k|2(s−r)F ε
r (k1)F

ε
r (k2)dr

� m(εk1)m(εk2)
|1 − e− 1

2 |k|2(t−s)|
|k|2|k1|2|k2|2 � m(εk1)m(εk2)

|t − s|ϑ
|k|2−2ϑ |k1|2|k2|2 ,
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where in the last passage we used geometric interpolation for ϑ ∈ (0,1). Therefore,

E
∣∣�q

(
X

ε,
s,t − cε(s, t)

)∣∣2 � |t − s|2ϑ
∑
k∈Z3

0

�q(k)2

|k|4−4ϑ

∑
k12=k

|k1 · k2|2
|k1|4|k2|4

� |t − s|2ϑ2−2q(2−2ϑ)
∑

k12=k
|k|∼2q

1

|k1|2|k2|2 .

Now, the latter sum is bounded by∑
k∈Z3

0|k|∼2q

1

|k|1−δ

∑
k1:|k1|≤|k2|

1

|k1|3+δ
� 2−2q(− 3

2 + 1
2 − δ

2 )
∑

k1∈Z3
0

1

|k1|3+δ

and the last sum is finite.

Definition of ∇Q ◦ ∇X. Recall the definition of Qε:

Qt(x) = I
(∇Xε)(t, x) = i

∑
k∈Z3

0

F
ε,Q
t (k)kξ̂ (k)ek,

where F
ε,Q
t (k) = ∫ t0 e− 1

2 |k|2(t−s)F ε
s (k)ds, then ∇Qε ◦ ∇Xε(t, x) is

−i
∑
k∈Z3

0
k12=k

|i−j |≤1

�i(k1)�j (k2)F
ε,Q
t (k1)F

ε
t (k2)
(
k1k

	
1 · k2
)
ξ̂ (k1)ξ̂ (k2)ek.

Notice that

E
[∇Qε ◦ ∇Xε(t, x)

]= i
∑

|i−j |≤1

∑
k∈Z3

0

�i(k)�j (k)F
ε,Q
t (k)F ε

t (k)
(
kk	 · k)= 0,

where the last equality follows by the fact that the argument of the previous sum is
odd:

E
∣∣�q

(∇Qε ◦ ∇Xε)
s,t

∣∣2
�
∑
k∈Z3

0

�q(k)2
∑

k12=k
|i−j |≤1

�i(k1)
2�j (k2)

2F
ε,Q
s,t (k1)

2Fε
s,t (k2)

2∣∣k1k
	
1 · k2
∣∣2.

Since |Fε,Q
s,t (k)| � (t−s)ϑ

|k|4−2ϑ , we have

E
∣∣�q

(∇Qε ◦ ∇Xε)
s,t

∣∣2
� (t − s)2ϑ

∑
k∈Z3

0

�q(k)2
∑

k12=k
|i−j |≤1

�i(k1)
2�j (k2)

2 1

|k1|4−4ϑ |k2|2
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and the sum is bounded by∑
q�j

|i−j |≤1

∑
|k|∼2q

( ∑
k1:|k1|≤|k2|

k12=k

+ ∑
k1:|k2|≤|k1|

k12=k

)
�i(k1)

2�j (k2)
2 1

|k1|4−4ϑ |k2|2

�
∑
q�j

|i−j |≤1

∑
|k|∼2q

(
2−2j 2−i(1−4ϑ−δ)

∑
k1

1

|k1|3+δ
+ 2−i(3−4ϑ−δ)

∑
k2

1

|k2|3+δ

)

� 23q
∑
q�j

2−j (3−4ϑ−δ) � 2−2q(−2ϑ− δ
2 )

and this concludes the proof.

6.3. The renormalization constants. As in the case of X , in order to ensure

the convergence of X
ε,
t and X

ε,
t to well-defined stochastic processes, it is nec-

essary to carefully study their 0th chaos component. Indeed, since in principle
these are deterministic functions of time, it might happen that they diverge and in
that case they need to be subtracted in order to obtain some sensible limit. They
are respectively given by

cε (t) = E
[
X

ε,
t

]
and cε (t) = E

[
X

ε,
t

]
.

Let us begin by analyzing cε (t). By Wick’s theorem, E[∇Xε(t)∇Xε, (t)] is

− 2
∑

k1,k2 �=0;k1 �=−k2

(k2 · k12)(k1 · k2)
(
1 − e− 1

2 |k1|2t )∣∣m(εk1)
∣∣

×
∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k12|2(s−σ)F ε

s (k2)F
ε
σ (k1)F

ε
σ (k2).

Now is not difficult to see that, upon pulling out of the previous integrals all the
quantities not depending on σ or s, the latter is less than∫ t

0

∫ s

0
ds dσe− 1

2 |k1|2(t−s)e− 1
2 |k12|2(s−σ)(1 − e− 1

2 |k1|2σ )

× (e− 1
2 |k2|2s + e− 1

2 |k2|σ + e− 1
2 |k2|2(s+σ))� t−1+ 3

2 ν

|k12|2−ν |k2|2−ν |k1|2−ν

for ν > 0 small enough. Then the previous sum can be bounded by

t3/2ν−1
∑
k1,k2

1

|k1|3−ν |k2|4−ν |k12|1−ν

� t3/2ν−1
(∑

k1,k2

|k1|3+ν |k12|5−3ν + ∑
k1,k2

|k2|4−ν |k12|4−2ν

)
< +∞
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for ν > 0 small enough. Then, to show convergence of E[∇X(t)∇X (t)], it re-
mains to study the contribution given by the two following integrals:

∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k12|2(s−σ),

∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k12|2(s−σ)e− 1

2 |k1|2σ .

A direct computation gives

(6.17)

∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k12|2(s−σ)

= 2
1 − e− 1

2 |k1|2t

|k12|2|k1|2 − 2

|k12|2
∫ t

0
dse− 1

2 |k1|2(t−s)e− 1
2 |k12|2s

and we observe

∑
k1,k2

|(k2 · k12)(k1 · k2)|
|k1|2|k2|4|k12|2

(
1 − e− 1

2 |k1|2t ) ∫ t

0
dse− 1

2 |k1|2(t−s)e− 1
2 |k12|2s

�
∑
k1,k2

1

t1−ν |k1|3−ν |k2|2|k12|3−ν
< +∞,

where we have bounded the integral term by tν−1|k1|ν−1|k12|ν−1 for ν > 0 small
enough, and the convergence of the sum appearing at the right-hand side is ob-
tained as before. Now, let us focus on the contribution to the sum given by the first
summand at the right-hand side of (6.17), that is,

∑
k1,k2 �=0;k1 �=−k2

(k2 · k12)(k1 · k2)

|k1|4|k2|4|k12|2
(
1 − e− 1

2 |k1|2s)2∣∣m(εk1)
∣∣2∣∣m(εk2)

∣∣2.

Splitting this sum according to the following decomposition (1 − e−|k2
1 t )2 = 1 +

e−|k1|2t (2 + e−|k1|2t ), we are lead to the following terms:

∑
k1,k2,k12 �=0

(k2 · k12)(k1 · k2)

|k1|4|k2|4|k12|2
∣∣m(εk1)

∣∣2∣∣m(εk2)
∣∣2,

∑
k1,k2,k12 �=0

(k2 · k12)(k1 · k2)

|k1|4|k2|4|k12|2 e− 1
2 |k1|2t (2 + e− 1

2 |k1|2t )∣∣m(εk1)
∣∣2∣∣m(εk2)

∣∣2.
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For the first, notice that

∑
k1,k2,k12 �=0

(k2 · k12)(k1 · k2)

|k1|4|k2|4|k12|2
∣∣m(εk1)

∣∣2∣∣m(εk2)
∣∣2

= ∑
k1,k2,k12 �=0

k1 · k2

|k1|4|k2|4
∣∣m(εk1)

∣∣2∣∣m(εk2)
∣∣2

− ∑
k1,k2,k12 �=0

(k1 · k12)(k1 · k2)

|k1|4|k2|4|k12|2
∣∣m(εk1)

∣∣2∣∣m(εk2)
∣∣2

and thus

∑
k1,k2,k12 �=0

(k2 · k12)(k1 · k2)

|k1|4|k2|4|k12|2
∣∣m(εk1)

∣∣2∣∣m(εk2)
∣∣2

= 1

2

∑
k1,k2,k12 �=0

k1 · k2

|k1|4|k2|4
∣∣m(εk1)

∣∣2∣∣m(εk2)
∣∣2 = 1

2

∑
k1 �=0

|k1|−6∣∣m(εk1)
∣∣4,

where we have used that the function m is even, and by dominated convergence
theorem we conclude that the right-hand side converges to

∑
k1 �=0 |k1|−6 < +∞ as

ε goes to zero. The second term instead

∑
k1,k2,k12 �=0

(k2 · k12)(k1 · k2)

|k1|4|k2|4|k12|2 e− 1
2 |k1|2t (2 + e− 1

2 |k1|2t )∣∣f (εk1)
∣∣2∣∣f (εk2)

∣∣2

= ∑
k1,k2,k12 �=0

k1 · k2

|k1|4|k2|4
∣∣f (εk1)

∣∣2∣∣f (εk2)
∣∣2e− 1

2 |k1|2t (2 + e− 1
2 |k1|2t )

− ∑
k1,k2,k12 �=0

(k1 · k12)(k1 · k2)

|k1|4|k2|4|k12|2 e− 1
2 |k1|2t (2 + e− 1

2 |k1|2t )∣∣f (εk1)
∣∣2∣∣f (εk2)

∣∣2.

Since m is even, the first sum of this decomposition is finite. To study the second
one, we simply use the following elementary estimate:

∑
k1,k2,k12 �=0

(k1 · k12)(k1 · k2)

|k1|4|k2|4|k12|2 e− 1
2 |k1|2t (2 + e− 1

2 |k1|2t )∣∣f (εk1)
∣∣2∣∣f (εk2)

∣∣2

� tν/2−1
∑
k1,k2

1

|k1|4−ν |k2|3|k12| < +∞
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and this concludes the bound for this term. To obtain the needed bound for the
expectation E[∇X(t)∇X (t)], it remains to study

(6.18)

∑
k1

1 − e− 1
2 |k1|2t

|k1|2
∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k1|2σ k1

·
(∑

k2

1

|k2|4 e− 1
2 |k12|2(s−σ)(k12 · k2)k2

)
.

Let us have a closer look at the quantity in the parentheses. Notice that by symme-
try (k2 → −k2) the sum in the parenthesis at the right-hand side is 0. Therefore, it
can be written as∑

k2

1

|k2|4
(
e− 1

2 |k12|2(s−σ)(k12 · k2) − e− 1
2 |k2|2(s−σ)(k2 · k2)

)
k2

=∑
k2

1

|k2|4
∫ 1

0
dτe− 1

2 |τk1+k2|2(s−σ)

× (k1 · k2 − 2
(
k1 · (τk1 + k2)

)(
(τk1 + k2) · k2

)
(s − σ)

)
k2,

where in the last line we applied Taylor’s theorem to the function G(k) =
e− 1

2 |x+k2|2(s−σ)(k + k2) · k2. The modulus of the sum in (6.18) can consequently
be bounded by

(6.19)

∑
k1

1

|k1|
∫ 1

0

∑
k2

1

|k2|3
∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k1|2σ e− 1

2 |τk1+k2|2(s−σ)

× |k1||k2|(1 + |τk1 + k2|2(s − σ)
)

=∑
k1

1

|k1|
∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k1|2σ

×
∫ 1

0

∑
k2

1

|k2|2 e− 1
2 |τk1+k2|2(s−σ)|k1|(1 + |τk1 + k2|2(s − σ)

)
.

Let us write the right-hand side as the sum of two terms and call them �1 and �2
respectively. Now, for �1, notice that for ε > 0 sufficiently small, one has∑

k2

1

|k2|2 e− 1
2 |τk1+k2|2(s−σ)|k1|� |k1|

∑
k2

1

|k2|2|τk1 + k2|2−2ε(s − σ)1−ε

� |k1|
(s − σ)1−ε

∫ dy

|y|2|τk1 + y|2−2ε

� |k1|ε
τ 1−ε(s − σ)1−ε

∫ dy

|y|2| k1|k1| + y|2−2ε
,
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where the integral is taken over a suitable subset of R3 where the integrand is well
defined. It is immediate to see that the latter is bounded (e.g., by Cauchy–Schwarz).

Analogously, for �2, upon setting ε̄
def= ε

2 > 0, we get

∑
k2

1

|k2|2 e− 1
2 |τk1+k2|2(s−σ)|k1||τk1 + k2|2(s − σ)

� |k1|
∑
k2

1

|k2|2|τk1 + k2|2−ε(s − σ)1−ε

and the latter can be treated as before.
At this point, given δ, γ > 0, (6.19) is bounded by

∑
k1

1

|k1|
∫ t

0
ds

∫ s

0
dσe− 1

2 |k1|2(t−s)e− 1
2 |k1|2σ

∫ 1

0

|k1|ε
τ 1−ε(s − σ)1−ε

�
∑
k1

1

|k1|1−ε

∫ t

0
ds

1

|k1|2−2γ (t − s)1−γ

∫ s

0
dσ

1

|k1|2−2δσ 1−δ(s − σ)1−ε

�
∑
k1

1

|k1|5−2γ−2δ−ε

∫ t

0

1

s1−δ−ε(t − s)δ
�
∑
k1

t−1+γ+δ+ε

|k1|5−2γ−2δ−ε

and the last term is bounded provided that 5 − 2γ − 2δ − ε > 3 and −1 + γ +
δ + ε > 0. Therefore, supt∈[0,T ] t3/2ν−1|E[∇Xε(t)∇Xε,(t)]| is convergent and by

dominated convergence we can conclude that the constant cε does not diverge
and can therefore be omitted.

We can now focus on cε (t). In particular, we would like to show that cε (t) =
cε t + Rε(t), where cε is a diverging constant and Rε(t) is finite uniformly in ε.

Applying Wick’s theorem as we did for X and taking into account the symmetry
of the sum in both k1, k2 and k3, k4, we obtain

cε (t) = 2
∑
k1,k2

2∏
h=1

m(εkh)
2
∫ t

0

(
I1(s)

2 + 2I1(s)I2(s) + I2(s)
2)ds

|k12|2|k1 · k2|2
|k1|4|k2|4 ,

where I1 and I2 are given by

I1(s) := 1 − e− 1
2 |k12|2s

|k12|2 , I2(s)
def=

3∑
i=1

∫ s

0
e− 1

2 |k12|2(s−r)e− 1
2 air dr

and a1 = |k1|2, a2 = |k2|2 and a3 = |k1|2 + |k2|2. Let us begin with the term in-
volving I 2

1 , which, by expanding the square, equals

1

2
cε t + ∑

k1,k2

2∏
h=1

m(εkh)
2
(
−2

1 − e−|k12|2t

|k12|6 + 1 − e−2|k12|2t

2|k12|6
) |k12|2|k1 · k2|2

|k1|4|k2|4 ,
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where the constant cε is defined as

cε = 2
∑
k1,k2

m(εk1)
2m(εk2)

2 |k1 · k2|2
|k12|2|k1|4|k2|4 .

For the other two summands, notice that by applying the same strategy as above,
we have

(6.20)

∑
k1,k2

2∏
h=1

m(εkh)
2 |1 − e−|k12|2t |

|k12|6
|k12|2|k1 · k2|2

|k1|4|k2|4

�
∑
k1,k2

1

|k12|4|k1|2|k2|2

�
∑
k2

1

|k2|5−ε

∑
k1

1

|k1|3+ε
+∑

k2

1

|k2|4
∑
k1

1

|k12|4

which converges for any ε > 0 small enough.
For the other terms, notice at first that if δ1, δ2 > 0, we have

3∑
i=1

∫ s

0
e−|k12|2(s−r)e−air dr �

∑
i

∫ s

0

(s − r)−1+δ1r−1+δ2

|k12|2−2δ1a
1−1δ2
i

dr

� max
i

s−1+δ1+δ2

|k12|2−2δ1a
1−δ2
i

.

It will be enough to consider a1 = |k1|2, since for a2 the same bounds hold and
a3 > a2

1 . Upon choosing δ1 + δ2 > 1
2 , we have

∑
k1,k2

2∏
h=1

m(εkh)
2
∣∣∣∣
∫ t

0
I2(s)

2 ds

∣∣∣∣ |k12|2|k1 · k2|2
|k1|4|k2|4

�
∑
k1,k2

1

|k12|2−4δ1 |k1|6−4δ2 |k2|2

�
∑
k1

1

|k1|6−4δ2

( ∑
|k2|≤|k12|

+ ∑
|k12|≤|k2|

)
1

|k12|2−4δ1 |k2|2

�
∑
k1

1

|k1|6−4δ2

∑
k2

1

|k2|4−4δ1
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which converges, provided that δ2 < 3
4 and δ1 < 1

4 . Let us consider I1I2. In this
case,

∑
k1,k2

2∏
h=1

m(εkh)
2
∣∣∣∣
∫ t

0
I1(s)I2(s)ds

∣∣∣∣ |k12|2|k1 · k2|2
|k1|4|k2|4

�
∑
k1,k2

1

|k12|2−2δ1 |k1|4−2δ2 |k2|2 �
∑
k1

1

|k1|4−2δ2

∑
k2

1

|k2|4−2δ1

and the last converges provided that δ1, δ2 < 1
2 . Then we conclude that the diver-

gent part of the term Xε is simply given by tc and the proof of Theorem 6.12 is
completed.

To conclude this section, we want to analyze the constants cε and cε , and
understand their asymptotic behaviour. Now, by Riemann-sum approximation, it
easy to see that, as ε goes to 0,

cε = ∑
k∈Z3,k �=0

|m(εk)|2
|k|2 ∼ε→0 ε−1

∫
|x|>1

|x|−2∣∣m(x)
∣∣2,

where the integral is clearly finite. For the other, by elementary estimates, we have

cε �
∑

|k1|,|k2|�ε−1

|k1|−2|k2|−2|k12|−2 �
∑

|k1|,|k2|�ε−1

|k1|−3|k2|−3 �
(
log(ε)

)2
,

where the latter follows once again by Riemann-sum approximation.

7. The polymer measure with white noise potential and its properties.
This section is devoted to the study of the polymer measure with white noise po-
tential and its properties. Thanks to the result of the previous section, we can now
state the following theorem whose proof will occupy the rest of the paper (compare
with Theorems 1.3 and 1.4).

THEOREM 7.1. Let T > 0 and ξ be spatial white noise on the d-dimensional
torus Td for d = 2,3 and ξε be given by

ξε = ∑
k∈Zd

m(εk)ξ̂ (k)ek,

where {ξ̂ (k)}k∈Zd is a family of standard normal random variables with covari-
ance E[ξ̂ (k1)ξ̂ (k2)] = 1{k1=−k2}, ek is the Fourier basis L2(Td) and m a smooth
radial function with compact support such that m(0) = 1. For any ε > 0, define the
probability measure Qε

T ,x on C([0, T ],Rd) as

Qε
T ,x(dω) = Z−1

ε exp
(∫ T

0
ξε(Bs)ds

)
Wx(dω),

Zε def= EWx

[
exp
∫ T

0
ξε(Bs)ds

]
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with Wx is the Wiener measure starting at x (the white noise being independent of
W). Then there exists T 	 > 0, depending only on ξ , such that for all T ≤ T 	 the
family of probability measures Qε

T converges to a measure QT independent of the
choice of the mollifier (ξ -almost surely).

Moreover, QT is singular to the Wiener measure and we can choose T 	 = ∞.

REMARK 7.2. Unfortunately, we are not allowed to consider a spatial white
noise on the full space Rd , the reason being that such a noise does not live in any
Besov–Hölder space C β(Rd,R). However, we believe that the problem can be
handled by introducing some sort of weighted Besov–Hölder spaces and, in this
direction, we mention the works of Hairer and Labbé [20, 21], where the authors
prove a well-posedness result for the linear parabolic Anderson equation on Rd ,
d = 2 and 3, and the recent paper of Mourrat and Weber [27], in which they obtain
an analogous result for the �4

2-equation.

REMARK 7.3. The factor 1 in front of the white noise ξ does not play any
role in our study and can be replaced by any constant β > 0. By Section 6 and the
analysis carried out therein, we guess that the behaviour of the polymer measure
as β → 0 is crucially related to that of the KPZ-type equation (5.4) with vanishing
noise. In this direction, large deviation results have been recently investigated in
the context of singular SPDEs, more specifically for the case of the stochastic
quantization equation, by M. Hairer and H. Weber in [22].

We now begin with the proof of Proposition 5.1, which represents the core of
the existence part of the previous statement.

7.1. Proof of Proposition 5.1. Thanks to Theorems 6.9 and 6.12, we know that
there exists T 	 > 0 such that for all T ≤ T 	 and δ > 0, hε(T − t, x) converges to
h(T − t, x) in CT C a(d)−δ in probability, where a(d) = 1 for d = 2 and a(d) = 1/2

for d = 3. Hence, V ε(t, x)
def= ∇hε(T − t, x) converges to V (t, x) = ∇h(T − t, x)

in CT C a(d)−1−δ . For d = 2, the proof is complete.
In the three-dimensional case, recall that the solution h to (5.4) admits the fol-

lowing decomposition:

h(t) = Xt + h1(t) where h1(t) = Xt + 2Xt + v(t).

In the previous section, we proved that X and h1 are, respectively, almost 1
2 and 1,

regular in space, hence, in J T (∇ · ∇h) ◦ ∇h, given by

J T (∇ ·∇X)◦∇X+J T (∇ ·∇X)◦∇h1+J T (∇ ·∇h1)◦∇X+J T (∇ ·∇h1)◦∇h1,

the only term not analytically well defined is the first. At the same time, since J T

and ∇ commute we have

J T (∇ · ∇X) ◦ ∇X = ∇J T (∇X) ◦ ∇X.
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Now, as we already pointed out the estimates for JT and I are the same and
Q = I(∇X), therefore, the bounds for this process are the same as the ones for
∇Q ◦ ∇X which were derived in the proof of Theorem 6.12, and the proof is
complete.

7.2. Global existence, parabolic Anderson equation and Feynman–Kac repre-
sentation. In this section, we want to show the global existence of the polymer
measure. By the construction carried out in Section 5, the result immediately fol-
lows if we are able to prove that the solution to the KPZ-type equation (5.5) does
not explode in finite time. So, let once again hε satisfy

∂th
ε = 1

2
�hε + 1

2

∣∣∇hε
∣∣2 + ξε − cε, h(0, x) = 0.

Now, we know that there exists a time T 	 > 0 such that hε converges to a func-
tion h in CT C a(d)−δ in probability, where a(d) = 1 for d = 2 and a(d) = 1/2
for d = 3, independently of the mollifier, for all T ≤ T 	. Moreover, in [16] and
[21], the authors proved global well-posedness for the parabolic Anderson equa-
tion in dimension d = 2 and 3, respectively, namely they showed that there exists
a constant bε for which if vε denotes the solution of

(7.1) ∂tv
ε = 1

2
�vε + vεξε − bεv

ε, vε(0, x) = 1

then for all T > 0, vε converges in CT C a(d)−δ (in probability) to a function v

independently of the approximation of the noise, and the constant bε can be chosen
to be cε . We need to take into account the following two facts:

1. By the Feynman–Kac formula, vε can be written as

vε(t, x) = Ex

[
e
∫ t

0 (ξε(Bs)−cε)ds].
2. The Cole–Hopf transform of hε solves (7.1), that is, vε(t, x) = ehε(t,x) for

all t ≤ T 	 and x ∈ T2. Therefore, taking the limit as ε tends to 0 we have v(t, x) =
eh(t,x) > 0 for t ≤ T 	.

Now, the point is that for all t ≤ T 	, the Markov property implies

vε(t + T 	, x
)= EWx

[
e
∫ T 	

0 (ξε(Bs)−cε)dsvε(t,BT 	)
]= vε(T 	, x

)
EQε

x,T 	

[
vε(t,BT 	)

]
thus, since Qε

x,T converges weakly to a probability measure Qx,T 	 and
‖vε − v‖CT L∞ → 0 we get immediately, by taking the limit as ε → 0, that

v
(
T 	 + t, x

)= v
(
T 	, x
)
EQx,T 	

[
v(t,BT 	)

]
> 0

for all t ≤ T 	 which implies that v(t, x) > 0 for all t ≤ 2T 	 and x ∈ T2. Iterating
the same argument, we get that v(t, x) > 0 for all t ≥ 0 and all x. At this point, it
is not difficult to see that we can extend hε and h to the whole half-line [0,+∞)

by setting hε(t) = log(vε(t)) and h(t) = log(v(t)) for all t ≥ 0. Therefore, it is
immediate to verify that the h constructed in this way is a global in time solution
of equation (5.5).
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7.3. Singularity with respect to the Wiener measure. We will give the proof in
the case of dimension 3 since an analogous, but simpler argument, holds for d = 2.

In order to verify that the polymer measure QT ,x is singular with respect to
the Wiener measure Wx , we will begin by showing that the sequence of densities
dQN

T,x/dW (we are taking ε to be 1/N ) admits a subsequence converging to 0
W-a.s. At first notice that, by Feynman–Kac formula, for all T ≤ T 	 we have

ehN(T ,x) = e−cNT EWx

[
e
∫ T

0 ξN (ωs)ds]= ZT
Ne−cNT ,

where hN is the solution to (5.4) driven by the mollified noise ξN , cN
def= cN + cN

and cN, cN are the diverging constants introduced in Theorem 6.12. Now, let YN

be the random variable given by

YN(ω)
def= (ZT

N

)−1
e
∫ T

0 ξN (ωs)ds

and δ < 1 be fixed. Thanks to the last part of the above mentioned theorem, we
immediately see that

(7.2)
EW

[
(YN)δ

]= (ZT
N

)−δ
EW

[
e
∫ T

0 δξN (ωs)ds]
= e(−cNδ(1−δ)+δ4cN )T ehN

δ (T ,x)−hN(T ,x),

where, this time, hN
δ is the solution to the KPZ-type equation (5.4) driven by δξN

and ξN is the same as before. Since, by Remark 6.13 as N → ∞, cN ∼ N while

cN = O((logN)2), we have

lim
N→+∞ cNδ(1 − δ) − (δ4 − δ

)
cN = lim

N
cNδ(1 − δ) = +∞

it follows that there exists a subsequence (denoted once again as the argument of
the limit at the left hand side of the previous) for which the the first exponential at
right-hand side of (7.2) is summable. Moreover, thanks to Theorem 6.9 the second
exponential converges, as N → ∞ to exp (hδ(T , x) − h(T , x)). Therefore,∑

N

EW

[(
YN )δ]�∑

N

e(−cN δ(1−δ)+(δ4−δ)cN )T < +∞

which in particular implies that, if Ar
N = {YN < r}, then W(lim supN Ar

N) = 1.
The point is to prove that instead Q(lim supN Ar

N) = 0. By the Portemanteau
theorem, we have

Q
(
Ar

N

)≤ lim inf
L→+∞QL(Ar

N

)
so we need to suitably bound QL(Ar

N). Let us notice that

QL(Ar
N

)= EW [YL1Ar
N
]� rδ(ZL)−1(ZN)δEW

[
e
∫ T

0 ξL(ωs)−δξN (ωs)ds].
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Denoting by cL the diverging constant associated to hL and using once again the
inequality (ZL)−1(ZN)δ � eT (δcN−cL), we get

QL(Ar
N

)
� eT (δcN−cL)EW

[
e
∫ T

0 ξL(ωs)−δξN (ωs)ds].
Let h

N,L
δ be the solution of the equation

∂th
N,L
δ = 1

2
�h

N,L
δ + 1

2

∣∣∇h
N,L
δ

∣∣2 +ξL−δξN −(cN,L +cN,L

)
, h

N,L
δ (0, x) = 0

and we apply again Feynmann–Kac formula, so that

EW

[
e
∫ T

0 ξL(ωs)−δξN (ωs)ds]= e
h

N,L
δ (T ,x)+T (cN,L+cN,L)

.

Now we claim that, if we take the constants cN,L and cN,L as

(7.3) cN,L = cL + (δ2 − 2δ
)
cN and cN,L = cL + δ

(
δ3 − 4δ2 + 5δ2 − 4

)
cN

then there exists a function h such that, for all T ≤ T 	,

(7.4) lim
N→∞ lim

L→∞h
N,L
δ (T , x) = h(T , x).

Assuming (7.4) holds true, we are done. Indeed,

Q
(
Ar

N

)
� lim infQL(Ar

N

)
� e(−cN δ(1−δ)+δ(δ3−4δ2+5δ2−3)cN )T eh(T ,x) � e−cN δ(1−δ)T /2

is valid for N large enough, where the last passages are due to the asymptotic
behaviour of the two constants. At this point, the Borel–Cantelli lemma guarantees
that Q(lim supN Ar

N) = 0, which in turn implies that Q is singular with respect to
the Wiener measure.

The only missing ingredient is the proof of the claim (7.4). Recall that

hN,L = ScKPZ
(
ξL − δξN, cN,L + cN,L

)= SrKPZ
(
X
(
ξL − δξN, cN,L, cN,L

))
,

where the two maps ScKPZ and SrKPZ were introduced in Theorem 6.9. To ensure
the convergence of hN,L it suffices to exploit the continuity of the map SrKPZ

and show that there exists a choice of cN,L, cN,L for which the sequence X(ξL −
δξN, cN,L, cN,L) converges in X �.

Now, the first two components of X(ξL − δξN, cN,L, cN,L) are given by

XN,L = I
(
ξL − δξN ), XN,L, = I

(∣∣∇XN,L
∣∣2)

and, expanding the product at the second term we get

XN,L, = XL, + δ2XN, − 2δI
(∇XL∇XN ),
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where we have set XL, = I(|∇XL|2). Since the first two summands at the right-
hand side were already treated in the Theorem 6.12, we will only focus one the last
one. We can assume, without loss of generality, that L > N +5 (remember that we
want to take the limit in L before the one in N ). Of course the only ill-defined part
of this term in the limit is given by the resonant term I(∇XL ◦ ∇XN). Observe
that

I
(∇XL ◦ ∇XN )= I

(∇XN+5 ◦ ∇XN )
since F (XL − XN+5) and F (XN) have disjoint support. Moreover, the same
argument used in Theorem 6.12 allows to show that the limit of the sequence
I(∇XN+5∇XN − cN) exists in CκC 2� for all κ > 0 and � < 1/2. Choosing
cN,L = cL + (δ2 − 2δ)cN , the term XN,L, − I(cN,L) converges, as L tends to
∞, to

X + δ2(XN, − I
(
cN

))+ 2δI
(∇(X − XN+5)≺ ∇XN

+ ∇(X − XN+5)� ∇XN + ∇XN+5∇XN − cN

)
in CT C 2�, and the latter converges in the N → ∞-limit in the space CT C 2�.

At this point, we have proved the convergence of the first two terms of X(ξL −
δξN, cN,L, cN,L) and this is enough to conclude the proof in the two-dimensional
case thanks to Remark 6.11.

By repeating essentially the same argument exploited in the proof of Theo-
rem 6.12, we see that there exists a constant cN,L such that X(ξL − δξN, cN,L,

cN,L) converges as L goes to the infinity to some element XN ∈ X ρ for all
ρ < 1/2. For the same reason as before, we can take the limit in N . The con-
clusion now follows by the continuity of the map SrKPZ. Indeed, hN,L converges
in the space CT C α and of course this in particular implies that

lim
N

lim
L

hN,L(t, x) = h(t, x),

where h = SrKPZ(limN limLX(ξL − δξN, cN,L, cN,L)) and the proof of the claim
(and therefore of the theorem) is complete.
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