
The Annals of Applied Statistics
2018, Vol. 12, No. 3, 1628–1654
https://doi.org/10.1214/17-AOAS1124
© Institute of Mathematical Statistics, 2018

EXPLORING THE CONFORMATIONAL SPACE FOR PROTEIN
FOLDING WITH SEQUENTIAL MONTE CARLO

BY SAMUEL W. K. WONG∗, JUN S. LIU†,1 AND S. C. KOU†,2

University of Florida∗ and Harvard University†

Computational methods for protein structure prediction from amino acid
sequence are of vital importance in modern applications, for example pro-
tein design in biomedicine. Efficient sampling of conformations according to
a given energy function remains a bottleneck, yet is a vital step for energy-
based structure prediction methods. While the Protein Data Bank of exper-
imentally determined 3-D protein structures has steadily increased in size,
structure predictions for new proteins tend to be unreliable in the amino acid
segments where there is low sequence similarity with known structures. In
this paper we introduce a new method for building such segments of pro-
tein structures, inspired by sequential Monte Carlo methods. We apply our
method to examples of real 3-D structure predictions and demonstrate its
promise for improving low confidence segments. We also provide applica-
tions to the prediction of reconstructed segments in known structures, and to
the assessment of energy function accuracy. We find that our method is able
to produce conformations that have both low energies and good coverage of
the conformational space and hence can be a useful tool for protein design
and structure prediction.

1. Introduction. In his seminal work in the 1970s, the Nobel laureate Chris-
tian B. Anfinsen (1973) proposed that the stable 3-D structure of a protein is es-
sentially determined by its amino acid sequence. Since then, the question of how
a protein, consisting of a linear sequence of amino acids, acquires that stable 3-D
structure has come to be known as the protein folding problem, and has challenged
scientists of many disciplines for about a half-century; see, for example, Dill and
MacCallum (2012) for a brief review. The traditional way to determine a protein’s
3-D structure is by laboratory work, such as crystallography. The first known ex-
ample of structure determination of a protein molecule by X-ray was done by
Kendrew et al. (1958). Even today, there are substantial costs and difficulties as-
sociated with these laboratory techniques; hence while improvements in genome
sequencing technologies have enabled the number of known protein sequences to
expand rapidly, fewer than 1% of these sequences have a known 3-D structure from
laboratory work [Lee, Redfern and Orengo (2007)].
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Computational approaches for protein structure prediction from amino acid se-
quence have been developed since the advent of computers, yet many unsolved
challenges remain [Friesner, Prigogine and Rice (2002)]. To encourage the scien-
tific community to test the capabilities of current algorithms and methods, a set
of blinded protein structure prediction experiments has been organized every two
years since 1994, known as the Critical Assessment of protein Structure Predic-
tion (CASP).3 Participants do not know the true structures when they submit their
predictions. The true structures for proteins used in CASP will have been recently
determined in a laboratory but are not publicly released until the CASP experiment
has concluded. The CASP experiments have documented substantial progress in
prediction accuracy over the past two decades, and currently the most successful
structure prediction algorithms operate with the assumption that similarities in se-
quence often correspond to similarities in 3-D structure [Krissinel (2007)]. How-
ever, many unsolved challenges remain, in particular when a new sequence has
few similarities with the sequences of known structures [Moult et al. (2016)]. In
addition, there is increasing interest in designing amino acid sequences to achieve
specific 3-D structure and function, for example, in drug discovery [Khoury et al.
(2014)]. As a result, further advances in the efficiency and accuracy of computa-
tional structure prediction algorithms are in critical need.

1.1. The sequence–to–structure correspondence. The key principle underly-
ing protein structure prediction is that a given amino acid sequence generally has
a unique 3-D structure. To illustrate, in the left panel of Figure 1 we show the
length 223 amino acid sequence for 5JMU:A, a protein in Eubacterium rectale in-
volved in carbohydrate metabolism [Tan et al. (2016)]. Each letter denotes one of

FIG. 1. Amino acid sequence (left) and 3-D structure (right) as determined by X-ray crystallog-
raphy of the catalytic domain of peptidoglycan N-acetylglucosamine deacetylase from Eubacterium
rectale (Protein Data Bank ID: 5JU:A).

3http://predictioncenter.org.

http://predictioncenter.org
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the 20 different amino acid types that are the building blocks of proteins. That se-
quence folds into the stable 3-D structure shown in the right panel, which has been
determined by X-ray crystallography and was released to the public on June 29,
2016. In the figure we have drawn arrows pointing to examples of the two main
types of secondary structure that occur over segments of amino acids, called the
α-helix and β-sheet, that have regular angular patterns. Segments without regular
secondary structure are known as coils, and an example is indicated in the figure
as well.

1.2. The energy landscape. A conformation refers to a specific arrangement
of the atoms of a protein in 3-D space. A powerful approach for structure predic-
tion is to assume that the true (or native) conformation of a protein is the one
with minimum potential energy. This is based on the energy landscape theory
[Onuchic, Luthey-Schulten and Wolynes (1997)], and accordingly, many com-
putational methods make their predictions according to an energy function. The
structure with the lowest energy value found is selected as the prediction [e.g.,
Soto et al. (2008), Cooper et al. (2010), Tang, Zhang and Liang (2014), Liang,
Zhang and Standley (2011)]. There are two main interconnected challenges asso-
ciated with this approach—(i) the energy function and (ii) the search method. For
the first challenge, an ideal energy function for guiding the search should assign
the lowest energy to the conformation closest to the truth. However, we do not
know nature’s “true” energy function, so it is necessary to develop models for en-
ergy that aim to approximate it and provide good guidance for the search.4 These
models can be physics based or fitted from data; see Lazaridis and Karplus (2000)
for an overview. The second challenge, and the focus of this paper, is to find the
minimum energy conformation for a given energy function.

Many proteins of interest are composed of 100–600 amino acids, with corre-
sponding geometric degrees of freedom numbering from several hundred to a few
thousand. Thus given the large degrees of freedom, a deterministic energy mini-
mization approach or a direct search for the minimum is impractical. As we next
describe, a different type of approach that utilizes information from known 3-D
structures, when available, has proven to be more effective for predicting the over-
all structures of new proteins.

1.3. The protein data bank for building 3-D structure predictions. Proteins
with known 3-D structures are publicly available from the Protein Data Bank
(PDB) [Bernstein et al. (1977)], which is a key source of data for training structure
prediction algorithms. The PDB now contains over 110,000 structures such as the
example 5JMU:A. The homology modeling approach was developed to leverage

4Such realistic energy functions will stabilize the energies of conformations in a neighborhood
close to the truth. See Zhang et al. (2007) for additional discussion.
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FIG. 2. Sequence alignment for 5JMU:A with proteins that have known 3-D structures, excerpt
shown for amino acid positions 68–168. Visualized using Jalview.

these data and make 3-D structure predictions based on sequence alignments. The
sequence of interest is aligned to sequences in the PDB to obtain structural tem-
plates, and these templates are then stitched together to build a structure prediction
that satisfies geometric constraints, for example, using the MODELLER software
[Fiser and Šali (2003)]. To illustrate, in Figure 2 we have shown a portion of the
alignment for 5JMU:A using sequences from the PDB that were available in April,
2016. We will revisit this example in detail in the Applications section.

While homology modeling has become quite effective for overall structure pre-
dictions as the size of the PDB has grown, its accuracy tends to be lower in seg-
ments that have low sequence similarity with known structures. In Figure 2, the
segment ∼120–135 of 5JMU:A has a noticeable lack of alignment. Therefore, it
would be useful to consider optimizing such segments using an energy-guided
search of the conformational space, after homology modeling has been performed.

1.4. Searching for minimum energy conformations. Even when the search for
the minimum energy conformation is confined to a specified continuous segment
of amino acids within a protein structure, the problem is still difficult due to the
large size of the conformational space. This is especially the case when the length
of the segment to optimize consists of ≥12 amino acids [Li et al. (2011)], which
will have ≥40 geometric degrees of freedom. For any realistic energy function, the
energy landscape of the conformational space will also be both multimodal and of
high dimension [Brooks, Onuchic and Wales (2001)]. It would be very ineffective
to perform energy minimization routines from arbitrary starting conformations, as
such a procedure would in general yield only local minima far from the global one.
Obtaining conformations with low energies from an initial search is therefore very
important and is the primary motivation for the methodology we present in this
paper. We shall formulate this problem as the stochastic optimization of a high-
dimensional distribution subject to constraints.

Since a protein is composed of a sequence of amino acids, it has been quite
natural to consider sampling and optimization methods that exploit this sequential
character. Segments of proteins can be built one amino acid at a time, and the
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successive steps can be designed to favor low-energy conformations. This type of
method has been developed previously for both simplified protein models and real
3-D structures [Wick and Siepmann (2000), Zhang, Kou and Liu (2007), Wong,
Cui and Chen (1998), Tang, Zhang and Liang (2014)].

1.5. Our method. Our goal is to efficiently explore the conformational space
for a continuous segment of amino acids within a protein, to minimize its en-
ergy. Building on these previous developments, we propose a novel approach that
combines sequential construction with inspiration from sequential Monte Carlo
(SMC) methods. SMC (or particle) methods are a powerful tool that can be
adapted for generating proposals from any high-dimensional distribution by break-
ing the draws into a sequence of intermediate distributions using propagation and
reweighting steps [Liu and Chen (1998)]. When the reweighting step is designed
appropriately, it enables the more promising members of a particle population to
survive and continue exploration of the state space [Doucet, de Freitas and Gordon
(2001), Liu (2001)].

In our context, the “particles” are partially constructed conformations for the
amino acid segment of interest. To achieve the goal of stochastic energy opti-
mization, the generating of substantially identical conformations is not useful, and
hence it is especially important to avoid degeneracy in the particle population.
We make substantive modifications to the basic sequential importance sampling
scheme for this purpose. We shall obtain, after completion of the algorithm, a par-
ticle population of substantively distinct conformations for the segment that targets
the high-density regions of the corresponding Boltzmann distribution for the pro-
vided energy function, that is, the energies of the conformations constructed will
be low. This particle representation is an important feature that distinguishes our
method from previous ones. Additionally, we exploit the conditional structure of
the geometric degrees of freedom to achieve improved efficacy for exploring the
large conformational space.

Our method is also fast, requiring a typical runtime of 10 minutes for a length 12
segment on a single 3.2 GHz CPU core; further, it is simple to parallelize the par-
ticle propagation over multiple CPU cores to achieve even faster runtimes. Many
previous methods that are designed to optimize the energy of protein segments
require substantially more computational time, from several hours [e.g., Liang,
Zhang and Zhou (2014)] to hundreds of hours [e.g., Mandell, Coutsias and Ko-
rtemme (2009)].

In Section 2 we explain the basics of protein geometry and formulate the prob-
lem in statistical terms. Our method and its important features are presented in
Section 3. In Section 4 we present results obtained by applying the method to
three sets of applications—sampling segments to improve structure predictions
built from homology, predicting reconstructed loop segments, and assessing differ-
ent energy functions. We conclude the paper with a brief discussion in Section 5.
Some technical details on implementation are provided in the Appendix.
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2. Statistical formulation.

2.1. Protein geometry. A protein structure is represented by a list of 3-D
Cartesian coordinates for the positions of each atom. An equivalent representa-
tion can be given in terms of geometric degrees of freedom, which are primarily
dihedral angles; bond lengths and bond angles exhibit very little variation in real
structures, and so we take them to be fixed at their ideal values [Engh and Huber
(1991)]. The backbone of a protein consists of the interconnected sequence of N,
Cα , C, and O atoms for each amino acid, as follows:

O O
‖ ‖

· · · − N − Cα − C − N − Cα − C − · · · .

Their positions can be parameterized according to the free dihedral angles
(φ,ψ,ω). The angle φ governs the distance between the C atoms of successive
amino acids; in a similar way, ψ governs the distance between successive N atoms,
and ω governs the distance between successive Cα atoms. The side chain of an
amino acid that extends from its Cα atom is unique for, and thus characterizes
each of the 20 different amino acid types. Positions of side chain atoms for an
amino acid can likewise be parameterized in terms of the free dihedral angles χ ;
depending on the amino acid type, there are 0 to 4 of these. As side chains extend
from the protein backbone, side chain dihedral angles can be rotated while keeping
the backbone fixed.

These geometric aspects are illustrated in Figure 3, where we have magnified the
heavy (i.e., nonhydrogen) atoms that compose the Glysine and Lysine amino acids
in positions 28–29 of the structure of 5JMU:A. Each atom is labelled with the po-
sition of its amino acid in the sequence (27–30) and atom name. Note the backbone
connectivity: the previous 27.C connects to 28.N, and likewise 29.C connects to

FIG. 3. Illustration of protein geometry.
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following 30.N. The definitions of dihedral angles (φ,ψ,ω) for position 28 are la-
beled; for example, the labeled φ is the angle between 27.C and 28.C when viewing
down the 28.N–28.CA axis. Glycine does not have a side chain, while Lysine has a
long side chain with four χ dihedral angles, which we have labeled χ(1) to χ(4) in
the diagram. An example of a bond length and a bond angle are also shown; it can
be seen that the bond angle is the planar angle formed by three connected atoms.

2.2. Representation of protein segments and energy functions. Suppose we are
given an initial 3-D structure (e.g., built from homology) for an amino acid se-
quence, and a continuous segment of length l amino acids within the sequence
has been chosen for energy-guided optimization. Let a1, a2, . . . , al denote the se-
quence of amino acids of that segment with the rest of the structure held fixed. By
convention we assume that the two ends of the segment are anchored by fixed po-
sitions of the Cα atom of a1 and the C atom of al . Then specifying the positions of
the atoms of segment between the anchors is equivalent to specifying values for the
dihedral angles (φi,ψi,ωi,χi) for i = 1, . . . , l − 1, and χl . Here, for convenience
we let χi denote the length 0–4 vector of side chain dihedral angles of amino acid
i (length depending on the amino acid type). Additionally, conformations for the
segment must seamlessly connect to the two anchors with realistic bond lengths
and angles; these constraints are described in Coutsias et al. (2004).

The empirical distributions of the angle pairs (φi,ψi) for each amino acid type
have been studied extensively, and are commonly referred to in the chemistry lit-
erature as the Ramachandran plot [Ramachandran, Ramakrishnan and Saisekha-
ran (1963)]. Further grouping the (φi,ψi) pairs according to secondary structure
shows that the distributions for α-helices and β-sheets are tightly constrained due
to their regular angular patterns. In contrast, an amino acid located in a coil will
have a much wider range of possible dihedral angles; thus the structures of coil
regions are the most difficult to predict. Note that ω is typically close to 180° and
hence has less effect on the backbone shape compared to (φ,ψ). The probability
distributions of side chain dihedrals have also been studied extensively, and these
studies show that values of χ in real structures tend to cluster around a discrete
set of modes, known as rotamers; these have been tabulated in the form of rotamer
libraries for each amino acid type [e.g., Shapovalov and Dunbrack (2011)].

Let H denote the energy function with which conformations are to be evalu-
ated. In this paper we consider H to be given, that is, we focus on searching the
conformational space using H . Let x denote the vector of all free dihedral angles
of the segment. Then we wish to find the global minimum of H by stochastically
searching the conformational space guided by the Boltzmann distribution

π(x) ∝ exp
{−H(x)/T

}
,

where T is the effective temperature. Without loss of generality H can be scaled
such that we can take T = 1. Most energy functions that have been used for
computational protein folding can be expressed in the generic form H(x) =
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Hθ(x) + Hd({rab;x}), where Hθ is the energy of the dihedral angles x, and Hd is
the energy of all pairwise distances rab between atoms (i.e., atomic interactions),
whose positions have been calculated based on x. Here Hd would account for the
atomic interactions within the segment, as well as atomic interactions between the
segment and the rest of the protein. It should be noted that Hd is much more costly
to compute than Hθ in general. When a pair of atoms are too close in space than
can be possible in real structures (i.e., rab is below a certain threshold, depend-
ing on atom types5), they are said to have a steric clash; for convenience we shall
simply say Hd = +∞ when there is at least one steric clash. Finally, since the
dimension of x will generally be ≥20 for any realistic scenario where the method
would be applied (i.e., l ≥ 8), the sampling becomes a difficult task due to the large
space and multimodality.

3. Method. We now introduce our sequential Monte Carlo approach to con-
struct conformations that are located in the high-density regions of π(x). The ba-
sic idea is to build x via a sequence of incremental distributions πi . Accordingly,
we shall use the notation 
H(x|x′) to denote the incremental energy contribu-
tion of the additional atoms corresponding to x when some previous angles x′
have already been sampled. For protein segments, it is sensible to let the incre-
mental distributions correspond to adding one amino acid at a time, so that the
ith incremental conditional distribution is that of (φi,ψi,ωi,χi), conditional on
(φ1:i−1,ψ1:i−1,ω1:i−1, χ1:i−1) when i > 1. For notational convenience we define
xi ≡ (φ1:i ,ψ1:i ,ω1:i , χ1:i) which contains the backbone and side chain angles to-
gether, and yi ≡ (φ1:i ,ψ1:i ,ω1:i) which contains the backbone angles only.

There is some flexibility to the order in which amino acids are added; the re-
quirement is that the next amino acid to add must be adjacent to an existing amino
acid with given backbone atom positions (either fixed from outside the segment, or
previously added within the segment). For example, suppose we are building the
segment in positions 120–130. Then the first amino acid to be added is permitted
to be either position 120 or 130. A left–to–right construction would set the se-
quence of angles x1, x2, x3, . . . to correspond to positions 120,121,122, . . . . The
scheme that we adopt is to alternately add amino acids to the left and right anchors,
that is, setting x1, x2, x3, x4, . . . to correspond to positions 120,130,121,129, . . . .
The intuition behind our alternating order is that the amino acids closest to the an-
chors are the most geometrically constrained by the fixed portion of the structure,
and thus from a sequential sampling perspective it can be more efficient to sample
those ones first.

We begin by providing a brief outline how a basic sequential importance sam-
pling (SIS) scheme could be applied here. The particle population of specified size

5We consider a pair of atoms to be in steric clash if the Lennard–Jones 12-6 model of their Van der
Waals forces exceeds 10.0 kcal/mol.
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N would be initialized by sampling the first amino acid {x(j)
1 }Nj=1 from an im-

portance distribution η1 and defining weights w
(j)
1 ∝ π1(x

(j)
1 )/η1(x

(j)
1 ). Then in

subsequent steps, a length i amino acid segment X
(j)
i is obtained by propagating

forward the particle x
(j)
i−1, that is, adding one amino acid according to a proposal

distribution qi(xi |x(j)
i−1). Then by defining ηi(x

(j)
i ) = ηi−1(x

(j)
i−1)qi(xi |x(j)

i−1), the

weights are updated according to w
(j)
i ∝ πi(x

(j)
i )/ηi(x

(j)
i ). Evaluation of the angu-

lar component 
Hθ(xi |xi−1) is much faster than that of the pairwise distance com-
ponent 
Hd({rab;xi}|xi−1) since the former requires only a simple density evalu-
ation of the vector (φi,ψi,ωi,χi), while the latter requires computing 3-D coordi-
nates of atoms determined by xi and all their pairwise distances with the rest of the
protein. Thus it would appear that a natural choice of qi is exp{−
Hθ(xi |xi−1)};
however, such a choice does not work well in practice since the added atoms will
frequently have steric clashes with the rest of the protein. In this case a steric clash
leads to 
Hd({rab;xi}|xi−1) = +∞ in the weight calculation, and those particles
would have an importance weight of zero.

The aforementioned difficulty is known as the particle degeneracy problem, and
has led to the proposal of various resampling schemes in the SMC literature [Liu
and Chen (1998), Douc and Cappé (2005)]. However, simply replicating particles
in this context does not serve the purpose of achieving wide exploration of the
conformational space (i.e., the result will be an undesirably low particle diver-
sity, hindering our goal of finding the lowest energy conformations) and thus is
not a practically useful solution. Rejection control [Liu, Chen and Wong (1998)]
instead discards low-weight particles and replaces them by generating new sam-
ples, which aids particle diversity but does not address the difficulty of generating
promising particles over multiple propagation steps. An alternative that partially
mitigates this difficulty is to make multiple trial draws from qi before selecting
one according to the incremental energy 
Hd , such as that recommended in the
configurational-bias Monte Carlo algorithm by Vlugt et al. (1998) and also known
as the multiple-try method [Liu, Liang and Wong (2000)]. This increases the prob-
ability that steric clashes can be successfully avoided over the length of the seg-
ment, but since many trials are needed for each particle, the additional evaluations
of 
Hd are inefficient. Only one of those trials is selected for propagation, and the
rest are wasted. Hence the multiple-try approach is also not entirely satisfactory.
Fearnhead and Clifford (2003) propose a different type of resampling scheme that
makes multiple propagations per particle before resampling, but where the propa-
gations exhaustively enumerate a discrete state space for Kalman filtering. Hence
we need to develop a more specialized solution.

A further challenge in designing proposals qi concerns the role of side chains.
For conformational exploration it is sensible to build the backbone and side chain
of an amino acid simultaneously, as side chain atoms can occupy a large vol-
ume of 3-D space extending from the backbone (see, e.g., Lysine in position 29
on Figure 3). However, the backbone and side chain degrees of freedom have
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an inherent conditional structure. Given a fixed backbone with dihedral angles
(φ1:l ,ψ1:l , ω1:l), the side chain angles χ1:l are free to rotate. Thus, fixing the values
of χi along with (φi,ψi,ωi) during sequential growth is restrictive and can cause
difficulties with side chain steric clashes in later propagation steps. Such clashes
might be resolved by going back to earlier positions to rotate their side chain di-
hedral angles. Hence to properly handle side chains during backbone growth, we
need to develop a solution that permits this type of flexibility.

We thus propose novel adaptations to the SIS scheme that are tailored for these
specific challenges encountered in building protein segments. First, we design a
proposal qi for the propagation step that incorporates the necessary energy cal-
culations to help ensure that the extensions of each particle x

(j)
i conditional on

x
(j)
i−1 do not become degenerate. This entails expending additional computational

effort to evaluate 
Hd systematically over a (φi,ψi) grid. Second, we choose to
propagate a much larger number of proposals from each particle (up to 100), that
is, x

(j)
i−1 → (x

(j,1)
i , . . . , x

(j,100)
i ), thus greatly increasing the size of an intermedi-

ate particle population similar in spirit to Fearnhead and Clifford (2003). Then N

particles can be selected as representatives from this larger intermediate popula-
tion. For our application this strategy permits additional flexibility in the selection
of those N representatives to achieve the goals of both low energy and high par-
ticle diversity. Third, to handle the difficulty of sampling side chain angles and
evaluating their energy along with (φi,ψi,ωi), we embed a second particle filter
within the main sampling steps for handling χi . This provides a pool of side chain
positions that is sequentially updated during backbone growth to help avoid steric
clashes. Together, these novel features yield a highly efficient method for build-
ing diverse conformations with low energy for the amino acid segment of interest.
Details for these three features appear in the following subsections.

3.1. Choice of proposal distribution qi for growth of backbone. To evalu-
ate 
Hd more systematically, we first investigated the effect of discretizing the
dihedral angles (φ,ψ) on backbone protein geometry. We found that using 5°
intervals of φ and ψ angles provided sufficient resolution to reproduce protein
backbones in the PDB with negligible error. Thus this suggests that evaluating

Hd({rab;φi,ψi,ωi}|y(j)

i−1) with (φi,ψi) on a 5° by 5° grid and ωi = 180° would
be suitable at the ith propagation step, in regions where (φi,ψi) has nonnegligible
probability density, that is, exp[−
Hθ(φi,ψi |x(j)

i−1)] > ε.6 Note that at this stage

we evaluate 
Hd conditional on y
(j)
i−1 rather than x

(j)
i−1 to allow the previous side

chain atoms within the segment to remain flexible. The effect of those previous
side chains will be later handled by our embedded side chain filter in Section 3.3.

6The amino acid Proline is an exception as its ω angle has ∼0.1 probability to be ∼0°, and ∼0.9
probability to be ∼180°. If amino acid i is Proline, we first sample ωi to be 0° or 180° according to
those probabilities.
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Let (φ′,ψ ′) be a (φi,ψi) grid point where 
Hd({rab;φ′,ψ ′,ωi}|y(j)
i−1) <

+∞. For such a (φ′,ψ ′), we next consider the side chains χi ; let Ri denote
the set of rotamer library positions for χi provided in Shapovalov and Dun-
brack (2011). We then evaluate 
H(χi |φ′,ψ ′,ωi, y

(j)
i−1) for χi ∈ Ri .7 Now, if

minχi∈Ri

H(χi |φ′,ψ ′,ωi, y

(j)
i−1) < +∞ then there is at least one possible place-

ment of the side chain for the backbone angles (φ′,ψ ′).
In the SMC literature, various lookahead strategies have been developed to

utilize information from future steps to improve decision making for the cur-
rent particles; see Lin, Chen and Liu (2013) for an overview. Hence we also
introduce that strategy here, to foresee whether (φ′,ψ ′) allows for an energeti-
cally favorable placement of the next amino acid. While lookahead increases the
computational burden for the current step, it can be a useful tradeoff. Nonviable
(φ′,ψ ′) can be eliminated at the current step, before they are potentially subjected
to a full incremental evaluation at step (i + 1) only to find that they are dead
ends. For this purpose we opt to evaluate 
Hd({rab;φi+1,ψi+1}|φ′,ψ ′,ωi, y

(j)
i−1)

where (φi+1,ψi+1) takes values on a very coarse 30° grid. The coarser grid is
faster to evaluate and suffices to provide a rough assessment of whether back-
bone growth can continue successfully. If there are no pairs (φ′

i+1,ψ
′
i+1) such that


Hd({rab;φ′
i+1,ψ

′
i+1}|φ′,ψ ′,ωi, y

(j)
i−1) < +∞, then we consider (φ′,ψ ′) to be a

dead end.
In summary, the above procedure yields a list L

(j)
i of grid points (φ′,ψ ′) that

are potentially good candidates for extending the particle x
(j)
i−1 to the ith amino

acid: they are plausible backbone angles according to 
Hθ , the backbone atoms
do not have steric clashes, they have at least one possible side chain position, and
the lookahead indicates that further growth is possible. We then set qi(xi |x(j)

i−1) ∝
1[(φi,ψi) ∈ L

(j)
i ]p(ωi)p(χi). In real structures, ω is not exactly 180° so we take

p(ωi) to be a normal distribution with SD 2.75°. p(χi) is taken to be uniform here,
since the side chains will be handled by our embedded side chain filter.

3.2. Selection of N particles for further backbone growth. We incur addi-
tional computational cost in constructing qi , as compared to the basic SIS scheme.
To fully leverage the energy calculations already performed, we make multiple
(up to 100) draws from qi for each particle j , so that we propagate x

(j)
i−1 →

(x
(j,1)
i , . . . , x

(j,100)
i ). To encourage diversity, when making draws from qi we sam-

ple grid points (φi,ψi) from the list L
(j)
i above, without replacement. This propa-

gation of multiple paths per particle results in a much larger intermediate particle
population {x(j,1)

i , . . . , x
(j,100)
i }Nj=1. Then, rather than calculating weights for each

particle (SIS) or resampling particles based their weights (SIR), we shall instead

7To permit some flexibility in the rotamers and reduce steric clashes, in practice we sample the
first side-chain dihedral from a Normal centered at the rotamer position with SD 10°.
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aim to obtain a particle population x
(1)
i , . . . , x

(N)
i by suitably sampling a subset of

{x(j,1)
i , . . . , x

(j,100)
i }Nj=1 that encourages low energy and high diversity.

Suppose that we have evaluated the energies of all the intermediate particles,
{H(x

(j,1)
i ), . . . ,H(x

(j,100)
i )}Nj=1, where we obtain each according to

(1) H
(
x

(j,n)
i

) = Hθ

(
y

(j,n)
i

) + Hd

({
rab;y(j,n)

i

}) + H
(
χ1:i |y(j,n)

i

)
.

[The role of the side chains χ1:i to compute the term H(χ1:i |y(j,n)
i ) will be de-

tailed in Section 3.3.] One simple approach would be to then sample N particles
from this list according to exp[−H(·)]. This would favor the low-energy partial
conformations, which is ideal if particles currently with the lowest energies can be
expected to also have the lowest energies after future propagation steps. However,
within the intricate atomic environment of protein structures, growth is rather un-
predictable: the eventual completed conformations with the lowest energies may
not have been the lowest energy particles at the earlier stages of growth.

The developments presented in the Wang–Landau algorithm [Wang and Landau
(2001)] provide some inspiration for an alternative approach that can be preferable
for drawing the N particles in this case. That type of idea as we employ here is
to stratify the population by energy bands and sample representatives from each
band. We define two simple strata—stratum 1 as the N0 intermediate particles
with the lowest energies and stratum 2 as the remaining intermediate particles that
are free of steric clashes, with N0 appropriately chosen (N0 ≤ N ). We then apply
unequal sampling rates. We take all N0 conformations of stratum 1, and N − N0
conformations sampled uniformly at random from stratum 2. This is effective as a
general strategy since it ensures that the low energy particles are well represented
for further propagation, and at the same time enough representatives across the
energy spectrum are included, some of which might become the most promising
low-energy particles after several future steps.

To further reduce the number of particles that are very similar geometrically
and encourage diversity, we choose to keep only one representative for very sim-
ilar particles. We do this by calculating the root-mean-square deviation (RMSD)
between each pair of particles, defined as the square root of the mean-squared 3-D
Euclidean distance between the corresponding atoms of that segment with the rest
of the protein fixed. If any two particles have a pairwise RMSD less than a certain
threshold, only the lower energy one is kept. The discarded particles are then re-
placed by drawing random selections from the remaining intermediate particles in
stratum 2 (i.e., those that are free of steric clashes) to return the particle population
size to N .

3.3. Embedding sequential sampling and filtering for side chains. We now de-
scribe our solution for handling the flexibility of side chains given the backbone,
while allowing χi to be sampled along with (φi,ψi,ωi) for more efficient explo-
ration of the conformational space during propagation. Our key innovation here is
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to embed a second particle filter for side chains within the main particle propaga-
tion steps for the backbone. To each intermediate particle x

(j,n)
i we associate a set

of side-chain particles, {s(k)
i,j,n}Ns

k=1. Each side-chain particle is a vector χ1:i of side

chain positions. The optimal side chain positions of χ1:i for x
(j,n)
i is then defined

to be the side chain particle s that has the minimum energy for that backbone, that
is, argmin

s∈{s(k)
i,j,n}Ns

k=1
H(s|y(j,n)

i ). This definition is used for the H(χ1:i |y(j,n)
i ) term

to calculate the energy values H(x
(j,n)
i ) in equation (1).

The pool of side chain particles is constructed as follows. At i = 1, the side
chain particles are initialized by sampling a maximum of ns values for χ1 with
probability ∝ exp[−
H(χ1|y(j,n)

1 )], where ns < Ns . Then for subsequent steps
i > 1, in a similar way we first sample a maximum of ns values for χi with
probability ∝ exp[−
H(χi |y(j,n)

i )]. We remind the reader that these energies
were already computed as part of the construction of the proposal qi . Now, to
propagate s

(k)
i−1,j,n → s

(k)
i,j,n means extending the existing vectors of χ1:i−1 with

χi , and hence we now require additionally computing the energy of the interac-
tions of up to Ns × ns combinations. In this way we obtain the list of energies


H(s
(k)
i−1,j,n, χ

(k′)
i |y(j,n)

i ), k = 1, . . . ,Ns and k′ = 1, . . . , ns . We select the lowest

Ns energies from this list for the particles {s(k)
i,j,n}Ns

k=1.
The embedded side-chain filtering allows for flexibility in the overall position-

ing of side chains as the main particle propagation proceeds, in that their posi-
tions need not be fixed during the initial sampling of the ith amino acid by taking
Ns > 1. By maintaining a separate set of side-chain particles of size Ns , we are
more likely to continue having at least one energetically favorable vector of side
chain positions χ1:i as more amino acids are added. Increasing Ns thus tends to
improve the energies of the completed conformations—though we find there is
little practical effect beyond Ns = 25. Additional computational budget is better
utilized for increasing N , the number of backbone particles.

An overall outline summarizing the method is given in pseudocode below.

SMC method for protein segment construction

Initialize x
(j)
0 = ∅, j = 1,2, . . . ,N

For i = 1,2, . . . , l − 3

For j = 1,2, . . . ,N

Construct list L
(j)
i of possible pairs

(
φ′,ψ ′) for amino acid i

(refer to Section 3.1)

For n = 1,2, . . . ,100

Propagate x
(j)
i−1 → x

(j,n)
i as follows:
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Draw one (φi,ψi) pair from L
(j)
i and ωi ∼ p(ωi), and

sample up to ns side chain positions for χi

If i = 1

Let
{
s
(k)
i,j,n

}Ns

k=1 contain the ns positions for χ1

If i > 1

Propagate
{
s
(k)
i−1,j,n

}Ns

k=1 → {
s
(k)
i,j,n

}Ns

k=1 using embedded

side chain filter: set
{
s
(k)
i,j,n

}Ns

k=1 to be the Ns vectors

of χ1:i with the lowest energies among the Ns × ns

combinations of χ1:i−1 with χi (refer to Section 3.3)

End if

End for

End for

Sample N particles from
{
x

(j,1)
i , . . . , x

(j,100)
i

}N
j=1 to be x

(1)
i , . . . , x

(N)
i

(refer to Section 3.2)

End for

Do final processing (including analytical closure for last three amino

acid positions; see Appendix A.3 for details) and output conformations.

4. Applications and results. We illustrate the proposed method with three
applications.

4.1. Improving 3-D structure predictions from homology. A key motivation
for the development of our method is the need to improve 3-D structure predictions
beyond those that can be obtained by homology modeling. This is known as the
structure refinement problem. One important step is to generate improved confor-
mations of interior segments with low homology confidence [Rohl et al. (2004)].
For illustrative purposes we will demonstrate the effectiveness of our method on
some specific segments chosen from examples of homology-based structure pre-
dictions.

The data for these examples are obtained from the CASP website; since 2006,
the CASP experiments have included structure refinement. For this task partici-
pants are given the amino acid sequence of the protein along with a starting 3-D
structure. The goal is to then submit an improved prediction by modifying the
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given structure. The organizers then assess whether the predictions submitted are
closer to the truth than the starting structure, according to a set of standard metrics
that have been adopted to measure similarity between protein structures [Modi and
Dunbrack (2016)].

Here, to compare predictions with the truth (i.e., X-ray crystal structures) we
use the backbone RMSD of the entire structure. For comparing entire structures,
the calculation of RMSD is done after the two backbones are optimally superim-
posed (i.e, by rotations and translations). RMSD is a simple measure of overall
similarity; an alternative metric is the Global Distance Test (GDT), which we will
subsequently introduce.

We take five examples from the CASP12 experiment in May–July 2016, chosen
to represent a wide range of accuracies in their given starting 3-D structures. These
starting 3-D structures are shown in Figure 4 along with their CASP identifier and
RMSD of the entire structure relative to the truth. We have selected one segment
from each for optimization using our method; on the 3-D ribbon structures shown
these are highlighted in green.

The true structure for the sequence with CASP ID TR879 was publicly released
after CASP as 5JMU:A in the PDB, which we have shown in Figure 1. We use that
example to describe how segments in the given structure might be selected for op-
timization without knowledge of the true structure. We first generated a sequence
alignment for the amino acid sequence of TR879, by running HHpred [Söding,
Biegert and Lupas (2005)] to search the PDB, excluding any matches that were
added to the PDB after April 2016. An excerpt of the sequence alignment for
TR879 was shown in Figure 2, where it can be seen that the region ∼123–134
has little or no alignment matches; the alignment quality histogram at the bottom
summarizes this [by showing Blosum62 scores; see Eddy et al. (2004)]. Then we
determined the secondary structure elements of the given 3-D structure by running
Dictionary of protein secondary structure (DSSP) [Kabsch and Sander (1983)]. In
particular, this showed that the given starting structure has a coil region from po-
sitions 120–130 followed by an α-helix beginning at position 131. Thus to cover
most of that poor alignment region without breaking the long α-helix in the given
structure, we chose the segment 120–130 for energy-guided optimization.

In a similar way we chose one segment to optimize from each of the five pro-
teins. The exception is TR898, for which no sequence alignments could be found.
It is therefore not surprising that the starting structure given for TR898 has the
worst RMSD to the true structure among the proteins considered; it was likely
constructed with little guidance from known structures. Hence for TR898, we sim-
ply selected the long coil segment (as identified by DSSP) in the given structure
to optimize. The chosen segments, along with their energy values in the given
structure as computed by the energy function we use, are summarized in Table 1.
Their lengths, which range from 11 to 17 amino acids, are long and challenging
for sampling methods.
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FIG. 4. Five starting structures for refinement from CASP12 and their RMSD to the truth. The seg-
ment from each that we selected for optimizing is highlighted in green and displayed inside the box.
Replacing each of these segments by the lowest energy conformation leads to a visible conforma-
tional change, as indicated in the close-ups to the right of the arrows.

We applied our method to these segments, using N = 10,000 particles and an
RMSD cutoff of 0.25 Angstroms for pruning conformations that are too similar, as
described in Section 3.2. For each segment we output 5000 conformations, from
which we selected the conformations with the lowest energy. For example, to illus-
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TABLE 1
Segments selected for optimization from the five refinement examples, along with their initial energy

values

Protein

TR879 TR898 TR921 TR928 TR947

Segment 120–130 56–72 80–91 354–367 174–186
Length 11 17 12 14 13
Initial energy 607.4 505.6 702.8 2070.5 402.8

trate the results for TR879, in Figure 5 we have zoomed into the region of interest
and plotted our five sampled conformations with the lowest energy (superimposed
on the given structure which has that segment colored green). It can be seen that
each of these five conformations are geometrically quite different from that of the
given structure, and are also noticeably distinct geometrically among themselves.
Their energy values are all within a fairly tight range ∼246–266, which indicates
that we are obtaining good coverage of distinct regions of the low-energy con-
formational space according to this energy function. These energy values are also
much lower than the 607.4 in the starting structure. Next we consider the quality of
these conformations according to the RMSD measure of overall similarity to the
truth. We notice that, by optimizing this length 11 segment out of the 220 amino
acids in this protein, we are able to reduce the overall RMSD of the entire structure
from 5.501 to the range ∼5.319–5.400, which is substantial since only 5% of the
amino acids were modified. It can also be observed that the lowest energy con-
formation is not necessarily the best one according to this metric; in this case the
fourth lowest energy conformation is better, and this phenomenon occurs since en-
ergy functions have their inaccuracies. In fact, among the sampled conformations
there was one with energy 441.9, while having RMSD 5.292.

We have summarized the results for all five examples in Table 2, showing the
RMSD of the lowest energy conformation sampled for each segment. The RMSD

FIG. 5. Characteristics of the five lowest energy segment conformations sampled by our method,
for TR879 positions 120–130. These segments are visualized on the right panel with their respective
colors. The conformation of the segment in the given structure is colored green.
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TABLE 2
Summary of results for the five refinement examples. The RMSDs of the lowest energy conformation

sampled for each segment are shown, with the changes from the given structure shown in
parentheses

Protein Length Time (s) Min. energy RMSD

TR879 11 143 246.5 5.400 (↘0.100)
TR898 17 343 332.0 13.679 (↘0.184)
TR921 12 167 439.1 3.450 (↘0.055)
TR928 14 275 368.0 5.597 (↘0.380)
TR947 13 331 89.44 12.681 (↘0.354)

of the entire structure is improved in each case—relative to the given structure.
More examples of energy inaccuracy are evident, for example, for TR921 the
fourth lowest energy conformation has RMSD 3.426 which represents a more sub-
stantive improvement than the lowest energy conformation. Finally, we note that
our method is fast as indicated in the “Time” column. On a 6-core 3.2 GHz Xeon
processor the algorithm completes in under 6 minutes for each of these examples.

While RMSD is often computed on backbone atoms only, it can also be com-
puted with side chain atoms as well (all-atom RMSD) to include an assessment
of side chain accuracy. An alternative metric for measuring the similarity of two
protein structures is the Global Distance Test (GDT). Like RMSD, the GDT first
requires the backbones of two structures to be optimally superimposed by rotation
and translation. GDT can be more robust than RMSD, as it uses a sliding window
to maximize the fraction of backbone Cα atoms from the two structures that can
be superimposed within different cutoff distances. “GDT total score” (GDT_TS)
averages that fraction over four cutoffs (1, 2, 4, and 8 Angstroms), while “GDT
high accuracy” (GDT_HA) averages over more stringent cutoffs (0.5, 1, 2, and 4
Angstroms). Thus GDT scores range from 0 to 1, where higher is better.

We also assessed the lowest energy conformations found by our method with
these additional metrics. These results are summarized in Table 3. In particular,
for TR898 which had the worst starting homology-based structure in this set, none
of the sampled conformations had any improvement in GDT_TS and GDT_HA
values; hence, when the starting structure is overall quite inaccurate relative to the
truth, more substantive changes to the structure globally are needed to improve its
GDT score.

We note that the fairly simple energy function we use, as detailed in Ap-
pendix A.2, is just one of many possibilities that could be used for this purpose
and is by no means the most accurate. It may also be unrelated to the energy func-
tions used (if any) by the researchers that built the given starting structure. Hence it
is not unusual that we sample conformations with significantly lower energy than
in the given structure, according to our energy function. Here the results on these
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TABLE 3
Summary of additional RMSD and GDT metrics for the five refinement examples Quality metrics of

the lowest energy conformation sampled for each segment are shown, with the changes from the
starting structure shown in parentheses

Protein RMSD All-atom RMSD GDT_TS GDT_HA

TR879 5.400 (↘0.100) 5.875 (↘0.158) 0.7943 (↗0.0045) 0.6364 (↗0.0034)
TR898 13.679 (↘0.184) 14.144 (↘0.133) 0.3679 (0.0000) 0.2524 (0.0000)
TR921 3.450 (↘0.055) 4.328 (↗0.010) 0.6884 (0.0000) 0.4819 (↗0.0019)
TR928 5.597 (↘0.380) 5.812 (↘0.281) 0.6305 (↗0.0037) 0.4274 (0.0000)
TR947 12.681 (↘0.354) 13.541 (↘0.319) 0.6729 (↗0.0115) 0.5214 (↗0.0057)

examples do indicate that our current energy function is generally realistic enough
to yield improvements on the overall quality of the structure, if we simply use the
lowest energy conformations found to replace the corresponding segments in the
given structure. In summary, these results demonstrate the speed and utility of our
method for tackling an important step within structure refinement problems. Seg-
ment optimization is a very powerful technique when the rest of the protein largely
resembles the truth. With the implementation of more accurate energy functions,
further improvements would be expected.

4.2. Predicting reconstructed loop segments. The second application we
present concerns testing the efficacy of the method in a controlled setting, where
direct comparisons can be made with the ground truth. In the reconstruction prob-
lem, a segment is deleted from a true structure in the PDB, and a sampling method
is tasked with generating conformations for the missing segment with the rest of
the true structure held fixed. Note that this differs from the refinement application,
where the rest of the given structure may at best only approximately resemble the
truth. Thus this reconstruction problem is useful for evaluating sampling methods.

For this purpose we evaluate our method using 20 segments from a data set first
introduced in Canutescu and Dunbrack (2003), 10 each of length 8 and 12. These
were originally selected specifically for study as examples of coil segments that
connect α-helices and β-sheets, which are known as loops in the bioinformatics
literature, and hence this is known as the loop reconstruction problem [e.g., Rohl
et al. (2004), Coutsias et al. (2004), Soto et al. (2008), Wong, Liu and Kou (2017)].
Most methods that have been proposed in the literature for loop reconstruction
do not attempt to minimize energy as part of sampling. So in this section, our
comparisons will be made with the state–of–the–art DiSGro method, which has a
similar computational speed [Tang, Zhang and Liang (2014)].

The comparison is a useful test for the efficacy of our methodological innova-
tions and in particular how the energies of the sampled conformations compare
when evaluated according to the same energy function. DiSGro incorporates dihe-
dral angle probabilities in an ad hoc manner to guide sampling, and then evaluates
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final conformations according to their pairwise distance energy function only. In
contrast, we use both a dihedral angle energy term and a distance-based energy
term during sampling, where we have adopted the DiSGro pairwise distance en-
ergy for our distance-based energy term. Thus to obtain the most comparable en-
ergy results between the two methods, we shall evaluate final conformations using
the DiSGro pairwise distance energy only.

For the loop reconstruction application, the RMSD accuracy of the sampled
conformations compared to known conformation in the true structure is also im-
portant. While the RMSD accuracy will necessarily depend on the accuracy of the
energy function used, it is interesting to compare how the two methods perform in
this regard as well. For this purpose, the methods will select one loop conformation
as the prediction for each test case. The DiSGro method selects the lowest energy
conformation according to their energy function as the prediction; hence, likewise
we select our lowest energy conformation (i.e., based on the combined dihedral
and distance terms) as our prediction.

To obtain results from the DiSGro method, we ran the program provided by the
authors. With default settings it generates 5000 backbone conformations for the
computation; to obtain the best possible energies from the DiSGro method we in-
creased that setting to 100,000 conformations. As before, we ran our method using
N = 10,000 particles for the sampler and a RMSD cutoff of 0.25 Angstroms for
pruning similar conformations. For both methods we output 5000 final conforma-
tions for each test case.

The results are summarized in Table 4 and organized by loop length. We find
that for all 20 cases, the conformation with the lowest DiSGro pairwise distance
energy is sampled by our method. We also note that the average gap between our
lowest energy and the DiSGro method’s lowest energy is substantially wider for
length 12 loops compared to length 8 loops. Thus the advantages of our method
are particularly apparent for longer loops, which is significant since the longer
loops have a much larger conformational space to explore. Finally, the rightmost
columns compare the RMSD values of the lowest energy conformation—as se-
lected by the respective energy functions of the two methods. As expected, the
results are somewhat noisier here due to energy function inaccuracy. Nonetheless,
the energy functions are good enough for our method to achieve the lower RMSD
in the majority of cases, with a length 8 average of 1.55 vs. 2.12 for DiSGro and a
length 12 average of 2.41 vs. 3.45.

4.3. Assessing different energy functions for sampling and prediction. The
third application concerns assessing the accuracy of different energy functions for
conformational sampling and prediction. For a given sequence or segment, the
ideal energy function should assign the lowest energy values to conformations that
are closest to the truth. Thus with an effective sampling method and the guidance
of a good energy function, we ought to find low-energy conformations that should
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TABLE 4
Loop reconstruction comparison between our method and DiSGro

Minimum Hd RMSD of prediction

Loop ID Ours DiSGro Ours DiSGro

1cru_85_92 −450.7 −326.3 2.99 5.24
1ctq_144_151 −400.6 −337.4 1.53 1.51
1d8w_334_341 −537.3 −432.5 2.23 2.36
1ds1_20_27 −416.6 −403.5 2.57 0.95
1gk8_122_129 −603.8 −527.5 0.98 1.53
1i0h_145_152 −520.8 −375.4 0.25 1.00
1ixh_106_113 −628.1 −536.6 0.68 0.53
1lam_420_427 −388.8 −318.6 2.05 2.29
1qop_14_21 −614.0 −442.0 0.71 2.67
3chb_51_58 −275.9 −213.6 1.55 1.74

Length 8 average −483.7 −391.3 1.55 1.98

1cru_358_369 −619.5 −451.6 3.25 3.02
1ctq_26_37 −455.3 −310.1 2.24 1.73
1d4o_88_99 −702.7 −419.1 1.40 2.50
1d8w_46_57 −1030.6 −696.4 4.86 4.34
1ds1_282_293 −637.1 −293.5 1.03 5.89
1dys_291_302 −679.5 −464.2 1.33 2.17
1egu_508_519 −709.5 −397.2 1.52 3.02
1f74_11_22 −729.2 −586.1 1.45 1.66
1qlw_31_42 −453.3 −329.3 4.88 4.55
1qop_178_189 −378.7 −267.9 2.16 4.18

Length 12 average −639.5 −421.6 2.41 3.31

also be close to the truth. Among the set of sampled conformations a good en-
ergy function should then be able to identify the most truth-like conformation. In
practice, energy functions are developed by different research groups with vari-
ous considerations. Therefore it is natural to ask how different energy functions
compare for sampling low-energy conformations. As our method is quite effective
for sampling low-energy conformations, independent of the specific choice of en-
ergy function, we now demonstrate how we may use it to assess energy function
accuracy as well.

Our energy function used for the results thus far is a modified DiSGro energy
function, as detailed in Appendix A.2. We adopted the DiSGro energy model for
Hd , the energy component for atomic interactions. To make comparisons for dif-
ferent Hd , we also implemented two other energy models for atomic interactions.
The first is DFIRE [Zhou and Zhou (2002)], which was designed as a statistical
approximation of free energy. The second is the Lennard–Jones potential [Jones
(1924)], which is a simple model for atomic Van der Waals attractive and repulsive
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forces, and we have implemented the commonly used “12-6” form. We shall use
each of these three models in turn for Hd in our energy function and assess their
accuracies.

As a test data set, we used the same set of structures from the PDB used to
construct our empirical Hθ (see Appendix A.2). Among all coil segments in those
structures with lengths 8, 10, or 12, we randomly selected 1000; thus we obtained
560 length 8 segments, 308 length 10 segments and 132 length 12 segments. Sim-
ilar to the loop reconstruction application, when sampling conformations for each
of these segments, we shall fix the rest of the structure at the truth. For each of
the three choices of Hd , we run our method with N = 10,000 particles, RMSD
cutoff of 0.25 Angstroms to eliminate particles that are too similar (as described in
Section 3.2) and output 5000 final conformations.

We consider two evaluation metrics for each of the three energy functions—
(A) the smallest RMSD among the 5000 sampled conformations, and (B) the
RMSD of the lowest energy conformation. The first metric assesses how the en-
ergy function helps guide the construction of the particle population, in the sense of
whether particles with low RMSD to the truth can be retained under our method as
particles propagate. The second metric assesses how the energy function performs
when selecting the lowest energy conformation from the 5000 as the prediction.
For a given test case, the best possible outcome for metric (B) is to be equal to
metric (A), that is, the energy function selects the closest conformation to the truth
available as the prediction, but metric (B) can be substantially higher due to energy
function inaccuracy.

The results are summarized in Table 5, where we have computed the averages
of the two metrics over the test cases for each segment length (8, 10, and 12). Nat-
urally, overall RMSD accuracy is lower for longer segments. Similar trends are
evident at each length. Sampling with the DiSGro-based energy function yields,
on average, the conformation with the smallest RMSD among the particle popula-
tion. In this regard the simple Lennard–Jones also performs similar or better than
DFIRE. Next, when considering prediction performance we notice that all the en-
ergy functions have substantial inaccuracy, as the RMSDs of the lowest energy are

TABLE 5
Assessing energy functions using three different energy models of Hd : DiSGro, DFIRE, and

Lennard–Jones

A. Smallest RMSD sampled B. RMSD of lowest energy

Length Cases DiSGro DFIRE L–J DiSGro DFIRE L–J

8 560 0.637 0.706 0.711 1.701 1.938 2.493
10 308 0.982 1.237 1.155 2.535 2.971 3.679
12 132 1.342 1.804 1.605 3.400 4.063 4.243
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on average much larger than the smallest RMSDs sampled. Here, for each segment
length the DiSGro-based energy function has again the best performance, followed
by DFIRE, and then Lennard–Jones.

Thus in this way we can use our method to help systematically quantify the
accuracy of different energy functions. The inaccuracies identified (i.e., low energy
conformations with large RMSD to the truth) could be valuable data to use for
fitting improved energy functions. We plan to pursue these directions in future
research.

5. Conclusion. In this paper we have presented the conformational explo-
ration problem within protein folding from a statistical perspective. We then in-
troduced a new sequential method specifically for stochastically optimizing the
energy of protein segments that can find utility in a variety of applications—with
improving protein structure predictions being the focal point. That method was in-
spired by sequential Monte Carlo, where we have made important adaptations to
effectively explore and generate diverse samples from the low-energy conforma-
tional space. Promising results are obtained in all three applications considered.

The work reported in this paper leads to at least two interesting directions for
continued research. First, as the method presented is a useful tool for tackling an
important aspect of structure refinement, it is natural to consider how we might
use it to improve different segments of the same protein structure in an automatic
fashion. This might involve developing algorithms to select plausible segments to
refine and then applying our method iteratively on those segments. To achieve fur-
ther energy optimization, the conformations constructed by our method could then
be used as starting points for subsequent local minimization routines. Second, by
simply modifying some off-the-shelf energy models to use as our energy function,
we found that energy inaccuracies often hindered prediction accuracy. It would be
useful to integrate other, perhaps more sophisticated, energy functions with our
method. The conformational samples generated by our method could be used for
fitting more accurate energy functions in future work as well.

APPENDIX: IMPLEMENTATION DETAILS

Full implementation of the method requires some specifics. First, values need to
be specified for each of the adjustable parameters in our method. Second, a specific
energy function must be chosen to use with the method. Third, the last propagation
step that outputs the completed conformations requires some additional attention
to ensure that the segment seamlessly connects the two anchors and to finalize the
side chain positions; this incurs some additional computational cost, so it makes
sense to choose only a subset of the N particles (i.e., the low energy ones) for
processing. These details appear below.
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A.1. Specification of method parameters. Here we list the settings we se-
lected for the implementation of our method.

• The minimum backbone dihedral (φ,ψ) probability, ε = 0.00002. This choice
of ε is simply a device for computational efficiency. The cutoff is set to minimize
the computational resources spent on evaluating Hd for (φi,ψi) that have very
low dihedral angle probability.

• Possible rotamer positions χ are those provided in the rotamer library Shapova-
lov and Dunbrack (2011).

• The backbone dihedral angle ωi ∼ N(μ,2.75°), where μ = 180° for all amino
acid types except Proline. For Proline, we sample μ = 180° with probability
0.9, and μ = 0° with probability 0.1.

• The size of stratum 1 (the lowest energy particles) is set to N0 = 0.9N .
• Rotamers kept for one amino acid ns = 20, size of side chain particle population

Ns = 25.

A.2. Energy function. Since the focus of the paper is on sampling, we opted
for a simple construction of Hθ , along with using Hd provided by other re-
searchers.

To create a simple probability mass function for (φ,ψ) over our 5° by 5° resolu-
tion grid, we computed the empirical probabilities of (φ,ψ) in each grid cell using
structures from the PDB. The structures we used are from the CulledPDB list by
PISCES [Wang and Dunbrack (2003)] on March 14, 2015, with these settings—no
greater than 20% sequence similarity, resolution 2.0 Å, R-factor cutoff 0.25. We
constructed one empirical PMF for each combination of amino acid type (20) and
secondary structure type (according to DSSP: helix, sheet, coil). We then compute
an energy using Hθ(φi,ψi) = − log(P̂ (φi,ψi)), where P̂ is the appropriate em-
pirical PMF for a given (φi,ψi) pair. For simplicity we did not model any (φ,ψ)

dependence from one amino acid to the next.
For the Hd component we adopted the DiSGro energy developed in Tang, Zhang

and Liang (2014). It is an energy model for pairwise atom interactions, optimized
for scoring coil regions of protein structures. In the energy assessment section, we
also consider using DFIRE and Lennard–Jones for Hd . Since these energy models
do not account for bond lengths and angles, we perform an additional check by
setting Hd = +∞ to eliminate particle propagations that will fail to have realistic
bond lengths and angles when the segment backbone is completed.

To then weight the contributions of Hθ and Hd , we placed a coefficient of 10 on
our Hθ in combining the two components based on some empirical experiments:

H(x) = 10Hθ(x) + Hd

({rab;x}).
These weights achieved good results with our sampling method as demonstrated,
but we note that they have not been carefully optimized. Tuning the weights and
energy models may further improve the results and is an interesting avenue of
future work.
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A.3. Final propagation step. As mentioned in Section 2, two pairs of (φ,ψ)

in the segment are essentially deterministic in order to ensure that the segment
backbone connects properly with realistic bond lengths and angles. Thus for a
length l segment, the remaining two pairs of (φ,ψ) are determined after (l − 3)th
propagation steps. So we begin with l − 4 regular propagation steps, and for the
(l − 3)th step the lookahead criterion is replaced by a check for whether the
segment backbone can connect properly, by solving the polynomial equations in
Coutsias et al. (2004). If it cannot, we set Hd = +∞. Otherwise, the 
Hd contri-
bution of these remaining backbone atoms is added.

Segments that can connect properly will now have a complete segment back-
bone. We also have Ns side chain particles for χ1:(l−3) from the (l − 3) propaga-
tion steps. We briefly describe how we finalize the side chain positions χ1:l for the
entire segment. First, we now fix χ1:(l−3) to the minimum energy side chain par-

ticle in the set {s(k)
l−3,j,n}Ns

k=1 and discard the remaining side chain particles. Then
we add χl−2, χl−1, χl incrementally by evaluating the energies of their possible
rotamers; with only three side chains to add, simply selecting the minimum energy
rotamer for each is fast and often adequate for avoiding steric clashes. Finally, we
use a local energy minimization routine that rotates each of the side chains of the
segment in turn to stabilize their energy, with the backbone fixed.

REFERENCES

ANFINSEN, C. (1973). Principles that govern the folding of protein chains. Science 181 223–230.
BERNSTEIN, F. C., KOETZLE, T. F., WILLIAMS, G. J., MEYER, E. F., BRICE, M. D.,

RODGERS, J. R., KENNARD, O., SHIMANOUCHI, T. and TASUMI, M. (1977). The protein data
bank. Eur. J. Biochem. 80 319–324.

BROOKS, C. L., ONUCHIC, J. N. and WALES, D. J. (2001). Taking a walk on a landscape. Science
293 612–613.

CANUTESCU, A. and DUNBRACK, R. (2003). Cyclic coordinate descent: A robotics algorithm for
protein loop closure. Protein Sci. 12 963–972.

COOPER, S., KHATIB, F., TREUILLE, A., BARBERO, J., LEE, J., BEENEN, M., LEAVER-FAY, A.,
BAKER, D., POPOVIĆ, Z. et al. (2010). Predicting protein structures with a multiplayer online
game. Nature 466 756–760.

COUTSIAS, E., SEOK, C., JACOBSON, M. and DILL, K. (2004). A kinematic view of loop closure.
J. Comput. Chem. 25 510–528.

DILL, K. A. and MACCALLUM, J. L. (2012). The protein-folding problem, 50 years on. Science
338 1042–1046.

DOUC, R. and CAPPÉ, O. (2005). Comparison of resampling schemes for particle filtering. In Im-
age and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th International
Symposium on 64–69. IEEE, New York.

DOUCET, A., DE FREITAS, N. and GORDON, N. (2001). An introduction to sequential Monte
Carlo methods. In Sequential Monte Carlo Methods in Practice. 3–14. Springer, New York.
MR1847784

EDDY, S. R. (2004). Where did the BLOSUM62 alignment score matrix come from? Nat. Biotech-
nol. 22 1035–1036.

ENGH, R. and HUBER, R. (1991). Accurate bond and angle parameters for X-ray protein-structure
refinement. Acta Crystallogr. Sect. A 47 392–400.

http://www.ams.org/mathscinet-getitem?mr=1847784


SEQUENTIAL MONTE CARLO FOR PROTEIN FOLDING 1653

FEARNHEAD, P. and CLIFFORD, P. (2003). On-line inference for hidden Markov models via particle
filters. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 887–899. MR2017876

FISER, A. and ŠALI, A. (2003). Modeller: Generation and refinement of homology-based protein
structure models. Methods Enzymol. 374 461–491.

FRIESNER, R. A., PRIGOGINE, I. and RICE, S. A. (2002). Computational Methods for Protein
Folding. Wiley, New York.

JONES, J. E. (1924). On the determination of molecular fields. II. From the equation of state of a
gas. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 106 463–477.

KABSCH, W. and SANDER, C. (1983). Dictionary of protein secondary structure—pattern-
recognition of hydrogen-bonded and geometrical features. Biopolymers 22 2577–2637.

KENDREW, J. C., BODO, G., DINTZIS, H. M., PARRISH, R., WYCKOFF, H. and PHILLIPS, D. C.
(1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature
181 662–666.

KHOURY, G. A., SMADBECK, J., KIESLICH, C. A. and FLOUDAS, C. A. (2014). Protein folding
and de novo protein design for biotechnological applications. Trends Biotechnol. 32 99–109.

KRISSINEL, E. (2007). On the relationship between sequence and structure similarities in pro-
teomics. Bioinformatics 23 717–723.

LAZARIDIS, T. and KARPLUS, M. (2000). Effective energy functions for protein structure predic-
tion. Curr. Opin. Struck. Biol. 10 139–145.

LEE, D., REDFERN, O. and ORENGO, C. (2007). Predicting protein function from sequence and
structure. Nat. Rev., Mol. Cell Biol. 8 995–1005.

LI, J., ABEL, R., ZHU, K., CAO, Y., ZHAO, S. and FRIESNER, R. A. (2011). The VSGB 2.0
model: A next generation energy model for high resolution protein structure modeling. Proteins
79 2794–2812.

LIANG, S., ZHANG, C. and STANDLEY, D. M. (2011). Protein loop selection using orientation-
dependent force fields derived by parameter optimization. Proteins 79 2260–2267.

LIANG, S., ZHANG, C. and ZHOU, Y. (2014). LEAP: Highly accurate prediction of protein loop
conformations by integrating coarse-grained sampling and optimized energy scores with all-atom
refinement of backbone and side chains. J. Comput. Chem. 35 335–341.

LIN, M., CHEN, R. and LIU, J. S. (2013). Lookahead strategies for sequential Monte Carlo. Statist.
Sci. 28 69–94. MR3075339

LIU, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer, New York. MR1842342
LIU, J. S. and CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer.

Statist. Assoc. 93 1032–1044. MR1649198
LIU, J. S., CHEN, R. and WONG, W. H. (1998). Rejection control and sequential importance sam-

pling. J. Amer. Statist. Assoc. 93 1022–1031. MR1649197
LIU, J. S., LIANG, F. and WONG, W. H. (2000). The multiple-try method and local optimization in

Metropolis sampling. J. Amer. Statist. Assoc. 95 121–134. MR1803145
MANDELL, D. J., COUTSIAS, E. A. and KORTEMME, T. (2009). Sub-angstrom accuracy in protein

loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6 551–552.
MODI, V. and DUNBRACK, R. L. (2016). Assessment of refinement of template-based models in

CASP11. Proteins 84 260–281.
MOULT, J., FIDELIS, K., KRYSHTAFOVYCH, A., SCHWEDE, T. and TRAMONTANO, A. (2016).

Critical assessment of methods of protein structure prediction: Progress and new directions in
round XI. Proteins 84 4–14.

ONUCHIC, J. N., LUTHEY-SCHULTEN, Z. and WOLYNES, P. G. (1997). Theory of protein folding:
The energy landscape perspective. Annu. Rev. Phys. Chem. 48 545–600.

RAMACHANDRAN, G., RAMAKRISHNAN, C. and SAISEKHARAN, V. (1963). Stereochemistry of
polypeptide chain configurations. J. Mol. Biol. 7 95–99.

ROHL, C. A., STRAUSS, C. E., CHIVIAN, D. and BAKER, D. (2004). Modeling structurally variable
regions in homologous proteins with rosetta. Proteins 55 656–677.

http://www.ams.org/mathscinet-getitem?mr=2017876
http://www.ams.org/mathscinet-getitem?mr=3075339
http://www.ams.org/mathscinet-getitem?mr=1842342
http://www.ams.org/mathscinet-getitem?mr=1649198
http://www.ams.org/mathscinet-getitem?mr=1649197
http://www.ams.org/mathscinet-getitem?mr=1803145


1654 S. W. K. WONG, J. S. LIU AND S. C. KOU

SHAPOVALOV, M. V. and DUNBRACK, R. L. (2011). A smoothed backbone-dependent rotamer
library for proteins derived from adaptive kernel density estimates and regressions. Structure 19
844–858.

SÖDING, J., BIEGERT, A. and LUPAS, A. N. (2005). The HHpred interactive server for protein
homology detection and structure prediction. Nucleic Acids Res. 33 W244–W248.

SOTO, C. S., FASNACHT, M., ZHU, J., FORREST, L. and HONIG, B. (2008). Loop modeling: Sam-
pling, filtering, and scoring. Proteins 70 834–843.

TAN, K., GU, M., CLANCY, S. and JOACHIMIAK, A. (2016). The crystal structure of the catalytic
domain of peptidoglycan N-acetylglucosamine deacetylase from Eubacterium rectale ATCC
33656 (CASP target). PDB ID: 5JMU. DOI:10.2210/pdb5jmu/pdb.

TANG, K., ZHANG, J. and LIANG, J. (2014). Fast protein loop sampling and structure predic-
tion using distance-guided sequential chain-growth Monte Carlo method. PLoS Comput. Biol.
10 e1003539.

VLUGT, T., MARTIN, M., SMIT, B., SIEPMANN, J. and KRISHNA, R. (1998). Improving the effi-
ciency of the configurational-bias Monte Carlo algorithm. Mol. Phys. 94 727–733.

WANG, G. and DUNBRACK, R. L. (2003). PISCES: A protein sequence culling server. Bioinformat-
ics 19 1589–1591.

WANG, F. and LANDAU, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate
the density of states. Phys. Rev. Lett. 86 2050–2053.

WICK, C. and SIEPMANN, J. (2000). Self-adapting fixed-end-point configurational-bias Monte
Carlo method for the regrowth of interior segments of chain molecules with strong intramolecular
interactions. Macromolecules 33 7207–7218.

WONG, W., CUI, Y. and CHEN, R. (1998). Torsional relaxation for biopolymers. J. Comput. Biol. 5
655–665.

WONG, S. W. K., LIU, J. S. and KOU, S. C. (2017). Fast de novo discovery of low-energy protein
loop conformations. Proteins 85 1402–1412.

ZHANG, J., KOU, S. C. and LIU, J. S. (2007). Biopolymer structure simulation and optimization
via fragment regrowth Monte Carlo. J. Chem. Phys. 126 225101. DOI:10.1063/1.2736681.

ZHANG, J., LIN, M., CHEN, R., LIANG, J. and LIU, J. S. (2007). Monte Carlo sampling of near-
native structures of proteins with applications. Proteins 66 61–68.

ZHOU, H. and ZHOU, Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-
derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11
2714–2726.

S. W. K. WONG

DEPARTMENT OF STATISTICS

GRIFFIN-FLOYD HALL

UNIVERSITY OF FLORIDA

GAINESVILLE, FLORIDA 32608
USA
E-MAIL: swkwong@stat.ufl.edu

J. S. LIU

S. C. KOU

DEPARTMENT OF STATISTICS

1 OXFORD ST 7TH FL

HARVARD UNIVERSITY

CAMBRIDGE, MASSACHUSETTS 02138
USA
E-MAIL: jliu@stat.harvard.edu

kou@stat.harvard.edu

https://doi.org/10.2210/pdb5jmu/pdb
https://doi.org/10.1063/1.2736681
mailto:swkwong@stat.ufl.edu
mailto:jliu@stat.harvard.edu
mailto:kou@stat.harvard.edu

	Introduction
	The sequence-to-structure correspondence
	The energy landscape
	The protein data bank for building 3-D structure predictions
	Searching for minimum energy conformations
	Our method

	Statistical formulation
	Protein geometry
	Representation of protein segments and energy functions

	Method
	Choice of proposal distribution qi for growth of backbone
	Selection of N particles for further backbone growth
	Embedding sequential sampling and ﬁltering for side chains

	Applications and results
	Improving 3-D structure predictions from homology
	Predicting reconstructed loop segments
	Assessing different energy functions for sampling and prediction

	Conclusion
	Appendix: Implementation details
	Speciﬁcation of method parameters
	Energy function
	Final propagation step

	References
	Author's Addresses

