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AN UPPER BOUND ON THE NUMBER OF SELF-AVOIDING
POLYGONS VIA JOINING

BY ALAN HAMMOND1

University of California, Berkeley

For d ≥ 2 and n ∈N even, let pn = pn(d) denote the number of length n

self-avoiding polygons in Z
d up to translation. The polygon cardinality grows

exponentially, and the growth rate limn∈2N p
1/n
n ∈ (0,∞) is called the con-

nective constant and denoted by μ. Madras [J. Stat. Phys. 78 (1995) 681–699]
has shown that pnμ−n ≤ Cn−1/2 in dimension d = 2. Here, we establish that
pnμ−n ≤ n−3/2+o(1) for a set of even n of full density when d = 2. We also
consider a certain variant of self-avoiding walk and argue that, when d ≥ 3, an

upper bound of n−2+d−1+o(1) holds on a full density set for the counterpart
in this variant model of this normalized polygon cardinality.

1. Introduction. Self-avoiding walk was introduced in the 1940s by Flory
and Orr [12, 26] as a model of a long polymer chain in a system of such chains
at very low concentration. It is well known among the basic models of discrete
statistical mechanics for posing problems that are simple to state but difficult to
solve. Two recent surveys are the lecture notes [3] and [19], Section 3.

1.1. The model. We will denote by N the set of nonnegative integers. Let
d ≥ 2. For u ∈R

d , let ‖u‖ denote the Euclidean norm of u. A walk of length n ∈ N

with n > 0 is a map γ : {0, . . . , n} → Z
d such that ‖γ (i + 1) − γ (i)‖ = 1 for each

i ∈ {0, . . . , n − 1}. An injective walk is called self-avoiding. A walk γ ∈ SAWn is
said to close (and to be closing) if ‖γ (n)‖ = 1. When the missing edge connecting
γ (n) and γ (0) is added, a polygon results.

DEFINITION 1.1. Let γ : {0, . . . , n−1} → Z
d be a closing self-avoiding walk.

For 1 ≤ i ≤ n − 1, let ui denote the unordered nearest neighbour edge in Z
d with

endpoints γ (i−1) and γ (i). Let un denote γ ’s missing edge, with endpoints γ (n−
1) and γ (0). We call the collection of edges {ui : 1 ≤ i ≤ n} the polygon of γ .
A self-avoiding polygon in Z

d is defined to be any polygon of a closing self-
avoiding walk in Z

d . The polygon’s length is its cardinality.

We will usually omit the adjective self-avoiding in referring to walks and poly-
gons. Recursive and algebraic structure has been used to analyse polygons in such
domains as strips, as [4] describes.
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Note that the polygon of a closing walk has length that exceeds the walk’s by
one. Polygons have even length and closing walks, odd.

1.2. Main results. This article has two main conclusions: Theorems 1.3
and 1.5; both are upper bounds on the number of polygons of given length (the
latter for a variant model). We present the two results now.

Define the polygon number pn to be the number of length n polygons up to
translation. By (3.2.9) of [23], limn∈2N p

1/n
n ∈ (0,∞) exists; it called the connec-

tive constant and denoted by μ. We define the real-valued polygon number deficit
exponent θn according to the formula

(1.1) pn = n−θn · μn for n ∈ 2N.

That lim infn∈2N θn is nonnegative in any dimension d ≥ 2 will be reviewed in
Section 3. Madras [21] has proved a bound on the moment generating function of
the sequence {pn : n ∈ 2N} which when d = 3 would assert limn∈2N θn ≥ 1 were
this limit known to exist. More relevantly for us, he has shown in [22] using a poly-
gon joining technique that θn ≥ 1/2 − o(1) for d = 2. We develop this technique
to prove a stronger lower bound valid for typical high n.

DEFINITION 1.2. The limit supremum density of a set A of even, or odd,
integers is

lim sup
n

|A ∩ [0, n]|
|2N∩ [0, n]| = lim sup

n
n−1∣∣A ∩ [0,2n]∣∣.

When the corresponding limit infimum density equals the limit supremum density,
we naturally call it the limiting density.

THEOREM 1.3. Let d = 2. For any δ > 0, the limiting density of the set of
n ∈ 2N for which θn ≥ 3/2 − δ is equal to one.

As we will discuss shortly, in the strongest form of this result consistent with
predictions, the value 5/2 would replace 3/2.

Madras and Slade [23], Theorem 6.1.3, have proved that θn ≥ d/2 + 1 in di-
mension d ≥ 5 for spread-out models, in which the vertices of Zd are connected
by edges below some bounded distance. There is a prospect that the method of
proof of Theorem 1.3 may be applied in all dimensions d ≥ 2, and the expected
conclusion is that θn ≥ 2 − d−1 − o(1) for a full density set of even n ∈ N. Indeed,
our second main conclusion, Theorem 1.5, is a result to this effect. Certain techni-
cal difficulties arise as we try to apply our method in the higher dimensional case
and, in order to largely circumvent these, we present Theorem 1.5 for a variant
model.
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DEFINITION 1.4. The maximal edge local time of a nearest neighbour walk
γ : {0, . . . , n} → Z

d is the maximum number of times that γ traverses an edge of
Z

d ; more formally, it is the maximum cardinality of a subset I ⊆ {0, . . . , n − 1}
such that the unordered sets {γ (i), γ (i+1)} and {γ (j), γ (j +1)} coincide for each
pair (i, j) ∈ I 2. Call γ k-edge self-avoiding if its maximal edge local time is at
most k ∈ N. Note that even 1-edge self-avoiding walk satisfies a weaker avoidance
constraint than does self-avoiding walk.

When considering (as we will) 3-edge self-avoiding walks, we say that a walk γ

as above closes if ‖γ (n)‖ = 0. Two such walks may be identified if they coincide
after reparametrization by cyclic shift or reversal. A 3-edge self-avoiding polygon
is an equivalence class under this relation on closing walks. The length of such a
polygon is the length of any of its members (and is n if one of these members is γ

as above). Note that these definitions entail that not only polygons but also closing
walks have even length.

For n ∈ 2N, let p̂n denote the number of 3-edge self-avoiding polygons of
length n up to translation. The connective constant limn∈2N p̂

1/n
n also exists for

this model and we denote it by μ̂. We define a real sequence {θ̂n : n ∈ N} so that

(1.2) p̂n = n−θ̂n · μ̂n for n ∈ 2N.

THEOREM 1.5. Let d ≥ 2. For any δ > 0, the set of n ∈ 2N for which θ̂n ≥
2 − 1/d − δ has limiting density equal to one.

1.3. Corollaries of the main results: The closing probability. Let SAWn de-
note the set of self-avoiding walks γ of length n that start at 0, that is, with
γ (0) = 0. We denote by Wn the uniform law on SAWn. The walk under the law
Wn will be denoted by �. The closing probability is Wn(� closes).

Let the walk number cn equal the cardinality of SAWn. By equations (1.2.10)
and (3.2.9) of [23], the limit limn∈N c

1/n
n exists and coincides with μ, and we

have cn ≥ μn.
The closing probability may be written in terms of the polygon and walk num-

bers. There are 2n closing walks whose polygon is a given polygon of length n,
since there are n choices of missing edge and two of orientation. Thus,

(1.3) Wn(� closes) = 2(n + 1)pn+1

cn

,

for any n ∈ N (but nontrivially only for odd values of n). Since cn ≥ μn, Theo-
rem 1.3 and (1.3) imply the next result.

COROLLARY 1.6. Let d = 2. For any ε > 0, the set of n ∈ 2N+ 1 such that

Wn(� closes) ≤ n−1/2+ε

has limiting density equal to one.
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The walk (and polygon) cardinalities, and the closing probability, are notions
that may be formulated for our variant model. Indeed, we may write ĉn and W3,E

n

for the cardinality of, and uniform law on, the set SAW3,E
n of length n 3-edge self-

avoiding walks beginning at 0. As we will explain in Section 5, we also have ĉn ≥
μ̂n. The counterpart

W3,E
n (� closes) = 2np̂n

ĉn

to (1.3) is clearly valid for any n ∈ 2N. As such, the next inference is immediate
from Theorem 1.5.

COROLLARY 1.7. Let d ≥ 2. For any δ > 0, the set of n ∈ 2N for which

W3,E
n (� closes) ≤ n−(1−1/d)+δ

has limiting density equal to one.

1.4. Further applications of the main results. In [9], an upper bound on the
closing probability of n−1/4+o(1) was proved in general dimension. The method
leading to that result was reworked in [14] to prove the next result, which super-
sedes Corollary 1.6.

THEOREM 1.8. Let d ≥ 2. For any ε > 0 and n ∈ 2N+ 1 sufficiently high,

Wn(� closes) ≤ n−1/2+ε.

The snake method is a probabilistic tool that is introduced in [14] in order to
obtain Theorem 1.8. (The article [14] is in large part a reworking of [9], although
this term for the method was not used in the original article [9].) The snake method
is applied via a technique of Gaussian pattern fluctuation in [14] to obtain Theo-
rem 1.8. A second application of the snake method is made in [15] in order to
reach a stronger inference regarding the closing probability, valid when d = 2, for
a subsequence of even n. In this case, the snake method is allied not with a pattern
fluctuation technique but instead with the tool that is central to the proofs of the
present article’s principal results Theorems 1.3 and 1.5: the polygon joining tech-
nique, initiated by Madras in [22]. The conclusion that is reached in [15] is now
stated.

THEOREM 1.9. Let d = 2:

(1) For any ε > 0, the bound

Wn(� closes) ≤ n−4/7+ε

holds on a set of n ∈ 2N+ 1 of limit supremum density at least 1/1250.
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(2) Define the walk number excess exponents ξn, n ∈ N, via cn = nξnμn, in
counterpart to (1.1); they are nonnegative by (1.2.10) of [23]. Suppose that the
limits θ := limn∈2N θn and ξ := limn∈N ξn exist in [0,∞]. Then θ + ξ ≥ 5/3. Since

(1.4) Wn(� closes) = n−θ−ξ+1+o(1)

as n → ∞ through odd values of n by (1.3), the closing probability is seen to be
bounded above by n−2/3+o(1).

[When θ + ξ = ∞, (1.4) should be interpreted as asserting a superpolynomial
decay in n for the left-hand side.]

The above result not only shares an important common element with Theo-
rem 1.3 in the form of the technique used to prove the two results; the proof of
Theorem 1.9 also uses the statement of Theorem 1.3.

It may be apparent that this paper shares with [14] and [15] certain combina-
torial and probabilistic elements. The present article, and the other two, may be
read alone, but there may be also be value in viewing the results in unison. The
online article [13] presents the content of the three articles in a single work and
includes some expository discussion. The online work connects the ideas; for ex-
ample, its Section 3.3 elaborates the upcoming heuristic derivation of the polygon
number deficit exponent lower bound (3.1) and uses this derivation as a mnemonic
to discuss proofs of several of the main conclusions.

1.5. Exponent prediction and hyperscaling relation. The limiting value θ =
limn∈2N θn is predicted to exist and to satisfy a relation with the Flory exponent ν

for mean-squared radius of gyration. The latter exponent is specified by the puta-
tive formula

(1.5) EWn

∥∥�(n)
∥∥2 = n2ν+o(1),

where EWn denotes the expectation associated with Wn [and where note that �(n)

is the nonorigin endpoint of �]; in essence, ‖�(n)‖ is supposed to be typically of
order nν . The hyperscaling relation that is expected to hold between θ and ν is

(1.6) θ = 1 + dν,

where the dimension d ≥ 2 is arbitrary. In d = 2, ν = 3/4, and thus θ = 5/2 is
expected. That ν = 3/4 was predicted by the Coulomb gas formalism [24, 25] and
then by conformal field theory [10, 11]. Hara and Slade [16, 17] used the lace ex-
pansion to show that ν = 1/2 when d ≥ 5 by demonstrating that, for some constant
D ∈ (0,∞), EWn‖�(n)‖2 −Dn is O(n−1/4+o(1)). This value of ν is anticipated in
four dimensions as well, since EWn‖�(n)‖2 is expected to grow as n(logn)1/4. In
fact, the continuous-time weakly self-avoiding walk in d = 4 has been the subject
of an extensive recent investigation of Bauerschmidt, Brydges and Slade. In [1],
a log1/4 correction to the susceptibility is derived, relying on rigorous renormal-
ization group analysis developed in a five-paper series [2, 5–8].
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The structure of the paper. The paper has four further sections.
The first sets up notation. The second, Section 3, gives an expository overview

of the polygon joining technique and, we hope, provides a useful background for
reading the later proofs; it is not logically needed later except for gathering some
standard facts that will be used. Section 4 proves Theorem 1.3. The argument is
varied in Section 5 in order to prove Theorem 1.5.

2. Some general notation and tools.

2.1. Multi-valued maps. For a finite set B , let P(B) denote its power set. Let
A be another finite set. A multi-valued map from A to B is a function 	 : A →
P(B). An arrow is a pair (a, b) ∈ A×B for which b ∈ 	(a); such an arrow is said
to be outgoing from a and incoming to b. We consider multi-valued maps in order
to find lower bounds on |B|, and for this, we need upper (and lower) bounds on
the number of incoming (and outgoing) arrows. This next lemma is an example of
such a lower bound.

LEMMA 2.1. Let 	 : A → P(B). Set m to be the minimum over a ∈ A of the
number of arrows outgoing from a, and M to be the maximum over b ∈ B of the
number of arrows incoming to b. Then |B| ≥ mM−1|A|.

PROOF. The quantities M|B| and m|A| are upper and lower bounds on the
total number of arrows. �

2.2. Denoting walk vertices and subpaths. For i, j ∈ N with i ≤ j , we write
[i, j ] for {k ∈ N : i ≤ k ≤ j}. For a walk γ : [0, n] → Z

d and j ∈ [0, n], we write γj

in place of γ (j). For 0 ≤ i ≤ j ≤ n, γ[i,j ] denotes the subpath γ[i,j ] : [i, j ] → Z
d

given by restricting γ .

2.3. Notation for certain corners of polygons. The most important ideas in
the article may be communicated by considering the two-dimensional case via the
proof of Theorem 1.3. The proof of Theorem 1.5 is a variation. We now present
notation specific to the two-dimensional case.

DEFINITION 2.2. The Cartesian unit vectors are denoted by e1 and e2 and
the coordinates of u ∈ Z

2 by x(u) and y(u). For a finite set of vertices V ⊆ Z
2,

we define the northeast vertex NE(V ) in V to be that element of V of maximal
e2-coordinate; should there be several such elements, we take NE(V ) to be the
one of maximal e1-coordinate. That is, NE(V ) is the uppermost element of V ,
and the rightmost among such uppermost elements if there are more than one.
Using the four compass directions, we may similarly define eight elements of V ,
including the lexicographically minimal and maximal elements of V , WS(V ) and
EN(V ). We extend the notation to any self-avoiding walk or polygon γ , writing,
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for example, NE(γ ) for NE(V ), where V is the vertex set of γ . For a polygon
or walk γ , set ymax(γ ) = y(NE(γ )), ymin(γ ) = y(SE(γ )), xmax(γ ) = x(EN(γ ))

and xmin(γ ) = x(WN(γ )). The height h(γ ) of γ is ymax(γ ) − ymin(γ ) and its
width w(γ ) is xmax(γ ) − xmin(γ ).

2.4. Polygons with northeast vertex at the origin. For n ∈ 2N, let SAPn denote
the set of length n polygons φ such that NE(φ) = 0. The set SAPn is in bijection
with equivalence classes of length n polygons where polygons are identified if one
is a translate of the other. Thus, pn = |SAPn|.

We write Pn for the uniform law on SAPn. A polygon sampled with law Pn will
be denoted by �, as a walk with law Wn is.

There are 2n ways of tracing the vertex set of a polygon φ of length n: n choices
of starting point and two of orientation. We now select one of these ways. Abusing
notation, we may write φ as a map from [0, n] to Z

2, setting φ0 = NE(φ), φ1 =
NE(φ) − e1, and successively defining φj to be the previously unselected vertex
for which φj−1 and φj form the vertices incident to an edge in φ, with the final
choice φn = NE(φ) being made. Note that φn−1 = NE(φ) − e2.

2.5. Cardinality of a finite set A. This is denoted by either #A or |A|.

2.6. Plaquettes. The shortest nonempty polygons contain four edges. Certain
such polygons play an important role in several arguments and we introduce nota-
tion for them now.

DEFINITION 2.3. A plaquette is a polygon with four edges. Let φ be a poly-
gon. A plaquette P is called a join plaquette of φ if φ and P intersect at precisely
the two horizontal edges of P . (The reader may wish to glance ahead to Figure 3,
in which the boundaries of the three shaded squares of the polygon are join pla-
quettes of that polygon.) Note that when P is a join plaquette of φ, the operation of
removing the two horizontal edges in P from φ and then adding in the two vertical
edges in P to φ results in two disjoint polygons whose lengths sum to the length
of φ. We use symmetric difference notation and denote the output of this operation
by φ�P .

The operation may also be applied in reverse: for two disjoint polygons φ1

and φ2, each of which contains one vertical edge of a plaquette P , the outcome
(φ1 ∪ φ2)�P of removing P ’s vertical edges and adding in its horizontal ones is
a polygon whose length is the sum of the lengths of φ1 and φ2.

3. Polygon number bounds via joining: An heuristic prelude. In Sec-
tion 2.1 of the text [23], a presentation is made of the standard heuristic derivation
of the relation (1.6): note that equation (1.4.14) of [23] is a representation of (1.6)
written in terms of the exponent αsing = 3 − θ .
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When d = 2, (1.6) asserts that θ = 1 + 2ν. A useful overview of our approach
to proving Theorem 1.3 is offered by giving in outline a heuristic derivation when
d = 2 of the weaker bound

(3.1) θ ≥ 1 + ν.

To make the derivation, we hypothesise the existence of the limit

(3.2) θ := lim
n∈2N

θn

and suppose also that ν exists, given by (1.5). We will derive (3.1) in three steps,
arguing that in step A that θ ≥ 0, in step B that θ ≥ ν and concluding in step C.

Step A: θ ≥ 0. By [23], Theorem 3.2.3, we have that, for n,m ∈ 2N,

(3.3) pn+m ≥ 1

d − 1
pnpm.

Thus, the sequence − log(p2n(d − 1)−1), n ∈ N, is subadditive, so that Fekete’s
lemma [27], Lemma 1.2.1, implies the existence of μ = limn∈N p

1/2n
2n and the

bound

(3.4) p2n ≤ (d − 1)μ2n.

Thus, lim infn∈2N θn ≥ 0, completing step A. This step thus depends principally on
the bound (3.3), which is proved by a simple use of polygon joining. Our aim is to
overview ideas for the upcoming proofs of our principal results, and we consider
only the case of d = 2 and equal polygon length m = n ∈ 2N in explaining (3.3).
Consider a pair φ,φ′ ∈ SAPn. Relabel φ′ by translating it so that WN(φ′) is one
unit to the right of EN(φ). The plaquette P whose upper left vertex is EN(φ) has
one vertical edge in φ and one in φ′. Note that χ := (φ ∪ φ′)�P is a polygon of
length 2n which is either an element of SAP2n or may be associated to such an el-
ement by making a translation. Moreover, the application (φ,φ′) → χ is injective,
because from χ we can detect the location of the plaquette P . The reader may wish
to confirm this property, using that φ and φ′ have the same length. This injectivity
implies that p2n ≥ p2

n.
Step B: θ ≥ ν. This step is an argument of Madras in [22]. When d = 2, we will

argue that

(3.5) p2n ≥ nνp2
n,

where recall that (1.5) specifies ν. That θ ≥ ν follows directly (provided the two
exponents exist). The derivation of (3.5) develops the polygon joining argument in
step A. The length n polygons φ and φ′ were joined in only one alignment, after
displacement of φ′ to a given location. Madras argues under (1.5) that there are at
least an order of nν locations to which φ′ may be translated and then attached to φ.
A total of nν distinct length 2n polygons results, and we obtain (3.5).
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Where are these new locations for joining? Orient φ and φ′ so that the height
of each is at least its width; thus, each height is at least of order nν . Translate φ′
vertically so that some vertices in φ and φ′ share their y-coordinate, and then push
φ′ to the right if need be so that this polygon is to the right of φ. Then push φ′
back to the left stopping just before the two polygons overlap. The two polygons
contain vertices at distance one, and so it is plausible that in the locale of this vertex
pair, we may typically find a plaquette P whose left and right vertical edges are
occupied by φ and φ′. The operation in the proof of step A applied with plaquette P

then yields a length 2n polygon. This construction began with a vertical translation
of φ′, with different choices of this translation resulting in different outcomes for
the joined polygon; since there is an order of nν different heights that may be used
for this translation, we see that the bound (3.5) results.

There is in fact a technical difficulty in implementing this argument: in some
configurations, no such plaquette P exists. Madras developed a local joining pro-
cedure that overcomes this difficulty in two dimensions. His procedure will be
reviewed shortly in Section 4.1.

Step C: θ ≥ 1 + ν. To strengthen the conclusion to the form (3.1), we argue
heuristically in favour of a strengthening of (3.5),

(3.6) p2n ≥ nν−o(1)
n/2∑

j=−n/2

pn−jpn+j .

Expressed using the polygon number deficit exponents, we would then have
n−θ2n ≥ nν ∑n/2

j=−n/2(n − j)−θn−j (n + j)−θj . Using (3.2), the bound (3.1) results.

To argue for (3.6), note that, in deriving p2n ≥ nνp2
n, each polygon pair (φ,φ′) ∈

SAPn × SAPn resulted in nν distinct length 2n polygons. The length pair (n,n)

may be varied to be of the form (n − j, n + j) for any j ∈ [0, n/2]. We are con-
structing a multi-valued map

	 : ⋃
|j |≤n/2

SAPn−j × SAPn+j → P(SAP2n)

to the power set of SAP2n which associates to each polygon pair (φ,φ′) in the do-
main an order of nν elements of SAP2n. Were 	 injective, we would obtain (3.6).
(The term injective is being misused: we mean that no two arrows of 	 are incom-
ing to the same element of SAP2n.) The map is not injective but it is plausible that
it only narrowly fails to be so: that is, abusing notation in a similar fashion, for
typical χ ∈ Range(φ), the cardinality of 	−1(χ) is at most no(1). A definition is
convenient before we argue this.

DEFINITION 3.1. Let φ be a polygon, and let P be one of φ’s join plaquettes.
Let φ1 and φ2 denote the disjoint polygons of which φ�P is comprised. If each of
φ1 and φ2 has at least one quarter of the length of φ, then we call P a macroscopic
join plaquette.
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To see that 	 is close to being injective, note that each pre-image of χ ∈
Range(φ) under 	 corresponds to a macroscopic join plaquette of χ . Each macro-
scopic join plaquette entails a probabilistically costly macroscopic four-arm event,
where four walks of length of order n must approach the plaquette without touch-
ing each other. That χ belongs to Range(φ) amounts to saying that χ is an ele-
ment of SAP2n having at least one macroscopic join plaquette. The four-arm costs
make it plausible that a typical such polygon has only a few such plaquettes, gath-
ered together in a small neighbourhood. Thus, 	 is plausibly close to injective so
that (3.6) and (3.1), results. [We will later be faced with arguing that 	 is indeed
close to injective; although we will obtain a version of (3.6) via a form of near-
injectivity, we will not obtain this near-injectivity by making rigorous the above,
rather vague, heuristic.]

4. Polygon joining when d = 2, rigorously: Proving Theorem 1.3. In this
section, we prove Theorem 1.3, in which recall that d = 2. Our job is clear in light
of the preceding heuristic derivation: we must make step C rigorous. The next
proposition is a key step. It offers a rigorous interpretation of (3.6).

DEFINITION 4.1. For ζ > 0, the set HPNζ ⊆ 2N of ζ -high polygon number
indices is given by

HPNζ = {
n ∈ 2N : pn ≥ n−ζμn}

.

PROPOSITION 4.2. For any ζ > 0, there is a constant C1 = C1(ζ ) > 0 such
that, for n ∈ 2N∩ HPNζ ,

(4.1) pn ≥ 1

C1 logn

∑
j∈2N∩[2i−1,2i ]

(n − j)1/2pjpn−j ,

where i ∈ N is chosen so that n ∈ 2N∩ [2i ,2i+1].
In essence, the meaning of the proposition is that when n ∈ 2N∩ HPNζ , pn is at

least a small constant multiple of n1/2(logn)−1 ∑
pjpn−j , where the sum is over

an interval of order n indices j around the value n/2 (though such a statement does
not follow directly from the proposition).

Perhaps our proof of Theorem 1.3 via Proposition 4.2 can be refined to quantify
the rate of convergence of the density one index set in the theorem. However, the
proposition in isolation is inadequate for proving the conclusion θn ≥ 3/2 − o(1)

for all n ∈ 2N, because this tool permits occasional spikes in the value of the pn,
as the sequence

θn =
⎧⎨
⎩

1, if n is a power of 2,

3/2 + 1

100
, if n ∈ 2N is otherwise,

demonstrates.
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This section has five subsections. The first four present tools needed for the
proof of Proposition 4.2, with the proof of this result in the fourth. The fifth proves
Theorem 1.3 as a consequence of the proposition.

Proving Proposition 4.2 amounts to making step C rigorous. We need to define
in precise terms the polygon joining technique that we will use to do this, and, in
the first subsection, we specify the local details of the technique due to Madras
that we will use. The heuristic argument in favour of (3.6) depended on the near-
injectivity of the multi-valued map 	 , which was argued by making a case for
the sparsity of macroscopic join plaquettes. In the second subsection, we present
Proposition 4.5 and Corollary 4.6, our rigorous versions of this sparsity claim. In
the third subsection, we set up the apparatus needed to specify our joining mech-
anism 	 , and in the fourth, we define and analyse the mechanism (and so obtain
Proposition 4.2).

4.1. Madras’ polygon joining procedure. When a pair of polygons is close,
there may not be a plaquette whose vertical edges are divided between the two
elements of the pair. We now recall Madras’ joining technique which works in a
general way for such pairs.

Consider two polygons τ and σ of lengths n and m for which the intervals

(4.2)
[
ymin(τ ) − 1, ymax(τ ) + 1

]
and

[
ymin(σ ) − 1, ymax(σ ) + 1

]
intersect.

Madras’ procedure joins τ and σ to form a new polygon of length n + m + 16 in
the following manner.

First, translate σ to the right by far enough that the x-coordinates of the vertices
of this translate are all strictly greater than all of those of τ . Now shift σ to the left
step by step until the first time at which there is a pair of vertices, one in τ and the
other in the σ -translate, that share an x-coordinate and whose y-coordinates differ
by at most two; such a moment necessarily occurs, by the assumption (4.2). Write
σ ′ = σ + T1e1 (with T1 ∈ Z) for this particular horizontal translate of σ . There is
at least one vertex z ∈ Z

2 such that the set {z − e2, z, z + e2} contains a vertex of
τ and a vertex of σ ′. The set of such vertices contains at most one vertex with any
given y-coordinate. Denote by Y the vertex z with the maximal y-coordinate.

Madras now defines a modified polygon τmod, which is formed from τ by chang-
ing its structure in a neighbourhood of Y ∈ Z

2. Depending on the structure of τ

near Y , either two edges are removed and ten edges added to form τmod from τ , or
one edge is removed and nine are added. As such, τmod has length n + 8. The rule
that specifies τmod is recalled from [22] in Figure 1.

A modified polygon formed from σ ′ is also defined. Rotate σ ′ about the vertex Y

by π radians to form a new polygon σ ′′. Form σ ′′
mod according to the same rules,

recalled in Figure 1. Then rotate back the outcome by π radians about Y to produce
the modification of σ ′, which to simplify notation we denote by σmod.

Writing Y = (Y1, Y2) in place of (x(Y ), y(Y )), note that no vertex of τ belongs
to the right corridor {Y1 +1, Y1 +2, . . .}× {Y2 −1, Y2, Y2 +1}, the region that lies
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FIG. 1. Changes made near the vertex Y in a polygon τ to produce τmod are depicted. The second
column depicts τ around Y , with Y indicated by a large disk or circle; a disk denotes a vertex that
belongs to τ and a circle one that does not; the line segments denote edges of τ . In the third column,
the modified polygon τmod is shown in the locale of Y . The vertex Y is shown as a black disk. Black
line segments are edges in τ or τmod and dotted line segments on the right are edges in τ that are
removed in the formation of τmod. Several cases are not depicted. These may be labelled cases IIIa,
IIIb, IIIci and IIIcii. In each case, the picture of τ and τmod is formed by reflecting the counterpart
case II picture horizontally through Y .

strictly to the right of {Y − e2, Y,Y + e2}. (Indeed, it is this fact that implies that
τmod is a polygon.) Equally, no vertex of σ ′ belongs to the left corridor {. . . , Y1 −
2, Y1 − 1} × {Y2 − 1, Y2, Y2 + 1}.

Note that the polygon τmod extends τ to the right of Y by either two or three units
inside the right corridor (by two in case IIa, IIci or IIIci and by three otherwise).
Likewise σmod extends σ ′ to the left of Y by either two or three units in the left
corridor (by two when σ ′′ satisfies case IIa, IIci or IIIci and by three otherwise).

Note from Figure 1 that, in each case, τmod contains two vertical edges that
cross the right corridor at the maximal x-coordinate adopted by vertices in τmod
that lie in this corridor. Likewise, σmod contains two vertical edges that cross the
left corridor at the minimal x-coordinate adopted by vertices in σmod that lie in the
left corridor.
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FIG. 2. Two pairs of Madras joinable polygons and the Madras join polygon of each pair. The
vertex Y is indicated by a circle or a disk in each picture. The junction plaquette is shaded. On the
left, τ satisfies case IIb and σ ′′, case IIa; on the right, Ib and IIb.

Translate σmod to the right by T2 units, where T2 equals:

• five when one of cases IIa, IIci and IIIci obtains for both τ and σ ′′;
• six when one of these cases obtains for exactly one of these polygons;
• seven when none of these cases holds for either polygon.

Note that τmod and σmod + T2e1 are disjoint polygons such that, for some pair of
vertically adjacent plaquettes (P 1,P 2) in the right corridor (whose left sides have
x-coordinate either Y1 + 2 or Y1 + 3), the edge-set of τmod intersects the plaquette
pair on the two left sides of P 1 and P 2, while the edge-set of σmod +T2e1 intersects
this pair on the two right sides of P 1 and P 2. Let P 1 denote the upper element of
this plaquette pair.

The polygon that Madras specifies as the join of τ and σ is given by (τmod ∪
(σmod + T2e1))�P 1. Note that, to form the join polygon, σ is first horizontally
translated by T1 units to form σ ′, modified locally to form σmod, and then further
horizontally translated by T2 units to produce the polygon σmod + T2e1 that is
joined onto τmod. Thus, σ undergoes a horizontal shift by T1 + T2 units as well as
a local modification before being joined with τmod.

DEFINITION 4.3. For two polygons τ ∈ SAPn and σ ∈ SAPm satisfying (4.2),
define the Madras join polygon

J (τ, σ ) = (
τmod ∪ (σmod + T2e1)

)
�P 1 ∈ SAPn+m+16.

The plaquette P 1 will be called the junction plaquette.
Such polygons τ and σ are called Madras joinable if T1 + T2 = 0: that is, no

horizontal shift is needed so that σ may be joined to τ by the above procedure.
Note that the modification made is local in this case: J (τ, σ )�(τ ∪ σ) contains at
most twenty edges. See Figure 2.
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4.2. Global join plaquettes are few. Recall that in step C of the derivation
of (3.1), the near-injectivity of the multi-valued map 	 was argued as a conse-
quence of the sparsity of macroscopic join plaquettes. We now present in Corol-
lary 4.6 a rigorous counterpart to this sparsity assertion. In the rigorous approach,
we use a slightly different definition to the notion of macroscopic join plaquette.

DEFINITION 4.4. For n ∈ 2N, let φ ∈ SAPn. A join plaquette P of φ is called
global if the two polygons comprising φ�P may be labelled φ� and φr in such a
way that:

• every rightmost vertex in φ is a vertex of φr ;
• and NE(φ) is a vertex of φ�.

Write GJφ for the set of global join plaquettes of the polygon φ.

PROPOSITION 4.5. There exists c > 0 such that, for n ∈ 2N and any k ∈ N,

#
{
φ ∈ SAPn : |GJφ| ≥ k

} ≤ c−12−kμ−2/2μn.

COROLLARY 4.6. For all ζ > 0 and C2 > 0, there exist C3,C4 > 0 such that,
for n ∈ HPNζ ,

Pn

(|GJ�| ≥ C3 logn
) ≤ C4n

−C2 .

The next lemma will be used in the proof of Proposition 4.5.

LEMMA 4.7. Let n ∈ 2N and φ ∈ SAPn. Writing j ∈ [0, n] so that ES(φ) =
φj , consider the two subpaths φ[0,j ] and φ[j,n], the first starting at NE(φ) = 0
and the second ending there. Each of these paths contains precisely one of the two
horizontal edges of any element in GJφ .

PROOF. For given φ ∈ SAPn, let P ∈ GJφ . We may decompose φ�P as φ� ∪
φr in accordance with Definition 4.4. We then have that NE(φ) is a vertex of φ� and
ES(φ) a vertex of φr . The path [0, n] → Z : j → φj leaves 0 to follow φ� until
passing through an edge in P to arrive in φr , tracing this polygon until passing
back through the other horizontal edge of P and following φ� until returning to
NE(φ). It is during the trajectory in φr that the visit to ES(φ) is made. �

PROOF OF PROPOSITION 4.5. For n ∈ N, an element γ ∈ SAWn is called a
half-space walk if y(γi) ≤ 0 for each i ∈ [0, n]. We call a half-space walk γ re-
turning if, after the last visit that γ makes to the lowest y-coordinate that this walk
attains, γ makes a unique visit to the x-axis, with this occurring at its endpoint γn.
Let RHSSAWn ⊂ SAWn denote the set of length n returning half-space walks. We
will first argue that, for any n ∈ N,

(4.3) |RHSSAWn| ≤ μn.
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FIG. 3. In the upper sketch, a polygon φ with the beginning of the trajectory from NE(φ) indicated
by an arrow. The polygon has three global join plaquettes, shaded here and labelled in the text P 1,
P 2 and P 3 left to right [the order in which they are encountered counterclockwise along φ from
NE(φ)]. In the lower picture, Sκ (φ) with κ = {1,3} is depicted. The two bold subpaths indicate the
reflections of the two diversions made by φ2,κ that traverse P 1 and P 3 the long way around.

To see this, we consider a map RHSSAWn → SAWn. Let γ ∈ RHSSAWn, and
let j ∈ [0, n] be the index of the final visit of γ to the lowest y-coordinate visited
by γ . The image of γ is defined to be the concatenation of γ[0,j ] and the reflec-
tion of γ[j,n] through the horizontal line that contains γj . (We have not defined
concatenation but hope that the meaning is evident.) Our map is injective because,
given an element in its image, the horizontal coordinate of the line used to con-
struct the image walk may be read off from that walk (the coordinate is one-half
of the y-coordinate of the image walk’s nonorigin endpoint). Its image lies in the
set of bridges of length n, where a bridge is a walk whose starting point has max-
imal y-coordinate and whose endpoint uniquely attains the minimal y-coordinate.
The set of bridges of length n beginning at the origin has cardinality at most μn:
this classical fact, which follows from (1.2.17) in [23] by symmetries of the Eu-
clidean lattice, is proved by a superadditivity argument with similarities to the
proof of (3.3). Thus, considering this map proves (4.3).

Noting these things allow us to reduce the proof of the proposition to verifying
the following assertion. There exists c > 0 such that, for δ ∈ (0,1/2), n ∈ 2N and
any k ∈ N,

(4.4) #RHSSAWn+2δk� ≥ cδ−δk · #
{
φ ∈ SAPn : |GJφ| ≥ k

}
.

Indeed, applying (4.3) with the role of n played by n + 2δk�, we see from (4.4)
that

#
{
φ ∈ SAPn : |GJφ| ≥ k

} ≤ c−1(
μ2δ

)δk
μn.

Setting δ = μ−2/2, we obtain Proposition 4.5.
To complete the proof of the proposition, we must prove (4.4), and this we

now do. Figure 3 illustrates the argument. Let φ ∈ SAPn. Setting j ∈ [0, n] so that
ES(φ) = φj (as we did in Lemma 4.7), write φ1 = φ[0,j ] and φ2 = φ[j,n]. Writing
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R2
z for reflection in the vertical (e2-directed) line that passes through z ∈ Z

2, define
a map S : SAPn → RHSSAWn to be the concatenation

S (φ) = φ1 ◦R2
ES(φ)

(
φ2)

.

By Lemma 4.7, each of φ1 and φ2 traverses precisely one horizontal edge of each
of φ’s global join plaquettes. Set r = #GJφ and enumerate GJφ by the sequence
(P 1, . . . ,P r) (in an arbitrary order; for example, in the order in which φ1 traverses
an edge of each plaquette). For each j ∈ {1, . . . , r}, let (sj , fj ) denote the unique
edge in P j traversed by φ2. Consider the path formed by modifying φ2 so that
the one-step subpath (sj , fj ) is replaced by a three-step subpath from sj to fj that
traverses the plaquette P j using its three edges other than (sj , fj ). The modifica-
tion may be made iteratively for several choices of j ∈ {1, . . . , r}, and the outcome
is independent of the order in which the modifications are made. In this way, we
may define a modified path φ2,κ for each κ ⊆ {1, . . . , r}, under which the modi-
fied route is taken along plaquettes P j precisely when j ∈ κ . Note that φ2,κ is a
self-avoiding walk whose length exceeds φ2’s by 2|κ|: it is self-avoiding because
this walk differs from φ2 by several disjoint replacements of one-step subpaths
by three-step alternatives, and, in each case, the two new vertices visited in the
alternative route are vertices in φ1, and, as such, cannot be vertices in φ2.

Note further that the intersection of the edge-sets of φ1 and φ2,κ equals⋃
j∈κ E(φ1) ∩ E(P j ) (where the sets in the union are each singletons).
For each κ ⊆ {1, . . . , r}, define Sκ(φ) ∈ RHSSAWn+2|κ|,

Sκ(φ) = φ1 ◦R2
ES(φ)

(
φ2,κ )

.

Recall that δ ∈ (0,1/2) and that k ∈N is given. Consider the multi-valued map

	 = 	k : {
φ ∈ SAPn : |GJφ| ≥ k

} → P(RHSSAWn+2δk�)
that associates to each φ ∈ SAPn with |GJφ| ≥ k the set

	(φ) = {
Sκ(φ) : κ ⊆ GJφ, |κ| = δk�},

where here we abuse notation and identify a subset of GJφ with its set of indices
under the given enumeration of GJφ .

Note that, for some constant c > 0 that is independent of δ ∈ (0,1/2) and for all
k ∈ N,

∣∣	(φ)
∣∣ =

(|GJφ|
δk�

)
≥

(
k

δk�
)

≥ cδ−δk.

(In the latter displayed inequality, the factor of k−1/2 that appears via Stirling’s for-
mula has been cancelled against other omitted terms. This detail is inconsequential
and the argument is omitted.)

Note that, for any γ ∈ SAWn+2δk�, the preimage 	−1(γ ) is either the empty-
set or a singleton. Indeed, if γ ∈ 	(φ) for some φ ∈ SAPn with |GJφ| ≥ k, then φ

may be recovered from γ as follows:
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• the coordinate x(ES(φ)) equals x(γn+2δk�)/2;
• the vertex ES(φ) is the lowest among the vertices of γ having the above x-

coordinate;
• setting j ∈ [0, n] so that γj is this vertex, consider the non-self-avoiding walk

γ[0,j ] ◦ R2
γj

(γ[j,n]). This walk begins and ends at 0. There are exactly δk� in-
stances where the walk traverses an edge twice. In each case, the three-step
journey that the walk makes in the steps preceding, during and following the
second crossing of the edge follow three edges of a plaquette. Replace this jour-
ney by the one-step journey across the remaining edge of the plaquette, in each
instance. The result is φ.

We may thus use the multi-valued map Lemma 2.1 to find a lower bound on
the cardinality of RHSSAWn+2δk�. The resulting bound is precisely (4.4). This
completes the derivation of Proposition 4.5. �

PROOF OF COROLLARY 4.6. Using

(4.5) Pn

(|GJφ| ≥ k
) = p−1

n · #
{
φ ∈ SAPn : |GJφ| ≥ k

}
,

and Proposition 4.5, we find that if n ∈ HPNζ then

Pn

(|GJφ| ≥ k
) ≤ c−12−kμ−2/2nζ

for k ∈ N. Set C3 = 2μ2(log 2)−1(C2 + ζ + 1). Then n ≥ c−1 implies that, for
k ≥ C3 logn,

Pn

(|GJφ| ≥ k
) ≤ c−1n−C2 .

Setting C4 = c−1, we obtain Corollary 4.6. �

4.3. Preparing for joining surgery: Left and right polygons. When we prove
Proposition 4.2 in the next subsection, polygons from a certain set SAPr

n−j will be

joined to others in another set SAPl
j . We think of the former as being joined to the

latter on the right, so that the superscripts indicate a handedness associated to the
joining.

Anyway, in this subsection, we specify these polygon sets, give a lower bound
on their size in Lemma 4.9, and then explain in Lemma 4.11 how there are plentiful
opportunities for joining pairs of such polygons in a surgically useful way (so that
the join may be detected by virtue of its global nature).

Let φ be a polygon. Recall from Definition 2.2 the notation ymax(φ) and
ymin(φ), as well as the height h(φ) and width w(φ).

DEFINITION 4.8. For n ∈ 2N, let SAPl
n denote the set of left polygons φ ∈

SAPn such that:

• h(φ) ≥ w(φ) [and thus, by a trivial argument, h(φ) ≥ n1/2],
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• and y(ES(φ)) ≤ 1
2(ymin(φ) + ymax(φ)).

Let SAPr
n denote the set of right polygons φ ∈ SAPn such that

• h(φ) ≥ w(φ).

LEMMA 4.9. For n ∈ 2N,

∣∣SAPl
n

∣∣ ≥ 1

4
· |SAPn| and

∣∣SAPr
n

∣∣ ≥ 1

2
· |SAPn|.

PROOF. An element φ ∈ SAPn not in SAPr
n is brought into this set by right-

angled rotation. If, after the possible rotation, it is not in SAPl
n, it may brought

there by reflection in the x-axis. �

DEFINITION 4.10. A Madras joinable polygon pair (φ1, φ2) is called globally
Madras joinable if the junction plaquette of the join polygon J (φ1, φ2) is a global
join plaquette of J (φ1, φ2).

Both polygon pairs in the upper part of Figure 2 are globally Madras joinable.
See Figure 4 for a further illustration.

LEMMA 4.11. Let n,m ∈ 2N and let φ1 ∈ SAPl
n and φ2 ∈ SAPr

m.
Every value

(4.6) k ∈ [
y
(
ES

(
φ1))

, y
(
ES

(
φ1)) + min

{
n1/2/2,m1/2} − 1

]
is such that φ1 and some horizontal shift of φ2 + ke2 is globally Madras joinable.

Write GlobalMJ(φ1,φ2) for the set of �u ∈ Z
2 such that the pair φ1 and φ2 + �u is

globally Madras joinable. Then

|GlobalMJ(φ1,φ2)| ≥ min
{
n1/2/2,m1/2}

.

PROOF. Recall that since φ1 ∈ SAPn and φ2 ∈ SAPm, ymax(φ
1) = ymax(φ

2) =
0. Note that whenever k ∈ Z is such that the two intervals

[
ymin

(
φ1)

,0
]

and k + [
ymin

(
φ2)

,0
]

intersect, there is some horizontal displacement j ∈ Z such that φ1 and φ2 + (j, k)

are Madras joinable. Note also that φ1 ∈ SAPl
n satisfies ymin(φ

1) ≤ −n1/2. Choices
of k ∈ [−n1/2,−1] thus produce polygon pairs (φ1, φ2 + ke2) whose first element
contains vertices that are more northerly than any of the second, and which are
Madras joinable after a horizontal shift of the second element of the pair. More-
over, since φ1 ∈ SAPl

n, y(ES(φ1)) is at most −n1/2/2. Thus, any value of k in (4.6)
lies in [−n1/2,−1]. In view of the Definition 4.4 of global join plaquette, in order
to verify the lemma’s first assertion, it remains to verify that the Madras join-
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FIG. 4. Illustrating Lemma 4.11 with two polygons, ITA and ALB. Denoting the polygons’ lengths
by n‘ and m, note that the translates of ITA and ALB with NE = 0 belong to SAPn and SAPm.
The start of the counterclockwise tour of ITA from NE(ITA) dictated by convention is marked by an
arrow. The depicted polygons are globally Madras joinable after a horizontal shift of ALB, with the
necessary surgery to ITA occurring in a vicinity of ES(ITA). Vertical shifts of ALB that leave this
polygon in an easterly line of sight from ES(ITA) will maintain this state of affairs.

able polygon pair associated by a suitable horizontal shift to any given value of
k in (4.6) has the property that its second polygon contains all of the most east-
erly vertices in either of the two polygons in the pair. Here is the reason that this
property holds: φ2 ∈ SAPr

m implies that h(φ2) ≥ m1/2, and thus, for such values
of k, the y-coordinate of ES(φ1) is shared by a vertex in φ2 + ke2; from this, we
see that, when this right polygon is shifted horizontally to be Madras joinable with
φ1, it is forced to intersect the half-plane bordered on the left by the vertical line
through ES(φ1), and thus to verify the claimed property.

The second assertion of the lemma is an immediate consequence of the first.
�

4.4. Polygon joining is almost injective: Deriving Proposition 4.2. We begin
by reducing this result to the next lemma.

LEMMA 4.12. For any ζ > 0, there is a constant C1 = C1(ζ ) > 0 such that,
for n ∈ 2N satisfying n + 16 ∈ HPNζ ,

pn+16 ≥ 1

C1 logn

∑
j∈2N∩[2i−1,2i ]

pjpn−j (n − j)1/2,

where i ∈ N is chosen so that n ∈ 2N∩ [2i ,2i+1].
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PROOF OF PROPOSITION 4.2. The lemma coincides with the proposition
when the two instances of n + 16 in its statement are replaced by n. To infer
the proposition from the lemma [with a relabelling of the value of C1(ζ )], it is
thus enough to establish two things. First, for some constant c > 0, pn ≥ cpn+16
whenever n ∈ 2N. Second, that for ζ,ϕ > 0, there exists n0(ζ, ϕ) such that if
n ∈ 2N satisfies n ≥ n0 and n + 16 ∈ HPNζ , then n ∈ HPNζ+ϕ . To verify the
first statement, recall from [23], Theorem 7.3.4(c), that limn∈2N pn+2/pn = μ2.
Thus, pn ≥ μ−16pn+16/2 for all n sufficiently high; the value of c > 0 may be
decreased from μ−16/2 if necessary in order that all n ∈ 2N satisfy the stated
bound. Given that the first statement holds, the second is confirmed by noting that
if n + 16 ∈ HPNζ , then pn+16 ≥ (2n)−ζμn+16 whenever n ∈ 2N satisfies n ≥ 16.

�

PROOF OF LEMMA 4.12. Set A = ⋃
SAPl

j × SAPr
n−j where the union is

taken over indices j ∈ 2N ∩ [2i−1,2i] for which n − j is positive. Set B =
SAPn+16.

We construct a multi-valued map 	 : A → P(B). Consider a generic domain
point (φ1, φ2) ∈ SAPl

j × SAPr
n−j where j ∈ 2N ∩ [2i−1,2i] satisfies n − j > 0.

This point’s image under 	 is defined to be the collection of length-(n + 16)

polygons formed by Madras joining φ1 and φ2 + �u as �u ranges over the set
GlobalMJ(φ1,φ2) specified in Lemma 4.11.

Since j ≥ 2i−1 and n ≤ 2i+1, we have that j ≥ (n − j)/3. By Lemma 4.11,

∣∣	((
φ1, φ2))∣∣ = |GlobalMJ(φ1,φ2)| ≥ min

{
j1/2/2, (n−j)1/2} ≥ 1

2
3−1/2(n−j)1/2.

Applying Lemma 4.9, we learn that the number of arrows in 	 is at least

(4.7) 3−1/22−4
2i∑

j=2i−1

pjpn−j (n − j)1/2,

where note that the summand is zero if j is odd.
For a constant C6 > 0, denote by

Hn+16 = {
φ ∈ SAPn+16 : |GJφ| ≥ C6 log(n + 16)

}
the set of length-(n + 16) polygons with a high number of global join plaquettes.

We now fix the value of C6 with which we will work. Recalling that n + 16 ∈
HPNζ , we may apply Corollary 4.6 with C2 = 1 and the role of n played by n+16.
Set C6 > 0 equal to the value of C3 determined via the corollary by this choice of
C2 and the value of ζ . Since Pn+16(|GJ�| ≥ C6 log(n + 16)) = |Hn+16|p−1

n+16, we
find that

(4.8) |Hn+16| ≤ C4(n + 16)−1pn+16.
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The set of pre-images under 	 of a given φ ∈ SAPn+16 may be indexed by the
junction plaquette associated to the Madras join polygon J (φ1, φ2) that equals φ.
Recalling Definition 4.10, this plaquette is a global join plaquette of φ. Thus,

(4.9)
∣∣	−1(φ)

∣∣ ≤ |GJφ| for any φ ∈ SAPn+16.

Since |GJφ| ≤ n + 16 for all φ ∈ SAPn+16, we find that

(4.10) max
{∣∣	−1(φ)

∣∣ : φ ∈ SAPn+16
} ≤ n + 16.

The proof of Lemma 4.12 will be completed by considering two cases.
In the first case,

• at least one-half of the arrows in 	 point to elements of Hn+16;

in the second case, then, at least one-half of these arrows point to elements of
SAPn+16 \ Hn+16.

The first case. The inequality

|Hn+16| · max
{∣∣	−1(φ)

∣∣ : φ ∈ Hn+16
}

(4.11)

≥ 1

2
· 3−1/22−4

2i∑
j=2i−1

pjpn−j (n − j)1/2

holds because the left-hand side is an upper bound on the number of arrows in 	

arriving in Hn+16, which is at least one-half of the total number of arrows; and the
latter quantity is at least the right-hand side. Applying (4.8) and (4.10),

pn+16 ≥ 3−1/22−5C−1
4

2i∑
j=2i−1

pjpn−j (n − j)1/2,

so that Lemma 4.12 is obtained in the first case.

The second case. The quantity

|SAPn+16 \ Hn+16| · max
{∣∣	−1(φ)

∣∣ : φ ∈ SAPn+16 \ Hn+16
}

is an upper bound on the number of arrows incoming to SAPn+16 \ Hn+16. In the
case that we now consider, the displayed quantity is thus in view of the total arrow
number lower bound (4.7) at least 3−1/22−5 ∑2i

j=2i−1 pjpn−j (n − j)1/2.

By (4.9), for φ ∈ SAPn+16 \ Hn+16, |	−1(φ)| ≤ C6 log(n + 16). Thus,

(4.12) pn+16 ≥ C−1
6

(
log(n + 16)

)−13−1/22−5
2i∑

j=2i−1

pjpn−j (n − j)1/2,

so that Lemma 4.12 is proved in the second case also. �
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4.5. Inferring Theorem 1.3 from Proposition 4.2. In this subsection, we prove
Theorem 1.3. The key step is the following, a consequence of Proposition 4.2.

PROPOSITION 4.13. For each ϕ > 0, there exists i0(ϕ) > 0 such that, for any
δ > 0, a ∈ (0,1) and i ∈ N for which i ≥ i0(ϕ) + 2(log 2)−1(3ϕ−1 + 1) loga−1,
the condition that

(4.13)
∣∣HPN3/2−δ ∩ [

2i−1,2i]∣∣ ≥ a · 2i−2

implies that

∣∣HPN3/2−2δ+ϕ ∩ [
2i ,2i+1]∣∣ ≥ 1

8
a2 · 2i−1.

The proposition stipulates an unstable state of affairs should Theorem 1.3 fail,
as we now outline. Let δ > 0 and assume that infinitely many dyadic scales are
occupied by HPN3/2−δ at a small but uniform fraction a. The proposition implies
that the next scale up from any one of these scales (excepting finitely many) is oc-
cupied at a fraction at least a2/8 by the more stringently specified set HPN3/2−3δ/2.
We may iterate this inference over several scales and find that, a few dyadic scales
higher from where we began, there is a tiny but positive fraction of indices that ac-
tually belong to HPNζ for a negative value of ζ . This index set is of course known
to be empty. Thus, the HPN3/2−δ-occupancy assumption is found to be invalid, and
Theorem 1.3 is proved.

First, we prove Proposition 4.13 and then, in Proposition 4.16 and its proof, we
implement a rigorous version of the argument just sketched.

PROOF OF PROPOSITION 4.13. We will prove the result with the choice

i0(ϕ) = max
{

6, ϕ−1
(

18 + 2

log 2
logC1

)
,

log(2π)

2 log 2
(4.14)

+ 1

log 2

(
4ϕ−1 + 3/2

)
log

(
4ϕ−1 + 1

)}
,

where the constant C1 is determined by Proposition 4.2 with ζ = 3.
Consider the map sum from the product of two copies of 2N ∩ [2i−1,2i] to

2N ∩ [2i ,2i+1] that sends (j, k) to j + k. Borrowing the language that we use for
multi-valued maps, we think of the function as being specified by a collection of
arrows (j, k) → j + k with target j + k. Fixing δ > 0, we call an arrow (j, k) →
j + k high if both j and k are elements of HPN3/2−δ . We also identify the set
TMHA ⊆ 2N∩ [2i ,2i+1] of sum image points targeted by many high arrows,

TMHA =
{
n ∈ 2N∩ [

2i ,2i+1] : n is the target of at least
1

8
a22i−2 high arrows

}
.

We now argue that TMHA occupies a proportion of at least a2/8 of the sum image
points.
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LEMMA 4.14. Suppose that the hypothesis (4.13) holds for a given a ∈ (0,1).
Then

|TMHA| ≥ 1

8
a2 · 2i−1.

PROOF. The sum image set 2N∩ [2i ,2i+1] has 2i−1 + 1 ≤ 2i elements. Thus,
the number of high arrows targeting elements of TMHAc is at most 2i · 1

8a22i−2 =
a2 · 22i−5.

By (4.13), the total number of high arrows is at least a2 · 22i−4. We learn then
that at least half of these arrows target elements of TMHA. However, no image
point is the target of more than 2i−2 + 1 ≤ 2i−1 arrows. Thus, there must be at
least a2 · 22i−5 · 21−i elements of TMHA. This completes the proof. �

The next lemma and its proof concern a useful additive stability property of
the high polygon number sets: for ζ > 0, HPNζ × HPNζ is mapped by sum into
HPN2ζ . This fact is useful when we seek to apply Proposition 4.2: the proposition
will be useful when the right-hand side in (4.1) is in a suitable sense large, but, in
this circumstance, the HPN-stability property verifies the proposition hypothesis
that n is an element of some HPN-set.

LEMMA 4.15. If n ∈ 2N ∩ [2i ,2i+1] is the target of a high arrow, then n ∈
HPN3−2δ .

PROOF. Let (j, n−j) be the high arrow that targets n. By (3.3), pn ≥ pjpn−j .
Since j and n − j are elements of HPN3/2−δ , we have that

(4.15) min
{
pjμ

−j ,pn−jμ
−(n−j)} ≥ n−3/2+δ,

where we also used δ ≤ 3/2, which bound follows from HPN3/2−δ �= ∅ and pn ≤
μn from (3.4). Thus, pn ≥ n−3+2δμ2n. �

Fix an element n ∈ TMHA. Lemma 4.15 shows that Proposition 4.2 is applicable
with ζ = 3. Thus,

(4.16) pn ≥ 1

C1 logn

∑
(n − j)1/2pjpn−j ,

where the sum is taken over j ∈ 2N∩ [2i−1,2i] such that (j, n − j) → n is a high
arrow.

By its definition and the structure of the map sum, the set TMHA is in fact
a subset of the even integers in the interval [2i + A,2i+1 − A], where A =
1
4a22i−2 − 2.

Recalling (4.14), note that the hypotheses of the proposition entail that i ≥ 6 +
2(log 2)−1 loga−1. Thus, a ≥ 23−i/2. Let j ∈ [2i−1,2i]. Since n ∈ TMHA, we see
from n − j ≥ A and this lower bound on a that n − j is at least a22i−5.
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Note then that

pn ≥ 1

C1 logn
a2(i−5)/2

∑
pjpn−j

≥ 1

C1 logn
a2(i−5)/2 · 1

8
a22i−2 · n−3+2δμn

≥ 1

25/2+3+2C1 logn
a3 · 2−3/2n3/2 · n−3+2δμn = 1

29C1 logn
a3 · n−3/2+2δμn.

In the first line, we sum over the same set of values of j as we did in (4.16). The
inequality in this line is due to (4.16) and n − j ≥ a22i−5. The second inequality
is due to n ∈ TMHA and the bound (4.15). The final line arises because 2i ≥ n/2.

Finally, we argue that

(4.17) 2−9C−1
1 a3(logn)−1 ≥ n−ϕ.

Combining with the last display, we learn that pn ≥ n−3/2+2δ−ϕμn, which is to say,
θn ≤ 3/2 − 2δ + ϕ. Recalling that this inference has been made for any element
n ∈ TMHA, we note that Lemma 4.14 completes the proof of Proposition 4.13.

It remains to confirm (4.17). This follows from two estimates: first, logn ≤
nϕ/2; second, 2−9C−1

1 a3 ≥ n−ϕ/2. The first is these follows by taking k = �4ϕ−1�
in enϕ/2 ≥ 1

k!n
kϕ/2 using k! ≤ (2π)1/2(4ϕ−1 + 1)4ϕ−1+3/2 as well as n ≥ 2i and

i ≥ i0(ϕ). The second follows from n ≥ 2i and the hypothesised lower bound on i.
�

PROPOSITION 4.16. Let δ > 0 and a ∈ (0,1). Let i0(δ/2) > 0 be specified by
Proposition 4.13. Suppose that i ∈ N satisfies

i ≥ i0(δ/2) + f (δ, a) + 2(log 2)−1(
6δ−1 + 1

)
loga−1,

where

f (δ, a) = 4(log 2)−1(
6δ−1 + 1

)
δ−(log 3/2)−1 log 2 log

(
8a−1)

.

Then ∣∣HPN3/2−δ ∩ [
2i−1,2i]∣∣ < a · 2i−2.

PROOF OF THEOREM 1.3. This is an immediate consequence of the proposi-
tion. �

PROOF OF PROPOSITION 4.16. Suppose the contrary. Let δ > 0, a ∈ (0,1)

and

(4.18) i ≥ i0(δ/2) + f (δ, a) + 2(log 2)−1(
6δ−1 + 1

)
loga−1

be such that (4.13) holds.
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For k ∈ N, set hk(a) = 81−2k
a2k

, and note for future reference that the recursion
hk+1(a) = hk(a)2/8 is satisfied with initial condition h0(a) = a.

Note that the inequality

2(log 2)−1(
6δ−1 + 1

)
loghk(a)−1

(4.19)
> f (δ, a) + 2(log 2)−1(

6δ−1 + 1
)

loga−1

is satisfied for all sufficiently high k ∈ N. Let K ∈ N denote the smallest value
of k ∈ N that satisfies this bound. Our choice of the function f entails that K >

1 + (log 3/2)−1 log δ−1.
We claim that, for any k ∈ [0,K],

(4.20)
∣∣HPN3/2−(3/2)kδ ∩ [

2i+k−1,2i+k]∣∣ ≥ hk(a) · 2i−k−2.

This bound may be proved by induction on k, where the base case k = 0 is vali-
dated by our assumption that (4.13) holds. Proposition 4.13 yields the bound for
k ∈ [1,K] as we now explain. Suppose that the bound holds for index k − 1. We
seek to apply Proposition 4.13 with the roles of δ, ϕ, i and a being played by
(3/2)k−1δ, (3/2)k−1δ/2, i + k − 1 and hk−1(a). The conclusion of the proposition
is then indeed the bound at index k, but we must check that the proposition’s hy-
potheses are valid. Beyond the inductively supposed hypothesis, we must confirm
that

(4.21) i + k − 1 ≥ i0(ϕ) + 2(log 2)−1(
3ϕ−1 + 1

)
loghk−1(a)−1,

with ϕ = (3/2)k−1δ/2. Note that since k ∈ [0,K], the inequality (4.19) is violated
at index k−1. Note that i+k−1 ≥ i may be bounded below by (4.18) and then, by
this violation, by i0(δ/2)+2(log 2)−1(6δ−1 +1) loghk−1(a)−1. Since ϕ ≥ δ/2 and
i0 is a decreasing function of ϕ > 0, we do indeed verify (4.21) and so complete
the derivation of (4.20) for each k ∈ [0,K].

Consider now (4.20) with k = K : we see that |HPNζ ∩ [2i+K−1,2i+K ]| ≥
hK(a) · 2i−K−2 > 0 where ζ = 3/2 − (3/2)Kδ. However, by recalling that K

exceeds (log 3/2)−1 log δ−1 by more than one, we find ζ to be negative, so that
pn ≤ μn implies that HPNζ = ∅. By obtaining this contradiction, we have com-
pleted the proof of Proposition 4.16. �

5. General dimension: Deriving Theorem 1.5. Here, we adapt the proof of
Theorem 1.3 from Section 4 to prove Theorem 1.5 concerning the 3-edge self-
avoiding walk model.

First, we recall that in the Introduction we asserted the existence of μ̂ =
limn∈2N p̂

1/n
n . In fact, we also have that limn∈N ĉ

1/n
n exists and equals this value.

Moreover, we asserted that cn ≥ μ̂n for n ∈ N. These claims are counterparts of
(1.2.10) and (3.2.9) in [23] for the 3-edge self-avoiding walk model. The proof of
these results, in particular the Hammersley–Welsh unfolding argument needed to
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show [23], (3.2.9), can be adapted with only minor changes, a discussion of which
we omit.

We respecify the index set from Definition 4.1 so that, for ζ > 0, HPNζ = {n ∈
2N : p̂n ≥ n−ζ μ̂n}. With this change made, we may state an analogue of Proposi-
tion 4.2.

PROPOSITION 5.1. Let d ≥ 2. For any ζ > 0, there is a constant C1 =
C1(ζ ) > 0 such that, for n ∈ 2N∩ HPNζ ,

p̂n ≥ 1

C1 logn

∑
j∈2N∩[2i−1,2i ]

(n − j)1−1/d p̂j p̂n−j ,

where i ∈ N is chosen so that n ∈ 2N∩ [2i ,2i+1].

Our proof follows closely the structure of Theorem 1.3, with this section having
five subsections each of which plays a corresponding role to its counterpart in
Section 4. As such, the first four subsections lead to the proof of Proposition 5.1,
and in the final one, Theorem 1.5 is proved from the proposition.

5.1. Specifying the joining of two polygons.

DEFINITION 5.2. Let φ be a polygon. A join edge of φ is a nearest neighbour
edge in Z

d that is traversed precisely two times by φ, with one crossing in each
direction.

Note that when a join edge is removed from a polygon, two polygons result.

DEFINITION 5.3. For I any d − 1 element subset of {1,2, . . . , d}, let ProjI :
Z

d → Z
d denote the projection onto the axial plane containing the vectors ei for

i ∈ I . Write Proj = Proj2,...,d : Zd → {0} ×Z
d−1.

We present an analogue of Madras’ local surgery procedure for polygon join-
ing, respecifying the join J (φ,φ′) of two polygons. For n,m ∈ 2N, let φ and φ′ be
polygons of lengths n and m. Suppose that Proj(φ) ∩ Proj(φ′) �= ∅. If φ′ is trans-
lated to a sufficiently high coordinate in the e1-direction, the vertex sets of φ and
the φ′-translate will be disjoint. Make such a translation and then translate φ′ back-
wards in the negative e1-direction until the final location at which the translate’s
vertices remain disjoint from those of φ. When two polygons have such a relative
position, they are in a situation comparable to being Madras joinable; we call them
simply joinable. Note that there exists an e1-oriented nearest neighbour edge of Zd

with one endpoint in one of the polygon vertex sets and the other in the other such
set. Let e denote the maximal edge among these (according to some fixed ordering
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of nearest neighbour edges of Zd ). Define J (φ,φ′) to be the length n+m+2 poly-
gon formed by following the trajectory of φ until an endpoint of e is encountered,
crossing e, following the whole trajectory of φ′, recrossing e, and completing the
trajectory of φ. The edge e will be called the junction edge in this construction.

Let the left vertex Left(φ) of a polygon φ be the lexicographically minimal
vertex in φ [so that Left(φ) has minimal e1-coordinate]. For our purpose, the left
vertex will play a counterpart role to that of the northeast vertex in the setting of
the proof of Theorem 1.3. For n ∈ 2N, we define SAP3,E

n to be the set of polygons
of length n whose left vertex is the origin. Note that p̂n = #SAP3,E

n . We adopt a
convention for parametrizing any φ ∈ SAP3,E

n , so that we may write φ : [0, n] →
Z

d . The polygon φ visits the origin, possibly more than once. For each such visit,
we may record two lists of length n of the vertices consecutively visited by φ, with
one having the opposite orientation of time to the other. Among these finitely many
lists, we select the one of minimal lexicographical order, and take φ : [0, n] → Z

d

to be this list.
We also define the right vertex Right(φ) of a polygon φ be the lexicographically

maximal vertex in φ (which is thus one of maximal e1-coordinate).

5.2. Global join edges are sparse. Here, we present analogues to Defini-
tion 4.4, Proposition 4.5 and this result’s proof.

DEFINITION 5.4. Let n ∈ 2N and let φ ∈ SAP3,E
n . A join edge e of φ is called

global if the two polygons comprising φ without e may be labelled φ� and φr in
such a way that:

• every vertex of maximal e1-coordinate in φ� ∪ φr belongs to φr ;
• and every vertex of minimal e1-coordinate in φ� ∪ φr belongs to φ�.

Write GJφ for the set of global join edges of the polygon φ.

Proposition 4.5’s most direct analogue holds.

PROPOSITION 5.5. There exists c > 0 such that, for n ∈ 2N and any k ∈ N,

#
{
φ ∈ SAP3,E

n : |GJφ| ≥ k
} ≤ c−12−kμ̂−2/2μ̂n.

PROOF. Let φ ∈ SAP3,E
n . The right vertex Right(φ) replaces ES(φ) in this

proof. Set j ∈ [0, n] so that φj = Right(φ); write φ1 = φ[0,j ] and φ2 = φ[j,n],
and denote by Rz reflection in the hyperplane with normal vector e1 that passes
through z ∈ Z

d . Then set

S (φ) = φ1 ◦RRight(φ)

(
φ2)

.

The proof proceeds as Proposition 4.5’s did. In the present case, S is mapping
SAP3,E

n into the set of bridges of length n, namely into the set of 3-edge length-n
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self-avoiding walks whose minimal and maximal e1-coordinate is attained at the
start and the endpoint. In fact, bridges are usually defined so that this attainment is
unique at one of the extremes. The addition of an extra edge at the end can assure
this uniqueness. Using the classical upper bound on the bridge number discussed
in the proof of (4.3) (which is easily adapted to the 3-edge case), we see that the
image set S (SAP3,E

n ) has cardinality at most μ̂n+1.
Another modification is made in specifying the alternative walks Sκ(φ), where

κ ⊆ {1, . . . , r}. Denote the ith global join edge by gi ∈ GJφ . Because gi is a join
edge, it is traversed twice by φ. The removal of gi from φ results in two poly-
gons φ� and φr . Since gi is a global join edge, we have that Left(φ) ∈ φ� and
Right(φ) ∈ φr . Thus, φ[0,j ] contains one traversal of the edge gi made by φ, and
φ[j,n] the other. In light of this, we may describe the local modication for index i,
analogous to the three step subpath around P i in the original proof. Consider the
edge in S (φ) that is the reflected image of gi . The modified walk is specified by
insisting that it follows the course of S (φ) until this particular edge is traversed;
after the traversal, the new walk performs a two-step move, crossing back over the
edge, and then back again; after this, it pursues the remaining trajectory of S (φ).
Note that no edge is traversed more than three times in the resulting definition of
Sκ(φ), and also that, when the post-concatenation part of this walk is reflected
back, the outcome is a walk with an edge being traversed four times associated
to any surgery, rendering the location of these surgeries detectable. (This property
serves to explain our use of 3-edge self-avoiding walks.) �

5.3. Left-right polygon pairs. We now specify a counterpart

LeftRightPolyPair3,E
(k,�) to the set SAPl

k × SAPr
�

of pairs of left and right polygons. The definition–lemma–definition–lemma struc-
ture of the counterpart Section 4.3 is maintained.

For i ∈ [1, d], the ei -span of a polygon is defined to be the difference between
the maximum and the minimum ei -coordinate of elements of the vertex set of φ.
Write xspan(φ) for the e1-span of φ.

DEFINITION 5.6. Let k, � ∈ 2N. A (k, �) left-right polygon pair (φ,φ′) is an
element of the union of SAP3,E

k × SAP3,E
� and SAP3,E

� × SAP3,E
k such that:

• xspan(φ) ≥ xspan(φ
′),

• and |Proj(φ′)| ≥ (3d)−(1−1/d)l(φ′)1−1/d , where l(φ′) denotes the length of φ′.

Write LeftRightPolyPair3,E
(k,�) for the set of (k, �) left-right polygon pairs.

LEMMA 5.7. For k, � ∈ 2N,

∣∣LeftRightPolyPair3,E
(k,�)

∣∣ ≥ 1

2
d−2 · ∣∣SAP3,E

k

∣∣ · ∣∣SAP3,E
�

∣∣.
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PROOF. Begin with a polygon pair (φ,φ′) ∈ SAP3,E
k ×SAP3,E

� . By relabelling
and reordering the pair, we may ensure that xspan(φ) is at least the span of φ′ in
any of the d coordinates. This relabelling is responsible for a factor of (2d)−1 on
the right-hand side. Now further relabel the coordinate axes in regard only to φ′
in order that the cardinality of Proj(φ′) for the relabelled φ′ is at least as large
as the cardinality associated to the other d − 1 directions. This entails the ap-
pearance of a further factor of d−1 on the right-hand side. It is easily seen that
|V (φ′)| ≥ 1

3d
l(φ′) (since φ′ is a 3-edge self-avoiding polygon), and, as such, the

lemma will be proved if we can show that the maximum cardinality among the
axial projections of Proj(φ′) is at least |V (φ′)|1−1/d . This is a consequence of the
Loomis–Whitney inequality [20]: for any d ≥ 2 and any finite A ⊆ Z

d , the product
of the cardinality of the projections of A onto each of the d axial hyperplanes is
at least |A|d−1. Also using the arithmetic-geometric mean inequality, one of the
projections has cardinality at least |A|1−1/d . �

For polygons φ and φ′, write GlobalJoin(φ,φ′) for the set of �u ∈ Z
d such that the

pair (φ,φ′ + �u) is globally joinable, which is to say that:

• (φ,φ′ + �u) is simply joinable;
• any element of minimal e1-coordinate among the vertices of φ or φ′ + �u is a

vertex in φ;
• and any element of maximal e1-coordinate among the vertices of φ or φ′ + �u is

a vertex in φ′ + �u.

LEMMA 5.8. For k, � ∈ 2N, if (φ,φ′) ∈ LeftRightPolyPair3,E
(k,�), then

|GlobalJoin(φ,φ′)| ≥ (3d)−(1−1/d) min
{
k1−1/d , �1−1/d}

.

PROOF. Suppose that �u ∈ {0} × Z
d−1 is such that Proj(φ′ + �u) contains the

vertex Proj(Right(φ)). Due to our choice of φ′, such �u number at least the right-
hand side in the inequality in the lemma’s statement. It is thus sufficient to argue
that, for any such �u, there exists k ∈ Z for which the pair (φ,φ′ + �u+ ke1) is glob-
ally joinable. Recall that there is a maximal choice of k ∈ Z such that the polygon
pair (φ,φ′ + �u + (k − 1)e1) is not vertex disjoint but the pair (φ,φ′ + �u + ke1)

is vertex disjoint, and that the pair (φ,φ′ + �u + ke1) is said to be simply joinable.
Specifying k ∈ Z in this way, we must also check that �u + ke1 verifies the second
and third conditions for membership of GlobalJoin(φ,φ′). To do this, note that the
polygon φ′ + �u + ke1 contains a vertex with an e1-coordinate strictly exceeding
that of any vertex in φ, so that the third condition is confirmed. Moreover, this
same fact implies the second condition, because the e1-span of φ exceeds that of
φ′. We have proved Lemma 5.8. �
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5.4. Proof of Proposition 5.1. We begin with Lemma 4.12’s counterpart.

LEMMA 5.9. For any ζ > 0, there is a constant C1 = C1(ζ ) > 0 such that, for
n ∈ 2N satisfying n + 2 ∈ HPNζ ,

p̂n+2 ≥ 1

C1 logn

∑
j∈2N∩[2i−1,2i ]

p̂j p̂n−j (n − j)1−1/d,

where i ∈ N is chosen so that n ∈ 2N∩ [2i ,2i+1].
Lemma 5.9 implies Proposition 5.1 as Lemma 4.12 did Proposition 4.2, with the

assertion counterpart to [23], Theorem 7.3.4(c), that limn∈2N p̂n+2/p̂n = μ̂2 being
used. The cited result has a nontrivial proof, but the changes needed to the proof
are trivial. We do not provide details, but mention very briefly the constructs that
would be used: a pattern is a local configuration that is capable of appearing as a
fragment in the middle of a long walk; a pair of patterns called type I and II may
be specified so that the second is formed from the first by a deformation that adds
a net total of two edges; Kesten’s pattern theorem [18], Theorem 1, concerning the
ubiquity in any typical long walk of a given pattern must be rederived for 3-edge
self-avoiding walks, and then applied to argue that changing one uniformly chosen
type II pattern to a type I pattern in an element of P3,E

n+2 generates a law on SAP3,E
n

which is provably close to the uniform law P3,E
n .

PROOF OF LEMMA 5.9. This is similar to the proof of Lemma 4.12. We con-
sider the multi-valued map 	 : A → P(B), where

A = ⋃
j∈2N∩[2i−1,2i ]

LeftRightPolyPair3,E
(n−j,j)

and B = SAP3,E
n+2. The map 	 associates to each

(φ1, φ2) ∈ LeftRightPolyPair3,E
(n−j,j), j ∈ 2N∩ [

2i−1,2i],
the set of length-(n + 2) polygons formed by simply joining φ1 and φ2 + �u for
choices of �u in GlobalJoin(φ1,φ2). That the image set may be chosen to be B is due
to the left vertex of any formed polygon being the origin (as the second property
in the definition of globally joinable indicates).

The proof follows the earlier one. In place of the assertion leading to (4.9) that
the junction plaquette associated to the join polygon of a globally Madras joinable
polygon pair is a global join plaquette, we instead assert that in the join polygon
J (φ1, φ2) of two concerned polygons φ1 and φ2, the junction edge is a global
join edge (which statement is a trivial consequence of the definition of globally
joinable). Note that Corollary 4.6 may be invoked with obvious notational changes,
because Proposition 5.5 replaces Proposition 4.5. �
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5.5. Proof of Theorem 1.5. Since Proposition 5.1 varies from Proposition 4.2
only by the relabelling of some notation, Theorem 1.5 follows from the former
proposition as Theorem 1.3 did from the latter after evident notational changes are
made. There are two manifestations of the value of dimension in these arguments,
in the proof of Lemma 4.15 and at the end of the proof of Proposition 4.16, when
pn ≤ (d −1)μn is applied for d = 2. The proofs now work provided that the dyadic
scale i is sufficiently high.
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suggesting the problem of studying upper bounds on the closing probability.
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