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The main result of this paper is that determinantal point processes on
R corresponding to projection operators with integrable kernels are quasi-
invariant, in the continuous case, under the group of diffeomorphisms with
compact support (Theorem 1.4); in the discrete case, under the group of all
finite permutations of the phase space (Theorem 1.6). The Radon–Nikodym
derivative is computed explicitly and is given by a regularized multiplicative
functional. Theorem 1.4 applies, in particular, to the sine-process, as well
as to determinantal point processes with the Bessel and the Airy kernels;
Theorem 1.6 to the discrete sine-process and the Gamma kernel process. The
paper answers a question of Grigori Olshanski.

1. Introduction.

1.1. Outline of the main results. Olshanski [22] established the quasi-
invariance of the determinantal measure corresponding to the Gamma kernel under
the group of finite permutations of Z and expressed the Radon–Nikodym derivative
as a multiplicative functional. Ghosh and Peres [11, 13] showed, for the Ginibre
ensemble and the Gaussian zero process, that the conditional distribution of parti-
cles in a bounded domain, with the configuration fixed in the exterior, is equivalent
to the Lebesgue measure.

In this paper, we take a determinantal point process on R governed by an or-
thogonal projection onto a closed subspace L with the following property: given
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p ∈ R and ϕ ∈ L satisfying ϕ(p) = 0, we have

(1)
ϕ(x)

x − p
∈ L;

see Assumption 2 below for the precise formulation.
In particular, as we check below, Assumption 2 holds for projections governed

by kernels admitting an integrable representation

A(x)B(y) − B(x)A(y)

x − y
.

The term integrable comes from the connection with the theory of integrable sys-
tems discovered by Its, Izergin, Korepin and Slavnov in [15].

The main results of this paper, Theorems 1.4 and 1.6, establish that, under some
additional assumptions, the measure class of the corresponding determinantal mea-
sures is preserved, in the continuous case, under the group of diffeomorphisms
with compact support (Theorem 1.4); in the discrete case, under the group of finite
permutations of the phase space (Theorem 1.6). The key step in the proof is the
equivalence of reduced Palm measures corresponding to different l-tuples of points
(p1, . . . , pl), (q1, . . . , ql) in the phase space; the corresponding Radon–Nikodym
derivative is the regularized multiplicative functional corresponding to the function

(2)
(

(x − p1) · · · (x − pl)

(x − q1) · · · (x − ql)

)2
.

The Radon–Nikodym derivative thus has similar form for all the processes with
integrable kernels; the normalizing constants do, of course, depend on the specific
process.

Olshanski [22] proves the quasi-invariance of the Gamma-kernel process by a
limit transition from finite-dimensional approximations. The argument in this pa-
per is direct: first, it is shown that the Palm subspaces corresponding to condition-
ing at points p and q are taken one to the other by multiplication by the function
(x −p)/(x −q); after which, the proof is completed using a general result of [5, 7]
that multiplying the range of the projection operator � inducing a determinantal
measure P� by a function g, corresponds, under certain additional assumptions,
to taking the product of the determinantal measure P� by the multiplicative func-
tional �g induced by the function g. The key technical step is the regularization of
divergent multiplicative functionals.

This paper is devoted to determinantal point processes governed by orthogonal
projections; in the case of contractions, quasi-invariance is due to Camilier and
Decreusefond [9]; note that in their case the Radon–Nikodym derivative exhibits a
much more sensitive dependence on the specific kernel.

1.2. Projection operators and determinantal point processes.

1.2.1. Operators and kernels. Let μ be a σ -finite Borel measure on R; for
example, μ can be the Lebesgue measure on R or on R+ or else the counting mea-
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sure on Z. The inner product in L2(R,μ) will be denoted 〈 , 〉. Let L ⊂ L2(R,μ)

be a closed subspace, and let � be the corresponding operator of orthogonal pro-
jection. We assume that the operator � is locally of trace class and admits a kernel,
for which, slightly abusing notation, we keep the same symbol �. We let P� be
the determinantal measure on the space Conf(R) of configurations on R induced
by the operator � (see Section 2 below for detailed definitions). All kernels con-
sidered in this paper will always be supposed to satisfy the following

ASSUMPTION 1. There exists a set U ⊂ R, satisfying μ(R \ U) = 0, such
that

1. For any q ∈ U , the function vq(x) = �(x,q) lies in L2(R,μ) and for any
f ∈ L2(R,μ) we have

�f (q) = 〈f, vq〉.
In particular, all functions in L are defined everywhere on U .

2. The diagonal values �(q,q) of the kernel � are defined for all q ∈ U . We
have 〈vq, vq〉 = �(q,q), and, for any bounded Borel subset B ⊂R, we have

tr(χB�χB) =
∫
B

�(q, q) dμ(q).

3. For any q ∈ U and any ϕ ∈ L satisfying ϕ(q) = 0, we have

ϕ(x)

x − q
∈ L2(R,μ).

The first assumptions automatically hold, for instance, for continuous repro-
ducing kernels; the subset U is introduced in order to allow the consideration of
kernels defined on subsets of R such as, for example, the Bessel kernel defined on
R+ (see Tracy–Widom [32]).

The last condition is automatically satisfied once the kernel is sufficiently
smooth: indeed, let ϕ ∈ L have norm 1 and be such that ϕ(q) = 0, let

(3) �q(x, y) = �(x,y) − �(x,q)�(q, y)

�(q, q)

be the kernel of the orthogonal projection onto the space L(q), the orthogonal
complement of vq in L. Finally, let �̃ be the kernel of the orthogonal projection
onto the orthogonal complement of ϕ in L(q). For any x ∈ U , by definition, we
have

�qvx = 〈vx,ϕ〉ϕ + �̃vx,

whence, taking the inner product with vx , we obtain

�q(x, x) = ∣∣ϕ(x)
∣∣2 + 〈�̃vx, vx〉.
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Using (3) and the smoothness of the kernel �, we now write the Taylor series
for �q(x, x) in a small neighbourhood of q and obtain �q(x, x) = O(|x − q|2),
whence also |ϕ(x)| = O(|x − q|), which implies the desired last condition of As-
sumption 1.

1.2.2. Palm subspaces. Given l distinct points q1, . . . , ql ∈ R, we set

L(q1, . . . , ql) = {
ϕ ∈ L : ϕ(q1) = · · · = ϕ(ql) = 0

};
we denote �q1,...,ql the operator of orthogonal projection onto the subspace
L(q1, . . . , ql), and we denote by P

q1,...,ql

� the determinantal measure governed
by the projection �q1,...,ql ; by the Shirai–Takahashi theorem, Pq1,...,ql

� is the re-
duced Palm measure of the determinantal measure P� with respect to the points
q1, . . . , ql (the definition and properties of Palm measures are recalled in detail in
Section 2 below).

1.2.3. The main assumption. We now formulate our main assumption on our
projection operators.

ASSUMPTION 2. If p ∈ U and ϕ ∈ L are such that ϕ(p) = 0, then there exists
ψ ∈ L such that

(4) ϕ = (x − p)ψ.

REMARK. If the measure μ does not admit atoms, we can simply say that
for p ∈ U and ϕ ∈ L satisfying ϕ(p) = 0 we have (1). In the discrete case, if
ψ satisfies (4), then for any α ∈ R, letting δp be the delta-function at p, we see
that the function ψ + αδp also satisfies (4). Our requirement is that one of these
functions does belong to L. Induction gives the following proposition.

PROPOSITION 1.1. For any l ∈ N, if p1, . . . , pl ∈ U are distinct and ϕ ∈ L

satisfies ϕ(p1) = · · · = ϕ(pl) = 0, then there exists ψ ∈ L such that

(5) ϕ =
l∏

i=1

(x − pi)ψ.

1.2.4. Change of variables. Given a Borel measure μ on a Borel space X
and a Borel automorphism T of X , denote by μ ◦ T the measure defined by
μ ◦ T (Z ) = μ(T (Z )) for all Borel subsets Z ⊂ X . Since T is invertible, the
measure μ ◦ T is well defined and, for any μ-integrable Borel function f on X ,
satisfies ∫

X
f ◦ T dμ ◦ T =

∫
X

f dμ.

For a nonnegative Borel function f , we also have (f μ) ◦ T = (f ◦ T )(μ ◦ T ).
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Let F be a Borel automorphism of R sending bounded sets to bounded sets. The
automorphism F acts on Conf(R) by sending a configuration X to the configura-
tion F(X) = {F(x), x ∈ X}; slightly abusing notation, we keep the same symbol
F for this induced action.

Assume additionally that the measure μ is quasi-invariant under F . Then the
measure P� ◦ F−1 is determinantal with kernel

F ∗�(x,y) =
√

dμ ◦ F

dμ
(x)

dμ ◦ F

dμ
(y)�

(
F(x),F (y)

)
.

The kernel F ∗� induces the operator of orthogonal projection onto the subspace

LF ∗� = F∗L = {√
F ′ · ϕ ◦ F,ϕ ∈ L

}
.

1.3. Integrable kernels. A key particular case is when our kernel � has inte-
grable form: there exists an open set U ⊂ R satisfying μ(R \ U) = 0 and linearly
independent smooth functions A, B defined on U such that

(6) �(x,y) = A(x)B(y) − A(y)B(x)

x − y
, x 
= y.

We assume that the functions A,B never simultaneously take value 0 on U . For
p ∈ U we have

vp(x) = A(p)B(x) − B(p)A(x)

p − x
.

We have vp ∈ L2(R,μ) for any p ∈ U and for any ϕ ∈ L2(R,μ) we have

�ϕ(p) = 〈ϕ,vp〉.
We consider two cases:

1. the continuous case: for any p ∈R, μ({p}) = 0;
2. the discrete case: μ is the counting measure on a countable subset E ⊂ R

without accumulation points.

In the continuous case, we make the additional requirement

(7) �(x,x) = A′(x)B(x) − A(x)B ′(x),

on diagonal values of the kernel �; in the discrete case, when the measure μ is the
counting measure on a countable subset E ⊂ R without accumulation points, the
integrability assumption only concerns off-diagonal entries of the kernel �(x,y),
and the smoothness assumption is not needed: A, B are just arbitrary functions
defined on E. Note also that the third requirement of Assumption 1 is only needed
in the continuous case.

Note also that the functions A,B in the definition of integrability are not unique:
for example, if one makes a linear unimodular change of variable

(8) (A,B) → (α11A + α12B,α21A + α22B), α11α22 − α12α21 = 1,

then the formula (6) remains valid.
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The following proposition plays a crucial rôle in what follows.

PROPOSITION 1.2. An operator of orthogonal projection admitting an inte-
grable kernel satisfies Assumption 2.

1.4. The main result in the continuous case. In this subsection, we assume that
the measure μ does not admit atoms. Let p1, . . . , pl, q1, . . . , ql ∈ R be distinct. For
R > 0, ε > 0 and a configuration X on R write

�R,ε(p1, . . . , pl;q1, . . . , ql;X)

= C(R, ε) × ∏
x∈X,|x|≤R,min |x−qi |≥ε

l∏
i=1

(
x − pi

x − qi

)2
,

where the constant C(R, ε) is chosen in such a way that

(9)
∫

Conf(R)
�R,ε(p1, . . . , pl;q1, . . . , ql;X)dP

q1,...,ql

� = 1.

We will need the following.

ASSUMPTION 3. The kernel � satisfies

(10)
∫
R

�(x,x)

1 + x2 dμ(x) < +∞.

PROPOSITION 1.3. If the kernel � of an orthogonal projection operator sat-
isfies Assumptions 1, 2, 3, then the limit

(11) �(p1, . . . , pl;q1, . . . , ql;X) = lim
R→∞,ε→0

�R,ε(p1, . . . , pl;q1, . . . , ql;X)

exists in L1(Conf(R),P�q1,...,ql ).

REMARK. The limit in R and ε in (11) is understood in the totality of vari-
ables, in particular, regardless of order.

THEOREM 1.4. Let μ be a continuous measure on R. Let � be a kernel in-
ducing a locally trace-class operator of orthogonal projection in L2(R,μ) and
satisfying Assumptions 1, 2, 3. Then

1. For any l ∈ N and two l-tuples of distinct points

p1, . . . , pl, q1, . . . , ql ∈ U,

we have

dP
p1,...,pl

�

dP
q1,...,ql

�

= �(p1, . . . , pl;q1, . . . , ql).

2. Let F : R → R be a Borel automorphism acting as the identity beyond a
bounded open set V ⊂ R and such that μ is quasi-invariant under F . For P�-
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almost every configuration X ∈ Conf(R), X ∩ V = {q1, . . . , ql}, we have

dP� ◦ F

dP�

(X) = �
(
F(q1), . . . ,F (ql);q1, . . . , ql;X)

× det(�(F(qi),F (qj )))i,j=1,...,l

det(�(qi, qj ))i,j=1,...,l

(12)

× dμ ◦ F

dμ
(q1) · · · dμ ◦ F

dμ
(ql).

REMARK. The open set V can be chosen in many ways; the resulting value of
the Radon–Nikodym derivative is of course the same.

For example, Theorem 1.4 applies to the sine-process as well as to the Airy and
Bessel point processes of Tracy and Widom [31, 32]. The results of this paper were
announced without proof in [8].

REMARK. In the sequel to this paper, in joint work with Yanqi Qiu we obtain
quasi-invariance results for determinantal point processes corresponding to Hilbert
spaces of holomorphic functions on the plane and on the disc.

1.5. The main result in the discrete case. The main result is similar in the dis-
crete case except that we also need to consider measures conditional on the absence
of particles and that, in order to ensure quasi-invariance of our measures under the
infinite symmetric group, we impose the extra restriction that our subspace L not
contain functions with finite support.

Let E ⊂ R be a countable subset without accumulation points, endowed with
the counting measure. The analogue of Assumption 3 in the discrete case is the
following assumption.

ASSUMPTION 4. The subset E satisfies

(13)
∑
n∈E

1

1 + n2 < +∞.

Let � be a kernel inducing an operator of orthogonal projection onto a subspace
L ⊂ L2(E), and let P� be the corresponding determinantal measure on the space
Conf(E) of configurations on E. The infinite symmetric group naturally acts on E

by finite permutations and induces the corresponding natural action on Conf(E).
Given l ∈ N, m < l and an l-tuple (p1, . . . , pl) of distinct points in E such that
there does not exist a nonzero function in L supported on the set {p1, . . . , pl}, we
introduce a closed subspace L(p1, . . . , pm, p̆m+1, . . . , p̆l) by the formula

L(p1, . . . , pm, p̆m+1, . . . , p̆l)
(14)

= {
χE\{pm+1,...,pl}ϕ : ϕ ∈ L,ϕ(p1) = · · · = ϕ(pm) = 0

}
.
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Let �p1,...,pm,p̆m+1,...,p̆l be the corresponding orthogonal projection operator,
P

�p1,...,pm,p̆m+1,...,p̆l the corresponding determinantal measure. The determinantal
measure P

�p1,...,pm,p̆m+1,...,p̆l has the following probabilistic meaning (see Section 2
below for details): consider the conditional measure of P� with respect to the
condition that there be particles at positions p1, . . . , pm and holes in positions
pm+1, . . . , pl ; now remove the particles at p1, . . . , pm; the resulting “reduced”
conditional measure is precisely P

�p1,...,pm,p̆m+1,...,p̆l .
Take R > 0, m ≤ l, a permutation σ of the points p1, . . . , pl , and define

�R(p1, . . . , pl,m,σ ;X) = CR

∏
x∈X:|x|≤R

m∏
i=1

(
x − σ(pi)

x − pi

)2
χE\{p1,...,pl}(x),

where the positive constant CR is chosen in such a way that∫
Conf(E)

�R(p1, . . . , pl,m,σ) dP
�p1,...,pm,p̆m+1,...,p̆l = 1.

REMARK. Since the subspace L does not admit functions supported on
{p1, . . . , pl}, the set of configurations having no particles in positions p1, . . . , pl

has positive probability, consequently, our functional �R(p1, . . . , pl,m,σ ;X) is
positive with positive probability.

PROPOSITION 1.5. Let E be a countable subset of R without accumulation
points satisfying Assumption 4. Let � be a kernel inducing an operator of orthog-
onal projection on L2(E). Let p1, . . . , pl ∈ E be distinct points such that there
does not exist a nonzero function in L supported on the set {p1, . . . , pl}. Then, for
any m ≤ l and any permutation σ of p1, . . . , pl , the limit

�(p1, . . . , pl,m,σ ) = lim
R→∞�R(p1, . . . , pl,m,σ )

exists in L1(Conf(E),P
�p1,...,pm,p̆m+1,...,p̆l ).

Let C(p1, . . . , pm, p̆m+1, . . . , p̆l) be the set of configurations on E containing
exactly one particle in each of the positions p1, . . . , pm and no particles in the
positions pm+1, . . . , pl .

We are now ready to formulate the main result in the discrete case, the quasi-
invariance of determinantal measures with integrable kernels under the natural
action of the infinite symmetric group on Conf(E). Given a permutation σ of
points p1, . . . , pl of the set E, slightly abusing notation, we use the same sym-
bol both for the bijection of E that acts as σ on {p1, . . . , pl} and as the identity
on E \ {p1, . . . , pl} and the automorphism induced by this bijection on the space
Conf(E) of configurations on E.

THEOREM 1.6. Let E be a countable subset of R without accumulation points
satisfying (4). Let � be a kernel inducing an operator of orthogonal projection
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onto a closed subspace L ⊂ L2(E) and satisfying Assumptions 1, 2. Let p1, . . . , pl

be distinct points in E such that there does not exist a nonzero function in L sup-
ported on the set {p1, . . . , pl}. Then for any m ≤ l, any permutation σ of the points
p1, . . . , pl and P�-almost every X ∈ C(p1, . . . , pm, p̆m+1, . . . , p̆l), we have

(15)
dP� ◦ σ

dP�

(X) = �(p1, . . . , pl,m,σ ;X) × det(�(σ(pi), σ (pj )))i,j=1,...,m

det(�(pi,pj ))i,j=1,...,m

.

In particular, if the subspace L does not contain functions supported on finite sets,
then the measure P� is quasi-invariant under the natural action of the infinite
symmetric group on Conf(E).

For example, the discrete sine-process of Borodin, Okounkov and Olshanski [2]
as well as the Gamma kernel process of Borodin and Olshanski [3] satisfy all the
assumptions of Theorem 1.6.

REMARK. By the theorem of Ghosh [12], the sine-process, discrete or con-
tinuous, is rigid: if, for a bounded subset B and a configuration X, we let #B(X)

stand for the number of particles of X lying in B , and, for any Borel subset C we
let FC be the σ -algebra generated by all random variables of the form #B,B ⊂ C,
then, for any bounded B , the random variable #B is measurable with respect to the
completion, under the sine-process, of the sigma-algebra FBc , where Bc stands for
the complement of B . As Lyons, developing the method of [1], showed in The-
orem 7.15 of [19], the tail sigma-algebra of the discrete sine-process is trivial. It
follows now that the symmetric sigma-algebra of the sine-process is trivial as well:
in other words, the discrete sine-process is ergodic with respect to the action of
the infinite symmetric group. This argument holds, of course, for any rigid point
process.

To further illustrate Theorem 1.6, we now write the Radon–Nikodym derivative
for a transposition of two points p,q ∈ E. Set

L(p, q̆) = {
χE\{p,q}ϕ,ϕ ∈ L,ϕ(p) = 0

}
,

and let Pp,q̆
� be the determinantal measure corresponding to the operator of orthog-

onal projection onto the subspace L(p, q̆). The subspace L(q, p̆) and the measure
P

q,p̆
� are defined in the same way. Write

�N(p,q;X) = Cp,q × ∏
x∈X,|x|≤N

(
x − p

x − q

)2
,

where the constant Cp,q is chosen in such a way that∫
Conf(E)

�N(p, q;X)dP
p,q̆
� (X) = 1.

By definition, Pp,q̆
� -almost all configurations X on E contain no particles either at

p or at q , so the function �N is well defined; by definition it is bounded.
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PROPOSITION 1.7. The limit �(p,q;X) = limN→∞ �N(p,q;X) exists in
L1(Conf(E),P

p,q̆
� ).

The Radon–Nikodym derivative of P� under the action of the permutation σpq

is now given by the following

PROPOSITION 1.8. For P�-almost all X ∈ Conf(E) the following holds.
If p /∈ X,q ∈ X, then

dP� ◦ σpq

dP�

(X) = �(p,q;X) · �(p,p)

�(q, q)
.

If p ∈ X,q /∈ X, then

dP� ◦ σpq

dP�

(X) = �(q,p;X) · �(q,q)

�(p,p)
.

If p,q ∈ X or p,q /∈ X, then

dP� ◦ σpq

dP�

(X) = 1.

REMARK. If E is a countable set, P a Gibbs measure on Conf(E) correspond-
ing to the Hamiltonian H of pairwise interaction of particles (cf. e.g., Sinai [29]),
p,q are points in E and σpq the transposition of p and q , then, for almost every
configuration X, conditioned to contain a particle at q but not at p, by definition,
we have

dP ◦ σpq

dP
(X) = ∏

x∈X:x 
=q

exp
(
H(p,x) − H(q, x)

)
.

The quasi-invariance property established in this paper is thus, informally speak-
ing, the analogue of the Gibbs property, with Hamiltonian H(x,y) = 2 log |x − y|,
for determinantal point processes.

1.6. Examples of regularized multiplicative functionals. Regularization of a
multiplicative functional can take different form depending on the specific process.
We illustrate this by two examples.

The sine-process. The argument below is valid for the continuous sine-process
as well as the discrete sine-process. The sine-process is stationary, therefore, for
almost every configuration X the series

(16)
∑

x∈X:x 
=0

1

x
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diverges absolutely since so does the harmonic series. Nonetheless, the series (16)
converges conditionally in principal value: the limit

lim
N→∞

∑
x∈X:x 
=0,|x|≤N

1

x

exists in L2 and almost surely along a subsequence, e.g., N4. Similarly, for distinct
points p1, . . . , pl, q1, . . . , ql , taken in R in the continuous case and in Z in the
discrete case, the limit

(17) lim
N→∞

∏
x∈X,|x|≤N,x 
=q1,...,ql

l∏
i=1

(
x − pi

x − qi

)2
,

exists and has finite expectation. The normalized mutliplicative functional is in this
case precisely the limit (17) normalized to have expectation 1.

The determinantal point process with the Gamma-kernel. The determinantal
point process with the Gamma-kernel, introduced by Borodin and Olshanski in
[3] and for which the quasi-invariance under the action of the infinite symmetric
group is due to Olshanski [22], is a point process on the phase space Z

′ = 1/2 +Z

of half-integers such that for almost every configuration X we have

(18)
∑

x∈X:x>0

1

x
< +∞,

∑
y /∈X:y<0

1

|y| < +∞.

Furthermore, each sum in (18), considered as a random variable on the space of
configurations on Z

′, has finite variance with respect to the determinantal point
process with the Gamma-kernel.

For p,q ∈ Z
′, the normalized multiplicative functional corresponding to the

function g(x) = ((x − p)/(x − q))2 will therefore have the form

C · ∏
x∈X,x>0

g(x) · ∏
y /∈X:y<0

g−1(y),

where the constant C is chosen in such a way that the resulting expression have
expectation 1.

1.7. Outline of the argument. We start with the discrete case and illustrate
the argument in the specific case of a transposition of two distinct points p,q ∈ E.
A theorem due to Lyons [19], Shirai–Takahashi [27] states that the measure Pp,q̆

� is
the conditional measure of P� on the subset of configurations containing a particle
at p and not containing a particle at q .

Step 1. The Relation Between Palm Subspaces. The key point in the proof of
Proposition 1.8 is the equality

(19) L(p, q̆) = x − p

x − q
L(q, p̆),
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which it is more convenient to rewrite in the form

(20) L(p, q̆) = χE\{p,q}
x − p

x − q
L(q, p̆).

The equality (20) directly follows from the integrability of the discrete sine-
kernel. The remainder of the argument shows that the relation (20) implies the
relation

(21) P
p,q̆
� = �(p,q)P

q,p̆
� ,

which, in turn, is a reformulation of Proposition 1.8.
Step 2. Multiplicative functionals of determinantal point processes. Given a

function g on Z, the multiplicative functional �g is defined on Conf(E) by the
formula

�g(X) = ∏
x∈X

g(x),

provided that the infinite product in the right-hand side converges absolutely.
At the centre of the argument lies the result of [5] that can informally be sum-

marized as follows: a determinantal measure times a multiplicative functional is,
after normalization, again a determinantal measure. More precisely, let g be a pos-
itive function on E bounded away from 0 and ∞, and let � be an operator of
orthogonal projection in L2(E) onto a closed subspace L. Let �g be the operator
of orthogonal projection onto the subspace

√
gL. Then, under certain additional

assumptions we have

(22) P�g = �gP�∫
Conf(E) �g dP�

.

The relation (22) together with the relation (20) suggests that the measures P
p,q̆
�

and P
q,p̆
� are equivalent, and the Radon–Nikodym derivative is given by the nor-

malized multiplicative functional corresponding to the function

gp,q̆ (x) = x − p

x − q
χE\{p,q}.

Step 3. Regularization of multiplicative functionals. A technical difficulty arises
that in many examples the multiplicative functional corresponding to the function
gp,q̆ fails to converge absolutely with respect to the measure Pp,q̆

� ; indeed, in many
examples (in particular, for stationary determinantal processes on Z), we have∑

x∈E

∣∣gp,q̆(x) − 1
∣∣ = +∞

and, consequently, also∑
x∈E

∣∣gp,q̆(x) − 1
∣∣ · �p,q̆(x, x) = +∞.
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In order to resolve this difficulty, we go back to the formula (22). For multi-
plicative functional �g integrable with respect to a determinantal measure P� set

(23) �g = �g∫
�g dP�

.

The functional �g will be called the normalized multiplicative functional corre-
sponding to �g and P�. To keep notation lighter, we do not explicitly indicate
dependence on �; in what follows, the precise measure, with respect to which
normalization is taken, will be clear from the context. We now rewrite (22) in the
form

(24) P�g = �g · P�.

The key observation for the remainder of the argument is that the definition of the
normalized multiplicative functional �g can be extended in such a way that (24)
continues to hold for a wider class of functions g, for which the multiplicative
functional itself diverges almost surely.

We first explain the idea of this extension for additive functionals. Given a mea-
surable function f on E, the corresponding additive functional on Conf(E) is
defined by the formula

Sf (X) = ∑
x∈X

f (x)

provided the series in the right hand side converges absolutely. The expectation of
the additive functional with respect to P� is given by the formula

(25) EP�
Sf = ∑

x∈E

f (x)�(x, x),

provided, again, that the series in the right-hand side converges absolutely. For the
variance of the additive functional, we have

(26) VarP�
Sf = 1

2

∑
x,y∈E

(
f (x) − f (y)

)2(
�(x,y)

)2
.

Let

Sf = Sf −EP�
Sf

be the normalized additive functional corresponding to the function f . It is easy to
give examples of functions f for which the sum in the right-hand side of (25) di-
verges while the sum in the right-hand side of (26) converges. For such functions,
convergence of the sum in the right-hand side of (26) allows one to define the nor-
malized additive functional Sf by continuity, even though the additive functional
Sf itself is not defined. In a similar way, for a function g bounded away from 0
and ∞ and satisfying ∑

x∈E

∣∣g(x) − 1
∣∣2�(x,x) < +∞,
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one can define the normalized multiplicative functional �g , even though the mul-
tiplicative functional �g itself need not be defined; the relation (24) still holds.

We thus check that the normalized multiplicative functional �gp,q can be de-

fined with respect to the measure P
q,p̆
� ; the relation (20) now implies the desired

equality (21). This completes the outline of the proof of Theorem 1.6.
The proof in continuous case follows a similar scheme. The rôle of conditional

measures is played by reduced Palm measures. The reduced Palm measure Pq1,...,ql

�

of the measure P� with respect to l distinct points q1, . . . , ql ∈ R is the determi-
nantal measure corresponding to the operator �q1,...,ql of the orthogonal projection
onto the subspace

L(q1, . . . , ql) = {
ϕ ∈ L : ϕ(q1) = · · · = ϕ(ql) = 0

}
.

The continuous analogue of the equality (20) is the relation

(27) L(p1, . . . , pl) = (x − p1) · · · (x − pl)

(x − q1) · · · (x − ql)
L(q1, . . . , ql)

valid for μ⊗l-almost any two l-tuples of distinct points (p1, . . . , pl), (q1, . . . , ql)

in R.
The next step is to regularize the multiplicative functional corresponding to the

function

(28)
(x − p1) · · · (x − pl)

(x − q1) · · · (x − ql)
;

while the overall scheme of regularization is the same as in the discrete case, addi-
tional estimates are needed here because the function (28) is bounded away neither
from zero nor from infinity.

The resulting normalized multiplicative functional �(p1, . . . , pl, q1, . . . , ql) is
then seen to be the Radon–Nikodym derivative of the reduced Palm measures
P

p1,...,pl

� and P
q1,...,ql

� , which, in turn, implies Theorem 1.4.

1.8. Organization of the paper. The paper is organized as follows. In Sec-
tion 2, we collect necessary facts about determinantal point processes, their multi-
plicative functionals and their Palm measures. We recall the results of [5] (see also
[7]) showing that the product of a determinantal measure with a multiplicative
functional is, after normalization, again a determinantal measure, whose kernel is
found explicitly. We also check that equivalence of reduced Palm measures cor-
responding to distinct l-tuples of points implies the quasi-invariance of the point
process under Borel automorphisms preserving the class of its correlation mea-
sures and acting by the identity beyond a bounded set. In Section 3, we start by
showing that reduced Palm measures of determinantal point processes given by
projection operators with integrable kernels are themselves determinantal point
processes given by projection operators with integrable kernels and proceed to ver-
ify the key relations (51) and (52) showing that the ranges of projection operators
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corresponding to reduced Palm measures at distinct points differ by multiplication
by a function.

Proposition 4.2 in Section 4 describes the regularization of multiplicative func-
tionals. Relations (51) and (52) are then seen to imply that the reduced Palm
measures themselves are equivalent, and that the corresponding Radon–Nikodym
derivative is a regularized multiplicative functional. This completes the proof of
Theorems 1.4 and 1.6.

REMARK. After this work was completed, I became aware of the preprint Ab-
solute continuity and singularity of Palm measures of the Ginibre point process,
arXiv:1406.3913, by Hirofumi Osada and Tomoyuki Shirai, in which, for the Gini-
bre ensemble, using its finite-dimensional approximations by orthogonal polyno-
mial ensembles, the authors establish the equivalence of reduced Palm measures,
conditioned at distinct l-tuples of points in C, and represent the Radon–Nikodym
derivative as a regularized multiplicative functional.

2. Point processes and Palm distributions.

2.1. Spaces of configurations. Let E be a locally compact complete metric
space. A configuration on E is a collection of points in E, called particles, consid-
ered without regard to order and subject to the additional requirement that every
bounded set contain only finitely many particles of a configuration (cf. Lenard
[18], Daley–Vere-Jones [10]). Let Conf(E) be the space of configurations on E.
To a configuration X ∈ Conf(E) assign a Radon measure

∑
x∈X δx on the space E;

this correspondence identifies the space Conf(E) with the space of integer-valued
Radon measures on E. The space Conf(E) is thus endowed with a natural structure
of a complete separable metric space. The Borel structure on the space Conf(E)

can equivalently be defined without introducing a topology explicitly: namely, for
a bounded Borel set B ⊂ E, let

#B : Conf(E) →N∪ {0}
be the function that to a configuration assigns the number of its particles belonging
to B . The random variables #B over all bounded Borel sets B ⊂ E determine the
Borel sigma-algebra on Conf(E), cf. Daley–Vere-Jones [10], Kolmogoroff [17].

2.2. Multiplicative functionals. We next recall the definition of multiplicative
functionals on spaces of configurations. Let g be a nonnegative measurable func-
tion on E, and introduce the multiplicative functional �g : Conf(E) → R by the
formula

(29) �g(X) = ∏
x∈X

g(x).

If the infinite product
∏

x∈X g(x) absolutely converges to 0 or to ∞, then we set,
respectively, �g(X) = 0 or �g(X) = ∞. If the product in the right-hand side fails
to converge absolutely, then the multiplicative functional is not defined.

http://arxiv.org/abs/arXiv:1406.3913
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2.3. Point processes. A Borel probability measure P on Conf(E) is called a
point process with phase space E.

We recall that the process P is said to admit correlation functions of order l if
for any continuous compactly supported function f on El the functional∑

x1,...,xl∈X

f (x1, . . . , xl)

is P-integrable; here the sum is taken over all l-tuples of distinct particles in X. The
lth correlation measure ρl of the point process P is then defined by the formula

EP

( ∑
x1,...,xl∈X

f (x1, . . . , xl)

)
=

∫
El

f (q1, . . . , ql) dρl(q1, . . . , ql).

By definition, a point process P is uniquely determined by prescribing joint
distributions, with respect to P, of random variables #B1, . . . ,#Bl

over all finite
collections of disjoint bounded Borel subsets B1, . . . ,Bl ⊂ E. Since, for arbitrary

nonzero complex numbers z1, . . . , zl inside the unit circle, the function
∏l

k=1 z
#Bk

k

is a well-defined multiplicative functional on Conf(E), that, moreover, takes values
inside the unit circle, a point process P on Conf(E) is also uniquely determined by
prescribing the values of expectations of multiplicative functionals of this form.

2.4. Campbell measures. Following Kallenberg [16] and Daley–Vere-Jones
[10], we now recall the definition of Campbell measures of point processes.

Take a Borel probability measure P on Conf(E) of finite local intensity, that
is, admitting the first correlation measure ρ1, or, equivalently, such that for any
bounded Borel set B , the function #B is integrable with respect to P. For any
bounded Borel set B ⊂ E, by definition we then have

ρ1(B) =
∫

Conf(E)
#B(X)dP(X).

The Campbell measure CP of a Borel probability measure P of finite local in-
tensity on Conf(E) is a sigma-finite measure on E × Conf(E) such that for any
Borel subsets B ⊂ E, Z ⊂ Conf(E) we have

CP(B × Z ) =
∫
Z

#B(X)dP(X).

For a point process admitting correlation functions of order l one can also define
the lth iterated Campbell measure Cl

P
of the point process P, that is, by definition, a

measure on El × Conf(E) such that for any disjoint bounded sets B1, . . . ,Bl ⊂ E

and any measurable subset Z ⊂ Conf(E) we have

(30) Cl
P
(B1 × · · · × Bl × Z ) =

∫
Z

#B1(X) × · · · × #Bl
(X)dP(X).
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2.5. Palm distributions. Following Kallenberg [16] and Daley–Vere-Jones
[10], we now recall the construction of Palm distributions from Campbell mea-
sures. For a fixed Borel Z ⊂ Conf(E) the Campbell measure CP induces a sigma-
finite measure CZ

P
on E by the formula

CZ
P

(B) = CP(B × Z ).

By definition, for any Borel subset Z ⊂ Conf(E) the measure CZ
P

is absolutely
continuous with respect to ρ1. We now take q ∈ E, vary Z and set

P̂
q(Z ) = dCZ

P

dρ1
(q).

For ρ1-almost every q ∈ E, the expression P̂
q(Z ), considered as a function of

Z (while q stays fixed), defines a probability measure P̂
q on Conf(E), the Palm

measure of P at the point q . Equivalently, the Palm measure P̂
q is the canonical

conditional measure, in the sense of Rohlin [24], of the Campbell measure CP with
respect to the measurable partition of the space E × Conf(E) into subsets of the
form {q} × Conf(E), q ∈ E.

Similarly, using iterated Campbell measures one defines iterated Palm mea-
sures: for a fixed Borel Z ⊂ Conf(E) the lth iterated Campbell measure Cl

P
in-

duces a sigma-finite measure C
l,Z
P

on E by the formula

C
l,Z
P

(B) = CP(B × Z ).

By definition, for any Borel subset Z ⊂ Conf(E) the measure C
l,Z
P

is absolutely
continuous with respect to the lth correlation measure ρl of our point process P.
For ρl-almost all (q1, . . . , ql) ∈ El , one can therefore define a probability measure
P̂

q1,...,ql on Conf(E) by the formula

P̂
q1,...,ql (Z ) = dC

l,Z
P

dρ1
(q1, . . . , ql).

The measure P̂q1,...,ql is called the lth iterated Palm measure of the point process P.
The iterated Palm measure P̂q is the canonical conditional measure, in the sense of
Rohlin [24], of the Campbell measure Cl

P
with respect to the measurable partition

of the space El × Conf(E) into subsets of the form {q1, . . . , ql} × Conf(E), with
q1, . . . , ql ∈ E distinct.

For distinct points q1, . . . , ql , the lth iterated Palm measure of course satisfies

P̂
q1,...,ql = (· · · (P̂q1

)q2 · · · )ql .
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2.6. Reduced Palm measures. By definition, the Palm measure P̂
q1,...,ql is

supported on the subset of configurations containing a particle at each position
q1, . . . , ql . It is often convenient to remove these particles and to define the reduced
Palm measure Pq1,...,ql as the push-forward of the Palm measure P̂q1,...,ql under the
erasing map X → X \ {q1, . . . , ql}. Reduced Palm measures allow one to give a
convenient representation for measures of cylinder sets. Take X0 ∈ Conf(E) and
q

(0)
1 , . . . , q

(0)
l ∈ X0.

Take disjoint bounded open sets B(1), . . . ,B(l) ⊂ E such that q
(0)
i ∈ B(i), q(0)

i =
X0 ∩ B

(i)
for all i = 1, . . . , l. Set B = ⋃

B(i) and take an open set V ⊂ E with
bounded complement, disjoint from all B(i), and satisfying X0 \ {q(0)

1 , . . . , q
(0)
l } ⊂

V . Let W be a neighbourhood of X0 \ {q(0)
1 , . . . , q

(0)
l } in Conf(E) satisfying

W ⊂ {
X ∈ Conf(E) : X ⊂ V

}
.

Introduce a neighbourhood Z of X0 by setting

(31) Z = {
X ∈ Conf(E) : #B(1) (X) = · · · = #B(l)(X) = 1,X|E\B ⊂ W

}
.

PROPOSITION 2.1. We have

P(Z ) =
∫
B(1)×···×B(l)

P
q1,...,ql (W ) dρl(q1, . . . , ql).

PROOF. We disintegrate C(l)(B(1)×· · ·×B(l)×Z ) in two ways. By definition
of iterated Palm measures, we have

C(l)(B(1) × · · · × B(l) × Z
) =

∫
B(1)×···×B(l)

P̂
q1,...,ql (Z ) dρl(q1, . . . , ql).

By definition of iterated Campbell measures, see (30), (31), we have

C(l)(B(1) × · · · × B(l) × Z
) =

∫
Z

#B(1) (X) × · · · × #B(l)(X)dP(X) = P(Z ).

Passing to reduced Palm measures gives P̂q1,...,ql (Z ) = P
q1,...,ql (W ), and (31) fol-

lows. �

2.7. Locally trace class operators and their kernels. Let μ be a sigma-finite
Borel measure on E. The inner product in L2(E,μ) is always denoted by the
symbol 〈 , 〉.

Let I1(E,μ) be the ideal of trace class operators K̃ : L2(E,μ) → L2(E,μ)

(see [23] for the precise definition); the symbol ‖K̃‖I1 will stand for the I1-
norm of the operator K̃ . Let I2(E,μ) be the ideal of Hilbert–Schmidt operators
K̃ : L2(E,μ) → L2(E,μ); the symbol ‖K̃‖I2 will stand for the I2-norm of the
operator K̃ .
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Let I1,loc(E,μ) be the space of operators K : L2(E,μ) → L2(E,μ) such that
for any bounded Borel subset B ⊂ E we have

χBKχB ∈ I1(E,μ).

Again, we endow the space I1,loc(E,μ) with a countable family of semi-norms

(32) ‖χBKχB‖I1,

where, as before, B runs through an exhausting family Bn of bounded sets. A lo-
cally trace class operator K admits a kernel, for which, slightly abusing notation,
we use the same symbol K .

2.8. Determinantal point processes. A Borel probability measure P on
Conf(E) is called determinantal if there exists an operator K ∈ I1,loc(E,μ) such
that for any bounded measurable function g, for which g − 1 is supported in a
bounded set B , we have

(33) EP�g = det
(
1 + (g − 1)KχB

)
.

Here and elsewhere in similar formulas, 1 stands for the identity operator. The
Fredholm determinant in (33) is well defined since K ∈ I1,loc(E,μ). The equation
(33) determines the measure P uniquely. For any pairwise disjoint bounded Borel

sets B1, . . . ,Bl ⊂ E and any z1, . . . , zl ∈ C from (33), we have EPz
#B1
1 · · · z#Bl

l =
det(1 + ∑l

j=1(zj − 1)χBj
Kχ�iBi

).
For further results and background on determinantal point processes, see, for

example, [12, 14, 19, 20, 26, 27, 30].
If K belongs to I1,loc(E,μ), then, throughout the paper, we denote the corre-

sponding determinantal measure by PK . Note that PK is uniquely defined by K ,
but different operators may yield the same measure. By a theorem due to Macchì
and Soshnikov [21, 30] and Shirai–Takahashi [25], any Hermitian positive contrac-
tion that belongs to the class I1,loc(E,μ) defines a determinantal point process.
For the purposes of this paper, we will only be interested in determinantal point
processes given by operators of orthogonal projection; in the case of a discrete
phase space, there is a standard procedure of doubling the phase space (see, e.g.,
[19]) that reduces the case of contractions to the case of projections.

2.9. Weak convergence in the space of configurations. The space Conf(E) is
endowed with a natural structure of a complete separable metric space, and the
space of finite Borel measures on the space of configurations is consequently
also a complete separable metric space with respect to the weak topology. If
ϕ : E →R be a compactly supported continuous function, then a measurable func-
tion #ϕ : Conf(E) → R is introduced by the formula #ϕ(X) = ∑

x∈X ϕ(x). Theo-
rem 11.1.VII in [10] states that if Pn, n ∈ N and P are Borel probability measures
on Conf(E), then the measures Pn converge to P weakly as n → ∞ if and only if
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for any finite collection ϕ1, . . . , ϕl of continuous functions with disjoint compact
supports the joint distributions of the random variables #ϕ1, . . . ,#ϕl

with respect
to Pn converge, as n → ∞, to the joint distribution of #ϕ1, . . . ,#ϕl

with respect
to P; convergence of joint distributions being understood according to the weak
topology on the space of Borel probability measures on R

l . From the definition of
determinantal point processes, we now have:

PROPOSITION 2.2. Let Kn, n ∈ N, K be locally trace class operators act-
ing in L2(E,μ) and inducing determinantal measures PKn , PK . If Kn → K in
I1,loc(E,μ) as n → ∞, then PKn → PK weakly in the space of probability mea-
sures on Conf(E).

2.10. The product of a determinantal measure and a multiplicative functional.
We start by recalling the results of [5, 7] showing that the product of a deter-
minantal measure with a multiplicative functional is, after normalization, again a
determinantal measure, whose kernel is found explicitly.

Let g be a nonnegative measurable function on E. If the operator 1 + (g − 1)K

is invertible, then we set

B(g,K) = gK
(
1 + (g − 1)K

)−1
, B̃(g,K) = √

gK
(
1 + (g − 1)K

)−1√
g.

By definition, B(g,K), B̃(g,K) ∈ I1,loc(E,μ) since K ∈ I1,loc(E,μ), and, if
K is self-adjoint, then so is B̃(g,K) [this follows from the elementary identity
p(1 − qp)−1 = (1 − pq)−1p that holds for arbitrary bounded operators p,q pro-
vided both sides are well defined].

We now quote Proposition 2.1 in [7].

PROPOSITION 2.3. Let K ∈ I1,loc(E,μ) be a self-adjoint positive contrac-
tion, and let PK be the corresponding determinantal measure on Conf(E). Let g

be a nonnegative bounded measurable function on E such that

(34)
√

g − 1K
√

g − 1 ∈ I1(E,μ),

and that the operator 1 + (g − 1)K is invertible. Then the operators B(g,K),

B̃(g,K) induce on Conf(E) a determinantal measure PB(g,K) = PB̃(g,K) satisfy-
ing

(35) PB(g,K) = �gPK∫
Conf(E) �g dPK

.

REMARK. Here and elsewhere, we write
√

g − 1K
√

g − 1 instead of the
longer and more formal sgn(g − 1)

√|g − 1|K√|g − 1|.



976 A. I. BUFETOV

REMARK. Of course, from (34) and the invertibility of the operator 1 +
(g − 1)K we have �g ∈ L1(Conf(E),PK) and∫

�g dPK = det(1 +
√

g − 1K
√

g − 1) > 0,

so the right-hand side of (35) is well defined.

For the reader’s convenience, we recall the proof of Proposition 2.3 in the case
when the assumption (34) is replaced (cf. [5]) by a simpler assumption

(g − 1)K ∈ I1(E,μ);
for the general case, see the proof of Proposition 2.1 in [7]. Take a bounded mea-
surable function f on E such that (f − 1)K ∈ I1(E,μ); for example, one may
take f that is different from 1 on a bounded set. We have (fg − 1)K ∈ I1(E,μ)

since (f − 1)K ∈ I1(E,μ), (g − 1)K ∈ I1(E,μ). By definition, we have

EPK
�f �g = det

(
1 + (fg − 1)K

)
(36)

= det
(
1 + (f − 1)gK

(
1 + (g − 1)K

)−1)
det

(
1 + (g − 1)K

)
.

We rewrite (36) in the form

EPK
�f �g

EPK
�g

= det
(
1 + (f − 1)B(g,K)

) = det
(
1 + (f − 1)B̃(g,K)

)
.

Since a probability measure on the space of configurations is uniquely determined
by the values of multiplicative functionals corresponding to all bounded functions
f that are different from 1 on a bounded set, formula (36) implies Proposition 2.3.

2.11. Projections and subspaces. Let L ⊂ L2(E,μ) be a closed subspace, let
� be the corresponding projection operator, assumed to be locally of trace class,
and let P� the corresponding determinantal measure. Our aim is to determine how
the measure P� changes if the subspace L is multiplied by a function. We start
with the following clear proposition.

PROPOSITION 2.4. Let α(x) be a measurable function such that |α(x)| = 1
μ-almost surely. Then the operator of orthogonal projection onto the subspace
α(x)L induces the same determinantal measure P�.

PROOF. Indeed, if �(x,y) is the kernel of the operator �, then the kernel of
the new operator has the form

α(x)�(x, y)

α(y)
,

and such gauge transformations do not change the determinantal measure. �
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PROPOSITION 2.5. Let g be a nonnegative bounded function on E such that
the operator 1 + (g − 1)� is invertible. Then the operator

(37) �g = √
g�

(
1 + (g − 1)�

)−1√
g

is the operator of orthogonal projection onto the closure of the subspace
√

gL.

PROOF. First, let ϕ̃ ∈ √
gL, that is, ϕ̃ = √

gϕ,ϕ ∈ L. Since ϕ ∈ L, we have(
1 + (g − 1)�

)
ϕ = gϕ,

whence (
1 + (g − 1)�

)−1√
gϕ̃ = ϕ,

and finally

�gϕ̃ = ϕ̃

as desired.
Now take ϕ to be orthogonal to the subspace

√
gL. Since g is real-valued, we

have
√

gϕ ∈ L⊥, whence (1 + (g − 1)�)ϕ = √
gϕ and, consequently, (1 + (g −

1)�)−1√gϕ = ϕ. We thus have �gϕ = 0, and the proposition is proved com-
pletely. �

We prepare a useful proposition for proving local trace-class convergence of
sequences of operators �g .

PROPOSITION 2.6. Let gn, n ∈ N be a sequence of nonnegative Borel func-
tions satisfying

(38) sup
n∈N,x∈E

gn(x) < +∞,

and assume that

1. as n → ∞ the sequence gn converges, μ-almost surely, to a Borel function g;
2. the operator 1 + (g − 1)� is invertible;
3. ‖(gn − g)�‖ → 0.

Then

�gn → �g in I1,loc(E,μ).

PROOF. Let B be a bounded set and write

χB�gχB = (
√

gχB�)
(
�

(
1 + (g − 1)�

)−1
�

)
(�χB

√
g).

If A ranges in the space of Hilbert–Schmidt operators and D in the space of
bounded self-adjoint operators endowed with the operator norm, then the cor-
respondence (A,D) → A∗DA induces a continuous mapping into the space of



978 A. I. BUFETOV

trace-class operators. By our third assumption, the operators 1 + (gn − 1)� con-
verge to 1 + (g − 1)� in the norm topology, consequently, for large n the op-
erators 1 + (gn − 1)� are invertible, the inverses also converge in norm, and,
finally, �(1 + (gn − 1)�)−1� → �(1 + (g − 1)�)−1� in the norm topology.
Uniform boundedness (38) of gn and pointwise convergence of gn imply that√

g
n
χB� → √

gχB� in the Hilbert–Schmidt norm, and the proof is complete.
�

2.12. Normalized multiplicative functionals. If the multiplicative functional
�g is P�-integrable, then we introduce the normalized multiplicative functional
�g by the formula

(39) �g = �g∫
Conf(E) �g dP�

.

We reformulate Proposition 2.1 in [7] in our new notation (37), (39).

PROPOSITION 2.7. If g is a bounded Borel function on E such that√
g − 1�

√
g − 1 ∈ I1(E,μ)

and the operator 1 + (g − 1)� is invertible, then the subspace
√

gL is closed, the
normalized multiplicative functional �g is well defined, and we have

(40) �gP� = P�g .

Note that closedness of the subspace
√

gL is immediate from the invertibility of
the operator 1 + (g − 1)�: indeed, the operator 1 + (g − 1)� takes the subspace L

to the subspace gL, which is consequently closed. Since the function g is bounded
from above, the subspace

√
gL is, a fortiori, closed as well: indeed, if ψn ∈ L are

such that
√

gψn → ψ , then, by boundedness of g, we also have gψn → √
gψ , so,

by closedness of the space gL, we have
√

gψ ∈ gL whence also ψ ∈ √
gL [this

implication is valid even if the set {x : g(x) = 0} has positive measure since, by
definition, ψ = χ{x:g(x)>0}g].

A key point in the argument of this paper is that the normalized multiplicative
functional (39) can be defined, in such a way that the formula (40) still holds, even
when the multiplicative functional �g itself is not defined, see Proposition 4.2
below.

2.13. On the subspace
√

gL. We now give another sufficient condition for
closedness of the subspace

√
gL for a bounded function g. If the function g is

bounded away from zero in addition to being bounded from above, then the sub-
space

√
gL is automatically closed. If infx∈E g = 0, then we prepare the following

simple proposition. Recall that ‖A‖ always stands for the usual operator norm of
a bounded operator A.
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PROPOSITION 2.8. Let � be an operator of orthogonal projection onto a
closed subspace L ⊂ L2(E,μ), and let C ⊂ E be a Borel subset such that
‖χE\C�‖ < 1. Then the subspace χCL is closed and the natural restriction map
ϕ → χCϕ induces an isomorphism of Hilbert spaces L and χCL.

PROOF. Indeed, our assumptions imply the existence of a positive constant α

such that for any ϕ ∈ L we have

(41) ‖χE\Cϕ‖ ≤ α‖χCϕ‖,
and the proposition follows. �

REMARK. In the proposition above, we have not used the local trace class
assumption. In the case in which � is locally trace class and E \ C is bounded, it
suffices to check that the range of � does not admit functions supported in E \ C,
whence it follows that the compact operator χE\C� is a strict contraction.

COROLLARY 2.9. Let g be a bounded nonnegative Borel function on E and
C ⊂ E a Borel subset such that

1. ‖χE\C�‖ < 1;
2. the function g in restriction to C is bounded away from 0.

Then the subspace
√

gL is closed.

PROOF. If g|C > ε > 0 and g < M < +∞ on the whole space E, then the
inequality (41) implies, for any ψ ∈ √

gL, the estimate

(42) ‖χE\Cψ‖ ≤ Mε−1α‖χCψ‖.
The subspace χCL is closed by our second assumption, and so is χC

√
gL. By (42),

for all ψ ∈ √
gL, the natural restriction map ψ → χCψ is invertible with bounded

inverse, and the proposition follows. �

PROPOSITION 2.10. Let g : E → [0,1] be a Borel function such that

1. tr(χ{x∈E:g(x)<1}�χ{x∈E:g(x)<1}) < +∞,
2. a function ϕ ∈ L satisfying χ{x:g(x)<1}ϕ = ϕ must be the zero function.

Then all the conclusions of Proposition 2.7 hold for the function g.

PROOF. Our assumptions imply ‖χ{x∈E:g(x)<1}�‖ < 1, whence the operator
1 + (g − 1)� is invertible. The space

√
gL is closed by Corollary 2.9. �
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2.14. On invertibility of the operator 1 + (g − 1)�. Take a nonnegative
bounded Borel function g such that the operator

√
g − 1� is Hilbert–Schmidt.

It follows that the operator (g − 1)� is also Hilbert–Schmidt, while the operator√
g − 1�

√
g − 1 is trace-class. In particular, since all these operators are com-

pact, invertibility of the operator 1 + (g − 1)� is equivalent to its injectivity, and
the same is true for 1 + √

g − 1�
√

g − 1. We start with a simple remark.

PROPOSITION 2.11. 1. The invertibility of the operator 1+ (g−1)� is equiv-
alent to the invertibility of the operator 1 + √

g − 1�
√

g − 1.
2. If sup |g − 1| < 1, then the operator 1 + (g − 1)� is invertible.

PROOF. Indeed, if
√

g − 1�
√

g − 1ϕ = −ϕ, then (g − 1)�(
√

g − 1ϕ) =
−√

g − 1ϕ. Conversely, if (g − 1)�ϕ = −ϕ, then the function ψ = √
g − 1�ϕ

satisfies
√

g − 1ψ = −ϕ and, consequently,
√

g − 1�
√

g − 1ψ = −ψ , and the
first item is proved. The second item is clear since if sup |g − 1| < 1, then
‖(g − 1)�‖ < 1. �

We next show that perturbing a positive function g on a bounded set does not
change the invertibility of the operator 1 + (g − 1)�.

PROPOSITION 2.12. Let g1, g2 be positive bounded Borel functions such that
the operators

√
g1 − 1�,

√
g2 − 1� are Hilbert–Schmidt and the set {x : g1(x) 
=

g2(x)} is bounded. Then the invertibility of the operator 1+(g1 −1)� is equivalent
to the invertibility of the operator 1 + (g2 − 1)�.

PROOF. We have EP�
�gi

= det(1 + √
gi − 1�

√
gi − 1), i = 1,2. Since our

functions are positive, the operator 1 + (gi − 1)� is invertible if and only if the
multiplicative functional �gi

is positive on a subset of positive P�-measure of
Conf(E), or, in other words, if and only if the infinite product

∏
x∈X gi(x) con-

verges absolutely to a positive limit with positive P�-probability. Since both func-
tions are positive and the set {x : g1(x) 
= g2(x)} is bounded, for P�-almost any
configuration X the functions g1 and g2 are equal except on finitely many particles
of X, and the infinite products

∏
x∈X gi(x), i = 1,2, either both converge or both

diverge. �

PROPOSITION 2.13. If g is a nonnegative bounded Borel function satisfying

1. the operator (g − 1)� is compact;
2. the operator 1 + (g − 1)� is invertible,

then, for any subset C ⊂ E, the function gC = χE\C + gχC also satisfies the same
conditions (1), (2).
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PROOF. Compactness of (gC − 1)� = χC(g − 1)� is clear. If 1 + (gC − 1)�

fails to be invertible and has a nontrivial kernel, then there exists a function ψ

satisfying ψ + χC(g − 1)�ψ = 0. It follows that ψ = χCψ and that ψ + (g −
1)�ψ = 0, a contradiction that completes the proof. �

2.15. Inverting self-adjoint operators. It is sometimes more convenient to take
the inverse of 1+√

g − 1�
√

g − 1 rather than that of 1+(g−1)�, and we rewrite
the formula (37) in the following way. Let α > 0, let g be a Borel function, perhaps
unbounded from above, on E, satisfying g > 1 + α and such that the operator√

g − 1� is Hilbert–Schmidt. Then
√

gL is a subspace of L2(E,μ), automatically
a closed one; we let �g be the operator of orthogonal projection onto

√
gL and set

�g = √
g − 1�

√
g − 1. The operator 1 + �g is then automatically invertible.

PROPOSITION 2.14. We have

(43) �g =
√

1 + (g − 1)−1�g(1 + �g)
−1

√
1 + (g − 1)−1.

PROOF. If g is bounded, then, noting that invertibility of 1 + �g implies that
of 1 + (g − 1)�, we again use the identity p(1 + qp)−1 = (1 + pq)−1p, valid
for arbitrary bounded operators p,q once both sides are well defined. If g is un-
bounded, then we approximate g from below by a sequence of bounded functions
and pass to the limit in the space of Hilbert–Schmidt operators. �

REMARK. While this proposition is sufficient for our purposes, the equality
(43) still holds under much milder assumptions on g; the key point is to ensure
invertiblity of the operators 1 + �g , 1 + (g − 1)�. The formula (43) implies the
following analogue of Proposition 2.6.

PROPOSITION 2.15. Let α > 0, and let g be a Borel fucntion on E satisfying
g > 1 + α,

√
g − 1� ∈ I2(E,μ). Let gn, n ∈ N be a sequence of nonnegative

bounded Borel functions satisfying 1 + α ≤ infn∈N,x∈E gn(x), and assume that√
gn − 1� → √

g − 1� ∈ I2(E,μ). Then

�gn → �g in I1,loc(E,μ).

PROOF. The Hilbert–Schmidt convergence of the sequence
√

gn − 1� im-
plies the trace class, and, a fortiori, norm, convergence of the sequence �gn . The
proof is now concluded in the same way as that of Proposition 2.6. �

2.16. Palm measures of determinantal point processes. Palm measures of de-
terminantal point processes admit the following characterization. As above, let
� ∈ I1,loc(E,μ) be the operator of orthogonal projection onto a closed subspace
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L ⊂ L2(E,μ). For q ∈ E satisfying �(q,q) 
= 0, introduce a kernel �q by the
formula

(44) �q(x, y) = �(x,y) − �(x,q)�(q, y)

�(q, q)
.

If �(q,q) = 0, then we also have �(x,q) = �(q,y) = 0 almost surely with re-
spect to μ, and we set �q = �.

The operator �q defines an orthogonal projection onto the subspace

L(q) = {
ϕ ∈ L : ϕ(q) = 0

}
of functions in L that assume the value zero at the point q; the space L(q) is well
defined by Assumption 1; in other words, L(q) is the orthogonal complement of
vq in L. Iterating, let q1, . . . , ql ∈ E be distinct and set

L(q1, . . . , ql) = {
ϕ ∈ L : ϕ(q1) = · · · = ϕ(ql) = 0

}
,

and let �q1,...,ql be the operator of orthogonal projection onto the subspace
L(q1, . . . , ql). Shirai and Takahashi [26] have proved:

PROPOSITION 2.16 (Shirai and Takahashi [26]). For any l ∈ N and for ρl-
almost every l-tuple q1, . . . , ql of distinct points in E, the iterated reduced Palm
measure P

q1,...,ql

� is given by the formula

(45) P
q1,...,ql

� = P�q1,...,ql .

REMARK. Shirai and Takahashi [26] have in fact established the formula (45)
for arbitrary positive self-adjoint locally trace-class contractions; the formula (44)
for the kernel stays the same. Note that in the discrete case the formula for contrac-
tions is a corollary of the formula for projection operators, since formula (45) is
local (both in the discrete and the continuous cases) and contractions are reduced
to projections by doubling the phase space (see Lyons [19]).

2.17. Conditional measures in the discrete case. In this subsection, we con-
sider the discrete case, in which the space E is a countable set endowed with the
discrete topology, and the measure μ is the counting measure. In this case, the
reduced Palm measure P

q of a point process P on Conf(E) can be described as
follows: one takes the conditional measure of P on the subset of configurations
containing a particle at position q , and then one removes the particle at q; more
formally, Pq is the push-forward of the said conditional measure under the opera-
tion that to a configuration X containing the particle at q assigns the configuration
X \ {q}.

In the discrete case, we also have a dual construction: let Pq̆ be the conditional
measure of P with respect to the event that there is no particle at position q . More
formally, set

Conf
(
E;E \ {q}) = {

X ∈ Conf(E) : q /∈ X
}
,
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and write

P
q̆ = P|Conf(E;E\{q})

P(Conf(E;E \ {q}))
be the normalized restriction of P onto the subset Conf(E;E \ {q}).

We have a dual to Proposition 2.16.

PROPOSITION 2.17. Let q ∈ E be such that μ({q}) > 0. Then the operator
of orthogonal projection onto the subspace χE\qL has the kernel �q̆ given by the
formula

�q̆(x, y) = �(x,y) + �(x,q)�(q, y)

1 − �(q,q)
, x 
= q, y 
= q;(46)

�q̆(x, q) = �q̆(q, y) = 0, x, y ∈ E.(47)

PROOF. This is a particular case of Corollary 6.4 in Lyons [19]; see also
Shirai–Takahashi [26, 27] and Borodin–Rains [4].

Given l ∈ N, m < l and an l-tuple (p1, . . . , pl), of distinct points in E, recall
that we have introduced a subspace L(p1, . . . , pm, p̆m+1, . . . , p̆l) by the formula

L(p1, . . . , pm, p̆m+1, . . . , p̆l)
(48)

= {
χE\{pm+1,...,pl}ϕ : ϕ ∈ L,ϕ(p1) = · · · = ϕ(pm) = 0

}
.

Let �p1,...,pm,p̆m+1,...,p̆l be the operator of orthogonal projection onto the sub-
space L(p1, . . . , pm, p̆m+1, . . . , p̆l). The corresponding determinantal measure
P

�p1,...,pm,p̆m+1,...,p̆l admits the following characterization. Recall that

C(p1, . . . , pm, p̆m+1, . . . , p̆l)

is the set of configurations on E containing exactly one particle in each of the po-
sitions p1, . . . , pm and no particles in the positions pm+1, . . . , pl . There is a nat-
ural erasing bijection between C(p1, . . . , pm, p̆m+1, . . . , p̆l) and C(p̆1, . . . , p̆m,

p̆m+1, . . . , p̆l) obtained by erasing the particles in positions p1, . . . , pm. �

PROPOSITION 2.18. Consider the normalized restriction of P� onto the
set C(p1, . . . , pm, p̆m+1, . . . , p̆l). The push-forward of this normalized restriction
onto the set C(p̆1, . . . , p̆m, p̆m+1, . . . , p̆l) under the erasing bijection is the mea-
sure P

�p1,...,pm,p̆m+1,...,p̆l .

PROOF. Again, this is a reformulation of Corollary 6.4 in Lyons [19]; see also
Shirai–Takahashi [26, 27].
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2.18. Action of Borel automorphisms on point processes. Let T : E → E be
an invertible measurable map such that for any bounded set B ⊂ E the set T (B) is
also bounded. The map T naturally acts on the space of configurations Conf(E):
namely, given X ∈ Conf(E) we set

T (X) = {T x, x ∈ X}.
Note that, by our assumptions, T (X) is a well-defined configuration on E; slightly
abusing notation, we thus keep the same symbol T for the induced action on the
space of configurations.

Let P be a probability measure on Conf(E). We assume that P admits correla-
tion measures of all orders, and, for l ∈ N, we let ρl be the lth correlation measure
of the point process P. The lth Cartesian power of T naturally acts on the measure
ρl , and, slightly abusing notation, we denote the resulting measure by ρl ◦ T . The
measure ρl ◦T is, of course, the lth correlation measure of the point process P◦T ,
the push-forward of the measure P under the induced action of the automorphism
T on the space of configurations.

We now prove a simple general statement: if for a point process P and an ar-
bitrary fixed l ∈ N, the reduced Palm measures corresponding to different l-tuples
of points are equivalent, then for any Borel automorphism T acting by the iden-
tity beyond a bounded set, the measures P and P ◦ T are also equivalent, and the
Radon–Nikodym derivative is found explicitly in terms of the Radon–Nikodym
derivatives of the reduced Palm measures. More precisely, we have the following
proposition.

PROPOSITION 2.19. Let T : E → E be a Borel automorphism admitting a
bounded subset B ⊂ E such that T (x) = x for all x ∈ E\B . Assume that

1. for any l ∈ N, the correlation measures ρl and ρl ◦ T are equivalent;
2. for any two collections {q1, . . . , ql} and {q ′

1, . . . , q
′
l} of distinct points of E,

the measures Pq1,...,ql and P
q ′

1,...,q
′
l are equivalent.

Then the measures P and P◦T on Conf(E) are equivalent, and for P-almost every
configuration X ∈ Conf(E) such that X ∩ B = {q1, . . . , ql} we have

dP ◦ T

dP
(X) = dPT q1,...,T ql

dPq1,...,ql

(
X \ {q1, . . . , ql}) × dρl ◦ T

dρl

(q1, . . . , ql).

PROOF. Let l ∈ N, let P, P̃ be probability measures on Conf(E) admitting
correlation measures of order l, denoted, respectively, ρl , ρ̃l . Let Pq1,...,ql , P̃q1,...,ql

stand for the respective reduced Palm measures. The symbol � denotes absolute
continuity of measures. Proposition 2.19 follows from:

PROPOSITION 2.20. If ρ̃l � ρl and P̃
q1,...,ql � P

q1,...,ql for ρl-almost any dis-
tinct q1, . . . , ql ∈ E, then also P̃ � P and for P-almost any X ∈ Conf(E) and any
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l particles q1, . . . , ql ∈ X we have

dP̃

dP
= dP̃q1,...,ql

dPq1,...,ql

(
X \ {q1, . . . , ql}) × dρ̃l

dρl

(q1, . . . , ql).

PROOF. We use Proposition 2.1. Take X0 ∈ Conf(E) and q
(0)
1 , . . . , q

(0)
l ∈ X0;

take disjoint bounded open sets B(1), . . . ,B(l) ⊂ E, set B = ⋃
B(i) and take

an open set U ⊂ E disjoint from all B(i) in such a way that q
(0)
i ∈ B(i) for

all i = 1, . . . , l and X0 \ {q(0)
1 , . . . , q

(0)
l } ⊂ U . Let W be a neighbourhood of

X0 \ {q(0)
1 , . . . , q

(0)
l } in Conf(E) satisfying W ⊂ {X ∈ Conf(E) : X ⊂ U}. Intro-

duce a neighbourhood Z of X0 by setting

(49) Z = {
X ∈ Conf(E) : #B(1) (X) = · · · = #B(l)(X) = 1,X|E\B ⊂ W

}
.

Sets given by (49) form a basis of neighbourhoods of X0. We prepare a simple
general lemma.

LEMMA 2.21. Let ν1 and ν2 be two Borel probability measures on a complete
separable metric space Y . Let V = {V } be a basis of neighbourhoods on Y . Let ϕ

be a nonnegative function on Y such that for any neighbourhood V ∈ V we have

(50) ν1(V ) =
∫
V

ϕ dν2.

Then ν1 � ν2 and dν1/dν2 = ϕ almost surely with respect to ν2.

PROOF. Indeed, if the equality (50) holds for a basis of neighbourhoods, then,
due to tightness, it holds for all open sets and then also for all Borel sets. �

By definition of Palm measures and Proposition 2.1, we have

P(Z ) =
∫
B(1)×···×B(l)

P
q1,...,ql (W ) dρl(q1, . . . , ql).

A similar formula holds for P̃. Taking X ∈ Z , setting qi = X ∩ B(i), and using
the assumption P̃

q1,...,ql � P
q1,...,ql , we therefore have

P̃(Z ) =
∫
Z

dP̃q1,...,ql

dPq1,...,ql

(
X \ {q1, . . . , ql}) × dρ̃l

dρl

(q1, . . . , ql) dP(X).

Since the formula holds for an arbitrary neighbourhood of the form (49), Proposi-
tion 2.20 follows from Lemma 2.21. �

We now derive Proposition 2.19 from Proposition 2.20. As before, let
Conf(E;E \ B) be the subset of those configurations on E all whose particles
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lie in E \ B . Since the automorphism T acts by the identity on E \ B , all configu-
rations in the set Conf(E;E \ B) are fixed by T , and we have

P
q1,...,ql |Conf(E;E\B) ◦ T = P

T q1,...,T ql |Conf(E;E\B).

By definition, we have X \ {q1, . . . , ql} ∈ Conf(E;E \ B), whence, again using
neighbourhoods of the form (49) as well as Lemma 2.21, we obtain

dPq1,...,ql ◦ T

dPq1,...,ql

(
X \ {q1, . . . , ql}) = dPT q1,...,T ql

dPq1,...,ql

(
X \ {q1, . . . , ql}),

and Proposition 2.19 follows now from Proposition 2.20. �

3. The relation between Palm subspaces.

3.1. The case of continuous measures. Proposition 2.19 shows that in order to
establish the quasi-invariance under the group of compactly supported diffeomor-
phisms for a point process, it suffices to show that its reduced Palm measures of
the same order are equivalent. In this section, we show that Assumption 2 implies
the relation (51) between Palm subspaces; we then show that integrable kernels
satisfy Assumption 2. The transition from relation (51) to the equivalence of Palm
measures is achieved in the next section [cf. Corollary 4.11 and the formula (90)].

As before, we consider a closed subspace L ⊂ L2(E,μ) such that that the cor-
responding orthogonal projection � is locally trace class with a kernel satisfying
Assumptions 1, 2. Assume that the measure μ satisfies μ({p}) = 0 for any p ∈ R.

PROPOSITION 3.1. For any distinct points p1, . . . , pl, q1, . . . , ql ∈ U we have

(51) L(p1, . . . , pl) = (x − p1) · · · (x − pl)

(x − q1) · · · (x − ql)
L(q1, . . . , ql).

REMARK. The coincidence of subspaces is understood as coincidence of sub-
spaces in L2; the functions from the right-hand side subspace are of course not
defined at the points q1, . . . , ql ; they are nonetheless well defined as elements of
L2 since the measure μ is continuous. For discrete measures the formulation will
be modified.

PROOF. In the continuous case, Assumption 2 implies, for any q ∈ U , the
inclusion L(q)

x−q
⊂ L, whence x−p1

x−q1
L(q1) ⊂ L(q1) + L(q1)

x−q1
⊂ L, Any function ϕ ∈

x−p1
x−q1

L(q1) satisfies ϕ(p1) = 0, whence x−p1
x−q1

L(q1) ⊂ L(p1). Interchanging the
points p1 and q1, we obtain the converse inclusion (using again continuity of the
measure μ), and the proposition is proved for l = 1. Proposition 1.1 implies that
if � satisfies Assumption 2, then so does �p for any p ∈ U , and the proof is
completed by induction on l. �
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3.2. The case of discrete measures. We now let E be a countable discrete
subset of R endowed with the counting measure μ.

PROPOSITION 3.2. Let the kernel � satisfy Assumption 2. Let p1, . . . , pl ∈ E

be distinct, and let π be a permutation of {1, . . . , l}. Then we have

L(pπ(1), . . . , pπ(m), p̆π(m+1), . . . , p̆π(l))

= χE\{p1,...,pl}(x)
(x − pπ(1)) · · · (x − pπ(m))

(x − p1) · · · (x − pm)
(52)

× L(p1, . . . , pm, p̆m+1, . . . , p̆l).

PROOF. As in the continuous case, we proceed by induction and start with the
case l = 2,m = 1: we need to show, for any distinct p,q ∈ E, the equality

(53) L(p, q̆) = χE\{p,q}
x − p

x − q
L(q, p̆).

Now, by Proposition 3.4, we have

χE\q
L(q)

x − q
⊂ χE\qL.

Since

x − p

x − q
= 1 + q − p

x − q
,

we also have

x − p

x − q
χE\qL(q) ⊂ χE\qL = L(q̆).

Now, multiplying any function by χE\q x−p
x−q

yields a function that assumes value 0
at the point p; we thus conclude

(54) χE\{p,q}
x − p

x − q
L(p̆, q) ⊂ L(p, q̆).

Interchanging the variables p,q , we obtain the inverse inclusion, and (53) is
proved. If � satisfies Assumption 2, then, by Proposition 1.1, so does �p , and,
by definition, so does �p̆ . Induction completes the proof. �
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3.3. Proof of Proposition 1.2.

3.3.1. The subspace L′.

PROPOSITION 3.3. If ϕ ∈ L2(R,μ) is such that xϕ ∈ L2(R,μ), then the in-
tegrals ∫

R

ϕ(x)A(x)dμ(x),

∫
R

ϕ(x)B(x)dμ(x)

are well defined.

PROOF. Since for any p ∈ U we have〈
vp(x), (x − p)ϕ(x)

〉 = A(p)

∫
R

ϕ(x)B(x)dμ(x) − B(p)

∫
R

ϕ(x)A(x)dμ(x),

keeping in mind that linear independence of A and B implies the existence of
points p1,p2 ∈ U such that A(p1)B(p2)−A(p2)B(p1) 
= 0, we obtain the desired
integrability. �

Let

L′ =
{
ψ ∈ L : xψ ∈ L2(R,μ),

(55) ∫
R

ψ(x)A(x)dμ(x) =
∫
R

ψ(x)B(x)dμ(x) = 0
}
.

PROPOSITION 3.4. Let p ∈ U and ϕ ∈ L satisfy ϕ(p) = 0. Then there exists
ψ ∈ L′ such that

(56) ϕ(x) = (x − p)ψ(x).

PROOF. It suffices to consider the case p = 0, A(0) = 0,B(0) 
= 0: since the
functions A, B are linearly independent, the general case is reduced to this partic-
ular one by a translation of R and a linear unimodular change of variable (8). Let
ψ ′ be such that (56) holds [in the continuous case, such a function ψ ′ is unique:
we simply set ψ ′ = ϕ(x)/(x − p) and note that ψ ′ is square-integrable due to As-
sumption 1; in the discrete case, however, there are many such functions, differing
by their value at p = 0]. Using the integrable form of our kernel and the relation
ϕ ∈ L, write

(x� − �x)ψ ′ = x�ψ ′(x) − ϕ(x)
(57)

= A(x)

∫
R

B(y)ψ ′(y) dμ(y) − B(x)

∫
R

A(y)ψ ′(y) dμ(y).
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Since ϕ ∈ L, ϕ(0) = 0, A(0) = 0, B(0) 
= 0, substituting x = 0 into (57) we
obtain

(58)
∫
R

A(y)ψ ′(y) dμ(y) = 0.

Recall that by definition we have

v0(x) = A(x)

x
∈ L.

Dividing (57) by x and keeping (58) in mind, we obtain that there exists α ∈ C

such that

(59) �ψ ′(x) − ψ(x) − αδ0 = v0(x)

∫
R

B(y)ψ ′(y) dμ(y).

The extra term αδ0 is only necessary in the case when μ(0) > 0. It follows that we
have ψ = ψ ′ + αδ0 ∈ L and, consequently, applying the commutator x� − �x to
the function ψ , that we also have∫

R

A(y)ψ(y)dμ(y) =
∫
R

B(y)ψ(y)dμ(y) = 0. �

3.4. Integrability of the Palm kernel.

LEMMA 3.5. Let q ∈ U be such that �(q,q) 
= 0. Then the kernel of the
operator �q has the integrable form

(60) �q(x, y) = Aq(x)Bq(y) − Aq(y)Bq(x)

x − y
,

where

Aq(x) = A(x)B(q) − A(q)B(x)√
(A(q))2 + (B(q))2

;

Bq(x) = A(x)A(q) + B(x)B(q)√
(A(q))2 + (B(q))2

(61)

−
√

(A(q))2 + (B(q))2(A(x)B(q) − A(q)B(x))

�(q, q)(x − q)
.

PROOF. We first consider the case A(q) = 0,B(q) 
= 0, in which

�(x,q) = A(x)B(q)

x − q

and

�q(x, y) = �(x,y) − B(q)2A(x)A(y)

�(q, q)(x − q)(y − q)
= Aq(x)Bq(y) − Aq(y)Bq(x)

x − y
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with

Aq(x) = A(x), Bq(x) = B(x) − B(q)2A(x)

�(q, q)(x − q)
,

as desired. Recalling that in an integrable representation of a kernel, the functions
A and B are defined up to a unimodular change of variables (8), we reduce the
general case to the particular one by a rotation

A(x) → A(x)B(q) − A(q)B(x)√
(A(q))2 + (B(q))2

; B(x) → A(x)A(q) + B(x)B(q)√
(A(q))2 + (B(q))2

.

�

In the discrete case, we have a dual to Proposition 3.5.

PROPOSITION 3.6. Let � be a projection operator with an integrable ker-
nel. Let q ∈ D be such that �(q,q) 
= 1. Then the kernel of the operator �q̆ has
integrable form

(62) �q̆(x, y) = Aq̆(x)Bq̆(y) − Aq̆(y)Bq̆(x)

x − y
,

where Aq̆(q) = Bq̆(q) = 0 and for x 
= q, y 
= q we have

Aq̆(x) = A(x)B(q) − A(q)B(x)√
(A(q))2 + (B(q))2

;

Bq̆(x) = A(x)A(q) + B(x)B(q)√
(A(q))2 + (B(q))2

(63)

+
√

(A(q))2 + (B(q))2(A(x)B(q) − A(q)B(x))

(1 − �(q,q))(x − q)
.

PROOF. Direct substitution of (63) into (46). �

4. Multiplicative functionals and regularization.

4.1. Outline of the section. The multiplicative functional corresponding to the
function (

x−p
x−q

)2 might diverge (as happens, for instance, for the Airy kernel), and
in this section we describe a general scheme of regularization of multiplicative
functionals. Our starting point is the formula (40), and we show that, under certain
additional assumptions, the regularized multiplicative functional �g can still be
defined if the multiplicative functional itself diverges, much in the same way in
which the Hilbert–Carleman regularization of the Fredholm determinant is defined,
cf. Simon [28]. Additional technical difficulties arise because we must consider
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functions bounded away neither from zero nor from infinity. In the following 9
subsections, we go back to a general phase space (E,μ) and a general locally trace
class operator � of orthogonal projection onto a closed subspace L ⊂ L2(E,μ).
We use neither integrability nor Assumption 2. The main results of the section are
Proposition 4.2 giving the existence of regularized multiplicative functionals and
Proposition 4.3 establishing their continuous dependence on the function. Our first
step is the regularization of additive functionals, for which we rely on the slow
growth of variance for determinantal point processes (cf. e.g., [6]).

4.2. Regularization of additive functionals. Let f : E → C be a Borel func-
tion. We set Sf to be the corresponding additive functional, and, if Sf ∈
L1(Conf(E),P�), then we set

(64) Sf = Sf −ESf .

The random variable Sf will be called the normalized additive functional corre-
sponding to f . We shall now see that the normalized additive functional can be
defined even when the additive functional itself is not well defined. Set

Var(�,f ) = 1

2

∫
E

∫
E

∣∣f (x) − f (y)
∣∣2∣∣�(x,y)

∣∣2 dμ(x) dμ(y).

Note that the value Var(�,f ) does not change if the function f is changed by an
additive constant. If Sf ∈ L2(Conf(E),P�), then Var(�,f ) < +∞ and

(65) Var(Sf ) = E|Sf |2 = Var(�,f ).

Note also the clear inequality

(66) Var(�,f ) ≤ 2
∫
E

∣∣f (x)
∣∣2�(x,x) dμ(x)

which is obtained by summing the inequality |f (x) − f (y)|2 ≤ 2(|f (x)|2 +
|f (y)|2) over all x, y and using the Pythagoras theorem (reproducing property
of � on the diagonal):

�(x,x) =
∫
E

∣∣�(x,y)
∣∣2 dμ(y).

The integral defining the variance of an additive functional may converge even
when the integral defining its expectation does not: for instance, if f (x) = (|x| +
1)−1 and � is the discrete sine-kernel. The normalized additive functional can
nonetheless by continuity be defined in L2 even when the additive functional itself
diverges almost surely.

Introduce the Hilbert space V(�) in the following way: the elements of V(�)

are functions f on E satisfying Var(�,f ) < +∞; functions that differ by a con-
stant are identified, but, slightly abusing terminology we still refer to elements
of V(�) as functions. The square of the norm of an element f ∈ V(�) is pre-
cisely Var(�,f ). By definition, bounded functions that are identically zero in



992 A. I. BUFETOV

the complement of a bounded set form a dense subset of V(�). The correspon-
dence f → Sf is thus an isometric embedding of a dense subset of V(�) into
L2(Conf(E),P�); it therefore admits a unique isometric extension onto the whole
space V(�), and we obtain the following proposition.

PROPOSITION 4.1. There exists a unique linear isometric embedding

S : V(�) → L2
(
Conf(E),P�

)
, S : f → Sf

such that

1. ESf = 0 for all f ∈ V(�);
2. if Sf ∈ L1(Conf(E),P�), then Sf is given by (64).

4.3. Regularization of multiplicative functionals. Given a function g such that
Var(�, logg) < +∞, set

�̃g = exp(Slogg).

By definition, we have

(67) �̃g1g2 = �̃g1�̃g2 .

Since ESlogg = 0, by Jensen’s inequality, for any positive function g we have

E�̃g ≥ 1.

The expectation E�̃g may however be infinite, and our next aim is to give condi-
tions for its finiteness.

It will be convenient for us to allow zero values for the function g: let there-
fore g be nonnegative, set E0 = {x ∈ E : g(x) = 0}, assume that the subset
Conf(E;E \ E0) of those configurations all whose particles lie in E \ E0 has
positive probability, consider the restriction of our measure P onto the subspace
Conf(E;E \ E0), introduce the corresponding functional �̃g and extend it to the
whole of E by setting �̃g(X) = 0 for all configurations containing a particle
at E0. Assume that trχE0�χE0 < +∞. Then we have P�(Conf(E;E \ E0)) =
det(1 − χE0�χE0). The operator χE0�χE0 is positive, contractive and has finite
trace, so the operator 1−χE0�χE0 is invertible once it is injective. Thus, if a func-
tion ϕ ∈ L satisfying ϕ(x) = 0 for all x ∈ E \ E0 must be the zero function, then
P�(Conf(E;E \ E0)) > 0.

If �̃g ∈ L1(Conf(E),P�), then, as before, we write

�g = �̃g

E�̃g

.

The main result of this section is the following proposition.

PROPOSITION 4.2. Let g be a nonnegative function satisfying the following:
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1. there exist ε > 0, M > ε such that the set Eε,M = {x ∈ E : g(x) <

ε or g(x) > M} is bounded and

‖χEε,M �‖ < 1;
2. ∫

Eε,M

∣∣g(x)
∣∣�(x,x) dμ(x) +

∫
E\Eε,M

∣∣g(x) − 1
∣∣2�(x,x) dμ(x) < +∞.

Then �̃g ∈ L1(Conf(E),P�), the subspace
√

gL is closed, the corresponding op-
erator of orthogonal projection �g is locally of trace class, and we have

(68) P�g = �gP�.

We also need to establish continuity of �g as a function of g. This continuity
is established in a specially constructed function space whose definition is a bit
involved. We fix positive numbers α > 0, ε > 0, M > ε and two bounded Borel
subsets B1, B2 of E satisfying

‖χB1∪B2�‖ < 1.

We now let G be the set of nonnegative measurable functions g on E satisfying

1. {x : g(x) < ε} ⊂ B1;
2. {x : g(x) > M} ⊂ B2;
3.

∫
B2 |g(x)|1+α�(x, x) dμ(x) + ∫

E\B2 |g(x) − 1|2�(x,x) dμ(x) < +∞.

We metrize the set G by setting

dG (g1, g2) =
∫
B2

∣∣g1(x) − g2(x)
∣∣1+α

�(x, x) dμ(x)

+
∫
E\B2

∣∣g1(x) − g2(x)
∣∣2�(x,x) dμ(x).

The distance dG turns G into a complete separable metric space.

PROPOSITION 4.3. For any α′ : 0 < α′ < α, the correspondences g → �̃g ,
g → �g induce continuous mappings from G to L1+α′(Conf(E),P�),

REMARK. Along similar lines, one also proves that the correspondence g →
�g induces a continuous mapping from the space G to I1,loc(E,μ).

Propositions 1.3, 1.5 directly follow from Propositions 4.2, 4.3.
The proof of the main Propositions 4.2 and 4.3 occupies the bulk of this section.

We separately consider the “main part” (where the function g is bounded away
from 0 and ∞), the neighbourhood of 0 and the neighbourhood of ∞. The proof is
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concluded by decomposing a general function g as a product of these three types
of functions.

First, we reduce ourselves to the case of positive g. Let E0 = {x : g(x) = 0}.
Our assumptions imply P�(Conf(E;E \ E0)) > 0 and so, restricting ourselves, if
necessary, to the subset Conf(E;E \ E0), we can assume that the function g is
positive.

REMARK. Our aim is to apply Proposition 4.2 to functions of the form

g(x) =
(

(x − p1) · · · (x − pl)

(x − q1) · · · (x − ql)

)2
.

In the continuous case, such functions are almost surely nonzero. In the discrete
case, however, the finite zero set of our function has positive measure: whence the
need for the extra subset E0 in our proposition, and the need of the assumption
that the subspace L not admit finitely-supported functions in the formulation of
Theorem 1.6.

4.4. An estimate of diagonal values of the kernel �g . Iterating multiplicative
functionals, we need to estimate traces of the resulting kernels. The following sim-
ple proposition shows that diagonal values of the kernel of �g can be estimated
from above by the diagonal values of the kernel �.

PROPOSITION 4.4. Let the kernel � satisfy Assumption 1, and let g be a non-
negative bounded function on E such that the operator 1 + (g − 1)� is invertible.
Then for any q ∈ U we have

(69) �g(q, q) ≤ g(q)
∥∥(

1 + (g − 1)�
)−1∥∥�(q,q).

PROOF. As before, we let 〈 , 〉 be the standard inner product in L2(E,μ) and
we write vq(x) = �(x,q) so that �(q,q) = 〈vq, vq〉. By definition then

�g(q, q) = g(q)
〈
�

(
1 + (g − 1)�

)−1
vq, vq

〉
≤ g(q)

∥∥(
1 + (g − 1)�

)−1∥∥〈vq, vq〉. �

4.5. The case of functions g bounded away from 0 and ∞. Let A2(�) be the
set of positive Borel functions g on E satisfying

1. 0 < infE g ≤ supE g < ∞;
2. ∫

E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x) < +∞.
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By definition, the set A2(�) is a semigroup under multiplication.
Endow the set A2(�) with a metric by setting the distance between two func-

tions g1 and g2 to be √∫
E

∣∣g1(x) − g2(x)
∣∣2�(x,x) dμ(x).

Using the second condition in the definition of A2(�) and the estimate (66), for
any g ∈ A2(�) we have

Var(�,g − 1) < +∞.

Since on any interval of the positive half-line, bounded away from zero and
infinity, the quantity | log t − t + 1|/t2 is bounded both above and below, for any
function g ∈ A2(�), we also have

Var(�, logg) < +∞.

In particular, for any function g ∈ A2(�) the functional �̃g is well defined. The
following proposition, the main result of this subsection, establishes its integrabil-
ity.

PROPOSITION 4.5. For any p ≥ 1, and any function g ∈ A2(�) we have �̃g ∈
Lp(Conf(E),P�). The correspondences

g → �̃g, g → �g

are continuous mappings from A2(�) to Lp(Conf(E),P�).

PROOF. Let

(70) A ε,M
2 (�) =

{
g ∈ A2(�) : ε ≤ inf

E
g ≤ sup

E

g ≤ M
}
.

PROPOSITION 4.6. For any ε > 0,M > 0 there exists a constant Cε,M > 0
such that any g ∈ A ε,M

2 (�) satisfies

(71) logE|�̃g|2 ≤ Cε,M

∫
E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x).

PROOF. It suffices to prove the estimate

(72) logE�̃g ≤ Cε,M

∫
E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x),

and (71) follows by multiplicativity (67). It suffices to establish (72) in the case
when the set {x ∈ E : g(x) 
= 1} is bounded, as the general case follows by Fatou’s
lemma. Now there exists a constant C2 > 0 such that

logE�g ≤ tr(
√

g − 1�
√

g − 1) + C2‖
√

g − 1�
√

g − 1‖2
2

(73)
=

∫
E

(
g(x) − 1

)
�(x,x) dμ(x) + C2

∫
E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x).
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We have assumed boundedness of the set {x ∈ E : g(x) 
= 1} in order that the
integral

∫
E(g(x) − 1)�(x, x) dμ(x) be well defined; it will, however, disappear

from the final result. From (70), again using the fact that the quantity | log t − t +
1|/t2 is bounded both above and below by constants only depending on ε and M ,
we obtain ∣∣∣∣∫

E

(
g(x) − 1

)
�(x,x) dμ(x) −

∫
E

logg(x)�(x, x) dμ(x)

∣∣∣∣
(74)

≤ Cε,M

∫
E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x),

whence finally

logE�̃g = logE�g −ESlogg ≤ C′
ε,M

∫
E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x) �

PROPOSITION 4.7. For any ε > 0,M > 0 there exists a constant Cε,M > 0
such that for g1, g2 ∈ A ε,M

2 (�) we have

E|�̃g1 − �̃g2 | ≤ E|�̃g1 |2
(

exp
(
Cε,M

∫
E

∣∣g1(x) − g2(x)
∣∣2�(x,x) dμ(x)

)
− 1

)
.

For any p ≥ 1, the correspondence g → �̃g induces a continuous mapping from

A ε,M
2 (�) to Lp(Conf(E),P�).

PROOF. Since E�̃g ≥ 1, we have

E|�̃g − 1|2 ≤ E�̃g2 − 1.

From the estimate (71), we have

(75) E|�̃g − 1|2 ≤ exp
(
Cε,M

∫
E

∣∣g(x) − 1
∣∣2�(x,x) dμ(x)

)
− 1.

Applying (75) to g = g1/g2, recalling the boundedness of both g1 and g2 and using
multiplicativity, we obtain the proposition. Since, for any p ≥ 1, we have �̃gp =
(�̃g)

p , and (A ε,M
2 (�))p ⊂ A εp,Mp

2 (�), the desired continuity in Lp follows as
well. �

Proposition 4.7 implies Proposition 4.5. �

4.6. The Radon–Nikodym derivative.

COROLLARY 4.8. Let g ∈ A2(�) be such that the operator 1 + (g − 1)� is
invertible. Then the operator �g is locally of trace class, and we have

(76) P�g = �gP�.
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PROOF. Let E(n) be a sequence of bounded sets exhausting E, set gn = 1 +
(g − 1)χE(n) , and note that ‖(gn − g)�‖ → 0 as n → ∞. For any n, we have

P�gn = �gnP�.

The operators �g = √
g�(1 + (g − 1)�)−1√g, �gn = √

gn�(1 + (gn −
1)�)−1√gn are locally of trace class since so is �. Proposition 2.6 implies that
�gn → �g in I1,loc(E,μ), and Proposition 2.2 implies that, as n → ∞, the se-
quence of measures P�gn weakly converges to P�g in the space of probability
measures on Conf(E). Proposition 4.5 implies �gn → �g in L1(Conf(E),P�),
whence �gnP� → �gP� weakly in the space of probability measures on
Conf(E), implying (76). �

4.7. Multiplicative functionals corresponding to a function g ≥ 1.

4.7.1. The case of bounded g. Proposition 2.7 takes a simpler form when our
bounded function g satisfies g ≥ 1. First, in this case the subspace

√
gL is auto-

matically closed. Second, if
√

g − 1�
√

g − 1 belongs to the trace class, then the
operator 1 + (g − 1)� is automatically invertible. To verify this, observe first that
in this case the operator

√
g − 1� is Hilbert–Schmidt, consequently, the operator

(g − 1)� is also Hilbert–Schmidt and, a fortiori, compact. To check the invertibil-
ity of the operator 1 + (g − 1)�, it thus suffices to check its injectivity, that is, to
prove that a function ϕ satisfying

(77) ϕ + (g − 1)�ϕ = 0

must be the zero function. Set ψ = −√
g − 1�ϕ so that ϕ = √

g − 1ψ . By def-
inition, both ϕ and ψ are zero on the set {x ∈ E : g(x) = 1}. From (77) we now
have

ψ +
√

g − 1�
√

g − 1ψ = 0,

whence

〈ψ,ψ〉 + 〈�ϕ,ϕ〉 = 0,

whence finally ϕ = ψ = 0.
We can now reformulate Proposition 2.7 in the following simpler form.

PROPOSITION 4.9. Let g be a bounded measurable function on E satisfying
g ≥ 1 and such that the operator

√
g − 1�

√
g − 1 belongs to the trace class. Then

all the conclusions of Proposition 2.7 hold for the function g.
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4.7.2. The case of unbounded g. The function (x − p)/(x − q) is unbounded
on R, and we prepare, for future use, a proposition on multiplicative functionals
corresponding to unbounded functions. As before, we start with a locally trace-
class operator � of orthogonal projection onto a subspace L. We consider a func-
tion g ≥ 1 such that the space

√
gL is a subspace of L2(E,μ); since g ≥ 1, it

is automatically a closed subspace, and we let �g be the operator of orthogonal
projection onto

√
gL.

PROPOSITION 4.10. Let α > 0 and let g be a Borel function on E satisfying
g > 1 + α. Assume that

1. we have
√

gL ⊂ L2(E,μ);
2. the operator

√
g − 1� is Hilbert–Schmidt.

Then �g ∈ L1(Conf(E),P�), and we have

(78)
�gP�∫

Conf(E) �g dP�

= P�g .

PROOF. For R > 0 set gR(x) = g(x) if g(x) < R and gR(x) = 1 otherwise.
As in Section 2, we use the notation �g = √

g − 1�
√

g − 1.
The Hilbert–Schmidt norm of the operator

√
g − 1� is given by the formula

(79) ‖
√

g − 1�‖2 =
∫
E

(
g(x) − 1

)
�(x,x) dμ(x).

For R1 > R2 > 0, we have∥∥√
gR1 − 1� −

√
gR2 − 1�

∥∥
2

(80)
=

∫
E

(√
gR1(x) − 1 −

√
gR2(x) − 1

)2
�(x,x) dμ(x),

and, in view of the convergence of the integral in (79), the right-hand side of
(80) becomes arbitrarily small once R1,R2 are sufficiently large. It follows that,

as R → ∞, the sequence of operators
√

gR − 1� converges in Hilbert–Schmidt
norm, and, consequently, the sequence of operators �gR converges in the trace-
class norm. Write �g = limR→∞ �gR , and note that trace-class convergence im-
plies

(81) det(1 + �g) = lim
R→∞ det(1 + �gR).

For any X, as R grows, the sequence �gR(X) increases (possibly assuming infinite
value starting from some R). By definition of the multiplicative functional, we have
pointwise convergence

(82) �g = lim
R→∞�gR,
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and, by (81), this convergence also takes place in L1(Conf(E),P�). We thus fi-
nally have ∫

Conf(E)
�g dP� = det(1 + �g).

Using (43), write

�gR =
√

1 + (
gR − 1

)−1
�gR(1 + �gR)−1

√
1 + (

gR − 1
)−1

.

It follows that the sequence of operators �gR
converges, as R → ∞, in the space

of locally trace-class operators. Since �gR
is the operator of orthogonal projection

onto the subspace
√

gRL, we obtain that

(83) �g = lim
R→∞�gR

in I1,loc(E,μ).

Now, for any fixed R, by Proposition 4.9, we have

(84)
�gRP�∫

Conf(E) �gR dP�

= P
�gR .

Proposition 2.2 implies that the sequence of measures P
�gR weakly converges to

P�g as R → ∞, and (84), together with (82) and (83), implies the desired rela-
tion (78). �

4.8. Conclusion of the proof of Proposition 4.2. Set

g0 = (g − 1)χE\Eε,M + 1.(85)

g1 = (g − 1)χ{x∈E:g(x)<ε} + 1.(86)

g2 = (g − 1)χ{x∈E:g(x)>M} + 1.(87)

By definition, g = g0g1g2.
By definition, the subspace

√
g0L is closed, and, by Corollary 4.8, we have

P�g0 = �g0P�. Proposition 4.4 implies the existence of a positive constant C such
that �g0(x, x) ≤ C�(x, x) for μ-amost all x ∈ E. Applying Proposition 2.10 to
the function g1 and the operator �g0 , we arrive at the formula

P�g1g0 = �g1P�g0 = �g1g0P�.

Again, Proposition 4.4 implies the existence of a positive constant C such that
�g1g0(x, x) ≤ C�(x, x) for μ-amost all x ∈ E, whence∫

E

∣∣g2(x) − 1
∣∣�g1g0(x, x) dμ(x) < +∞,

and, consequently, that the operator
√

g2 − 1�g1g0 is Hilbert–Schmidt.
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We therefore apply Proposition 4.10 to the function g2 and the operator �g1g0

and obtain

P�g2g1g0 = �g2P�g1g0 .

Observe that we only used regularized multiplicative functionals at the very first
step of our argument. In other words, there exist constants C1, C2, C3 such that we
have

P�g0 = C0�̃g0P�, P�g1g0 = C1�g1P�g0 ,

P�g = P�g2g1g0 = C2�g2P�g1g0 .

By definition, we have �̃g = �̃g2�̃g1�̃g0 and, consequently, for a suitable positive
constant C′, also �̃g = C′�̃g0�g1�g2 . Passing from �̃g to �g and noting that
the Radon–Nikodym derivative must by definition have expectation 1, we finally
obtain the desired relation P�g = �gP�.

4.9. Proof of Proposition 4.3. Set G 0 = {g ∈ G : (g0 −1)χE\(B1∪B2) = g0 −1}
and endow the set G 0 with topology induced from G , or, equivalently, from
L2(E,μ). Set G 1 = {g1 ∈ G : (g1 − 1)χB1 = g1 − 1}, and endow the set G 1 with
topology induced from G , or, equivalently, from L2(E,μ) or, equivalently again,
from L1(E,μ) (recall here that our functions are uniformly bounded). Finally, set
G 2 = {g ∈ G : (g2 −1)χB2 = g2 −1} endow the set G 2 with topology induced from
G , or, equivalently, from L1+α(E,μ). The continuity of the mapping g0 → �̃g0

from G 0 to Lp(E,μ) directly follows from Propositions 4.5, 4.7. Next, the corre-
spondence g1 → �̃g1 is a continuous mapping from G 1 to Lp(E,μ) by bounded
convergence theorem. The correspondence g2 → �g2 induces a continuous map-
ping from the space G 2 to L1+α(E,μ) by the dominated convergence theorem.
Setting g = g0g1g2, using the Hoelder inequality (and keeping in mind that p can
be taken arbitrarily large), we obtain the desired continuity of the correspondences
g → �̃g , g → �g considered as mappings from G to L1+α′(E,μ).

4.10. Proof of Proposition 1.3. Let l ∈ N and take distinct points p1, . . . , pl ,
q1, . . . , ql ∈ U . We check that one can choose ε > 0 small enough in such a way
that the function

g(x) =
(

(x − p1) · · · (x − pl)

(x − q1) · · · (x − ql)

)2

satisfies the assumptions of Proposition 4.3 with an arbitrary α < 1/2 and B1 =
{x ∈ R : maxi=1,...,l |x − pi | < ε}, B2 = {x ∈ R : maxi=1,...,l |x − qi | < ε}. In this
proof, C stands for a constant depending only on q1, . . . , ql and ε. The kernel �

is smooth, and if |x − qi | < ε, then |�q1,...,ql (x, x)| < C|x − qi |2, whence for any
α < 1/2 we have ∫

B2

∣∣g(x)
∣∣1+α

�q1,...,ql (x, x) dμ(x) < +∞.
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For any ε > 0, on the set {x ∈ R : mini=1,...,l |x −qi | > ε} we have |g(x)−1|2 ≤
C(1 + x2)−1, whence∫

{x∈R:mini=1,...,l |x−qi |>ε}
∣∣g(x) − 1

∣∣2�(x,x) dμ(x) < +∞.

The operator �q1,...,ql is a finite-rank perturbation of the operator �, whence

(88)
∫
{x∈R:mini=1,...,l |x−qi |>ε}

∣∣g(x) − 1
∣∣2�q1,...,ql (x, x) dμ(x) < +∞.

Proposition 4.3 now implies Proposition 1.3.
Proposition 4.2 together with Proposition 3.1 immediately imply the following.

COROLLARY 4.11. Under the assumptions of Theorem 1.4, for any distinct
points p1, . . . , pl, q1, . . . , ql ∈ U , for the corresponding reduced Palm measures
are equivalent, and we have

dP�p1,...,pl

dP�q1,...,ql

= � | (x−p1)···(x−pl )

(x−q1)···(x−ql )
|2 .

Together with Proposition 2.19, Corollary 4.11 implies Theorem 1.4. Theo-
rem 1.4 is proved completely. �

4.11. Proof of Proposition 1.5. Denote qi = σ(pi), i = 1, . . . , l; of course, we
have {p1, . . . , pl} = {q1, . . . , ql}. Set

(89) g(x) =
m∏

i=1

(
x − qi

x − pi

)2
χE\{p1,...,pl}(x).

The function g is bounded, and Assumption 4 implies∑
E

∣∣g(x) − 1
∣∣2 < +∞,

and, since no nonzero function in L is supported on a finite set, we conclude ap-
plying Proposition 4.5 to the function g and the kernel �p1,...,pm,p̆m+1,...,p̆l .

In a similar way to the continuous case, Proposition 4.2 and Proposition 3.2
together imply that, under the assumptions of Proposition 1.5, we have

(90) P
�q1,...,qm,q̆m+1,...,q̆l = �(p1, . . . , pl,m,σ )P

�p1,...,pm,p̆m+1,...,p̆l .

The relation (90) together with Proposition 2.19 implies Theorem 1.6.
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