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Our research is for finding SNPs that are predictive of treatment effi-
cacy, to decide which subgroup (with enhanced treatment efficacy) to target
in drug development. Testing SNPs for lack of association with treatment out-
come is inherently challenging, because any linkage disequilibrium between
a noncausal SNP with a causal SNP, however small, makes the zero-null (no
association) hypothesis technically false. Control of Type I error rate in test-
ing such null hypotheses are therefore difficult to interpret. We propose a
completely different formulation to address this problem. For each SNP, we
provide simultaneous confidence intervals directed toward detecting possible
dominant, recessive, or additive effects. Across the SNPs, we control the ex-
pected number of SNPs with at least one false confidence interval coverage.
Since our confidence intervals are constructed based on pivotal statistics, the
false coverage control is guaranteed to be exact and unaffected by the true
values of test quantities (whether zero or nonzero). Our method is applicable
to the therapeutic areas of Diabetes and Alzheimer’s diseases, and perhaps
more, as a step toward confidently targeting a patient subgroup in a tailored
drug development process.

1. Motivation. Much of the literature on statistical testing of SNPs is on as-
sociation studies, for example, the case-control Genome Wide Association Study
(GWAS) to compare normal subjects with patients afflicted with a disease. Typ-
ically one tests each SNP to determine whether it has a dominant, recessive, or
an additive effect. The minimum p-value of these tests is usually taken to repre-
sent the potential significance of that SNP. For example, in Hothorn and Hothorn
(2009), So and Sham (2011), the maximum test statistics under three different
genetic models (dominant, recessive, and additive) has been used to denote the
significance of a single SNP. Lettre, Lange and Hirschhorn (2007) also promoted
to use the minimum of permutation based p-values from three genetic models or
to use an F -test from a co-dominant model to test the significance of a single SNP.

In contrast to detecting SNPs that are associated with a disease, irrespective of
whether treatments or clinical outcomes are involved, our research is for finding
SNPs that are “predictive” of treatment efficacy, measured by a clinical outcome
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as the differential effect between a new treatment and a control to decide which pa-
tient subgroup (with enhanced treatment efficacy) to target in drug development.
The two main approaches in the extensive statistical literature for identifying sub-
groups are machine learning and multiple testing. For example, Loh, He and Man
(2015) proposed a regression-tree-based method, GUIDE (generalized unbiased
interaction detection and estimation), which takes the statistical learning approach
and is applicable to SNP-based subgroup identification (with differential treatment
effects). More recently, Lipkovich, Dmeitrienko and D’Agostino (2017) presented
a tutorial for data-driven subgroup identification and analysis in clinical trials.

We call the SNPs that can cause differential treatment efficacy in different geno-
type groups causal SNPs. For a GWAS to discover predictive SNPs for a treatment
outcome, a typical epigenetic formulation is to test the zero-null hypotheses that
each SNP is completely not predictive of the treatment outcome. In the process
of examining “real” data, we came to the startling realization that, if there is just
one causal SNP, then all other zero-null hypotheses are statistically false as well.
We demonstrate this in Section 3, using realistic data in a setting that is plausible
based on experience for outcome modeling in Type 2 Diabetes Mellitus (T2DM).

Since control of Type I error rate in testing zero-nulls offers little protection
against false discoveries, instead we provide simultaneous confidence intervals on
our new formulation of dominant, recessive, and additive effects of a SNP, as they
inform on both direction and size of differential efficacy. Our confidence inter-
vals are constructed based on pivotal statistics, so the false coverage control is
guaranteed to be exact and unaffected by the true values (zero or nonzero) of test
quantities. Then across SNPs, the multiple comparison error rate we control is the
expected number of SNPs for which at least one confidence interval on SNP effect
fails to cover its true value. Controlling this error rate controls the probability of
an incorrect decision on which subgroup of patients to target, as we demonstrate
in Section 5.

2. Visualization of the SNP effects. Consider a two-arm randomized clinical
trial and abbreviate “treatment” and “control” by T x and C, respectively. Consider
the linear model with i.i.d. normally distributed errors below:1

Yihr = μ + τi + βh + γih + εihr ,

i = T x or C,h = subgroup, r = 1, . . . , nih,
(2.1)

where

Yihr = response from individual r in subgroup h receiving treatment i,

τT x or τC = treatment T x or treatment C effect,

1In practice, additional factors known to substantially correlate with the outcome may be included
in the model. However, as their presence does not impact on the key point of this section, they are
excluded from the model to simplify discussion.
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βh = subgroup effect (defined by a SNP or some other factor),

γih = treatment × subgroup interactions,

εihr = i.i.d. normal
(
0, σ 2)

errors with σ 2 unknown.

Two therapeutic areas in which treatment response follows such a model are
T2DM and Alzheimer’s Disease (AD) where subgroups may be defined by a clin-
ical factor (e.g., disease severity) or by a genetic marker. Diabetes affects close to
30 million people in the U.S. alone. Response to treatments for T2DM is measured
as the reduction in HbA1c from baseline.2 The outcome data of this measure from
clinical trials are typically normally distributed and are often modeled linearly as
a function of the treatment and other predictors (e.g., the subgroup effect as de-
fined by a SNP in this case), with i.i.d. normally distributed random errors. AD
is a devastating illness which, unless a treatment is found, is expected to affect
17 million Americans by 2050. Response to AD treatments is typically measured
as the reduction in Alzheimer’s Disease Assessment Scale-cognitive (ADAS-cog)
from baseline, which is also normally distributed and modeled linearly with i.i.d.
normally distributed random errors.

2.1. Geometrical representation of possible SNP effects in clinical studies.
Now consider the case where the subgroup is defined by a SNP with three
h = {AA,Aa,aa} genotype groups. Denote by (μAA,μAa,μaa) the treatment ef-
ficacy in the AA, Aa and aa group, respectively. For example, μAA = μT x

AA −μC
AA

is the net HbA1c reduction in T x over C in the AA group. Suppose a larger re-
sponse is better, and having the a allele is beneficial. Then the quantities that would
let us infer not only a dominant, recessive, or additive effect, but also the size of
an effect, are:

θ(1,2):0 =
(

πAa

πAa + πaa

μAa + πaa

πAa + πaa

μaa

)
− μAA,

θ2:(0,1) = μaa −
(

πAa

πAa + πaa

μAa + πAA

πAa + πAA

μAA

)
,

θ1:0 = μAa − μAA,

θ2:1 = μaa − μAa,

(2.2)

where we use 0, 1, and 2 to denote the number of a alleles for each genotype
group. We use contrast θ(1,2):0 to assess the dominant effect, contrast θ2:(0,1) to
assess the recessive effect, and two contrasts θ1:0 and θ2:1 to assess the additive

2HbA1c, or A1C for short, refers to glycated haemoglobin, a measure of average plasma glucose
concentration that reflects mean glycemic control over a two to three month period. FDA (2008)
states reduction in A1c from baseline is a validated surrogate endpoint to beneficial clinical effect.
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effect. (πAA,πAa,πaa) denotes the population proportion of the three genotype
groups.

Geometrically, each of the four equations is a plane dividing the 3d efficacy
space (μAA, μAa , μaa) into two halves, and each effect (e.g., a dominant) is the
half space on the positive side of its corresponding plane. Note that a dominant
and a recessive are not mutually exclusive.

For the other possibility of a SNP effect, consider having the A allele as benefi-
cial, and we can similarly write out the quantities of interest as follows:

θ̃(0,1):2 =
(

πAa

πAa + πaa

μAa + πAA

πAa + πAA

μAA

)
− μaa,

θ̃0:(1,2) = μAA −
(

πAa

πAa + πaa

μAa + πaa

πAa + πaa

μaa

)
,

θ̃1:2 = μAa − μaa,

θ̃0:1 = μAA − μAa.

(2.3)

Note that this set of contrasts is just the negative of the set of contrasts in (2.2). For
example, θ̃(0,1):2 = −θ2:(0,1). Geometrically, each effect is the half space opposite
of its a counterpart.

2.2. Defining additive effect in clinical studies. Our formulation of an addi-
tive effect differs from that in most quantitative trait literature, which typically is
concerned with the effect of genetic variation on a single trait, not the “relative
treatment effect” of T x over C. In quantitative trait studies, an additive a effect is
often taken as the increased effect derived by the aa subgroup over the AA sub-
group to be twice of the increased effect of that derived by the Aa subgroup over
the AA subgroup. This can be interpreted as either

μAa − μAA = δ > 0, μaa − μAA = 2δ,

or
μAa

μAA

= γ > 1,
μaa

μAA

= 2γ.

Such exact additivity is unrealistic in clinical studies that compare the effect of a
treatment with that of a control. Within each arm, effect is often measured rela-
tive to a baseline. Efficacy within each subgroup is based on a comparison of T x

versus C within that subgroup. Then, the differential efficacy between the Aa and
AA subgroups is compared with the differential efficacy between the aa and AA

subgroups. So, exact additivity may require exact doubling of triple differences or
triple ratios, which is unrealistic in practice. In drug development, instead of exact
doubling, the order of the groups in terms of treatment efficacy is more relevant.

One may consider using one contrast θ2:0 to test for additivity. One “draw-back”
of using θ2:0 (and together with θ(1,2):0 and θ2:(0,1)) is that the complete ordering
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of the three genotype groups may not be fully determined. Only with two contrasts
θ1:0 and θ2:1, we can assess the complete ordering additive effect, μaa > μAa >

μAA or μaa < μAa < μAA, sometimes called a co-dominant effect, as well as
the super-dominant effect μaa < μAa > μAA or μaa > μAa < μAA. Therefore,
we propose to use four contrasts in (2.2) as they can provide direct inference on
all possible SNP effects in the context of a differential treatment effect, and their
confidence set can be directed toward patient targeting.

3. Zero-null hypotheses are statistically false. To properly formulate a
problem statistically and to develop a solution for it, our strategy is to create a
realistic setting with known answers. Specifically, we add a realistic artificial treat-
ment effect to a real human haplotype dataset.

3.1. One SNP can make a large phenotypic difference. Alzheimer’s disease
illustrates the possibility that mutation in one or two SNPs can have a large effect
on the phenotype. The ApoE4 protein (encoded by the APOE gene on chromosome
19), the best known genetic risk factor for late-onset AD, differs from ApoE3, the
common isoform, by a single amino acid. Testing two SNPs, rs429358 and rs7412
(separated by 138 base pairs on chromosome 19) is sufficient to determine whether
an individual has variant E2 (protective), E3 (neutral), or E4 (at risk).

Thus, a good conceptual check for appropriateness of a statistical problem for-
mulation, is to add an effect to one SNP and calculate precisely (not by simulation)
whether the method (existing and our proposed method) can control a meaningful
error rate, and reproduce the true answer.

3.2. Description of the SNP data. We generated our SNP data from the 1000
Genomes Project [The 1000 Genomes Project Consortium (2010, 2012, 2015)],
which is currently being reviewed as a worldwide reference for human ge-
netic variation. We downloaded the SNP data for 379 Caucasians from the
MACH website (http://www.sph.umich.edu/csg/abecasis/MACH/download). For
each individual, we obtained haplotype data for all the SNPs on chromosome 3
and chromosome 20. There are 395,829 SNPs on chromosome 3, and 337,355
SNPs on chromosome 20. Then for each of the 379 individuals, we have two chro-
mosome 3 haplotypes (two vectors of 395,829 nucleotides, one from each parent),
and two chromosome 20 haplotypes (two vectors of 337,355 nucleotides, one from
each parent). We thus have what we will call a reference pool of 2 × 379 = 758
haplotypes.

To get a sense of how different pools of subjects (with the same ancestry) might
differ, we generated two test pools of SNP data from the reference pool, each con-
sisting of 500 individuals. (A pool of 500 individuals is plausible for the kind of
studies we envision.) To form the genotype of an individual in each of the two
pools, two haplotypes were randomly sampled from the reference pool and are
combined. These two test pools of 500 each are denoted by chx.1 and chx.2, where

http://www.sph.umich.edu/csg/abecasis/MACH/download
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x = 3 or 20. By re-sampling at the haplotype level instead of the SNP level, the
linkage disequilibrium (LD) structure is essentially preserved between the refer-
ence pool and the test pools. Since the purpose of including SNPs on chromosome
20 is to simulate SNPs that are expected to be in less LD with the causal SNP
on chromosome 3, this “random mating” of the reference haplotypes was done
separately for chromosome 3 and for chromosome 20.

The setting of our studies is to find subgroups of patients for a compound to
target. Such subgroups need to be of sufficient size, so data in the test pools were
filtered, keeping only SNPs where the number of subjects in each of the AA, Aa,
aa categories within each of the T x and C arms is greater than five. The result-
ing numbers of SNPs in ch3.1, ch3.2, ch20.1, ch20.2 are 89,852, 90,663, 77,082,
77,958 respectively.

3.3. Calculating noncausal SNP effects. Suppose Y follows model (2.1) with
subgroups defined by a SNP. A dominant effect of a in T x is given to a single
SNP, rs1456116, on chromosome 3, as in Table 1. That is, patients with Aa or aa

genotype have a differential treatment effect from patients with genotype AA. This
SNP will be referred to as the causal SNP.

Efficacy in the subgroups are computed from parameters in (2.1) as

μAA = τT x − τC + γT x,AA − γC,AA,

μAa = τT x − τC + γT x,Aa − γC,Aa,

μaa = τT x − τC + γT x,aa − γC,aa.

A SNP has absolutely no effect if μAA = μAa = μaa . It has an effect if at least
one of θ(1,2):0, θ2:(0,1), θ1:0, θ2:1 in (2.2) is nonzero, that is, maxg |θg| > 0, g =
{(1,2):0,2:(0,1),1:0,2:1}. What is commonly referred to as the complete null
hypothesis H00 : μAA = μAa = μaa can be equivalently stated as what we call the
zero-null hypothesis H00 : maxg |θg| = 0.

We treated each test pool ch3.1, ch3.2, ch20.1, ch20.2 as a test “population”,
and calculated maxg |θg| for SNPs that are not rs1456116. For most SNPs, such
test populations are unbalanced in design. We applied the Least Squares Means

TABLE 1
True response Y for subgroups defined

by rs1456116

Genotype h

Treatment i AA Aa aa

T x 0 1 1
C 0 0 0
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(LSmeans) technique to calculate what the parameters in model (2.1) would be
in a balanced population. Specifically, we (1) assigned the true response Y for
each individual based on the subgroup effect defined by rs1456116 according to
Table 1, and (2) for each noncausal SNP, calculated μAA, μAa , μaa based on the
LSmeans estimates for parameters in model (2.1). Then we calculated πAA, πAa ,
πaa for each test population as follows. Denote the counts for AA, Aa, and aa (for
T x and C combined) as nAA, nAa , naa . The allele frequency πA for A is calculated
as

(2 × nAA + nAa)/
[
2 × (nAA + nAa + naa)

]
,

and then

πAA = πA × πA, πAa = 2 × πA × (1 − πA), πaa = 1 − πAA − πAa.

We then computed θg , g = {(1,2):0,2:(0,1),1:0,2:1}, for θg defined in (2.2) and
record maxg |θg|, for each noncausal SNP. These θg are considered as the true
effect of the contrasts in a balanced population.

Figure 1 summarizes the distributions of maxg |θg|. As can be seen, every non-
causal SNP picked up some nonzero effect. This is readily explained from a geo-
metrical point of view: considering SNPs as categorical predictors, for a noncausal
SNP to be independent of rs1456116 and not pick up any of its effect, its percent-
ages of individuals in the AA, Aa, and aa categories must remain exactly the same
for each of the AA, Aa, and aa categories of rs1456116, which is very unlikely or
impossible for a given snapshot of population.

Figure 2 displays four mosaic plots, each showing the percentages of the AA,
Aa, and aa categories of a SNP in each of these categories of the causal SNP
rs1456116. For example, the top-left panel shows a hypothetical SNP that is com-
pletely unlinked to the causal SNP rs1456116, of which the percentage of AA

FIG. 1. Distribution of apparent effects (maxg |θg |) of noncausal SNPs. From left to right: ch3.1,
ch3.2, ch20.1, ch20.2.
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FIG. 2. Mosaic plots. Top-left: a hypothetical SNP that is completely independent to the causal SNP
rs1456116; top-right: SNP rs6767844 that exactly matches the causal SNP rs1456116; bottom-left:
SNP rs261345 from ch20.2; bottom-right: SNP rs6794936 from ch3.1. 0 = AA, 1 = Aa, 2 = aa.

(or Aa or aa) remains exactly the same across the AA, Aa, and aa categories of
rs1456116.

Comparing ch3.1 and ch3.2 with ch20.1 and ch20.2, the noncausal SNPs on
chromosome 3 picked up more of the rs1456116 effect than the SNPs on chro-
mosome 20, as one would expect. In test pools ch3.1 and ch3.2, rs6767844 on
chromosome 3 matches the causal SNP rs1456116 exactly, that is, they are in
complete LD, accounting for the maxg |θg| = 1 for ch3.1 and ch3.2. Its mosaic
plot with the causal SNP is shown in the top-right panel of Figure 2, which indi-
cates the percentages of AA, Aa, and aa categories exactly match for these two
SNPs. For another SNP rs67994336 on ch3.1, it also picked up a good amount
of the rs1456116 effect (maxg |θg| = 0.70). Its mosaic plot with the causal SNP
is shown in the bottom-right panel of Figure 2. Finally, for a SNP rs261345 from
ch20.2 (which is hardly linked to the causal SNP), it picked up a smaller amount
of the rs1456116 effect, but still nonignorable (maxg |θg| = 0.24). Its mosaic plot
with the causal SNP (the bottom-left panel in Figure 2) looks closer to the exact
independent case.

It thus appears that testing for association by testing against the zero-null hy-
pothesis, H0 : maxg |θg| = 0, is not an appropriate formulation. While such null
hypotheses might be biologically plausible, statistically they are false, rendering
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control of Type I error rate difficult to interpret. Not only will noncausal SNPs in-
evitably pick up spurious effects, in our clinical setting with T x and C treatments,
Tukey (1992) stated:

Our experience with the real world teaches us—if we are willing learners—that, provided we
measure to enough decimal places, no two “treatments” ever have identically the same long-run
value.

An advantage of being in a drug development setting where the clinical outcome
can be modeled by (2.1) is, for the purpose of targeting a subgroup of patients, how
predictive the markers are can be judged on the same clinically meaningful scale.
For T2DM, it is typically the reduction in HbA1c and for AD, it is the reduction
in ADAS-cog. We thus formulate our problem as simultaneous confidence inter-
vals useful toward targeting AA, Aa, or aa patients or their combinations. As
sample size increases, the width of our simultaneous confidence intervals will de-
crease, leading to increasingly confident targeting of patient subgroups, unaffected
by zero-nulls being statistically false.

4. Formulation of the SNP testing problem. Differential effect of a SNP
on T x and C can in fact lead to all eight possible effects in (2.2) and (2.3). For
example, if a has a dominant beneficial effect on T x, and a recessive beneficial
effect on C, the net effect on efficacy is super-dominance μaa < μAa > μAA (an
effect sometimes cited as biologically implausible). One possible scenario for such
differential effect is the treatment and control target different pathways.

4.1. Correct formulation of null hypotheses. Since the late 1980s and early
1990s, multiple comparisons have stopped being formulated as tests of a complete
null hypothesis against specific alternatives, for the following reasons:

1. A test of the complete null against a specific alternative can reject for the
wrong reason, if neither the complete null hypothesis nor the specific alternative is
true.

2. When there are multiple decisions to be made, controlling the Type I error
rate when testing the complete null against a specific alternative often does not
control the probability of an incorrect decision.

See Hsu [(1996), Chapter 6], for classical examples to both. Over the years, mul-
tiple testing principle has evolved to:

1. Form the complement of each desired inference as a separate null hypothesis.
2. Test these null hypotheses, controlling an error rate that appropriately rep-

resents the rate of making an incorrect decision, while accounting for all possible
states of the nature.



1736 Y. DING ET AL.

For testing the effect of a SNP, the desired inferences are which quantities in
(2.2) and (2.3) are greater than zero. So the eight null hypotheses to be tested are

H
≤
(1,2):0 : θ(1,2):0 ≤ 0, H

≤
(0,1):2 : θ̃(0,1):2 ≤ 0,

H
≤
2:(0,1) : θ2:(0,1) ≤ 0, H

≤
0:(1,2) : θ̃0:(1,2) ≤ 0,

H
≤
1:0 : θ1:0 ≤ 0, H

≤
1:2 : θ̃1:2 ≤ 0,

H
≤
2:1 : θ2:1 ≤ 0, H

≤
0:1 : θ̃0:1 ≤ 0.

(4.1)

4.2. The simultaneous confidence intervals method. Using simultaneous con-
fidence intervals to test against the null hypotheses in (4.1) would automatically
controls familywise Type I error rate (FWER) strongly [see Theorem 4 of Berger
and Hsu (1996)]. Moreover, besides providing information on the magnitude of the
effects, an essential advantage of the confidence interval formulation is that, since
they are constructed from pivotal statistics [see equation (4.3) below], false cover-
age of test quantities can be controlled, regardless of whether their true values are
zero or not.

Although we have eight one-sided null hypotheses, the four contrasts of the
second set are just negatives of the contrasts of the first set. So similar to Tukey’s
method for comparing k groups which is usually presented as k(k−1)/2 two-sided
confidence intervals, we use four two-sided confidence intervals (instead of eight
one-sided confidence intervals) for the set of contrasts in (2.2). They are sufficient
to indicate which allele is beneficial and the possible effect size of each effect. For
example, if the lower bounds of the four simultaneous confidence intervals of the
contrasts in (2.2) are all greater than zero, then it indicates that the a allele is bene-
ficial and the effects could be dominant, recessive, and/or additive (co-dominant).
We name it as the CE4 (confident effect 4 contrasts) method.

To compute the quantile q such that the four simultaneous confidence intervals

(4.2) θ̂g − qs
√

vgg < θg < θ̂g + qs
√

vgg, g = {
(1,2):0,2:(0,1),1:0,2:1

}
,

have a coverage probability 1 − α, that is,

(4.3) Pr
{|θ̂g − θg|/s√vgg < q,g = {

(1,2):0,2:(0,1),1:0,2:1
}} = 1 − α,

where s2vgg is the variance estimator for θ̂g , the pseudo-Monte Carlo algorithm of
Genz and Bretz (1999), which is applicable to arbitrary correlation structure and
is based on the multivariate T distribution (the qmvt function in R), can be used.

5. Adjustment of the multiplicity across SNPs. In drug development
biomarker selection studies, in addition to adjusting for multiplicity of the con-
trasts within each SNP, multiplicity across the SNPs also needs to be adjusted
for.
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5.1. Two error rates. There are two families of inferences in our application,
within a SNP and across SNPs. The decision rule is to select a SNP if it has at least
one confidence interval not covering zero, after confidence level has been adjusted
for multiplicity of the SNPs. To differentiate between the two “families” of infer-
ences, we refer to the family of inferences within a SNP on (2.2) and (2.3) as a
group of inferences, and the inferences across the SNPs as a panel of inferences.
How the panel error rate is controlled in turn specifies how to adjust the confidence
level of each group inference for multiplicity of the SNPs.

For group inferences within a SNP, consequence of an incorrect inference is
dire for a selected SNP, so familywise error rate control seems appropriate. For
inferences across multiple SNPs, controlling a less stringent error rate such as per
family error rate is acceptable.

Suppose a study consists of a panel of K SNPs. For inference within the kth
SNP, denote by Vk the number of confidence intervals that fail to cover their true
values. Let I{Vk>0} be the indicator function that at least one of the confidence
intervals for the kth SNP fails to cover its true contrast value. Then αk , the group-
wise error rate for the kth SNP, is αk = P {Vk > 0} = E[I{Vk>0}].

For inference across a panel of K SNPs, let V� denote the number of SNPs that
have at least one of its confidence intervals failing to cover its true contrast value.
Then E[V�], the per panel error rate, is the expected number of SNPs with some
incorrect confidence intervals,

(5.1) E[V�] = E

[
K∑

k=1

I{Vk>0}
]

=
K∑

k=1

P {Vk > 0} =
K∑

k=1

αk.

5.2. Additive multiplicity adjustment to control E[V�]. Suppose the desired
per panel error rate is m. By (5.1), it is the sum of the group-wise error rates
of the SNPs, summed across all the SNPs. We suggest a simple adjustment to
control the per panel error rate E[V�], the additive adjustment, setting αk for each
SNP to be m

K
(same for all k = 1, . . . ,K). This is not the Bonferroni probabilistic

inequality adjustment αk = α
K

for controlling FWER for the panel, but it relates to
it as follows.

To control the per panel FWER at α, the Bonferroni probabilistic inequality
adjustment for controlling FWER would set the noncoverage rate for each SNP
at αk = α/K , implying E[V�] = K × α/K = α. Thus, setting αk = m/K to al-
low E[V�] = m is equivalent to reducing the Bonferroni multiplicity adjustment
by a factor of m/α. Take α = 0.05 for FWER control for example. The Bonferroni
multiplicity adjustment αk = α/K allows only K × 0.05/K = 0.05 false discov-
eries on average. While allowing m false discovery on average is to reduce the
Bonferroni adjustment by a factor of m/0.05 = 20 × m.
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Indexing the kth SNP by the superscript (k), let G(k) denote the cumulative
distribution function (CDF) of the pivotal quantity

T (k)
� = max

g

|θ̂ (k)
g − θ

(k)
g |

s(k)

√
v

(k)
gg

, g ∈ {
(1,2):0,2:(0,1),1:0,2:1

}
,

then every

U(k)
� = G(k)

(
max

g∈{(1,2):0,2:(0,1),1:0,2:1}
|θ̂ (k)

g − θ
(k)
g |

s(k)

√
v

(k)
gg

)

has a uniform(0,1) distribution. By applying �−1 [the inverse of normal(0,1)

CDF] to U
(k)
� , we have Z(k) = �−1(U

(k)
� ), which follows a normal(0,1) distribu-

tion. So setting a critical value z� for Z(k) is equivalent to setting the confidence
level of each SNP at level αk = �(z�).

Note that in the actual testing procedure, we do not need to compute U
(k)
� (which

is not computable due to unknown θ
(k)
g even under the null) or to perform the in-

verse normal transformation. With the additive multiplicity adjustment, we directly
have the confidence level of each SNP at the fixed value of αk = m

K
. Since Vk > 0

if and only if U
(k)
� > 1 − m

K
, so P {Vk > 0} = m

K
, regardless of dependence among

U
(k)
� . Since (5.1) is an equality, the additive multiplicity adjustment is exact, not

conservative, in controlling the per panel error rate at m.
Define

U(k) = G(k)

(
max

g

|θ̂ (k)
g |

s(k)

√
v

(k)
gg

, g = {
(1,2):0,2:(0,1),1:0,2:1

})
.

Though not essential to our discussion, 1 − U(k) can be thought of as the p-value
for the kth SNP.3 Note that if, instead of the additive adjustment, the confidence
level of each SNP is set based on the sample values of U(k), as would be the case
following a step-wise algorithm for example, then P {Vk > 0} may well be affected
by dependence among U(k).

E[V�] is an unconditional expectation, the long run average of V�, averaged
across infinitely many studies. One reason we suggest the additive multiplicity
adjustment is a method developed by Efron (2007) which can be used to calculate
a conditional E[V�] for this adjustment, conditional on an estimate of dependence
among U

(k)
� , for a more accurate assessment of error rate. Interested readers are

referred to that paper for details.

3This p-value corresponds to the smallest q in (4.2), or equivalently the largest α in (4.3), that
makes all the confidence intervals still cover zero. If the simultaneous confidence intervals are com-
puted using the glht function in the multcomp R package, then this p-value is the smallest “ad-
justed” (single-step) p-value for the four contrasts.
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6. Application of the proposed method. We illustrate how to use our CE4
method to identify which patient subgroups to target.

6.1. Within a SNP. Using T2DM trials as an example, we simulated three
treatment effect profiles and applied our proposed method to infer the SNP ef-
fects for each scenario. In all three scenarios, we assumed the allele frequency to
be 0.6 for A and 0.4 for a. Therefore, (πAA,πAa,πaa) = (0.36,0.48,0.16). The
sample size for each treatment arm of each genotype group is (nT x

AA,nT x
Aa, n

T x
aa ) =

(59,104,36) and (nC
AA,nC

Aa,n
C
aa) = (36,52,13), respectively. In Table 2, the

mean HbA1c reduction for each treatment-by-genotype group is listed for each
scenario.

We applied our CE4 method to the data simulated from each scenario and
present the inference results in Figure 3. There are three figures for each scenario.
The first figure plots the sample mean (± standard error) of HbA1c reduction over
each genotype group, separated by treatment arms. The second figure plots the
sample mean of the net HbA1c reduction (T x − C) over each genotype group.
The third figure plots the simultaneous confidence interval for each contrast θg

in (2.2). The within-SNP multiplicity adjusted p-value is also listed under each
confidence interval.

For the first scenario, all four confidence intervals do not contain zero. With
the confidence intervals for θ1:0 and θ2:1 being entirely positive and negative, re-
spectively, we infer μAa > (μAA,μaa). This heterozygous effect, suggested by the
middle plot, with the Aa group receiving more efficacy than each of the AA and
aa groups, is due to different T x and C response profiles, as depicted in the plot
on the left. The high efficacy received by Aa explains why the combined group
{aa,Aa} has higher efficacy than AA, and {AA,Aa} has higher efficacy than aa.
Thus, in this scenario, targeting the Aa group seems appropriate. This scenario also

TABLE 2
The mean HbA1c reduction in each treatment and

genotype group under three scenarios

Genotype

Scenario Treatment AA Aa aa

A T x 0.05 1.15 1.15
C 0.30 0.30 1.70

B T x 0.05 1.15 1.15
C 0.30 0.30 −0.50

C T x 0.70 0.70 1.50
C 0.05 1.00 1.00
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FIG. 3. Three different hypothetical scenarios to demonstrate the application of the proposed
method. For each scenario, the mean (± SE) response profiles (for each treatment group), the treat-
ment efficacy profiles, and the four simultaneous confidence intervals are plotted.

illustrates the possibility that a can be beneficial dominant [(μaa,μAa) > μAA],
and simultaneously A can beneficial dominant [(μAA,μAa) > μaa] in the context
of measuring a differential treatment effect.

The second scenario shows the possibility that certain T x and C response pro-
files (such as the ones shown on the left plot) can have a net effect on efficacy that
appears additive, as the middle plot of the point estimates would suggest. Given
the discussion in Section 2.2, we caution against such an over simplification. With
all four confidence intervals being above zero, this suggests the a allele is bene-
ficial and the effect could be dominant, recessive, and/or additive. With the lower
bounds on θ(1,2):0 and θ2:(0,1) being about the same, both more positive than the
lower bounds on θ1:0 and θ2:1, targeting the larger {Aa,aa} combined group (64%
of the patients, with 16% in aa) may be appropriate, as it will have a larger medical
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impact (perhaps with a note added on the regulatory-approved product label that
aa receives more efficacy than Aa).

In the last scenario, only confidence intervals for θ(1,2):0 and θ1:0 are away from
zero. We can use their upper bounds to guide toward which patients to target. Since
AA is better than {Aa,aa} (θ(1,2):0 < 0), and AA is better than Aa alone (θ1:0 < 0),
this suggests targeting AA alone might be appropriate. The middle plot does not
contain such useful information.

6.2. Across SNPs. For illustration, we applied our across SNP error control
approach on the same 500 individual pools as described in Section 3.3. The sub-
groups AA, Aa, aa are defined by the same causal SNP rs1456116 on chromo-
some 3. Given the chance of having siblings or identical twins is minimal un-
der our “random mating” procedure, we generated the response Y from model
(2.1), with independent errors from N(0, σ = 1.5) and the a dominant effect
given by Table 1. Then, for each SNPs on ch3.1 and ch20.2, which have a total
of 89,854 + 77,958 = 167,812 SNPs, we calculated θ̂

(k)
g and s(k), based on the

LSmeans estimation.
With a total of 167,812 SNPs on ch3.1 and ch20.2, there are SNPs either totally

linked or tightly linked to the causal SNPs, therefore, we set m = 5, a reasonable
value larger than 1, allowing five SNPs with at least one confidence interval failing
to cover its true value, averaged over many such studies. This is equivalent to
setting the confidence level of each SNP at around 0.99997. Then we calculated
the simultaneous confidence intervals (4.2) for each SNP. There were 35 SNPs
with at least one confidence interval not covering zero, including the causal SNP
rs1456116. We will refer to these SNPs as “significant” SNPs. All but one of these
SNPs are on chromosome 3. There were 22 SNPs with at least one confidence
interval away from zero by more than 0.15, all on chromosome 3, including the
causal SNP. We will refer to these SNPs as “clinically meaningful” SNPs.

It may seem surprising that, with only one causal SNP, and E[V ] = 5, there
were so many significant and clinically meaningful SNPs. Some, but not all, of
these SNPs, are in tight linkage with the causal SNP. For example, rs6767844
on ch3.1 is totally linked with rs1456116, and therefore have identical confi-
dence intervals. But rs261345, the significant SNP on ch20.2, is hardly linked with
rs1456116. We then investigated how many of the “significant” SNPs are due to
false coverage. Actually, none are due to false coverage. All confidence intervals
of the significant SNPs cover their true values of θg (i.e., the value under σ = 0,
generated in Section 3.3). The number of significant SNPs reflects the key finding
of this article: all SNPs will pick up some statistical effects from a causal SNP. For
rs261345 on ch20.2 for example, μAa − μAA = 0.214, and its confidence interval
of (0.121,5.385) correctly picks up this nonzero effect.

In addition to the causal SNP rs1456116, we picked three additional SNPs that
are in tight LD with the casual SNP, to illustrate how one might act on each of these
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SNPs according to their CE4 analysis result. We observe that SNP rs9858150 has
a complementary coding as the causal SNP (i.e., roughly, 0 in the causal SNP
corresponds to 2 in SNP rs9858150; 2 in the causal SNP corresponds to 0 in SNP
rs9858150). Table 3 provides the CE4 results for each of these SNPs.

Developing a compound targeting a subgroup requires the co-development of
a sufficiently predictive Companion Diagnostic Test (CDx) that can gain approval
from FDA’s Center for Devices and Radiologic Health (CDRH) [FDA (2005)].
Whereas genotyping of SNPs in a GWAS is typically done by high-throughput
sequencing, a SNP-based CDx typically uses polymerase chain reaction (PCR),
which might genotype a single SNP (as a simpler CDx is easier to build).

If we use the causal SNP (rs1456116) or SNP rs6807098 as the biomarker for
tailoring, the result tells us: (1) we should not target AA since both θ(1,2):0 and θ1:0
are positive, indicating AA is worse than {Aa,aa} and aa alone; (2) it may be a
good idea to target {Aa,aa} because the lower bound of θ(1,2):0 is greater than that
of θ1:0. If we use rs6796936 as the biomarker for tailoring, only θ(1,2):0 does not
cover zero, which suggests it may be acceptable to target {Aa,aa}. Finally if we
use rs9858150 as the biomarker for tailoring, the result indicates: (1) we should
not target aa since both θ2:(0,1) and θ2:1 are negative; and (2) it may be a good idea
to target {AA,Aa} because −θ2:(0,1) = θ̃(0,1):2 > 0.23 while −θ2:1 = θ̃1:2 > 0.11.
As a potential biomarker, each of these SNPs is associated with its own true ef-
fects (A for rs1456116 roughly corresponds to a for rs9858150). So {Aa;aa} of
rs1456116, {Aa;aa} of rs796936, {AA;Aa} of rs9858150 correspond to roughly
the same patient target subgroup. Choosing which SNP to build an CDx with,
besides magnitude of the CE4 bounds, involves the following additional consid-
erations: (1) Extent to which available biological information (from PK/PD and
cell line studies, for example) corroborates a SNP’s effect may differ; (2) Making
a PCR primer may be easier for some SNPs than for other SNPs.

6.3. Confidence interval ordering vs. p-value ordering. As mentioned in Sec-
tion 5.2, 1 − U(k) can be viewed as the p-value for the kth SNP. One might con-
sider ordering the SNPs according to their p-values. A different way of ordering
the SNPs is to consider how much effect each has, as indicated by how far the con-
fidence intervals for their effects are away from zero, as follows. If the confidence
interval for a contrast covers zero, then assign zero to that confidence interval. If
the confidence interval is entirely positive, then assign the lower bound of the con-
fidence interval to that confidence interval. If the confidence interval is entirely
negative, then assign the negative of the upper bound to that confidence interval.
Then take the maximum of the four assigned numbers as what we call the maxi-
mum of minimum (MoM) distance of each SNP.

That the two orderings differ is perhaps not surprising. Interestingly, the causal
SNP is not even in the top ten SNPs, either in the MoM-distance ordering or the
p-value ordering. We thus checked how either ordering correlates with the true



A
SSE

SSIN
G

SN
P

E
FFE

C
T

S
O

N
T

R
E

A
T

M
E

N
T

E
FFIC

A
C

Y
1743

TABLE 3
The CE4 results for the casual SNP rs1456116 and three other SNPs: rs6807098, rs6796936 and rs9858150. In addition to the 95% simultaneous

confidence interval estimate, the true value of each contrast, which is the value under σ = 0, is also provided. 0 = AA, 1 = Aa, 2 = aa

θ(1,2):0 θ2:(0,1) θ1:0 θ2:1
SNP True CI True CI True CI True CI

rs1456116 1.00 [0.19,2.80] 0.40 [−0.96,2.18] 1.00 [0.11,2.87] 0 [−1.64,1.68]
rs6807098 0.94 [0.28,2.89] 0.40 [−0.98,2.16] 0.93 [0.21,2.98] 0.03 [−1.69,1.62]
rs6796936 0.70 [0.17,2.87] 0.39 [−0.30,2.52] 0.65 [−0.14,2.75] 0.16 [−0.86,2.17]
rs9858150 −0.40 [−2.30,0.79] −0.92 [−2.89,−0.23] −0.06 [−1.81,1.46] −0.90 [−2.92,−0.11]
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FIG. 4. Left: negative of logarithms of p-values vs. true maxEffect. Right: MoM-distances vs. true
maxEffect. The solid circle is the causal SNP rs1456116 and the SNP rs6767844 (that is completely
linked with rs1456116). “+”s are the other significant SNPs on ch3.1. The hollow square is the SNP
rs261345 on ch20.2.

ordering. Figure 4, plotting the negatives of logarithms of p-values and MoM-
distances vs. the true maxEffect, shows neither ordering correlates much with true
ordering. This suggests that one should not identify candidate SNPs for tailoring
merely based on their “ordering” (no matter it is p-value-based or MoM-distance-
based).

6.4. Repeated simulation studies. To examine the performance of CE4 over
simulated data repeatedly, 100 independent response vectors Y were generated
following the model (2.1), with a dominant effect of a under T x given by the
causal SNP rs1456116, as provided in Table 1. The errors εihr were generated
from N(0,1.52).

Confidence intervals were computed using the qmvt quantile. For the causal
SNP, MoM is greater than zero for 17 Y s. For these 17 Y s, the right side of Table 4
is a stem-and-leaf plot of the number of SNPs with larger MoM than the causal
SNP, while the left side of the table is a stem-and-leaf plot of the number of SNPs
with smaller minP (i.e., 1 − U(k)) than the causal SNP. Clearly, the causal SNP
does not always have the highest rank, either in terms of MoM, or in terms of
minP. In fact, among the 17 Y s with positive MoM, the rank of the causal SNP can
be anywhere from 1 to 51.

Moreover, we also generated 100 independent response vectors Y following
the model (2.1) with a recessive effect of a under T x given to the causal SNP
rs1456116. This time, we chose a smaller σ = 1 for the errors [i.e., εihr ∼
N(0,1)]. Among these 100 simulations, the causal SNP’s MoM ranks first in four
of them, while 88 of them have at least one noncausal SNP with a MoM greater
than the MoM of the causal SNP. Among the 100 Y s, the causal SNP’s MoM is
greater than zero for 54 of them, and for these 54 Y s the rank of the causal SNP’s
MoM can be anywhere from 1 to 26. Compared to the dominant effect scenario,
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TABLE 4
Number of SNPs with smaller minP (left side) or

larger MoM (right side) than rs1456116

2 2 1 0 0 1 4 4 4
8 7 6 6 6 5 0 5 5 6

2 2 1 0 1 2
8 8 1 9 9

3 2 1 4
8 2

3
8 3 9

4
4 9

1 5

the causal SNP ranks higher and more Y s produce positive MoM values for the
causal SNP, which is due to the smaller σ value in this recessive effect scenario.

7. Potential uses of the proposed methods. A SNP might cause differential
efficacy (of which we call a casual SNP). Due to redundancy in genetic coding
of amino acids, there are SNPs in the coding region that do not change the pro-
tein sequence. These SNPs are called synonymous SNPs. For example, the SNP
rs6767844 from ch3.1 in our application data is a synonymous SNP. On the con-
trary, nonsynonymous SNPs are those in the coding region that do alter the amino
acid sequence of a protein. Our proposed statistical method alone cannot differen-
tiate those causal or noncausal SNPs.

Even if a SNP is noncausal and is synonymous, it may be useful for the tagging
purpose. A tag SNP conveniently lets one identify the allele a person has without
having to genotype all the nucleotides in a region. An example of a useful tag-
ging SNP is as follows. Ziagen (abacavir) is a potent anti-retroviro medicine for
HIV-positive patients. Around 5% of the patients experience serious hypersensi-
tivity reaction to this medicine. Association studies such as Mallal et al. (2002)
found HLA-B∗5701 to be an allele at risk. Subsequently, PREDICT, a random-
ized double-blind trial showed that the HLA-B∗5701 screening reduced such risk
[Mallal et al. (2008)]. Thus, a box warning stating “Patients who carry the HLA-
B∗5701 allele are at high risk for experiencing a hypersensitivity reaction to aba-
cavir” was placed on the Ziagen label. De Bakker et al. (2006) found the SNP
rs2395049 to be a tagging for the HLA-B∗5701 allele, facilitating the screening of
at-risk patients.

Therefore, our method can help identify SNPs that are:

1. Tagging: SNPs that are tagging (even if they do not cause differential effi-
cacy), which are useful for genotyping patients, to decide for each patient whether
the medicine is indicated for him/her.
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2. Causal: SNPs that cause differential efficacy, where the location of such
SNPs with “clinically meaningful” effects might suggests which genes to knock-
out, to observe their functions.

8. Concluding remarks. New drug development involves measuring the ef-
ficacy of a new treatment T x relative to a control treatment C. This makes testing
SNPs for use as potential biomarkers in drug development more complex than the
traditional association detection for a quantitative trait. Our new formulation of
SNP testing with the CE4 method, derived from the fundamental multiple testing
principle, assesses all possible effects of a SNP on the efficacy of a new drug. The
pivotal statistics, on which the simultaneous confidence intervals are based, guar-
antee the false coverage control to be exact and unaffected by the true test quantity
values.

Our methodology adjusts for multiplicity taking dependence into account, both
within each SNP and across the SNPs. It rigorously combines two error rate con-
trols, familywise (group-wise) error rate control within each SNP, and per family
(per panel) error rate control across the SNPs, with a clear practical interpretation:
across different SNP studies, the expected number of SNPs with incorrectly in-
ferred target subgroup is controlled. Such control is appropriate in a drug develop-
ment environment, as it allows flexibility in the exploration of multiple candidate
SNPs, while being confident in the patient subgroup to target in the selected SNPs.

The independent linear model we consider here (2.1) can be viewed as a starting
model. In the situation where observations are correlated or the outcome is not
normally distributed, instead of model (2.1), other models should be considered.
However, the key elements of our proposed method for SNP testing are not specific
to a particular model and the method can be extended to fit other models. We are
currently investigating such extensions.
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