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LARGE DEVIATIONS OF THE TRAJECTORY OF EMPIRICAL
DISTRIBUTIONS OF FELLER PROCESSES ON LOCALLY

COMPACT SPACES

BY RICHARD C. KRAAIJ1

Ruhr-University of Bochum

We study the large deviation behaviour of the trajectories of empirical
distributions of independent copies of time-homogeneous Feller processes on
locally compact metric spaces. Under the condition that we can find a suitable
core for the generator of the Feller process, we are able to define a notion of
absolutely continuous trajectories of measures in terms of some topology on
this core. Also, we define a Hamiltonian in terms of the linear generator and
a Lagrangian as its Legendre transform.

We prove the large deviation principle and show that the rate function can
be decomposed as a rate function for the initial time and an integral over the
Lagrangian, finite only for absolutely continuous trajectories of measures.

We apply this result for diffusion and Lévy processes on Rd , for pure jump
processes with bounded jump kernel on arbitrary locally compact spaces and
for discrete interacting particle systems. For diffusion processes, the theorem
partly extends the Dawson and Gärtner theorem for noninteracting copies in
the sense that it only holds for time-homogeneous processes, but on the other
hand it holds for processes with degenerate diffusion matrix.
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1. Introduction. Dawson and Gärtner [4] proved the large deviation princi-
ple for the trajectory of empirical distributions of weakly interacting copies of
diffusion processes. Additionally, they proved that the rate function can be decom-
posed as an entropy term for the large deviations at time zero and an integral over
a quadratic Lagrangian, depending on position and speed. Recently, new proofs
have been given using various methods and based on varying assumptions in [2,
12, 13].

Similar results for Markov jump-processes has been given in [7, 9, 14, 15, 20,
21]. Additionally, [25] study the large deviations of trajectories of the empirical
distributions together with the empirical flow of a finite state space Markov jump
process and give a Lagrangian form of the rate function.

These two sets of results raise the question whether a context independent ap-
proach is possible to prove large deviations, in the space DP(E)(R

+), the Sko-
rokhod space of P(E) valued trajectories, for trajectories of weakly interacting,
or even independent copies of processes on some space E with a rate function of
“Lagrangian” form:

(1.1) I (ν) :=
⎧⎨
⎩I0

(
ν(0)

)+ ∫ ∞
0

L
(
ν(s), ν̇(s)

)
ds if ν is absolutely continuous,

∞ otherwise.

For independent copies of processes, a large deviation principle (LDP) for the
empirical averages can be obtained via Sanov’s theorem and the contraction prin-
ciple. Thus, the main goal of this paper is to rewrite this contracted rate-function
in the form (1.1) in a unified way that allows for a large class of state spaces and
processes including, for example, Lévy processes or independent copies of whole
interacting particle systems [24].
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The results in this paper should be compared to the large deviation principle,
and the representation of the rate function, for the empirical process n−1∑

i≤n δXi

on the space P(DE(R+)) in [28, 31]. In the first paper, the Xi are particles on a
discrete lattice interacting via an exclusion rule, and in the second paper, the Xi

are Brownian particles with local interaction. In both cases, it is shown that the
rate function has a conditional structure, composed of two parts. The first part is
the rate function for the trajectory of empirical measures, in Lagrangian form, as
described above. The second part is the path-space relative entropy of the measure
with respect to a specifically tilted Markov process that has the correct marginals.
In [31], the question is raised whether such results are equally robust, but this
question goes beyond the results in this paper, both in terms of the interaction as
in the space for which the LDP is stated.

To give a uniform proof of (1.1), one cannot use any explicit structure of the
underlying process, so we use the functional analytic structure underlying the Gir-
sanov transformation that has been extensively studied in [13]. Compared to [13],
the focus of this paper is different. The independence assumption implies that the
large deviation principle can be proven via Sanov’s theorem and the contraction
principle. Therefore, the main problem that is being addressed in this paper is the
expression of the rate function in a Lagrangian form.

To obtain this Lagrangian form, we study the nonlinear semigroup {V (t)}t≥0
on C0(E) of conditional log Laplace transforms, defined by V (t)f = logS(t)ef ,
where S(t) is the linear transition semigroup of the Feller process on a locally
compact Polish space E. The main technical step in this paper is to show that the
lift of the semigroup V (t) to C(P(E)) equals a variational Nisio semigroup V(t):

V(t)G(μ)= sup
ν∈ACμ

{
G
(
ν(t)

)− ∫ t

0
L
(
ν(s), ν̇(s)

)
ds

}
,

where G ∈ C(P(E)) and ACμ is the space of “absolutely continuous” P(E)-
valued trajectories that start in μ. The definition of the Nisio semigroup poses
us with two problems. First, we need a way to define absolutely continuous tra-
jectories of measures, and second, we need a way to define a Lagrangian. To this
end, we assume the existence of a suitable topology on a core of the generator
(A,D(A)) of the Feller process. This topology can then be used to define abso-
lute continuity and the Lagrangian can be defined as the Legendre transform of
H , Hf = e−f Aef , with respect to the duality of D with D′. The equality of V (t)

and V(t) is proven using resolvent approximation arguments and Doob-transform
techniques.

The paper is organised as follows. We start out in Section 2 with the preliminar-
ies and state the two main results. Theorem 2.1 gives, under the condition that the
processes solves the martingale problem, the large deviation principle. Under the
condition that there exists a suitable core for the generator of the process, Theo-
rem 2.8 gives the decomposition of the rate function.
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In Section 3, we study functional analytic properties of the generator, its non-
linear counterpart H and the Lagrangian L. Additionally, we show that H is inti-
mately related to the Girsanov transforms of the Markov process with generator A.
In Section 4, we prove Theorem 2.8. In particular, we introduce the Nisio semi-
group V(t) in terms of absolutely continuous trajectories and the Lagrangian, and
show that it equals the nonlinear semigroup V (t).

In Section 5, we give four examples where Theorem 2.8 applies. We start with
diffusion processes. After that, we consider Lévy processes and Markov jump pro-
cesses. Finally, we check the conditions for spatially extended interacting particle
systems of the type that are found in Liggett [24].

2. Preliminaries and main results. We start with some notation. Let (E,d)

be a complete separable metric space with Borel σ -algebra E . M(E) is the set of
Borel measures of bounded total variation on E equipped with the weak topology
and P(E) is the subset of probability measures. We denote with DE(R+) the Sko-
rokhod space of E valued càdlàg paths [11], Section 3.5, R+ = [0,∞). We write
〈f,μ〉 for the integral of f ∈ Cb(E) with respect to μ ∈M(E).

We define the relative entropy H(μ | ν) of μ with respect to ν by

(2.1) H(μ | ν)=
⎧⎨
⎩
∫

log
dμ

dν
dμ if μ	 ν,

∞ otherwise.

On E, we have a time-homogeneous Markov process {X(t)}t≥0 given by a path
space measure P on DE(R+). Let X1,X2, . . . be independent copies of X and
let P the measure that governs these processes. We look at the behaviour of the
sequence Ln := {LX(t)

n }t≥0,

LX(t)
n := 1

n

n∑
i=1

δ{Xi(t)},

under the law P . Ln takes values in DP(E)(R
+), the Skorokhod space of paths

taking values in P(E). We also consider CP(E)(R
+) the space of continuous paths

on P(E) with the topology inherited from DP(E)(R
+).

We say that Ln satisfies the large deviation principle (LDP) on DP(E)(R
+) with

a lower semicontinuous rate function I : DP(E)(R
+)→ [0,∞] if for every open

set A:

lim inf
n→∞

1

n
logP [Ln ∈A] ≥ − inf

μ∈A
I (μ)

and for every closed set B

lim sup
n→∞

1

n
logP [Ln ∈ B] ≤ − inf

μ∈B
I (μ).

I is called good if its level sets {I ≤ c} are compact.
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Suppose that A : D(A) ⊆ Cb(E)→ Cb(E), is a linear operator with a domain
that separates points: for every x, y ∈ E, there exists a f in this set such that
f (x) �= f (y). We say that X solves the martingale problem for (A,D(A)) with
starting measure P0, if P0 is the law of X(0) and if for every f ∈D(A),

f
(
X(t)

)− f
(
X(0)

)− ∫ t

0
Af

(
X(s)

)
ds

is a martingale for the natural filtration {Ft }t≥0 given by Ft = σ(X(s) | s ≤ t).
In Appendix A, we obtain the following preliminary result.

THEOREM 2.1. Let X, represented by the measure P on DE(R+) solve the
martingale problem for (A,D(A)) with starting measure P0. Then the sequence
Ln satisfies the large deviation principle with good rate function I , which is given
for ν = {ν(t)}t≥0 ∈DP(E)(R

+) by

I (ν)=

⎧⎪⎪⎨
⎪⎪⎩

H
(
ν(0) | P0

)+ sup
{ti}

k∑
i=1

Iti−ti−1

(
ν(ti) | ν(ti−1)

)
if ν ∈ CP(E)

(
R+

)
,

∞ otherwise,

where {ti} is a finite sequence of times: 0 = t0 < t1 < · · · < tk . For s ≤ t ,
we have It (ν2 | ν1) := supf∈Cb(E){〈f, ν2〉 − 〈V (t)f, ν1〉}, where V (t)f (x) :=
logE[ef (X(t)) |X(0)= x].

For further results, we introduce some additional notation. For a locally convex
space (X , τ ), we write X ′ for its continuous dual space. For x ∈X and x′ ∈X ′, we
write 〈x, x′〉 := x′(x) ∈R for the natural pairing between x and x′. For two locally
convex spaces X ,Y and a continuous linear operator T : X → Y , we write T ′ :
Y ′ →X ′ for the adjoint of T , which is uniquely defined by 〈x,T ′(y′)〉 = 〈T x, y′〉;
see, for example, Treves [34], Chapter 19. For a neighbourhood N of 0 in X , we
define the polar of N ◦ ⊂X ′ by

(2.2) N ◦ := {u ∈X ′ | ∣∣〈x,u〉∣∣≤ 1 for every x ∈N
}
.

We say that a locally convex space X is barrelled if every barrel is a neighbour-
hood of 0. A set S is a barrel if it is convex, balanced, absorbing and closed. S is
balanced if we have the following: if x ∈ S and α ∈ R, |α| ≤ 1 then αx ∈ S. S is
absorbing if for every x ∈ X there exists a r ≥ 0 such that if |α| ≥ r then x ∈ αS.
Barrelled spaces are of importance in view of this paper, because they allow for
a well-defined integration theory on the dual space. We state the main result in
this direction in Appendix B. For example, Banach, Fréchet and LF (limit Fréchet)
spaces are barrelled [34], Chapter 33. The space of Schwartz functions is Fréchet
and the space C∞c (Rd) with its usual topology is LF.

To rewrite the rate function obtained in Theorem 2.1, we restrict to locally
compact metric spaces (E,d) and we consider the situation where S(t)f (x) =
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E[f (X(t)) |X(0)= x] is a strongly continuous semigroup on the space (C0(E),

‖ · ‖): for every t ≥ 0, the map S(t) : (C0(E),‖ · ‖)→ (C0(E),‖ · ‖) is continuous,
and for every f ∈ C0(E), the trajectory t �→ S(t)f is continuous in (C0(E),‖ · ‖).

Let (A,D(A)) be the generator of the semigroup S(t). It is a well-known result
that X solves the martingale problem for (A,D(A)) [11], Proposition 4.1.7, so the
above result holds for the process {X(t)}t≥0.

Our goal is to rewrite I as

I (ν)=H
(
ν(0) | P0

)+ ∫ t

0
L
(
ν(s), ν̇(s)

)
ds

for a trajectory ν of probability measures that is absolutely continuous in a yet to
define sense. Thus, our first problem is to define differentiation in a context for
which no suitable structure on E or P(E) is known. Therefore, we will have to
tailor the definition of differentiation to the process itself. Suppose that μ(t) is
the law of X(t) under P. Then we know that t �→ μ(t) = S(t)′μ(0) is a weakly
continuous trajectory in P(E), so we can ask whether for f ∈D(A) the trajectory
t �→ 〈f,μ(t)〉 is differentiable as a function from R+ →R:

(2.3)
∂

∂t

〈
f,μ(t)

〉= ∂

∂t

〈
S(t)f,μ(0)

〉= 〈S(t)Af,μ(0)
〉= 〈Af,μ(t)

〉
.

Thus, our candidate for μ̇(t) is A′μ(t), which is problematic because the oper-
ator (A,D(A)) could be unbounded. To overcome this, and other problems, we
introduce two sets of conditions on (A,D(A)).

Recall that D is a core for (A,D(A)) if D is dense in (C0(E),‖ · ‖) and if for
every f ∈D(A), we can find a sequence fn ∈D such that fn→ f and Afn→Af .
For general properties of cores, see [11], Chapter 1 or [10], Chapter 2.

CONDITION 2.2. There exists a core D ⊆D(A) that satisfies:

(a) D is an algebra, that is, if f,g ∈D then fg ∈D,
(b) if f ∈D and φ : R→ R a smooth function on the closure of range of f ,

then φ ◦ f − φ(0) ∈D.

In the case that E is compact, C0(E)=C(E), then (b) can be replaced by

(b′) if f ∈ D and φ : R→ R a smooth function on the range of f , then
φ ◦ f ∈D.

Under Condition 2.2, we define the operator H : D → C0(E) and for every
g ∈D the operator Ag :D→C0(E) by

Hf = e−f Aef , Agf = e−gA
(
f eg)− (e−gAeg)f.

These definitions follow [13] and are at the basis of a functional analytic approach
for studying the Girsanov transform. If E is noncompact, these definitions needs
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some care as ef /∈ C0(E). This can be solved by looking at the one-point com-
pactification of E; see Section 3.1. In Section 3, we will show that {V (t)}t≥0 is
a nonlinear semigroup on C0(E), which has a generator that extends H . The op-
erators Ag are generators of Markov processes with law Qg on DE(R+) that are
obtained from P by

(2.4)
dQg
[0,t]

dP[0,t]
(X)= exp

{
g
(
X(t)

)− g
(
X(0)

)− ∫ t

0
Hg

(
X(s)

)
ds

}
,

where P[0,t] and Q
g
[0,t] are the measures P and Qg restricted to times up to t ; see

Proposition 3.7 below.

CONDITION 2.3 (Conditions on the core). D satisfies Condition 2.2 and there
exists a topology τD on D such that:

(a) (D, τD) is a separable barrelled locally convex Hausdorff space.
(b) The topology τD is finer than the sup norm topology restricted to D.
(c) If φ : [a, b] → R is smooth and such that φ(0)= 0, then the map Tφ :D ∩

{f ∈D | f (E)⊆ [a, b]}→D, defined by Tφf = φ ◦ f is τD to τD continuous.
(d) The map A : (D, τD)→ (C0(E),‖ · ‖) is continuous.
(e) There exists a barrel N ⊆ (D, τD) such that for every c > 0, we have

supf∈cN ‖Hf ‖<∞.

Conditions (a) and (b) make sure that (D, τD) is well behaved as a locally con-
vex space in relation to C0(E). Among other things, we are able to define the
Gelfand integral; see Appendix B.

(d) implies that the adjoint A′ exists as a map from P(E) into D′ solving the
issue that arose in (2.3). Condition (c) will imply that not only (d) holds for A, but
also that (d) holds for all operators Ag . In other words: if μg(t) is the trajectory of
measures obtained by Sg(t)′μ(0), where {Sg(t)}t≥0 is the semigroup correspond-
ing to the change of measure in (2.4), then μ̇g(t) := (Ag)′μg(t) ∈D′.

The existence of a barrel N such that supf∈N ‖Hf ‖ <∞ follows from (c),
(d) and Lemma 2.4 below. Thus, the real assumption in (e) is that one can find a
single N that works for all c ≥ 0. This can be interpreted as a growth bound on H ,
which can be used to obtain the compactness of the level sets of L, and to obtain
bounds on linear functionals in terms of the Lagrangian in Lemma 4.28. We give
an example of a Markov-jump process where this condition is not satisfied due to
the global unboundedness of the jump rates in Section 5.4.

Note that the barrel N can always be replaced by the barrel N ∗ obtained by
adding all the constant functions α1, α ∈R and then taking the convex hull. Then
N ∗ also satisfies (e). If g ∈ cN ∗, then there is a λ ∈ [0,1], f ∈ cN and α ∈R such
that g = λf + (1− λ)α1. Because the map h �→ Hh is convex (see the proof of
Lemma 3.13), we find

‖Hg‖ ≤ ∥∥H (
λf + (1− λ)α1

)∥∥≤ λ‖Hf ‖ + (1− λ)α‖H1‖ ≤ ‖Hf ‖.
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Thus, we will implicitly assume that N includes all the constant functions.
The following lemma is a consequence of Condition 2.3(c) and (d) and the proof

is elementary.

LEMMA 2.4. Let (D, τD) satisfy Condition 2.3, then the maps A : (D, τD)×
(D, τD) → (C0(E),‖ · ‖) given by 
(g,f ) = Agf and the operator H :
(D, τD)→ (C0(E),‖ · ‖) are continuous.

Let g ∈D. As a consequence of the second statement, the map Ag : (D, τD)→
(C0(E),‖ · ‖) is continuous.

REMARK 2.5. The results of this paper also hold in the case that Condi-
tion 2.3(c) fails as long as the conclusions of Lemma 2.4 hold. In all examples
that we consider in Section 5, (c) is satisfied.

For the next definition, we will need the Gelfand or weak∗ integral, which is
introduced in Appendix B.

DEFINITION 2.6. Define D − AC, or if there is no chance of confusion,
AC, the space of (weakly) absolutely continuous paths in CP(E)(R

+). A path
ν ∈ CP(E)(R

+) is called absolutely continuous if there exists a (D′,wk∗) mea-
surable curve s �→ u(s) in D′ with the following properties:

(i) for every f ∈D and t ≥ 0:
∫ t

0 |〈f,u(s)〉|ds <∞,
(ii) for every t ≥ 0, ν(t)− ν(0)= ∫ t

0 u(s)ds as a D′ Gelfand integral, that is,

〈
f, ν(t)− ν(0)

〉= 〈f,

∫ t

0
u(s)ds

〉
=
∫ t

0

〈
f,u(s)

〉
ds ∀f ∈D.

We denote ν̇(s) := u(s). Furthermore, we will denote ACμ for the space of abso-
lutely continuous trajectories starting at μ0, and ACT for trajectories that are only
considered up to time T . Finally, we define ACT

μ =ACμ ∩ACT .

A direct consequence of the definition is that if ν ∈ AC then for almost every
time t ≥ 0 and all f ∈D the limit

lim
h→0

〈f, ν(t + h)〉 − 〈f, ν(t)〉
h

exists and is equal to 〈f, ν̇(t)〉. This justifies the notation u(s)= ν̇(s).

REMARK 2.7. When we apply this definition for D equal to the space of com-
pactly supported smooth functions on Rd with the natural inductive limit topology,
a curve is absolutely continuous in the sense of Definition 4.1 in [4] is absolutely
continuous in the sense of 2.6. For a trajectory with finite Lagrangian cost, in the
sense of the next theorem, the converse holds as well. See Proposition 2.12 and
Lemma 5.2 below.
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Using these definitions, we are able to improve on Theorem 2.1.

THEOREM 2.8. Let (E,d) be locally compact. Let (A,D(A)) have a core D

equipped with a topology τD such that (D, τD) satisfies Condition 2.3. Then the
rate function in Theorem 2.1 can be rewritten as

I (ν)=
⎧⎨
⎩H

(
ν(0) | P0

)+ ∫ ∞
0

L
(
ν(s), ν̇(s)

)
ds if ν ∈AC,

∞ otherwise,

where L : P(E)×D′ → [0,∞] is given by L(μ,u) := supf∈D{〈f,u〉− 〈Hf,μ〉}.

REMARK 2.9. If we restrict ourselves to [0, T ] instead of R+, then we obtain

IT ({ν(s)
}

0≤s≤T

)=
⎧⎪⎨
⎪⎩

H
(
ν(0) | P0

)+ ∫ T

0
L
(
ν(s), ν̇(s)

)
ds if ν ∈ACT ,

∞ otherwise,

by applying the contraction principle.

REMARK 2.10. Note that the rate function in terms of L can be obtained
heuristically from the form of It in Theorem 2.1. Suppose that ν ∈AC. Then

1

h
Ih

(
ν(t + h) | ν(t)

)

= 1

h
sup

f∈Cb(E)

{〈
f, ν(t + h)

〉− 〈f, ν(t)
〉− 〈V (h)f − f, ν(t)

〉}

= 1

h
sup
f∈D

{〈
f, ν(t + h)

〉− 〈f, ν(t)
〉− 〈V (h)f − f, ν(t)

〉}
.

Formally interchanging the limit as h ↓ 0 and taking the supremum over f ∈ D

yields 1
h
Ih(ν(t + h) | ν(t)) ≈ supf∈D〈f, ν̇(t)〉 − 〈Hf,ν(t)〉 = L(ν(t), ν̇(t)). This

argument can be put to work for continuous L and piece-wise “continuously differ-
entiable” trajectories via the Riemann integral and a sequence of careful choices of
times t0 < t1 < · · ·< tn. However, for arbitrary absolutely continuous trajectories
it is not clear to the author how to make such an argument rigorous.

For trajectories with finite Lagrangian cost, we can strengthen the absolute con-
tinuity to strong absolute continuity, in the spirit of Definition 4.1 of [4].

DEFINITION 2.11. We say that a path ν ∈ CP(E)(R
+) is strongly absolutely

continuous if there exists an absolutely continuous function H : [0,∞)→R such
that supf∈N |〈f, ν(t)〉 − 〈f, ν(s)〉| ≤ |H(t)−H(s)| for all s, t ≥ 0.
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Note that absolute continuity is much easier to establish than strong absolute
continuity. Thus, for the main proofs we will use the weak notion. We do mention
strong absolute continuity, because this notion allows one to prove integration by
parts formula’s as in Lemma 4.3 in [4]. In general, we have the following result
that allows us to strengthen the weak notion to the strong notion.

PROPOSITION 2.12. Let (E,d) be locally compact. Let (A,D(A)) have a
core D equipped with a topology τD such that (D, τD) satisfies Condition 2.3.
Then we have the following two results:

(a) If γ ∈ CP(E)(R
+) is strongly absolutely continuous, then it is absolutely

continuous.
(b) If γ ∈ CP(E)(R

+) is absolutely continuous and satisfies∫ ∞
0

L
(
γ (s), γ̇ (s)

)
ds <∞,

then it is strongly absolutely continuous.

3. A study of the operators V (t), H , L and Ag .

3.1. The semigroup V (t) and the generator H . We return to the situation that
(E,d) is a locally compact metric space, so that we can use semigroup theory to
rewrite the rate function.

First suppose that E is noncompact. Let E� = E ∪ {�} be the one-point com-
pactification. By Lemma 4.3.2 in [11], S(t) extends to a strongly continuous
contraction semigroup on (C(E�),‖ · ‖) by setting S�(t)f = f (�)+ S(t)(f −
f (�)). Therefore, we can argue using the semigroup on the compact space E�,
and then obtain the result in Theorem 2.8 on E by Theorem 4.11 in Feng and
Kurtz [13].

Technically, we would also need to add the constants to the core D of Condi-
tions 2.2 and 2.3. In other words, we should consider D� :=D⊕R with its natural
topology τ�

D . However, the generator A� of the extended semigroup {S�(t)}t≥0
satisfies A�1 = 0. As a consequence, it also holds that H�1 = 0, and we can
include the constants in a natural way into the barrel N of Condition 2.3(e). By
Lemma 3.11 below, this implies that the space U of speeds that have finite La-
grangian cost is a subspace of D′. So indeed Theorem 2.8 holds with respect
to the core (D, τD) of the generator (A,D(A)) instead of the core (D�, τ�

D ) of
(A�,D(A�)).

From this point onward, we assume that (E,d) is compact and that the transition
semigroup {S(t)}t≥0 is strongly continuous on C(E). Let A : D(A) ⊆ C(E)→
C(E) be the associated infinitesimal generator.

We examine V (t)f (x) = logS(t)ef (x) = logE[ef (X(t)) | X(0) = x], f ∈
C(E), which was defined in Theorem 2.1. It is an elementary calculation to check
that {V (t)}t≥0 is a strongly continuous contraction semigroup on C(E).
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As in the linear case, define the generator H of {V (t)}t≥0 to be

Hf = lim
t↓0

V (t)f − f

t

defined for f ∈D(H), where

D(H) :=
{
f ∈ C(E)

∣∣∣ ∃g ∈ C(E) : lim
t↓0

∥∥∥∥V (t)f − f

t
− g

∥∥∥∥= 0
}
.

We start with an extension of the chain rule to Banach spaces. The proof is
rather standard and is left to the reader.

LEMMA 3.1. Let {f (s)}s∈[0,ε], ε > 0 be a collection of bounded functions
f (s) :E→R such that s �→ f (s) is norm continuous in C(E). Additionally, sup-
pose that

g := lim
t→0

f (t)− f (0)

t

exists in norm. Denote by S ⊆ R the union of ranges S = ⋃
s f (s)(E). Let φ :

S→R be differentiable on S and let φ′ be Lipschitz continuous. Then it holds that
d
dt

φ(f (t))|t=0 = φ′(f (0))g, which should be interpreted as

lim
t→0

φ(f (t))− φ(f (0))

t
= φ′

(
f (0)

)
g

with respect to the sup norm.

Because for any fixed given f ∈D(A), we have that limt→0
T (t)f−f

t
=Af , we

can explicitly calculate the generator H of V (t) on its domain.

COROLLARY 3.2. For f ∈ C(E), ef ∈D(A) is equivalent to f ∈D(H) and
if this holds, then Hf = e−f A(ef ).

PROOF. Because f ∈ C(E) it is bounded from below and as S(t) is contrac-
tive for all t ≥ 0, we know that infx∈e inft S(t)ef (x) > 0. Thus, the logarithm and
its derivative are Lipschitz on the union of the ranges of S(t)ef . Thus, it follows
that f ∈D(H) and Hf = e−f Aef by Lemma 3.1.

The proof in the other direction follows similarly as the exponential function
and its derivative are Lipschitz on every bounded domain. �

We note that as a consequence of Condition 2.2, Corollary 3.2 gives us that if
f ∈D, then f ∈D(H) and Hf = e−f Aef .

Because D is closed under composition with smooth functions, D acts as a
“core” for the nonlinear operator (H,D(H)).
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LEMMA 3.3. Let f ∈D(H), then we can find a sequence of functions gn ∈D

such that ‖gn − f ‖ + ‖Hgn −Hf ‖→ 0.

PROOF. Because f ∈ D(H), we have ef ∈ D(A) by an application of
Lemma 3.1. D is a core for (A,D(A)), so we can find hn ∈ D such that ‖ef −
hn‖+‖Aef −Ahn‖→ 0. As f is a bounded function, we find that infx ef (x) > 0.
Thus, we can assume without loss of generality α := infn infx hn(x) > 0. We de-
fine gn := loghn. D is closed under composition with smooth functions, which
implies that gn ∈D.

On [α,∞) the maps x �→ logx and x �→ x−1 are uniformly continuous which
implies ‖gn − f ‖→ 0 and ‖e−gn − e−f ‖→ 0. Because taking products is norm
continuous, we find

‖Hgn −Hf ‖ = ∥∥e−gnAe−gn − e−f Aef
∥∥= ∥∥e−gnAhn − e−f Aef

∥∥→ 0. �

We will use this operator (H,D), under Condition 2.3, to construct a new Nisio
semigroup {V(t)}t≥0 on C(P(E)) that formally equals the semigroup {V (t)}t≥0.
This new variational semigroup will be introduced in Section 4.2 below and is
given by a cost optimization problem. The cost is given in terms of a Lagrangian
that we will introduce next.

3.2. Operator duality for H . Additionally to the operator H , we introduce op-
erators Ag that serve as generators of tilted Markov processes obtained from X(t)

by the change of measure given in equation (2.4). We also introduce an operator
L, that will serve as a precursor to our final Lagrangian L.

DEFINITION 3.4. Under Condition 2.2, define the following operators for
f,g ∈D: Agf = e−gA(f eg)− (e−gAeg)f , Lg =Agg−Hg.

H will be called the Hamiltonian and L the (pre-)Lagrangian in analogy to the
Lagrangian and Hamiltonian of classical mechanics. Ag is a generator itself, as we
will show below. This is also illustrated by the next two examples. We calculate H

and Ag in the case of a Markov jump process and a standard Brownian motion.

EXAMPLE 3.5. Let E be a finite set and let {X(t)}t≥0 be generated by

Af (x)=∑
y

r(x, y)
[
f (y)− f (x)

]
,

where r is some transition kernel. A calculations shows that

Hf (x)=∑
y

r(x, y)
[
ef (y)−f (x) − 1

]
,

Agf (x)=∑
y

r(x, y)eg(y)−g(x)[f (y)− f (x)
]
.
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EXAMPLE 3.6. Let E =R, and let {X(t)}t≥0 be a standard Brownian motion,
for which the generator A is given for f ∈ C∞c (R), that is, smooth and compactly
supported functions, by Af (x)= 1

2f ′′(x). H and Ag are given by

Hf (x)= 1

2
f ′′(x)+ 1

2

(
f ′(x)

)2
, Agf (x)= 1

2
f ′′(x)+ f ′(x)g′(x).

The claim that Ag is a generator is made precise by the following Girsanov
transform; see Theorem 4.2 in [26].

PROPOSITION 3.7. Suppose that g ∈ D and consider the measure Q
g
[0,T ] ∈

P(DE([0, T ])) defined by

dQg
[0,T ]

dP[0,T ]
(X)= exp

{
g
(
X(T )

)− g
(
X(0)

)− ∫ T

0
Hg

(
X(s)

)
ds

}
,

where P[0,T ] is the measure P restricted to DE([0, T ]). Then the coordinate pro-
cess X is Markov under Q

g
[0,T ] and for every f ∈D the process {Mf

t }t∈[0,T ] de-
fined by

(3.1) M
f
t := f

(
X(t)

)− f
(
X(0)

)− ∫ t

0
Agf

(
X(s)

)
ds

is a mean 0 martingale with respect to the filtration {Ft }t∈[0,T ] under Qg
[0,T ].

PROOF. The conditions of Theorem 4.2 in [26] are satisfied by Condition 2.2
if we take for the domain of A and Ag the core D. �

The transforms introduced above yield absolutely continuous trajectories of
measures.

LEMMA 3.8. Suppose that g ∈ D and consider the measure Q
g
[0,T ] ∈

P(DE([0, T ])) introduced in Proposition 3.7. Denote by γ g(t) the law of X(t)

under Qg
[0,T ]. The trajectory {γ g(t)}t∈[0,T ] is absolutely continuous in the sense of

Definition 2.6 and γ̇ g(t)= (Ag)′(γ g(t)) for all t ∈ [0, T ].
PROOF. Denote by {Sg(t)}t∈[0,T ] the semigroup of conditional expectations

under Qg
[0,T ]. Let f ∈D and let γ (t) be the law of X(t) under Qg

[0,T ]. It is straight-
forward to show that Sg(t) is a strongly continuous semigroup on (C(E),‖ ·‖) and
that t �→ γ (t) = (Sg(t))′(γ (0)) is weakly continuous. By Lemma 2.4, we know
that Ag : (D, τD)→ (C(E),‖·‖) is continuous. We conclude that t �→ (Ag)′(γ (t))

is weak∗ continuous in D′.
For every f ∈D and t ≥ 0, we know that∫ t

0

∣∣〈f,
(
Ag)′(γ (s)

)〉∣∣ds =
∫ t

0

∣∣〈Agf,γ (s)
〉∣∣ds ≤ t

∥∥Agf
∥∥<∞.
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Taking expectation in (3.1), we have that

〈
Sg(t)f, γ (0)

〉− 〈f,γ (0)
〉= ∫ t

0

〈
Sg(s)Agf, γ (0)

〉
ds,

which shows that

〈
f,γ (t)

〉− 〈f,γ (0)
〉= ∫ t

0

〈
Agf,γ (s)

〉
ds =

∫ t

0

〈
f,
(
Ag)′(γ (s)

)〉
ds.

We conclude that {γ g(t)}t∈[0,T ] is absolutely continuous and that γ̇ g(t) =
(Ag)′(γ g(t)) for all t ∈ [0, T ]. �

Just as the conditional rate function It is related to the semigroup V (t), [33]
observed for diffusion and jump-processes that the operator L is related to H and
Ag via operator duality. See also the discussion in Section 8.6.1 in [13].

LEMMA 3.9. Under Condition 2.2, we have for f ∈D that

(3.2) 〈Hf,μ〉 = sup
g∈D

{〈
Agf,μ

〉− 〈Lg,μ〉},
and equality holds for g = f . Furthermore, for g ∈D and μ ∈P(E) it holds that

(3.3) 〈Lg,μ〉 = sup
f∈D

{〈
Agf,μ

〉− 〈Hf,μ〉},
with equality for f = g.

PROOF. For λ > 0, consider the resolvent of A defined by J (λ)f := (1 −
λA)−1f = ∫∞

0 λ−1e−λ−1t S(t)f dt . The Yosida approximants of A are defined as
Aλ := λ−1(J (λ)− 1)=AJ(λ). It is well known that the Aλ are bounded and are
given by

Aλf (x)= λ−1
∫

qλ(x,dy)
[
f (y)− f (x)

]
,

where qλ(x, ·) is the law of the process generated by A after an exponential random
time with mean λ. Next, define Hλ,A

g
λ and Lλ in terms of Aλ. As Aλ is bounded,

it follows by Lemma 5.7 in [13] that

Hλf (x)≥A
g
λf (x)−Lλg(x), Hλf (x)=A

f
λ f (x)−Lλf (x).

Therefore, it follows by Yosida approximation, sending λ ↓ 0, cf. [11], Lem-
ma 1.2.4, that Hf (x) = supg∈D{Agf (x) − Lg(x)}. The first statement now fol-
lows by integration. The variational statement for L is obtained similarly. �
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3.3. The Lagrangian and a variational expression for the Hamiltonian. The
Lagrangian in the previous section is still an operator acting on functions. Here,
we embed this object in a new Lagrangian L that is a function of place and speed.
Also, we introduce a map ρ that transforms “momentum” into speed.

DEFINITION 3.10. Let (D, τD) satisfy Condition 2.3. Define the Lagrangian
L : P(E) × D′ → [0,∞] by L(μ,u) = supf∈D{〈f,u〉 − 〈Hf,μ〉}. Also, define
the map ρ : P(E)×D→D′ by ρ(μ,g)= (Ag)′(μ).

Note that ρ is well-defined by Lemma 2.4. L can be considered as an extension
of L. Pick μ ∈P(E) and g ∈D, then

(3.4)

L
(
μ,ρ(μ,g)

)= sup
f∈D

{〈
f,ρ(μ,g)

〉− 〈Hf,μ〉}
= sup

f∈D

{〈
Agf,μ

〉− 〈Hf,μ〉}= 〈Lg,μ〉,

where the last equality follows by equation (3.3). The following result is immedi-
ate.

LEMMA 3.11. (μ,u) �→ L(μ,u) is convex and lower semicontinuous with
respect to the weak and weak∗ topologies.

It turns out that the space D′ is to large for practical purposes. In particular, it
is not immediately clear that D′ with the weak topology is separable. In the proof
of Proposition 4.2 below, we need to integrate over D′ and because we want to
employ an extended version of the Prohorov theorem that needs separability, we
will construct a more regular subspace of D′ that contains all relevant “speeds”.

Recall the set N introduced in Condition 2.3(e) and the definition of a polar in
(2.2). Define U ⊆D′ by U :=⋃n∈N nN ◦.

We equip U with the weak∗ topology inherited from D′. The importance of
U follows from the following lemma, which shows that we can restrict the set of
allowed “speeds” to U .

LEMMA 3.12. Let μ ∈ P(E). If u /∈ U , then L(μ,u)=∞. Furthermore, for
μ ∈ P(E) and g ∈D, we have ρ(μ,g) ∈U .

PROOF. For u /∈ U = ⋃
n nN ◦, we can find functions fn ∈ N , such that

|〈fn,u〉| ≥ n. The inequality |〈fn,u〉| ≤ L(μ,u)+〈Hfn,μ〉∨〈H(−fn),μ〉, yields
that L(μ,u)≥ n− 1 for every n, which implies that L(μ,u)=∞.

The second statement follows from the first, equation (3.4), and the fact that Lg

is bounded. �

As can be seen from equation (3.4), L is an extension of L. As expected, H can
also be obtained by a Fenchel–Legendre transform of L.
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LEMMA 3.13. The variational expression for H in equation (3.2) extends to
〈Hf,μ〉 = supu∈D′ {〈f,u〉 −L(μ,u)} = supu∈U {〈f,u〉 −L(μ,u)}.

PROOF. As L(μ,u)=∞ if u /∈U , the second equality is immediate. To prove
the first equality, first note that by Definition 3.10 of L, we have for every f ∈D,
μ ∈ P(E), u ∈D′ that 〈Hf,μ〉 ≥ 〈f,u〉 −L(μ,u).

We now show that we in fact have equality. By equation (3.4), we know that
L(μ,ρ(μ,g))= 〈Lg,μ〉. Hence, by the second item in Lemma 3.9, we obtain

(3.5) 〈Hf,μ〉 = 〈Af f,μ
〉− 〈Lf,μ〉 = 〈f,ρ(μ,f )

〉−L
(
μ,ρ(μ,f )

)
,

which completes the proof. �

The identification of the optimizer in the proof of Lemma 3.13 can be used to
restrict to even a smaller subset of D′. We state the result without proof, as it will
not be needed later on.

PROPOSITION 3.14. Let μ ∈ P(E) and define �μ to be the weak∗ closed
convex hull of {ρ(μ,g) | g ∈D} in U . If u /∈ �μ, then L(μ,u)=∞.

4. Proof of Theorem 2.8. We proceed with the proof of Theorem 2.8. We start
with two crucial compactness results which are necessary for the Nisio semigroup,
introduced in Section 4.2, to be well behaved.

4.1. Compactness of the space of paths with bounded Lagrangian cost. We
start with proving the compactness of the level sets of L.

PROPOSITION 4.1. For each C ≥ 0, the set{
(μ,u) ∈ P(E)×U | L(μ,u)≤ C

}
is compact with respect to the weak topology on P(E) and the weak∗ topology
on U .

PROOF. First of all, as L is lower semicontinuous {(ν, u) ∈ P(E) × U |
L(ν, u)≤ C} is closed. We show that it is contained in a compact set.

Pick the neighbourhood N of 0 that was given in Condition 2.3(e). Recall that
in a barrelled space every barrel is a neighbourhood of 0. Set M := supf∈N ‖Hf ‖.
As 〈f,u〉 ≤ L(μ,u)+ 〈Hf,μ〉, we obtain∣∣〈f,u〉∣∣≤ L(ν, u)+ 〈Hf,ν〉 ∨ 〈H(−f ), ν

〉
.

As a consequence,{
(ν, u) ∈ P(E)×U | L(ν, u)≤ C

}⊆ P(E)× |C +M|N ◦.
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Because (D′,wk∗) is Hausdorff and a locally convex space, the closure of this set
is compact in (D′,wk∗) by the Bourbaki–Aloaglu theorem [34], Propositions 32.7
and 32.8, [29], Theorem III.6. �

We now state an essential ingredient of the proof of Theorem 2.8.

PROPOSITION 4.2. For each M > 0, and time T ≥ 0,

KT
M :=

{
ν ∈ CP(E)

([0, T ]) ∣∣∣ ν ∈AC,

∫ T

0
L
(
ν(s), ν̇(s)

)
ds ≤M

}

is a compact subset of CP(E)([0, T ]).
We postpone the lengthy proof of this proposition to Sections 4.6 and 4.7. Us-

ing the techniques introduced in these sections, we will prove Proposition 2.12 in
Section 4.8. We focus on proving Theorem 2.8 first, which is done in Sections 4.2
to 4.5.

These sections are organised as follows. In Section 4.2, we introduce the Ni-
sio semigroup and prove some basic properties of this semigroup. In Sections 4.3
and 4.4, we prove that the Nisio semigroup bounds the lift of the nonlinear semi-
group V (t) to P(E) from below and from above. In Section 4.5, we show that the
equality of the two semigroups leads to a Lagrangian form of the rate function.

4.2. The Nisio semigroup.

DEFINITION 4.3. The Nisio semigroup V mapping upper semicontinuous
functions on P(E) to upper semicontinuous functions on P(E) is defined by

V(t)G(μ)= sup
ν∈ACμ

{
G
(
ν(t)

)− ∫ t

0
L
(
ν(s), ν̇(s)

)
ds

}
.

For a function f ∈ C(E), we denote with [f ] the weakly continuous function
on P(E) defined by [f ](μ)= 〈f,μ〉. Our goal in the next three sections is to show
that V(t)[f ](μ)= 〈V (t)f,μ〉.

Note that as a direct consequence of Proposition 4.2, if G is a bounded contin-
uous function, than the supremum is actually attained by a curve starting at μ in
Kt

3‖G‖. For example, this is the case if G= [g], for g ∈ C(E).
We need one small result which states that for sufficiently many f , there exists

a path such that equality is attained in Young’s inequality for every time t . The
lemma is used for the proof of Lemma 4.10 below.

LEMMA 4.4. For each μ ∈ P(E) and f ∈D, there exists ν ∈ACμ such that
for every t ≥ 0: ∫ t

0

〈
f, ν̇(s)

〉
ds =

∫ t

0

〈
Hf,ν(s)

〉+L
(
ν(s), ν̇(s)

)
ds.
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In particular, by taking f = 0, we find that there is a path with zero cost. This
in turn yields V(t)0= 0, where 0 is the function defined by 0(μ)= 0 for all μ ∈
P(E).

PROOF. Let ν(s) be the path obtained by the time projections of the Markov
process started at μ generated by the operator Af ; see Proposition 3.7. This gives
us a path such that ν̇(s)= (Af )′(ν(s))= ρ(ν(s), f ).

By equation (3.5) on page 790, it follows that〈
Hf,ν(s)

〉= 〈f,ρ
(
ν(s), f

)〉−L
(
ν(s), ρ

(
ν(s), f

))
for every s, implying

∫ t
0 〈Hf,ν(s)〉ds = ∫ t

0 (〈f, ν̇(s)〉 −L(ν(s), ν̇(s)))ds. �

Just like the semigroup {V (t)}t≥0, the Nisio semigroup {V(t)}t≥0 enjoys good
continuity properties.

LEMMA 4.5. For every t ≥ 0, V(t) is contractive, that is, for bounded and
upper semicontinuous functions F,G, we have ‖V(t)F −V(t)G‖ ≤ ‖F −G‖.

The proof of this lemma is straightforward. The next result can be proven using
Proposition 4.2 as Lemma 8.16 in [13].

LEMMA 4.6. For every f ∈ C(E) and μ ∈ P(E), we have that t �→
V(t)[f ](μ) is continuous.

Now that the basic properties of the Nisio semigroup are known, we proceed
with the proof that V (t)f = V(t)[f ]. The argument is split into two steps. The
inequality 〈V (t)f,μ〉 ≥V(t)[f ](μ) is established by arguments based on approx-
imation of the semigroups by their resolvents. The second inequality is based on a
Doob-h transform argument.

4.3. The first inequality between the two semigroups. For f ∈ C(E), define
J (λ)f := (1− λA)−1f = ∫∞

0 λ−1e−λ−1t S(t)f dt . Using J (λ), we set R(λ)f :=
logJ (λ)ef .

We constructed the semigroup V (t) from the linear semigroup S(t), and the
operator R(λ) from the linear resolvent J (λ). One would therefore hope that R(λ)

equals (1− λH)−1. This is not the case, but we do have the following two results,
which we will need for the proof of Lemma 4.10 and Proposition 4.12.

LEMMA 4.7. For f ∈ C(E) and λ > 0, we have R(λ)f ∈ D(H) and (1 −
λH)R(λ)f ≥ f .
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PROOF. J (λ) maps C(E) bijectively on D(A), therefore, eR(λ)f = J (λ)ef ∈
D(A). Thus, by Corollary 3.2, we have that R(λ)f ∈D(H).

Let x ∈E, we prove (1− λH)R(λ)f (x)≥ f (x). First, we show that
We prove that the following quantity is larger than 0:

(1− λH)R(λ)f (x)− f (x)=R(λ)f (x)− f (x)− λ
AJ(λ)ef (x)

J (λ)ef (x)

=R(λ)f (x)− f (x)− J (λ)ef (x)− ef (x)

J (λ)ef (x)
.

This is equivalent to showing that

J (λ)ef (x) log
(
J (λ)ef (x)

)− f (x)J (λ)ef (x)− J (λ)ef (x)+ ef (x)

is positive, which follows from the fact that for every c ∈ R, the function defined
for nonnegative y, given by y �→ y logy − (c+ 1)y + ec, is nonnegative. �

Note that the fact that the function y �→ y logy − (c + 1)y + ec has a unique
point where it hits 0. This means that (1−λH)R(λ)f (x)= f (x) only if E[ef (Xτ ) |
X0 = x] = ef (x), where τ is an exponential random variable with mean λ indepen-
dent of the process X. This cannot be true in general.

Even though R(λ) does not invert (1− λH), the family {R(λ)}λ>0 can be used
to approximate the semigroup in a way that the resolvents of H can as well.

LEMMA 4.8. For every f ∈ C(E), we have that limn→∞R(n−1)�nt�f =
V (t)f in the supremum norm topology.

PROOF. By definition, we have R(n−1)�nt�f = logJ (n−1)�nt�ef . For linear
semigroups, we know that the resolvents approximate the semigroup: J ( 1

n
)�nt� ×

ef → S(t)ef ; see, for example, Corollary 1.6.8 in [11]. Therefore, by uniform
continuity of the logarithm on [e−‖f ‖, e‖f ‖], we obtain the final result by applying
the logarithm. �

In the next definition, we introduce the resolvent R(λ) of the Nisio semigroup.
Using Lemma 4.7, we show that R(λ)[f ](μ) ≤ [R(λ)f ](μ), which by approxi-
mation yields V(t)[f ](μ)≤ 〈V (t)f,μ〉.

DEFINITION 4.9. Let G be upper semicontinuous and bounded and let λ > 0.
Define the resolvent R(λ) by

R(λ)G(μ)= sup
ν∈ACμ

∫ ∞
0

1

λ
e−λ−1s

[
G
(
ν(s)

)− ∫ s

0
L
(
ν(r), ν̇(r)

)
dr

]
ds.
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LEMMA 4.10. For g ∈D and λ > 0, we have R(λ)[(1− λH)g] = [g]. As a
consequence, we have for f ∈ C(E) and μ ∈ P(E) that

(4.1) R(λ)[f ](μ)≤ [R(λ)f
]
(μ).

PROOF. The first statement follows along the lines of the proof of Lemma 8.19
in [13]. Summarising, the inequality R(λ)[(1−λH)g] ≤ [g] follows by integration
by parts and Young’s inequality:

〈g,u〉 ≤ 〈Hg,μ〉 +L(μ,u), μ ∈ P(E),u ∈D,g ∈ C(E).

The second inequality, R(λ)[(1−λH)g] ≥ [g], follows by integration by parts and
Lemma 4.4, which gives us a trajectory for which equality is attained for all times
in Young’s inequality.

For the second statement, first note that if F ≥G, then R(λ)F ≥R(λ)G. There-
fore, we obtain by Lemma 4.7 that

R(λ)[f ](μ)≤R(λ)
[
(1− λH)R(λ)f

]
(μ)= 〈R(λ)f,μ

〉
. �

The next lemma relies on Lemma 4.6 and follows exactly as Lemma 8.18
in [13].

LEMMA 4.11. For t ≥ 0, f ∈D and μ ∈ P(E), we have

lim
n→∞R(n)�nt�[f ](μ)=V(t)[f ](μ).

We are now able to prove the first inequality between the Nisio semigroup
{V(t)}t≥0 and {V (t)}t≥0.

PROPOSITION 4.12. For t ≥ 0, f ∈ C(E) and μ ∈ P(E), we have

V(t)[f ](μ)≤ 〈V (t)f,μ
〉
.

PROOF. By repeatedly using equation (4.1), we obtain

R
(
n−1)�nt�[f ](μ)≤ 〈R(n−1)�nt�

f,μ
〉
,

which implies by Lemmas 4.8 and 4.11 that V(t)[f ](μ)≤ 〈V (t)f,μ〉. �

4.4. The second inequality between the two semigroups. The second inequal-
ity V(t)[f ](μ)≥ 〈V (t)f,μ〉 needs more work. As in the proof of Lemma 4.10 in
[4], we will argue via the Doob-h transform. We have the following useful variant
of Lemma 2.19 in [32].
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LEMMA 4.13. Let P ∈ P(DE(R+)) be Markov with transition semigroup
{S(t)}t≥0. Let h ∈C(E) and let t > 0. Set

S(Q)=
{
H(Q | P) if Q0 = P0,

∞ otherwise.

Then 〈
V (t)h,P0

〉= sup
Q∈P(DE(R+))

{〈h,Qt 〉 − S(Q)
}
,

where Qt denotes the time t marginal of Q. The supremum is attained by the mea-
sure Qh defined by

dQh

dP
(X)= eh(X(t))

〈eh,Pt 〉 = eh(X(t))−〈V (t)h,P0〉.

PROOF. Let P0,t ∈ P(E2) be the restriction of P to the time 0 and time t

marginals. As before, we denote by P0 the time 0 marginal of P and for a measure
ν ∈ P(E2) we denote by ν0 respectively ν1 the restriction to the first marginal and
second marginal. Set

St (ν)=
{
H(ν | P0,t ) if ν0 = P0,

∞ otherwise.

By Lemma 2.19 in [32] and convex duality, we obtain〈
V (t)h,P0

〉= sup
ν∈P(E2)

{〈h, ν2〉 − St (ν)
}
.

By the contraction principle, we have

H(ν | P0,t )= inf
{
H(Q | P) |Q ∈ P

(
DE

(
R+

)) :Q0,t = ν
}
,

which implies that 〈
V (t)h,μ

〉= sup
Q∈P(DE(R+))

{〈h,Qt 〉 − S(Q)
}
.

Now we show that the supremum is achieved for Qh defined by

dQh

dP
(X)= eh(X(t))

〈eh,Pt 〉 = eh(X(t))−〈V (t)h,P0〉.

Note that Qh
0 = P0. Therefore, we obtain that

〈
h,Qh

t

〉− S
(
Qh)= 〈h,Qh

t

〉− ∫ log
dQh

dP
dQh

= 〈h,Qh
t

〉− 〈h,Qh
t

〉+ 〈V (t)h,P0
〉= 〈V (t)h,P0

〉
. �
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The optimising measure Qh defined in the lemma above has the form of a Doob-
h transform; see Doob [8], page 566 or [16, 17]. For s ≤ t , define h(s)= V (t−s)h,
or eh(s) = S(t − s)eh.

The transition probabilities of the Markov process described by Qh up to
time t can be written down explicitly as a semigroup of transition opera-
tors {Sh[0,t](r, s)}0≤r≤s≤t , where Sh[0,t](r, s) : C(E) → C(E) is defined by
Sh[0,t](r, s)f (x) :=Qh[f (X(s)) | X(r)= x]. The following result is obtained by
a straightforward calculation.

LEMMA 4.14. The semigroup of transition probabilities of Qh defined by

dQh

dP
(X)= eh(X(t))

〈eh,Pt 〉 = eh(X(t))−〈V (t)h,P0〉,

is given by

Sh[0,t](r, s)f (x)= e−h(r)(x)S(s − r)
(
f eh(s))(x).

Because h ∈D, we find eh ∈D ⊆D(A). As D(A) is preserved under the semi-
group {S(t)}t≥0, we find eh(s) ∈ D(A) and h(s) ∈ D(H). By Corollary 3.2, we
have d

ds
h(s)=−Hh(s). We conclude that

h(t)X(t)− h(0)
(
X(0)

)
= h(t)X(t)− h(0)

(
X(0)

)− ∫ t

0
Hh(s)

(
X(s)

)+ d

ds
h(s)

(
X(s)

)
ds.

(4.2)

Suppose that s �→ h(s) would be continuous in (D, τD), then it is possible to
prove a time-dependent version of Proposition 3.7. This would give that the pro-
cess {X(s)}s≤t is Markovian under Qh with time dependent generator s �→ Ah(s)

and that for s ≤ t :

Mh
s := h(s)

(
X(s)

)− h(0)
(
X(0)

)− ∫ s

0
Ah(s)h(s)

(
X(s)

)+ d

ds
h(s)

(
X(s)

)
ds

is a martingale under Qh. Thus,

S
(
Qh)=H

(
Qh | P)= ∫ log

dQh

P
dQh

=
∫

h(t)X(t)− h(0)
(
X(0)

)

−
∫ t

0
Hh(s)

(
X(s)

)+ d

ds
h(s)

(
X(s)

)
dsQh(dX)

=
∫

Mh
t +

∫ t

0
Ah(s)h(s)

(
X(s)

)−H(s)
(
X(s)

)
dsQh(dX)

=
∫ ∫ t

0
Lh(s)

(
X(s)

)
dsQh(dX).
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Formally interchanging the two integrals yields

(4.3) S
(
Qh)= ∫ t

0

∫
Lh(s)

(
X(s)

)
Qh(dX)ds =

∫ t

0
L
(
γ (s), γ̇ (s)

)
ds,

where γ (s) is the law of X(s) under Qh. This would yield the inequality
V(t)[h](μ) ≥ 〈V (t)h,μ〉, for the Markov process X with starting law μ. How-
ever, we made two assumptions that are not necessarily satisfied, so we need to
refine our argument.

In [4], a similar issue plays a role in the proof of Lemma 4.10. In this context,
diffusion processes are considered and D is the space of compactly supported
smooth functions. This space is not closed under the evolution of the semigroup
{S(t)}t≥0, so also there a refined argument is used. To be precise, the law of the
Doob-transform is approximated by the law of Doob-transforms of processes that
are killed upon leaving a ball with large radius. It is shown that the law of the
Doob-transform is sufficiently well approximated by the killed processes, to still
conclude the desired inequality.

Here, we will also consider an approximation of the Doob-transform. Based
on the discussion above, we known that the Markov process obtained via the
Doob-transform formally has generator Ah(s) at time s. Below, we will approx-
imate the function s �→ h(s) by a collection of piecewise-constant maps s �→
gn(s) :=∑n

i=1 gn,i1{n−1t (i−1)<s≤n−1t i} taking its values in D. The Markov process
with time-dependent generator s �→Agn(s) can be obtained from P via a Girsanov
transform and we show that this process converges to the Doob-transform Qh in
entropy.

Recall that the logarithm of the change of measures dQh

dP was given by

h(t)X(t)− h(0)
(
X(0)

)
= h(t)X(t)− h(0)

(
X(0)

)− ∫ t

0
Hh(s)

(
X(s)

)+ d

ds
h(s)

(
X(s)

)
ds,

and that eh(s) = S(t − s)eh. So in particular, as h ∈D, we find eh ∈D ⊆D(A). As
D(A) is preserved under the semigroup, we find eh(s) ∈D(A) and by Corollary 3.2
that h(s) ∈D(H).

Both s �→ Aeh(s) = S(t − s)Aeh and s �→ eh(s) are norm continuous. As
infx infs eh(s)(x) > 0, we find that s �→ h(s) and s �→ e−h(s), and as a consequence
s �→Hh(s)=− d

ds
h(s) are also norm continuous. Thus, for a fixed ε > 0 we can

choose N such that for n≥N :

(a) we have

(4.4) sup
1≤i≤n

sup
t (i−1)≤s≤t i/n

t

∥∥∥∥Hh(s)−Hh

(
it

n

)∥∥∥∥+
∥∥∥∥h(s)− h

(
it

n

)∥∥∥∥≤ ε,
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(b) for all i ∈ {1, . . . , n}:

(4.5) t

∥∥∥∥ d

ds
h(s)|

s= t i
n
− h( it

n
)− h((i−1)t

n
)

t/n

∥∥∥∥≤ ε.

As h(s) ∈ D(H), we can use Lemma 3.3 to find for n ≥ N functions gn,i ∈D

such that

(4.6) sup
1≤i≤n

n

∥∥∥∥gi,n − h

(
it

n

)∥∥∥∥+ t

∥∥∥∥Hgi,n −Hh

(
it

n

)∥∥∥∥≤ ε

n
.

Consider the maps Gn :DE(R+)→R defined by

Gn(X)=
n∑

i=1

gn,i

(
X

(
it

n

))
− gn,i

(
X

(
(i − 1)t

n

))

−
∫ it

n

(i−1)t
n

Hgn,i

(
X(s)

)
ds

(4.7)

and set H(X) := h(t)X(t)− h(0)(X(0)). We will show that the measures Q[Gn]
defined by

(4.8)
dQ[Gn]

dP
(X)= eGn(X)

are approximating the measure Qh in entropy:

H
(
Q[Gn] | P)→H

(
Qh | P), H

(
Qh |Q[Gn])→ 0.

We start by proving that the functions Gn and H are uniformly bounded.

LEMMA 4.15. There is a constant M > 0 such that

sup
n

sup
x∈DE(R+)

∣∣Gn(x)
∣∣+ ∣∣H(x)

∣∣≤M.

PROOF. It is clear that supx |H(x)| ≤ ‖h(t)‖ + ‖h(0)‖. For Gn, we first con-
sider the integral part. Fix some ε > 0 and fix N such that for all n ≥ N (4.6) is
satisfied, then

n∑
i=1

∫ it
n

t (i−1)
n

∣∣Hgn,i

(
X(s)

)∣∣ds

≤
n∑

i=1

∫ it
n

t (i−1)
n

∣∣∣∣Hgn,i

(
X(s)

)−Hh

(
t i

n

)(
X(s)

)∣∣∣∣+
∣∣∣∣Hh

(
t i

n

)(
X(s)

)∣∣∣∣ds

≤ ε+ sup
s∈[0,t]

t
∥∥Hh(s)

∥∥.
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For the remainder, we first rearrange:
n∑

i=1

gn,i

(
X

(
it

n

))
− gn,i

(
X

(
(i − 1)t

n

))

= gn,n

(
X(t)

)− gn,1
(
X(0)

)− n−1∑
i=1

gn,i+1

(
X

(
t i

n

))
− gn,i

(
X

(
t i

n

))
.

Because gn,n→ h(t) and gn,1→ h(0), there is some M ′ > 0 such that

sup
x

∣∣gn,n

(
x(t)

)∣∣+ ∣∣gn,1
(
x(0)

)∣∣≤M ′.

For the terms in the sum, we compare to the functions {h(s)}s∈[0,t]:

‖gn,i+1 − gn,i‖ ≤
∥∥∥∥gn,i+1 − h

(
t (i + 1)

n

)∥∥∥∥
+
∥∥∥∥h
(

t (i + 1)

n

)
− h

(
t i

n

)∥∥∥∥+
∥∥∥∥h
(

t i

n

)
− gn,i

∥∥∥∥
≤ 2ε

n
+
∥∥∥∥h
(

t (i + 1)

n

)
− h

(
t i

n

)∥∥∥∥,
where we have used (4.6). The final term can be bounded using (4.5):∥∥∥∥h

(
t (i + 1)

n

)
− h

(
t i

n

)∥∥∥∥= t

n

∥∥∥∥h( it
n
)− h((i−1)t

n
)

t/n

∥∥∥∥
≤ t

n

∥∥∥∥ d

ds
h(s)

∣∣∣∣
s= t i

n

− h( it
n
)− h((i−1)t

n
)

t/n

∥∥∥∥
+ t

n
sup

s∈[0,t]

∥∥∥∥ d

ds
h(s)

∥∥∥∥
≤ ε

n
+ t

n
sup

s∈[0,t]
∥∥Hh(s)

∥∥.
We conclude that for some N and all n≥N , we have

sup
n≥N

sup
x∈DE(R+)

∣∣Gn(x)
∣∣+ ∣∣H(x)

∣∣≤ ∥∥h(0)
∥∥+ ∥∥h(t)

∥∥+M ′ + 2t sup
s

∥∥Hh(s)
∥∥+ 4ε,

which concludes the proof. �

PROPOSITION 4.16. For every η > 0, there exists an integer N ≥ 1 and a
measurable set SN,η ⊆DE(R+) such that for n≥N

P[SN,η]> 1− η, and sup
X∈SN,η

∣∣Gn(X)−H(X)
∣∣≤ η.
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We start with the probabilistic content of the proposition.

LEMMA 4.17. Denote

ϒn(X, s) := d

ds
h(s)

(
X(s)

)− n∑
i=1

1{(i−1)t/n<s≤it/n}
d

ds
h(s)

(
X

(
t i

n

))
,

and ϒN(X, s) := supn≥N ϒn(X, s). We have

lim
N→∞E

[∫ t

0

∣∣ϒN(X, s)
∣∣ds

]
= 0.

Set

SN,ε,η :=
{
∀n≥N :

∫ t

0

∣∣ϒn(X, s)
∣∣ds ≤ ε

}
.

There is an N such that P[SN,ε,η] ≥ 1− η.

PROOF. By the right continuity of paths in the Skorokhod space, the first claim
follows by the Dominated convergence theorem. The second claim is a conse-
quence of the first claim and Markov’s inequality. �

PROOF OF PROPOSITION 4.16. Choose η > 0 and let ε = η
10 . Now let N

be large enough such that the result in Lemma 4.17 holds and denote SN,η :=
SN,η/10,η. Additionally, let N be large enough such that for n ≥ N the approxi-
mations in (4.4), (4.5) and (4.6) are valid.

Let n≥N . Reordering the first sum of Gn yields

Gn(X)= gn,n

(
X(t)

)− gn,1
(
X(0)

)− n∑
i=1

∫ it
n

(i−1)t
n

Hgn,i

(
X(s)

)
ds

−
n−1∑
i=1

∫ (i+1)t
n

it
n

gn,i+1(X( ti
n
))− gn,i(X( ti

n
))

t/n
ds,

whereas, by (4.2):

H(X)= h(t)X(t)− h(0)
(
X(0)

)− ∫ t

0
Hh(s)

(
X(s)

)+ d

ds
h(s)

(
X(s)

)
ds.

We compare the terms of G and H . First of all, by (4.6), we have ‖h(t)−gn,n‖ ≤ ε,
secondly by (4.4) and (4.6), we have

∥∥h(0)− gn,1
∥∥≤ ∥∥∥∥h(0)− h

(
t

n

)∥∥∥∥+
∥∥∥∥h
(

t

n

)
− gn,1

∥∥∥∥≤ 2ε.
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Again by (4.4) and (4.6), we have for (i−1)t
n
≤ s ≤ it

n
that

∫ t i
n

(i−1)t
n

∥∥Hh(s)−Hgn,i

∥∥ds

≤
∫ t i

n

(i−1)t
n

∥∥∥∥Hh(s)−Hh

(
it

n

)∥∥∥∥+
∥∥∥∥Hh

(
it

n

)
−Hgn,i

∥∥∥∥ds ≤ 2ε

n
.

The remaining difference is given by

(4.9)
∫ t

0

d

ds
h(s)

(
X(s)

)
ds −

n−1∑
i=1

∫ (i+1)t
n

it
n

gn,i+1(X( ti
n
))− gn,i(X( ti

n
))

t/n
ds.

We restrict ourselves to the set SN,η =SN,η/10,η defined in the second claim of
Lemma 4.17. On SN,η, we can replace X(s) in the first integral by X(ti

n
) for the

appropriate i at the cost of an error of size ε. Thus, it is sufficient to give an upper
bound in terms of the supremum norm.

For (i−1)t
n
≤ s ≤ it

n
, we obtain by (4.4), (4.5) and (4.6) that∥∥∥∥ d

ds
h(s)− gn,i+1 − gn,i

t/n

∥∥∥∥
≤
∥∥∥∥ d

ds
h(s)− d

ds
h

(
t i

n

)∥∥∥∥+
∥∥∥∥ d

ds
h

(
t i

n

)
− h( t(i+1)

n
)− h( ti

n
)

t/n

∥∥∥∥
+
∥∥∥∥h( t(i+1)

n
)− h( ti

n
)

t/n
− gn,i+1 − gn,i

t/n

∥∥∥∥≤ 4ε

t
.

Thus, on the set SN,η, we can bound (4.9) from above by

∫ t

0

∣∣∣∣∣ d

ds
h(s)

(
X(s)

)− n−1∑
i=1

1{ it
n
≤s≤ (i+1)t

n
}
gn,i+1(X( ti

n
))− gn,i(X( ti

n
))

t/n

∣∣∣∣∣ds

≤ 5ε.

We conclude that on SN,η we have supX∈Sη
|Gn(X)−H(X)| ≤ 10ε. �

Denote by Q[Gn] the path-space measure obtained via the change of measure
dQ[Gn]

dP (X)= eGn(X) as in (4.8).

PROPOSITION 4.18. Let Q[Gn] the path-space measure obtained via the
change of measure dP[Gn]

dP (X) = eGn(X) as in (4.8), and let Qh, be the measure
obtained by the change of measure dQh

dP (X)= eH(X) as in Lemma 4.13.
Then we have

S
(
Q[Gn])→ S

(
Qh), H

(
Qh |Q[Gn])→ 0.
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PROOF. We start with the first claim. Note that because the time 0 marginals
of Q[Gn] and Qh both equal P0, it suffices to prove that

H
(
Q[Gn] | P)→H

(
Qh | P).

By Lemma 4.15, we have supn supx |Gn(x)| + |H(x)| ≤M . The restriction of
the exponential map exp to [−M,M] is uniformly continuous. Thus, we can find
for every δ > 0 a η > 0 such that if |a − b|< η, then | exp{a} − exp{b}|< δ.

Thus, for an arbitrary δ > 0 and corresponding η ≤ δ, we can find N sufficiently
large such that for n ≥ N the results of Lemma 4.15 and Proposition 4.16 hold.
Then we have∣∣H (

Q[Gn] | P)−H
(
Qh | P)∣∣

≤
∫ ∣∣∣∣dQ[Gn]

dP
log

dQ[Gn]
dP

− dQh

dP
log

dQh

dP

∣∣∣∣dP
=
∫ ∣∣∣∣dQ[Gn]

dP
− dQh

dP

∣∣∣∣
∣∣∣∣log

dQ[Gn]
dP

∣∣∣∣
+
∣∣∣∣dQ

h

dP

∣∣∣∣
∣∣∣∣log

dQ[Gn]
dQh

∣∣∣∣dP
≤ ηe2MM + (1− η)δM + 2ηMeM + (1− η)ηeM

≤ δe2MM + δM + 2δMeM + δeM,

where we have bounded the contributions in line three on the set Sc
N,η and SN,η

separately. As δ > 0 was arbitrary, the first claim is proven. The second claim
follows similarly. �

LEMMA 4.19. Fix n, and consider the measure Q[Gn] defined in (4.8). Then

S
(
Q[Gn] | P)=

∫ t

0
L
(
γn(s), γ̇n(s)

)
ds,

where γn(s) is the law of X(s) under Q[Gn] and where γ̇n(s)= (A
g
n,i)

′(γn(s)) for
t (i−1)

n
< s < ti

n
.

PROOF. As S(Q[Gn] | P) = ∫
log dQ[Gn]

dP dQ[Gn], we study Gn(X). Recall
that

Gn(X)=
n∑

i=1

gn,i

(
X

(
it

n

))
− gn,i

(
X

(
(i − 1)t

n

))

−
∫ it

n

(i−1)t
n

Hgn,i

(
X(s)

)
ds.
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We add and subtract Agn,i gn,i inside the integral:

Gn(X)=
n∑

i=1

gn,i

(
X

(
it

n

))
− gn,i

(
X

(
(i − 1)t

n

))

−
∫ it

n

(i−1)t
n

Agn,i gn,i

(
X(s)

)
ds

+
∫ it

n

(i−1)t
n

Agn,i gn,i

(
X(s)

)−Hgn,i

(
X(s)

)
ds

=M[Gn](t)+
∫ t

0

n∑
i=1

1{(i−1)t/n<s≤it/n}Lgn,i

(
X(s)

)
ds,

where s �→M[Gn]s is a Q[Gn] martingale by Proposition 3.7. Thus, integration
over Q[Gn] yields

S
(
Q[Gn] | P)=

∫
log

dQ[Gn]
dP

dQ[Gn]

=
∫ ∫ t

0

n∑
i=1

1{(i−1)t/n<s≤it/n}Lgn,i

(
X(s)

)
dsQ[Gn](dX).

As Lgn,i is nonnegative, we can interchange the two integrals by Tonelli’s theorem,
to obtain

S
(
Q[Gn] | P)=

∫ t

0

∫ n∑
i=1

1{(i−1)t/n<s≤it/n}Lgn,i

(
X(s)

)
Q[Gn](dX)ds

=
∫ t

0

n∑
i=1

1{(i−1)t/n<s≤it/n}
〈
Lgn,i, γn(s)

〉
ds.

By Lemma 5.2, s �→ γn(s) is absolutely continuous and γ̇n(s)= (Agn,i )′(γn(s)) for
almost every s ∈ [0, t]. This yields by (3.4) that 〈Lgn,i, γn(s)〉 = L(γn(s), γ̇n(s))

for almost every s. We conclude that S(Q[Gn] | P)= ∫ t
0 L(γn(s), γ̇n(s))ds. �

We proceed with establishing the second inequality between the two semi-
groups.

PROPOSITION 4.20. For t ≥ 0, h ∈ C(E) and μ ∈ P(E), we have

V(t)[h](μ)≥ 〈V (t)h,μ
〉
.

PROOF. Fix t > 0. As f �→ V (t)f and f �→ V(t)[f ] are continuous, it suf-
fices to prove the result for h ∈D. Let P be the measure of the Markov process on
DE(R+) with time zero marginal P0 = μ. By Lemma 4.13, we find

(4.10)
〈
V (t)h,μ

〉= 〈V (t)h,P0
〉= 〈h,Qh

t

〉− S
(
Qh),
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where Qh is the measure defined by

dQh

dP
(X)= eh(X(t))−〈V (t)h,P0〉.

Consider the approximating measures Q[Gn]. By Proposition 4.18, we find that:

(a) S(Q[Gn])→ S(Qh),
(b) H(Qh |Q[gn])→ 0.

Theorem 3.7.8 in [11], the fact that convergence in total variation implies weak
convergence and Pinsker’s inequality, together with (b), imply that Q[Gn]t con-
verges weakly to Qh

t . Secondly, Lemma 4.19 gives that

S
(
Q[Gn])=H

(
Q[Gn] | P)=

∫ t

0
L
(
γn(s), γ̇n(s)

)
ds.

Combining these two statements with (a) and (4.10), we find that

〈
V (t)h,μ

〉= lim
n→∞

〈
f,γn(t)

〉− ∫ t

0
L
(
γn(s), γ̇n(s)

)
ds.

Because

sup
n

∫ t

0
L
(
γn(s), γ̇n(s)

)
ds = sup

n
H
(
Q[Gn] | P)<∞,

and {γn(s)}s∈[0,t] ∈ CP(E)([0, T ]), we can find a converging subsequence in
CP(E)([0, T ]) with limit {γ (s)}s∈[0,t] by Proposition 4.2 that has Lagrangian cost:∫ t

0
L
(
γ (s), γ̇ (s)

)
ds ≤ lim

n→∞

∫ t

0
L
(
γn(s), γ̇n(s)

)
ds.

Combined with the fact that γn(t)→ γ (t) weakly, we conclude that

〈
V (t)h,μ

〉= lim
n→∞

〈
f,γn(t)

〉− ∫ t

0
L
(
γn(s), γ̇n(s)

)
ds

≤ 〈h,γ (t)
〉− ∫ t

0
L
(
γ (s), γ̇ (s)

)
ds ≤V(t)[h](P0). �

4.5. The Lagrangian form of the rate function. We conclude by Proposi-
tions 4.12 and 4.20 that V(t)[f ](μ) = 〈V (t)f,μ〉 for all t ≥ 0, f ∈ C(E) and
μ ∈ P(E). We use this identification to prove It (μ1 | μ0)= supf∈C0(E){〈f,μ1〉 −
〈V (t)f,μ2〉} can be re-expressed using the Lagrangian.

LEMMA 4.21. Under Condition 2.3, it holds that

It (μ1 | μ0)= inf
ν∈ACμ0
ν(t)=μ1

∫ t

0
L
(
ν(s), ν̇(s)

)
ds.
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The proof is a classical proof using convex duality.

PROOF. For a fixed measure μ0 ∈ P(E), consider the function Lμ0 : P(E)→
[0,∞] defined by

Lμ0(μ1) := inf
ν∈ACμ0
ν(t)=μ1

∫ t

0
L
(
ν(s), ν̇(s)

)
ds.

Our goal is to prove that It (μ1 | μ0) = Lμ0(μ1) by showing that both are the
Fenchel–Legendre transform of 〈V (t)g,μ1〉. First, we will prove that Lμ0 is con-
vex and has compact level sets. This last result implies the lower semicontinuity.

Step 1. The convexity of Lμ0 follows directly from the convexity of L and the
fact that AC is convex. So we are left to prove compactness of the level sets. Pick
a sequence μn in the set {μ | Lμ0(μ) ≤ c}. We know by definition of Lμ0 and
Proposition 4.2 that there are νn ∈Kt

c,{μ0} such that νn(0)= μ0, νn(t)= μn and

∫ t

0
L
(
νn(s), ν̇n(s)

)
ds ≤ c.

Again by Proposition 4.2, we obtain that the sequence νn has a converging subse-
quence νnk with limit ν∗ such that∫ t

0
L
(
ν∗(s), ν̇∗(s)

)
ds ≤ c.

Denote with μ∗ := ν∗(t), then we know that νnk (t)→ μ∗ and Lμ0(μ
∗)≤ c, which

implies that Lμ0(·) has compact level sets and is lower semicontinuous.
Step 2. Now that we know that Lμ0 is convex and lower semicontinuous, we are

able to prove that Lμ0(·)= It (· | μ0).
Lμ0(·) is lower semicontinuous on P(E) with respect to the weak topology, so

extending its domain of definition to M(E) by setting it equal to∞ outside P(E)

does not change the fact that it is lower semicontinuous.
Because the dual of (M(E),weak) is C(E) by the Riesz representation theorem

and [3], Theorem V.1.3, we obtain by Lemma 4.5.8 in Dembo and Zeitouni [5] that
the Legendre transform supg∈C(E){〈g,μ1〉 −V(t)[g](μ0)} of

V(t)[g](μ0)= sup
ν∈ACμ0

{〈
g, ν(t)

〉− ∫ t

0
L
(
ν(s), ν̇(s)

)
ds

}

= sup
μ1

{〈g,μ1〉 −Lμ0(μ1)
}

equals Lμ0(μ1). Therefore, by Propositions 4.12 and 4.20, we see

(4.11) Lμ0(μ1)= sup
g∈C0(E)

{〈g,μ1〉 − 〈V (t)g,μ0
〉}
.



806 R. C. KRAAIJ

On the other hand, by Theorem 2.1,

(4.12) It (μ1 | μ0)= sup
g∈C0(E)

{〈g,μ1〉 − 〈V (t)g,μ0
〉}
.

The combination of equations (4.11) and (4.12), that is, both are the Legendre–
Fenchel transform of 〈V (t)g,μ0〉, yields that

It (μ1 | μ0)= Lμ0(μ1)= inf
ν∈ACμ0
ν(t)=μ1

∫ t

0
L
(
ν(s), ν̇(s)

)
ds.

�

We proceed with the final lemma before the proof of Theorem 2.8.

LEMMA 4.22. The function J : CP(E)(R
+)→[0,∞], given by

J (μ)=
⎧⎨
⎩H

(
μ(0) | P0

)+ ∫ ∞
0

L
(
μ(s), μ̇(s)

)
ds if μ ∈AC,

∞ otherwise,

has compact level sets in CP(E)(R
+).

PROOF. Clearly, {J ≤M} ⊆⋂T KT
M . So, pick a sequence μn ∈ {J ≤M}. For

n= 1, we can construct a converging subsequence μnk in K1
M seen as a subset of

CP(E)([0,1]). From this subsequence, we can extract yet another subsequence that
has the same property on [0,2]. By a diagonal argument, this yields a converging
subsequence in CP(E)(R

+). By the lower semicontinuity of H(· | P0) and L this
yields that the limit is in {J ≤M}. �

PROOF OF THEOREM 2.8. By using the contraction principle for the identity
map CP(E)(R

+)→∏
R+ P(E), we find that the rate function in Theorem 2.1 coin-

cides with the rate function which would have been found via the Dawson–Gärtner
theorem [5], Theorem 4.6.1, for the large deviation problem on

∏
R+ P(E).

On the other hand, the rate function of Theorem 2.1 for the finite dimensional
distributions at times 0= t0 < t1 < · · ·< tk is given by

I [t0, . . . , tk](μ(0), . . . ,μ(tk)
) :=H

(
μ(0) | P)+ k∑

i=1

Iti−ti−1

(
μ(ti) | μ(ti−1)

)
.

By Lemma 4.21, this can be rewritten as

H
(
μ(0) | P)+ k∑

i=1

inf
ν∈AC

ν(tk−1)=μtk−1
ν(tk)=μtk

∫ tk

tk−1

L
(
ν(s), ν̇(s)

)
ds

=H
(
μ(0) | P)

+ inf
{∫ ∞

0
L
(
ν(s), ν̇(s)

)
ds | ν ∈AC ∀i ≤ k : ν(ti)= μ(ti)

}
.

(4.13)
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In this context, we can apply Lemma 4.6.5 from [5] to find that if we have a good
rate function J on

∏
R+ P(E) that satisfies

(4.14) I [0, t1, . . . , tk](μ(0),μ(t1), . . . ,μ(tk)
)= inf

{
J (ν) | ∀i : ν(ti)= μ(ti)

}
,

then it holds that I = J . The candidate

J (μ)=
⎧⎨
⎩H

(
μ(0) | P0

)+ {∫ ∞
0

L
(
μ(s), μ̇(s)

)
ds

}
if μ ∈AC,

∞ otherwise,

satisfies equation (4.14) in view of (4.13). By Lemma 4.22, we know that J is a
good rate function on CP(E)(R

+) and, therefore, also on
∏

R+ P(E). �

4.6. Preparations for the proof of Proposition 4.2. We say that a topological
space is Souslin if it is the continuous image of a complete separable metric space.
For the proof of Proposition 4.2, we will need the generalisation of one of the
implications of the Prohorov theorem.

THEOREM 4.23 (Prohorov). Let K be a subset of the Borel measures on a
completely regular Souslin space S that is uniformly bounded with respect to the
total variation norm. If K is a tight family of measures, then K has a compact and
sequentially compact closure with respect to the weak topology on P(S).

The Prohorov theorem is given in [1], Theorem 8.6.7, and its specialisation to
completely regular Souslin spaces follows from [1], Corollary 6.7.8 and Theo-
rem 7.4.3. Note that the other implication of the ordinary Prohorov theorem does
not necessarily hold in this generality [1], Proposition 8.10.19.

We will use the Prohorov theorem for measures on the product space (P(E)×
U × [0, T ]), where the first two spaces are equipped with the weak∗ topology, and
the last space with its standard topology.

LEMMA 4.24. The space (P(E) × U × [0, T ]) is completely regular and
Souslin.

PROOF. Because taking products and subspaces preserves complete regular-
ity, the first claim follows by establishing complete regularity for (D′,wk∗). This
follows from Lemma [18], 15.2.(3).

The Souslin property follows because (U,wk∗) is Souslin by Condition 2.3(a)
and Lemma B.4, and because the product of Souslin spaces is Souslin [1],
Lemma 6.6.5. �

Suppose that we have a weakly converging net of measures on (P(E)× U ×
[0, T ]). By definition, integrals of continuous and bounded functions with respect
to this net of measures converges in R. The next lemmas are aimed to extend this
property to continuous functions, that are unbounded, but linear on U .
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DEFINITION 4.25. For the neighbourhood N , we define the Minkowski func-
tional ‖ · ‖U on U by ‖u‖N := inf{c ≥ 0 | u ∈ cN ◦}.

We have the following elementary results.

LEMMA 4.26. ‖ · ‖N is a norm on U , {u | ‖u‖N ≤ 1} = N ◦. Furthermore,
for u ∈U , we have

sup
f∈cN

〈f,u〉
‖u‖N = c.

We use this lemma to find functions φ of the type given in the following lemma,
which is an analogue of the de la Vallée–Poussin lemma [1], Theorem 4.5.9, and
can be proven similarly.

LEMMA 4.27. Let {πα} be a collection of measures on some measurable
space that is bounded in total variation norm. Let f be a measurable func-
tion and suppose that there exists a nonnegative nondecreasing function φ :
R+ → R+, which satisfies limr→∞ r−1φ(r) = ∞ and for which it holds that
supα

∫
φ(|f |)dπα ≤M <∞. Then it holds that

sup
α

∫
|f |dπα <∞.

Also, we obtain that

(4.15) lim
C→∞ sup

α

∫ ∣∣f −ϒC(f )
∣∣dπα = 0,

where ϒC(f )= (f ∨−C)∧C.

LEMMA 4.28. Under Condition 2.3(e) that states that for every c ≥ 0:
�(c) := supf∈cN ‖Hf ‖ <∞, there exists an increasing function φ : R+ → R+,
such that limr→∞ r−1φ(r)=∞ and such that φ(|〈f,u〉|) ≤ φ(‖u‖N ) ≤ L(μ,u)

for every f ∈N , u ∈U and μ ∈ P(E).

The proof of this lemma is inspired by the proof of Lemma 10.21 in Feng and
Kurtz [13].

PROOF. For u �= 0 in U , Lemma 4.26 yields

L(μ,u)

‖u‖N ≥ sup
f∈cN

{ 〈f,u〉
‖u‖N −

〈Hf,μ〉
‖u‖N

}
≥ c− �(c)

‖u‖N
for every c > 0. This directly yields for every c > 0

lim
r→∞ inf

μ∈P(E)
inf

u:‖u‖N≥r

L(μ,u)

‖u‖N ≥ lim
r→∞ inf

μ∈P(E)
inf

u:‖u‖N≥r
c− �(c)

‖u‖N = c,
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which implies

lim
r→∞ inf

μ∈P(E)
inf

u:‖u‖N≥r

L(μ,u)

‖u‖N =∞.

Consequently, the function

φ(r)= r inf
μ∈P(E)

inf
u:‖u‖N≥r

L(μ,u)

‖u‖N ,

satisfies the claims in the lemma. �

4.7. Proof of Proposition 4.2. We now have the tools for the proof of Propo-
sition 4.2. Essentially, the proof follows the approach as in Feng and Kurtz [13],
Proposition 8.13. We give it for clarity and completeness as there are some notable
differences. First of all, we work with absolutely continuous paths, instead of paths
that satisfy a relaxed control equation. Second, the possible “speeds” that we allow
are elements of the completely regular Souslin subset U of a locally convex space
instead of a metric space.

PROOF OF PROPOSITION 4.2. Pick a sequence μn ∈ KT
M . As P(E) is com-

pact, we assume that μn(0)→ μ0. Define the occupation measures πn on P(E)×
U × [0, T ] ⊆P(E)×U × [0, T ] by

πn(B × [0, t])= ∫ t

0
1B

(
μn(s), μ̇n(s)

)
ds.

Proposition 4.1 tells us that πn is tight in P(P(E)× U × [0, T ]) by considering
the following calculation:

Cπn{(μ,u, t) ∈P(E)×U × [0, T ] | L(μ,u)≤ C
}c

≤
∫ T

0
L(μ,u)πn(dμ× du× ds)≤M.

In other words,

(4.16) πn{(μ,u, t) ∈ P(E)×U × [0, T ] | L(μ,u)≤C
}c ≤ M

C
,

and because C is arbitrary, we can choose it big enough such that this probability
is smaller then any ε > 0 uniformly in n. This implies by Theorem 4.23 that πn

contains a weakly converging subsequence. Therefore, we assume without loss of
generality that, there exists π ∈ P(K̂ ×U × [0, T ]) such that πn→ π weakly.

We now show that π gives us a new path s �→ μ(s) in KT
M . Recall that for

c ≥ 0, ϒc(g) = (g ∧ c) ∨−c. So for a fixed f ∈D (we can take f ∈N without
loss of generality as N is a barrel), u �→ ϒc(〈f,u〉) is a bounded and continuous
function. For an arbitrary t ≤ T , the set π(P(E)×U × {t}) is a set of measure 0,
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so the function (u, s) �→ 1{s≤t}ϒc(〈f,u〉) is a bounded Borel measurable functions
that is continuous π almost everywhere.

Hence, by the weak convergence of πn to π and Corollary 8.4.2 in Bogachev
[1], we obtain for every c ≥ 0 that

(4.17)

∫
{s≤t}

ϒc

(〈f,u〉)πn(dμ× du× ds)

→
∫
{s≤t}

ϒc

(〈f,u〉)π(dμ× du× ds).

By the Portmanteau theorem and the lower semicontinuity of L, we obtain that∫
L(μ,u)π(dμ× du× ds)

≤ lim inf
n

∫
L(μ,u)πn(dμ× du× ds)≤M.

As φ(|〈f,u〉|) ≤ L(μ,u) by Lemma 4.28, and the fact that φ satisfies the condi-
tions of Lemma 4.27, we use the result in (4.15) to obtain that

(4.18)
sup
n

∣∣∣∣
∫
{s≤t}

〈f,u〉πn(dμ× du× ds)−
∫
{s≤t}

ϒc

(〈f,u〉)πn(dμ× du× ds)

∣∣∣∣
→ 0,

as c→∞. This also follows for the limiting measure π :

(4.19)
∣∣∣∣
∫
{s≤t}

〈f,u〉π(dμ× du× ds)−
∫
{s≤t}

ϒc

(〈f,u〉)π(dμ× du× ds)

∣∣∣∣→ 0.

Using the triangle inequality, equations (4.17), (4.18) and (4.19), sending first c

and then n to infinity, we get

(4.20)
∣∣∣∣
∫
{s≤t}

〈f,u〉πn(dμ× du× ds)−
∫
{s≤t}

〈f,u〉π(dμ× du× ds)

∣∣∣∣→ 0.

Fix some 0≤ t ≤ T and pick a sequence 0≤ tn ≤ T that converges to t . Because
μn(tn) is a sequence in the compact set P(E) it has a converging subsequence with
limit ν. By Lemmas 4.27, 4.28 and the dominated convergence theorem, we have

lim
n→∞

∫
1{s between tn and t}∣∣〈f,u〉∣∣πn(dμ× du× ds)→ 0,

which implies, using equation (4.20) that

〈f, ν〉 − 〈f,μ0〉 = lim
n

〈
f,μn(tn)

〉− 〈f,μn(0)
〉

= lim
n

∫
1{s ≤ t}〈f,u〉πn(dμ× du× ds)

−
∫

1{s between tn and t}〈f,u〉πn(dμ× du× ds)

=
∫

1{s ≤ t}〈f,u〉π(dμ× du× ds).
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As D is dense in C(E), this uniquely determines ν, and for every sequence sn→ t ,
one gets μn(sn)→ ν weakly. Therefore, we will denote μ(t) := ν. This way, we
can construct μ(t) for a countable dense subset J of [0, T ] and find that μ(t)

is continuous on J . As a consequence, μ(t) extends continuously to [0, t] and
satisfies 〈

f,μ(t)
〉− 〈f,μ0〉 =

∫
1{s≤t}〈f,u〉π(dμ× du× ds)

for every f ∈ D. This implies that for any sequence sn → t , we have μ(sn)→
μ(t), which yields that {μn(t)}0≤t≤T converges to {μ(t)}0≤t≤T in CP(E)([0, T ]).

We proceed with extracting the speed of the trajectory s �→ μ(s) from the mea-
sure π . Let π̂ be the measure π restricted to U × [0, T ]. By Corollary 10.4.6 in
Bogachev [1], we can write π̂(du× ds) as λs(du)ds.

For Lebesgue almost every s, we know that
∫ |〈f,u〉|λs(du) <∞, so we can

define the Gelfand integral ū(s) = ∫
uλs(du), see Theorem B.2. We show that

ū(s) = μ̇(s). First, by the measurability of s �→ λs , also s �→ ū is measurable.
Second, by Jensen’s inequality in the first line, and the lower semicontinuity of L
in the third,∫ T

0

∣∣〈f, ū(s)
〉∣∣ds ≤

∫ ∣∣〈f,u〉∣∣π(dμ× du× ds)

≤ T
(‖Hf ‖ ∨ ∥∥H(−f )

∥∥)+ ∫ L(μ,u)π(dμ× du× ds)

≤ T
(‖Hf ‖ ∨ ∥∥H(−f )

∥∥)+ lim inf
n

∫
L(μ,u)πn(dμ× du× ds)

≤ T
(‖Hf ‖ ∨ ∥∥H(−f )

∥∥)+M.

Last,

〈
f,μ(t)

〉− 〈f,μ(0)
〉= ∫ 1{s≤t}〈f,u〉π(dμ× du× ds)

=
∫ t

0

∫
〈f,u〉λs(du)ds =

∫ t

0

〈
f, ū(s)

〉
ds.

This means that μ ∈ACT and μ̇= ū.
We still need to show that μ ∈ KT

M by showing that its Lagrangian cost is
bounded by M . By the construction of the path s �→ μ(s), it is clear that we have
π(dμ× du× ds) = 1{s≤T }δ{μ(s)}(dμ)λs(du)ds. This shows, using the convexity
of L in the second line, and lower semicontinuity of L in the third line that∫ T

0
L
(
μ(s), μ̇(s)

)
ds =

∫
L(μ,u)1{s ≤ T }δμ(s)(dμ)δū(s)(du)ds

≤
∫

L(μ,u)1{s ≤ T }δμ(s)(dμ)λs(du)ds
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≤ lim inf
n

∫ T

0
L
(
μn(s), μ̇n(s)

)
ds

≤M.

So indeed KT
M is compact in CP(E)(R

+). �

4.8. Proof of Proposition 2.12.

PROOF OF PROPOSITION 2.12. We start with the proof of (a). Let γ ∈AC be
strongly absolutely continuous. Let H : [0,∞)→ R be the absolutely continuous
function such that supf∈N |〈f,γ (t)〉 − 〈f,γ (s)〉| ≤ |H(t)−H(s)|. We conclude
that for all f ∈N , and thus for all f ∈D that t �→ 〈f,γ (t)〉 is absolutely contin-
uous. Following the proof of Lemma 4.2 in [4], with N instead of the collection
of neighbourhoods UKn , we conclude that there exists a weakly measurable trajec-
tory s �→ u(s) in D′ such that for all f in a countable dense subset of D and for
all t in a subset of full measure it holds that d

dt
〈f,γ (t)〉 = 〈f,u(t)〉.

By absolute continuity of t �→ 〈f,γ (t)〉, we also know that
∫ t

0 |〈f,u(s)〉|ds <

∞ and additionally,

〈
f,γ (t)

〉− 〈f,γ (0)
〉= ∫ t

0

〈
f,u(s)

〉
ds ∀f ∈D,∀t ≥ 0.

We conclude that γ ∈AC.
We proceed with the proof of (b). Let γ ∈ AC be absolutely continuous

and such that
∫∞

0 L(γ (s), γ̇ (s))ds < ∞. Let φ be the function introduced
in Lemma 4.28. Denote by ψ := φ−1. An elementary computation shows
that limr→∞ r−1ψ(r)= 0. By Lemma 4.28, we obtain that supf∈N |〈f,u〉| ≤
ψ(L(μ,u)) for all μ ∈ P(E) and ν ∈D′.

By Condition 2.3 the space (D, τD) is separable. Thus, we can find a τD dense
sequence of functions {fn}n≥1 in N such that

sup
f∈N

∣∣〈f,γ (s)
〉∣∣= sup

n

∣∣〈fn, γ (s)
〉∣∣.

We conclude that the function h : [0,∞)→[0,∞] defined by h(s) := supf∈N |〈f,

γ (s)〉| is measurable. In fact, h is locally integrable because∫ T

0
h(s)ds =

∫ T

0
sup
f∈N

∣∣〈f,γ (s)
〉∣∣ds ≤

∫ T

0
ψ
(
L
(
γ (s), γ̇ (s)

))
ds

=
∫ T

0

(
1∨L

(
γ (s), γ̇ (s)

))ψ(L(γ (s), γ̇ (s)))

1∨L(γ (s), γ̇ (s))
ds

≤
∫ T

0

(
1∨L

(
γ (s), γ̇ (s)

))
M ds <∞,
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where M := supr≥1 r−1ψ(r). Put H(t) = ∫ t
0 h(s)ds, which is a nondecreasing

absolutely continuous function by construction. We find by the fact that γ ∈ AC
that for s ≤ t and f ∈N

∣∣〈f,γ (t)
〉− 〈f,γ (s)

〉∣∣≤ ∫ t

s

∣∣〈f, γ̇ (r)
〉∣∣dr ≤

∫ t

s
h(r)dr =H(t)−H(s). �

5. Examples. We give a number of examples for which Theorem 2.8 can be
applied. We start by considering degenerate diffusion processes on Rd . We pro-
ceed with Lévy processes on Rd . Third, we consider Markov jump process with
bounded jump rates on a locally compact separable metric space. Finally, we con-
sider interacting particle systems [24]. In this final case, we also give a representa-
tion theorem for D′.

5.1. Diffusion processes on Rd . First, we show that our result partly extends
the large deviation result of Dawson and Gärtner theorem [4] for the empirical
density of n noninteracting particles.

We start by introducing a topology on C∞c (Rd) that is well known in the theory
of distributions. Let K1 ⊆K2 ⊆ · · · be a sequence of compact sets in Rd such each
Kn is contained in the interior of Kn+1 and such that

⋃
n Kn =Rd .

Let p = (p1, . . . , pd) be a multi-index and define |p| =∑pi . Denote by(
∂

∂x

)p

f (x)=
(

∂

∂x1

)p1 · · ·
(

∂

∂xd

)pd

f (x),

where x = (x1, . . . , xd) are the standard Euclidean coordinates.
Consider the spaces C∞0 (Kn) of smooth functions on Rd that are supported in

Kn and equip it with the Fréchet topology τn generated by all seminorms of the
type:

‖f ‖Kn,m =
∑

p:|p|≤m

sup
x∈Kn

∣∣∣∣
(

∂

∂x

)p

f (x)

∣∣∣∣.
Finally, we equip C∞c (Rd) with the limit Fréchet (LF) topology τ ; see, for ex-

ample, Chapter 13 in [34].

DEFINITION 5.1. A neighbourhood basis of 0 for the LF topology τ on
C∞c (Rd) is given by the collection of convex sets U containing 0 such that
U ∩C∞0 (Kn) is a open neighbourhood of 0 in τn for all n.

The space (C∞c (Rd), τ ) is well known as the space of test functions. Its con-
tinuous dual space is the space of distributions. We proceed with the relation of
absolute continuity in the sense of Definition 4.1 in [4], which has also been used
in [7, 21], with strong and weak absolute continuity in the sense of Definitions 2.6
and 2.11.
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LEMMA 5.2. Let γ ∈ CP(E)[0, T ]. Then (a) implies (b) implies (c).

(a) γ is strongly absolutely continuous in the sense of Definition 2.11.
(b) γ is absolutely continuous in the sense of Definition 4.1 in [4]: for all com-

pact sets K there exists a τ -neighbourhood UK ⊆ C∞0 (K) of 0 and an absolutely
continuous function HK : [0, T ]→R such that

(5.1)
∣∣〈f,γ (t)

〉− 〈f,γ (s)
〉∣∣≤ ∣∣HK(t)−HK(s)

∣∣
for all s, t ∈ [0, T ] and f ∈UK .

(c) γ is absolutely continuous in the sense of Definition 2.6.

Thus, if the trajectory has finite Lagrangian cost, all three notions are equivalent
by Proposition 2.12.

PROOF OF LEMMA 5.2. Let γ satisfy (a). Recall that the inductive limit topol-
ogy τ induces the Fréchet topology τn on C∞0 (Kn) for every n. Thus, (b) is satis-
fied by taking UK =N ∩C0(K) and HK =H for any compact set K ⊆Rd .

Let γ satisfy (b). Fix f ∈ C∞c (Rd). Pick a compact set K such that f ∈ C∞0 (K).
It is not immediately clear that f ∈ UK . However, in a locally convex space, one
can always find a barrel B ⊆ UK , cf. Proposition 7.2 in [34]. Because barrels are
absorbing, there is some λ > 0 such that f ∈ λB ⊆ λUK . We conclude that (5.1)
holds for f with λHK instead of HK .

This means that t �→ 〈f,γ (t)〉 is absolutely continuous. We conclude that it
is differentiable almost everywhere. By Lemma 4.2 in [4], this derivative equals
〈f, γ̇ 〉 almost everywhere. We conclude that (c) is satisfied. �

As we will use this space for diffusion and for Lévy processes, we check the
process-independent conditions for the large deviation theorem directly.

LEMMA 5.3. Conditions 2.2 and 2.3(a)–(c) are satisfied for (C∞c (Rd), τ ).

PROOF. It is clear that C∞c (Rd) is an algebra that is closed under composition
with smooth functions. Additionally, it is clear that these operations are continuous
for τ .

We proceed with proving Condition 2.3(a). By Corollary 33.3 in [34], the space
(C∞c (Rd), τ ) is barrelled. By the remark following Proposition A.9 in [34] the
space (C∞c (Rd), τ ) is Souslin, which in particular implies that it is separable.

We are left to prove Condition 2.3(b). We have to prove that the embedding
ι : C∞c (Rd)→ C0(R

d) is τ to ‖ · ‖ continuous. By Proposition 14.7 in [34], it
suffices to prove sequential continuity. By Corollary 14.1 in [34], a sequence in
(C∞c (Rd), τ ) converges if and only if it is contained in C∞0 (Kn) for some n and
converges in the topology τn. τn contains neighbourhoods generated by the supre-
mum norm, thus the continuity of ι follows. �
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We proceed with the large deviations of diffusion processes on Rd . Let Sd be
the space of d×d nonnegative-definite matrices. We give two generation theorems
for diffusion processes with generator (A,C∞c (Rd)) defined by

(5.2) Af (x)= 1

2

d∑
i,j=1

aij (x)
∂2f

∂xi ∂xj
(x)+

d∑
i=1

bi(x)
∂f

∂xi
(x).

The first theorem considers nondegenerate diffusion matrices, the second one
considers degenerate diffusion matrices.

THEOREM 5.4 (Theorem 8.1.7 in [11]). Let a :Rd → Sd and b :Rd →Rd be
bounded. Let 0 < μ≤ 1, K > 0 and suppose that∣∣a(x)− a(y)

∣∣+ ∣∣b(x)− b(y)
∣∣≤K|x − y|μ,

and

inf
x∈Rd

inf|θ |=1

〈
θ, a(x)θ

〉
> 0.

Then the closure of (A,C∞c (Rd)) defined in (5.2) generates a Feller process.

THEOREM 5.5 (Theorem 8.2.5 in [11]). Let a : Rd → Sd be such that x �→
aij (x) is twice continuously differentiable (possible nonbounded) and such that

for all i, j , k, l the map x �→ ∂2aij

∂xk∂xl (x) is bounded. Let b : Rd → R be Lipschitz

continuous. Then the closure of (A,C∞c (Rd)) defined in (5.2) generates a Feller
process.

An elementary calculation yields

(5.3) Hf (x)=Af (x)+ 1

2

∑
i,j

aij (x)
∂f

∂xi
(x)

∂f

∂xj
(x).

We check the conditions for the large deviation result.

THEOREM 5.6. Let A satisfy the conditions Theorem 5.4 or Theorem 5.5.
Then (C∞c (Rd), τ ) and H satisfy Conditions 2.2 and 2.3. As a consequence, The-
orems 2.1 and 2.8 hold for i.i.d. copies of a diffusion process with generator A.

Below, in Proposition 5.7, we give a representation of the rate function in terms
of an inverse Sobolev space norm.

Compared to the result for the trajectories of copies of independent diffusion
processes of Dawson and Gärtner, there are three main differences:

(a) Our results only hold in the time-homogeneous setting.



816 R. C. KRAAIJ

(b) We are not restricted to the case where the diffusion matrices are positive
definite.

(c) The assumption that the compactly supported smooth functions are a core
is more stringent than the condition that the martingale problem is well-posed.

Then there is the result by Feng and Kurtz, Section 13.3 in [13], where the large
deviation principle is established under the condition that the drift term is twice
continuously differentiable, is semiconvex, and grows sufficiently fast at infinity.
The diffusion matrix is assumed to be the identity matrix. Under these conditions,
it is shown that the trajectories satisfy the large deviation principle in DP2(E)(R

+),
where P2(E) is the space of probability measures on E with bounded second
moments equipped with the Kantorovich–Wasserstein 2-metric.

Restricting to the noninteracting case of the large deviation result in [2], it is not
clear to the author how the strong assumption of having of having a core relates to
strong uniqueness of solutions to the N -particle model

dXN,i(t)= b
(
XN,i(t)

)
dt + σ

(
XN,i(t)

)
dWi(t),

which is one of the assumptions in [2]. Note that in this paper the large deviation
principle is established in the more complex space P(DRd ([0, T ])) as opposed to
in DP(Rd )([0, T ]) or DP(Rd )(R

d) in [4, 13] and this paper.
Also the restriction of the results to the noninteracting case in [12] hold on the

space P(DRd [0, T ]). Compared to [2], only weak uniqueness is necessary, but on
the other hand it is assumed that the diffusion matrices are nondegenerate.

The results of [2, 4, 12, 13] are all more general in the sense that they all hold
also for weakly interacting systems.

PROOF OF THEOREM 5.6. By Lemma 5.3, we only have to check Condition
2.3(d) and (e). By definition of the topology τ on C∞c (Rd), (d) is clear. For (e),
define the τ -continuous and convex functions:

|f |n := d sup
x∈Kn

sup
i

∣∣bi(x)
∣∣∣∣∣∣ ∂f∂xi

(x)

∣∣∣∣
+ d2

2
sup
x∈Kn

sup
i,j

∣∣aij (x)
∣∣(∣∣∣∣ ∂2f

∂xi ∂xj
(x)

∣∣∣∣+
∣∣∣∣ ∂f∂xi

(x)

∣∣∣∣
∣∣∣∣ ∂f

∂xj
(x)

∣∣∣∣
)
,

and the set N := {f ∈ C∞c (Rd) | ∀n≥ 1, we have |f |n ≤ 1}. Clearly, N is closed,
convex and balanced. Because N is balanced, convex and 0 ∈N , it follows that
to prove that N is absorbing, it is sufficient to prove that for every f ∈ C∞c (Rd)

there exists α > 0 such that αf ∈N .
Consider f ∈ C∞c (Rd). By τ -continuity, we obtain that if α→ 0, then |αf |n→

0 for all n≥ 1. Because there is some m such that f ∈ C∞0 (Km), we conclude that
for n≥m we have |f |n = |f |m. Thus, we find that supn |αf |n→ 0 as α→ 0. We
conclude that there is some α > 0 such that αf ∈N , and hence, that N is a barrel.
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Consider c ≥ 0, we prove that supf∈cN ‖Hf ‖ <∞. Pick some g ∈ N . Then
there is some m such that g ∈C∞0 (Km)∩ cN . Thus,

‖Hg‖ ≤ |cg|m ≤ (1∨ c)2|g|m ≤ (1∨ c)2.

Thus, supf∈cN ‖Hf ‖ ≤ (1∨ c)2, which establishes Condition 2.3(e). �

5.2. A representation of the Lagrangian in terms of an inverse Sobolev space
norm. Let (x1, . . . , xd) be the global Euclidean coordinates. For f ∈ C∞c (Rd),
define the Riemannian gradient induced by the diffusion matrices aij (·):

(∇f )i =
d∑

j=1

aij (·) ∂f

∂xj
,

for i ∈ {1, . . . , d}. If the matrices would be positive definite, the matrices aij would
be invertible with inverses aij . The associated Riemannian inner product for tan-
gent vectors in TxR

d would be

[X,Y ]x =
d∑

i,j=1

aij (x)XiY j ,

which induces a norm on the tangent space TxR
d : |X|x =√[X,X]x . We conclude

that the norm of the gradient of f equals

|∇f |2x =
d∑

i,j=1

aij (x)
∂f

∂xi
(x)

∂f

∂xj
(x),

which is a formula that also makes sense if the matrix aij is degenerate.
Define the seminorm ‖f ‖2

μ := 〈|∇f |2,μ〉 and the Sobolev space H 1(μ,∇), by
identifying all functions f ∈ C∞c (Rd) such that ‖f − g‖μ = 0, and then complet-
ing it by using the norm ‖ · ‖μ. For α ∈ C∞c (Rd)′, define the dual norm:

‖α‖−1,μ = sup
f∈C∞c‖f ‖μ≤1

〈f,α〉 = sup
f∈C∞c (Rd )

{
〈f,α〉 − 1

2
‖f ‖2

μ

}
.

The next proposition shows the connection between Theorem 2.8 and Theo-
rem 4.5 by Dawson and Gärtner [4].

PROPOSITION 5.7. Let μ ∈ P(E) and let α ∈ C∞c (Rd)′, then L(μ,α) =
1
2‖α −A′(μ)‖2−1,μ.

PROOF. Pick μ ∈ P(Rd) and α ∈ C∞c (Rd)′. By (5.3), we find

L(μ,α)= sup
f∈C∞c (Rd )

{
〈f,α〉 − 〈Af,μ〉 − 1

2

〈|∇f |2,μ〉}= 1

2

∥∥α −A′(μ)
∥∥2
−1,μ.

�
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5.3. Lévy processes. For our second example, we consider the large devia-
tions of Lévy processes. Let P ∈ DRd (R+) be the law of a Rd valued Lévy pro-
cess. Because the law of X(1) is infinitely divisible, the Lévy–Khintchine formula,
Theorem 8.1 in [30], and Corollary 11.6 [30] show that there is a one-to-one cor-
respondence between Lévy processes, the law of the process at time 1, and triplets
(a, ν, γ ). Here, a ∈ Sd , ν be a nonnegative Borel measure on Rd satisfying

(5.4) ν
({0})= 0,

∫ (|x|2 ∧ 1
)
ν(dx) <∞, γ ∈Rd .

THEOREM 5.8 (Theorem 31.5 in [30]). Let X be a Lévy process on Rd with
generating triplet (a, ν, γ ). Then X is a strong Feller process with strongly con-
tinuous semigroup {S(t)}t≥0 on C0(R

d) and the generator (A,D(A)) of {S(t)}t≥0
satisfies C2

0(Rd)⊆D(A) and for f ∈C2
0(Rd):

Af (x)= 1

2

d∑
i,j=1

aij ∂2f

∂xi ∂xj
(x)+

d∑
i=1

γi

∂f

∂xi
(x)

+
∫ (

f (x + y)− f (x)−
d∑

i=1

yi

∂f

∂xi
(x)1D(y)

)
ν(dy),

where D = {x | |x| ≤ 1}. The set C∞c (Rd) is a core for (A,D(A)).

The assumption on ν is necessary for the integral in the definition of A to be
well-defined. For f ∈ C∞c (Rd) with support in a compact set K ⊆ Rd , a second-
order Taylor expansion of the f (x + y) in y yields that∣∣∣∣∣f (x + y)− f (x)−

d∑
i=1

yi

∂f

∂xi
(x)

∣∣∣∣∣≤ 1

2

d∑
i,j=1

∣∣∣∣yiyj

∂2f

∂xi ∂xj
(x)

∣∣∣∣+ θ
(‖f ‖3,K

)
R(y)

≤ ‖f ‖2,K

2
d|y|2 + θ

(‖f ‖3,K

)|y|2 R(y)

|y|2 ,

where θ is some continuous nonnegative function and where y �→R(y) is continu-
ous, nonnegative, and satisfies lim|y|→0 R(y)|y|−2 = 0. Thus, by (5.4), the integral
in the definition of A is well-defined. Additionally, it shows that f �→ Af is con-
tinuous from (C∞c (Rd)) to (C0(R

d),‖ · ‖).
A straightforward calculations shows that for f ∈ C∞c (Rd)

Hf (x)= 1

2

d∑
i,j=1

aij ∂2f

∂xi ∂xj
(x)+

d∑
i=1

γi

∂f

∂xi
(x)+ 1

2

∑
i,j

aij ∂f

∂xi
(x)

∂f

∂xj
(x)

+
∫ (

ef (x+y)−f (x) − 1−
d∑

i=1

yi

∂f

∂xi
(x)1D(y)

)
ν(dy).
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An argument based on the Taylor expansion of the exponential shows that also here
the integral is well-defined. For f ∈ C∞c (Rd) supported on the compact set K :∣∣∣∣∣ef (x+y)−f (x) − 1−

d∑
i=1

yi

∂f

∂xi
(x)

∣∣∣∣∣≤ ‖f ‖2,Kd|y|2 + θ2
(‖f ‖3,K

)|y|2 R(y)

|y|2 ,

where θ2 is a nonnegative continuous function and R is the same nonnegative
continuous function as above.

THEOREM 5.9. (C∞c (Rd), τ ) and H satisfy Conditions 2.2 and 2.3. As a con-
sequence, Theorems 2.1 and 2.8 hold for i.i.d. copies of a Lévy process.

To find a suitable barrel for Condition 2.3(e), note that |ea−b − 1| ≤ |a −
b|e|a−b|.

PROOF. By Lemma 5.3, we are left to verify Condition 2.3(d) and (e). (d) we
already proved above. For (e), we define the τ -continuous and convex functions:

|f |n := |γ |‖f ‖1,Kn + 2‖f ‖2,Kn

∑
ij

aij +
∫
Dc

2‖f ‖0,Kne
2‖f ‖0,Kn ν(dy)

+
∫
D
|y|2

[
d‖f ‖2,Kn + θ2

(‖f ‖3,Kn

)R(y)

y

]
ν(dy)

and the set

N := {f ∈ C∞c
(
Rd) | ∀n≥ 1,we have |f |n ≤ 1

}
.

The proof that N is a barrel follows as in the proof of Theorem 5.6.
Consider c ≥ 0 and pick some g ∈ cN . Then there is some m such that g ∈

C∞0 (Km)∩ cN . As in the proof of Theorem 5.6, we have

‖Hg‖ ≤ |cg|m ≤ �ν(c),

where �ν : [0,∞)→[0,∞) is some increasing function that depends on θ2, and ν.
Thus, supf∈cN ‖Hf ‖ ≤ �ν(c), which proves Condition 2.3(e). �

The relevant information for the bound in terms of �ν is that ν is independent of
the coordinate x. It is illustrative to check that if the jump kernel ν is x dependent
and unbounded, this bound fails.

5.4. Markov pure jump process. We consider Markov processes on a locally
compact separable metric space with a generator of the form

Af (x)= λ(x)

∫ [
f (y)− f (x)

]
μ(x,dy),



820 R. C. KRAAIJ

where μ is a transition function from E to E. In the setting that λ = 1 and that
x �→ μ(x, ·) is continuous from (E,d) to (P(E),weak), it is immediate that
A generates a Feller process and that Conditions 2.2 and 2.3 are satisfied with
(D, τD)= (C0(E),‖ · ‖). We summarize this as a proposition.

PROPOSITION 5.10. Theorem 2.8 holds with (D, τD) = (C0(E),‖ · ‖) for
Markov jump processes on a locally compact space if λ is bounded.

The condition that λ is bounded corresponds to Assumption 1 in [7], which
is proven for jump processes on Rd , but with weak time-dependent interaction.
A representation or the rate function in terms of Orlicz norms like in Theorem 3.1
in [21]. We will not reproduce the proof here as it significantly longer than the
counterpart for diffusion processes. Also see [22, 23] for more details on this proof.

In the setting that the kernel λ is unbounded needs more care. One such setting
is treated below in Section 5.5. In the setting of Theorem 8.3.1 in [11], however,
our method seems to fail even if we consider an LF topology like in Section 5.1.

5.5. Interacting particle systems. To show that our approach works in a wide
range of contexts, we consider interacting particle systems as defined in [24]. Let
W be a compact metric space and let S be a countable set. Define (E =WS,d),
the product space with a metric d that is compatible with the product topology,
on which we will define a Markov process {η(t)}t≥0. Examples are the exclusion
process, the contact process, etc. We follow the construction in Liggett [24].

For � a finite subset of S and ζ ∈W� let c�(η,dζ ) be the rate at which the
system makes a transformation from configuration η to ηζ , which is defined by

ηζ
x =

{
ηx if x /∈�,

ζx if x ∈�.

We assume that c�(η,dζ ) is weakly continuous in the first variable. Because the
total rate of jumps could be infinite, we need to specify a class of test functions for
the generator. For f ∈C(E), define

�f (x)= sup
{∣∣f (η)− f (ζ )

∣∣ | for y �= x : ηy = ζy

}
the variation of f at x ∈ S. The natural space of test functions is given by

D =
{
f ∈ Cb(E)

∣∣∣ |||f ||| :=∑
x∈S

�f (x) <∞
}
.

For functions f ∈D, define the formal generator A to be

(5.5) Af (η)=∑
�

∫
c�(η,dζ )

[
f
(
ηζ )− f (η)

]
.
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Note that the total jump-rate in this generator could be infinite. Theorem I.3.9 in
[24] gives conditions under which A generates a Feller semigroup {S(t)}t≥0 and
Markov process (η(t))t≥0. One of the main conditions in this theorem is

(5.6) |A|D := sup
x

∑
�!x

c� <∞,

where c� = sup{c�(η,W�) | η ∈ E} is the maximal total variation of c�(η, ·).
This condition implies that the sum in (5.5) is uniformly convergent and that for
f ∈D:

(5.7) ‖Af ‖ ≤ |A|D|||f |||.
The same condition implies that Ag and H are well-defined for f,g ∈D. Anal-

ogously to the operators for jump processes, we find

Agf (η)=∑
�

∫
c�(η,dζ )eg(ηζ )−g(η)[f (ηζ )− f (η)

]
,

Hf (η)=∑
�

∫
c�(η,dζ )

[
eg(ηζ )−g(η) − 1

]
.

Motivated by (5.7), our goal is to equip D with a topology τD based on the
seminorm ||| · |||. Note that |||1||| = 0, so ||| · ||| alone cannot define a Hausdorff
topology. Only the constants, however, have this property. Thus, let τD be the
topology induced by ‖ · ‖D := ||| · ||| + ‖ · ‖.

THEOREM 5.11. Let A satisfy the conditions of Theorem I.3.9 in [24],
amongst those including (5.6).

Then (D,‖ · ‖D) satisfies Conditions 2.2 and 2.3. As a consequence, Theo-
rems 2.1 and 2.8 hold for i.i.d. copies of interacting particle processes with gener-
ator A.

PROOF. A straightforward argument, using the density of local functions es-
tablishes the separability of (D, τD), implying Condition 2.3(a). (b) is immedi-
ate by the definition of τD . Conditions 2.2 and 2.3(c) follows from a number of
straightforward calculations using the seminorm ||| · |||.

Condition 2.3(d) was obtained in (5.7). For (e), fix f ∈ D, then the function
α �→ eα defined on [−2‖f ‖Q,2‖f ‖Q] is Lipschitz continuous, with Lipschitz
constant e2‖f ‖Q . Here ‖f ‖Q := infc∈R ‖f + c‖ denotes the quotient norm, taking
out the constant functions. This means that |eα−1| ≤ |α|e2‖f ‖Q on the appropriate
domain. Applying this to ‖Hf ‖, we obtain

‖Hf ‖ ≤ e2‖f ‖Q ∑
�

∣∣∣∣
∫

c�(η,dζ )
[
f
(
ηζ )− f (η)

]∣∣∣∣≤ e|||f ||||||f ||| sup
x

∑
�!x

c�.

It follows N = {f ∈D | |||f ||| ≤ 1} satisfies the condition for (e). �
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We proceed with a short discussion on giving a representation for D′ in terms
of set functions. Because we can always choose N in Condition 2.3 such that it
contains all constant functions, we can restrict our attention to (D/C)′, where C is
the space of constant functions.

We introduce some notation. For �⊆ S, let E� := σ(ηx | x ∈�). Furthermore,
�̃ is the space of additive set functions α on the algebra Ea :=⋃

�:|�|<∞ E�, for
which it holds that α(E)= 0. Note that the σ -algebra E is given by σ(Ea).

For α ∈ �̃ and a finite subset � ⊆ S, we denote the restriction of α to E� by
P�α and we set Px := P{x}. Also, we define the function ‖α‖� = supx ‖Pxα‖TV
taking values in [0,∞].

DEFINITION 5.12. Let � be the set

� := {α ∈ �̃ | ‖α‖� <∞}
.

It follows that � is a vector space and that ‖ · ‖� is a norm on �. We have the
following results on (D/C)′ and �, the proof of which is tedious, but straightfor-
ward.

PROPOSITION 5.13. (�,‖ · ‖�) is a Banach space and we have that
((D/C)′, ||| · |||) is isometrically isomorphic to (�, 1

2‖ · ‖�). Additionally, we have
‖P�α‖TV ≤ |�|‖α‖� for all finite subsets �⊆ S.

APPENDIX A: THE LARGE DEVIATION PRINCIPLE VIA SANOV’S
THEOREM

In this Appendix, we sketch how to prove Theorem 2.1. In this setting, we let
(E,d) be a complete separable metric space. We prove the large deviation principle
for a general class of processes via Sanov’s theorem and the contraction principle.
A similar approach has been taken in Lemma 4.6 of [4]. More care needs to be
taken as the contraction map φ defined by φ : P(DE(R+))→DP(E)(R

+) is not
continuous, whereas in the context of CE(R+) it is.

Define for every t the measurable maps πt ,πt− : DE(R+)→ E by πt(x) :=
x(t) and πt−(x)= x(t−); see, for example, Proposition III.7.1 in [11].

Let P be a probability measure on DE(R+), and let X = (X(t))t≥0 be the
process with law P. Define μ(t) = P ◦ π−1

t and μ(t−) = P ◦ π−1
t− the laws of

X(t) and X(t−). Also define the map φ : P(DE(R+)) → P(E)R
+

by setting
φ(P) = (μ(t))t≥0 and finally define the maps φt : P(DE(R+))→ P(E) by set-
ting φt(P)= μ(t).

As mentioned above, the map φ is not continuous. Discontinuity problems can
be avoided by additionally assuming that the process is continuous in probability.
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PROPOSITION A.1. φ : P(DE(R+))→ DP(E)(R
+) is measurable and, ad-

ditionally, continuous at measures P for which it holds that for every t > 0:
P[X(t)=X(t−)] = 1.

A similar statement for the finite dimensional projections φt , can be found in
[11], Theorem 3.7.8.

To prove measurability of φ, we first prove a useful lemma.

LEMMA A.2. Let E, F be Polish spaces and let ξ : E→ F be measurable.
Then the map ξ∗ : P(E)→ P(F ) defined by ξ∗μ= μ ◦ ξ−1 is measurable for the
Borel σ -algebras with respect to the weak topology on P(E) and P(F ).

PROOF. Let H be a Polish space, e.g. E or F . We start by proving that the
Borel σ -algebra Bw for the weak topology on P(H) equals the Borel σ -algebra
BTV for the total variation norm on P(H). As the total variation topology is finer
than the weak topology, we find Bw ⊆ BTV. As the total variation norm is lower
semicontinuous with respect to the weak topology, [cf. Theorem 7.9.1 in [1], which
identifies the total variation topology as the strong topology corresponding on
M(H) induced by Cb(H)], we find that BTV ⊆ Bw .

The result follows immediately from this identification as the map ξ∗ is contin-
uous for the total variation topologies. �

PROOF OF PROPOSITION A.1. To prove the measurability of φ, Proposi-
tion 3.7.1 in [11] implies that the Borel σ -algebra on DP(E)(R

+) is generated

by the inverse images of Borel sets in R of a collection of maps ι
f
s :DE(R+)→R

defined by ι
f
s ({μ(t)}t≥0)= ∫

f dμ(s) for all f ∈ Cb(E) and s ∈R+. Thus, it suf-
fices to prove that ι

f
s ◦ φ is measurable for all s and f .

We can write ι
f
s ◦ φ as ιf ◦ (πs)∗, where πt : DE(R+) → E was defined

as πt(x) = x(t) and where ιf : P(E) → R is defined as ιf (μ) = ∫
f dμ. By

Lemma A.2 (πt )∗ is measurable, and by definition ιf is continuous. We conclude
that ι

f
s ◦ φ = ιf ◦ (πs)∗ is measurable for all s ≥ 0 and f ∈ Cb(E). We conclude

that φ is measurable.
We proceed with the proof of continuity. Let Pn,P ∈ P(DE(R+)) such that

Pn → P weakly and P such that for every t P[X(t) = X(t−)] = 1. By the Sko-
rokhod representation theorem [11], Theorem 3.1.9, we can find a probability
space (�,F,P ) and DE(R+) valued random variables Yn,Y distributed as Xn

and X under Pn, P such that Yn→ Y P a.s.
Let {tn}n≥0 be a sequence converging to t > 0. Define the sets:

A := {Y(t)= Y(t−)
}
, B := {d(Yn(tn), Y (t)

)∧ d
(
Yn(tn), Y (t−)

)→ 0
}
.

By the assumption that P[X(t)=X(t−)] = 1, it follows that P [A] = 1. By Propo-
sition 3.6.5 in [11], and the fact that Yn→ Y P a.s. it follows that P [B] = 1. Com-
bining these statements yields P [Yn(tn)→ Y(t)] ≥ P [A∩B] = 1, which implies
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that μn(tn)→ μ(t). As μ(t) = μ(t−) by assumption, Proposition 3.6.5 in [11]
yields the final result. �

A.1. Large deviations for measures on the Skorokhod space. Suppose that
we have a process X on DE(R+) and a corresponding measure P ∈ P(DE(R+)).
Then Sanov’s theorem, Theorem 6.2.10 in [5], gives us the large deviation be-
haviour of the empirical distribution LX

n of independent copies of the process X

X1,X2, . . . :

LX
n :=

1

n

n∑
i=1

δ{Xi} ∈ P
(
DE

(
R+

))
with as the rate function the relative entropy defined in (2.1). As a consequence of
the contraction principle and Proposition A.1, we obtain the following result.

THEOREM A.3. Suppose that P satisfies P[X(t)=X(t−)] = 1 for every t ≥
0, then the large deviation principle holds for

(
LX(t)

n

)
t≥0 =

(
1

n

n∑
i=1

δXi(t)

)
t≥0

on DP(E)(R
+) with rate function

I
(
(νt )t≥0

)= inf
{
H(Q | P) |Q ∈ P

(
DE

(
R+

))
, φ(Q)= (ν(t)

)
t≥0

}
and I is finite only on CP(E)(R

+).

PROOF. The measures Q for which it holds that I (Q) <∞ satisfy Q	 P

hence it follows that for every t : Q[X(t) = X(t−)] = 1. This yields that φ is
continuous at Q by Proposition A.1.

By the contraction principle, Theorem 4.2.1 and remark (c) after Theorem 4.2.1
in [5], we obtain the large deviation principle on DP(E)(R

+) with I as given in the
theorem. �

A.2. The large deviation principle for Markov processes. Although Theo-
rem A.3 can be applied to a wide range of (time-inhomogeneous) processes, we
explore its consequences for time-homogeneous Markov processes.

LEMMA A.4. Suppose that the process X with corresponding measure P on
DE(R+) solves the martingale problem for (A,D(A)) with starting measure P0.
Then it holds that for every t ≥ 0 P[X(t)=X(t−)] = 1. Hence, the large deviation
principle holds for {LX(t)

n }t≥0 on DP(E)(R
+) with rate function:

I
(
(νt )t≥0

)= inf
{
H(Q | P) |Q ∈ P

(
DE

(
R+

))
, φ(Q)= (ν(t)

)
t≥0

}
and I is finite only on CP(E)(R

+).
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PROOF. To apply Theorem A.3, we need to check that P[X(t)=X(t−)] = 1
for every t ≥ 0, but this follows by Theorem 4.3.12 in [11]. �

Using this result, Theorem 2.1 follows without much effort.

PROOF OF THEOREM 2.1. The large deviation principle follows by Lem-
ma A.4. This lemma also gives that the rate function is ∞ on the complement
of CP(E)(R

+).
Next, we consider the form of the rate function. By Sanov’s theorem and the

contraction principle, the vector (L
X(0)
n ,L

X(t1)
n , . . . ,L

X(tk)
n ) satisfies the large de-

viation principle on P(E)k+1 with some rate function I [0, t1, . . . , tk]. The repre-
sentation

I [t0, . . . , tk](ν(0), . . . , ν(tk)
)=H

(
ν(0) | μ(0)

)+ k∑
i=1

Iti−ti−1

(
ν(ti) | ν(ti−1)

)
,

It (π1 | π2)= sup
f

〈f,π1〉 − 〈V (t)f,π2
〉
,

is proven for diffusion processes in Theorem 3.5 and Lemma 4.7 in [4]. The proofs
of these results only use the Feller property of the transition kernels, and can thus
be generalized without any problems to this more general context.

To obtain the rate function I as a supremum over rate functions for I [0, t1,

. . . , tk] for finite dimensional problems,

I (ν)=
⎧⎨
⎩

sup
0,t1,...,tk

I [0, t1, . . . , tk](ν(0), ν(t1), . . . , ν(tk)
)

if ν ∈ CP(E)

(
R+

)
,

∞ otherwise,

we use Theorem 4.13 and Theorem 4.30 in Feng and Kurtz [13]. �

APPENDIX B: SOUSLIN SPACES, BARRELLED SPACES AND GELFAND
INTEGRATION

B.1. Barrelled spaces and Gelfand integration. Barrelled spaces, intro-
duced in the paragraph following equation (2.2) on page 779, are of importance
because they allow for integration theory on the dual of the space.

Let (�,F,μ) be a complete and finite measure space, and let X be a barrelled
space with continuous dual X ′. We equip X′ with σ(X ′,X ), the weak∗ topology.

DEFINITION B.1. A function f :�→ X ′ is called weak∗ measurable if the
scalar function ω �→ 〈x,f (ω)〉 is F measurable for every x ∈ X . Such a function
f is called Gelfand or weak∗ integrable if 〈x,f 〉 ∈ L1(�,F,μ) for every x ∈X .
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For Gelfand integrable functions, we obtain from [6], pages 52–53, combined
with the closed graph theorem in [27], Proposition 7.1.11 or [29], Theorem VI.7,
the following result.

THEOREM B.2. Let X be a barrelled space and (�,F,μ) a complete and fi-
nite measure space. For every measurable set A ∈F and Gelfand integrable func-
tion f :�→X ′, there exists a unique x′A ∈X ′ such that

〈
x, x′A

〉= ∫
A

〈
x,f (ω)

〉
μ(dω)

for all x ∈X . This element x′A will be denoted by
∫
A f dμ.

B.2. Souslin spaces.

DEFINITION B.3. A space (Y, τY ) is called Souslin, if Y = f (X) for some
complete separable metric space (X, τX) and some continuous function f :
(X, τX)→ (Y, τy).

For more background on Souslin spaces, see Chapters 6 and 7 in [1].

LEMMA B.4. Let (X, τ) be a separable barrelled locally convex space and T

a barrel in (X, τ). Then (
⋃

n nT ◦,wk∗)⊆ (X′,wk∗) is a Souslin space.

In particular, as the unit ball in a Banach space B is a barrel, the dual (B ′,wk∗)
of separable Banach space is Souslin.

PROOF. As (X, τ) is barrelled, T is a neighbourhood of 0. Consequentially,
T ◦ is an equi-continuous set in (X∗,wk∗) by 21.3.(1) in Köthe [18]. By the
Bourbaki–Alaoglu theorem, 20.9.(4) in [18], this set is weak∗ compact.

Furthermore, by 39.4.(7) in [19], T ◦ is metrisable. (T ◦,wk∗) is compact and
metric, which implies that it is complete separable metric and as a consequence
Souslin. We can do the same for nN ◦ for every n ∈ N, so we obtain that
(
⋃

n nN ◦,wk∗) is Souslin [1], Theorem 6.6.6. �
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