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High throughput sequencing has often been used to screen samples from
pedigrees or with population structure, producing genotype data with com-
plex correlations caused by both familial relation and linkage disequilibrium.
With such data it is critical to account for these genotypic correlations when
assessing the contribution of multiple variants by gene or pathway. Recog-
nizing the limitations of existing association testing methods, we propose
Adaptive-weight Burden Test (ABT), a retrospective, mixed model test for
genetic association of quantitative traits on genotype data with complex cor-
relations. This method makes full use of genotypic correlations across both
samples and variants and adopts “data driven” weights to improve power. We
derive the ABT statistic and its explicit distribution under the null hypothesis
and demonstrate through simulation studies that it is generally more pow-
erful than the fixed-weight burden test and family-based SKAT in various
scenarios, controlling for the type I error rate. Further investigation reveals
the connection of ABT with kernel tests, as well as the adaptability of its
weights to the direction of genetic effects. The application of ABT is illus-
trated by a gene-based association analysis of fasting glucose using data from
the NHLBI “Grand Opportunity” Exome Sequencing Project.

1. Introduction. Next generation sequencing technologies have been under-
going rapid evolution in recent years, enabling high resolution genotyping in a fast,
efficient, and cost effective way [Ansorge (2009), Shendure and Ji (2008)]. These
technologies, when applied to family or population based samples, produce rich
resources of genotype data with complex correlations, that is, they are correlated
across both samples and variants due to familial relation (or population stratifica-
tion) and linkage disequilibrium (LD), respectively. Though such genotypic cor-
relations could potentially benefit many applications—including data imputation,
quality control, and functional annotation—how to effectively use this information
for assessing genetic associations with complex diseases remains a challenge.
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In genome-wide association studies (GWASs), two types of tests are commonly
used depending on whether single-variant effect or joint effect of multiple variants
in a predefined genomic region is of interest. Compared to single-variant associ-
ation tests, multiple-variant association tests (i.e., SNP-set association tests) are
believed to be advantageous in that they are more powerful in aggregating small
signals from each single variant, especially when the minor allele frequency is low
[Asimit and Zeggini (2010)], capturing possible interactions among variants [Ma,
Clark and Keinan (2013)], reducing multiple testing burden [Wu et al. (2010)], and
leading to interpretable results targeted to genes or LD haplotype blocks [Li et al.
(2011)].

A number of multiple-variant association tests have been proposed. They gen-
erally fall under two broad categories: “burden tests” and “kernel tests.” Burden
tests group variants into a single variable called the genetic burden score by some
transformations or projections and then perform association testing on the burden
score. Typical collapsing methods, including rare variant indicator or weighted
sum, have been developed for both unrelated [Li and Leal (2008), Madsen and
Browning (2009), Morgenthaler and Thilly (2007), Price et al. (2010a)] and re-
lated [Chen, Meigs and Dupuis (2013), Schaid et al. (2013)] individuals. Other
dimension reduction techniques, such as Fourier transformation [Wang and Elston
(2007)], principal component analysis [Gauderman et al. (2007), Wang and Abbott
(2008)], and partial least-squares regression [Chun et al. (2011)], have also been
applied in grouping multiple variants. Although easy to implement, burden tests
rely largely on the assumption of homogeneity in the magnitude and direction of
the genetic effects from individual variants. When the genomic region of inter-
est includes both risk (positively associated) and protective (negatively associated)
variants, or, when inappropriate weights (contradicting the true genetic effects) are
used, burden tests may experience loss of power.

Recently, kernel tests have been receiving increased attention in GWASs. With
its roots in kernel machine regression [Wu et al. (2010)] and mixed effects model,
kernel tests adopt a statistic of quadratic form, which essentially is a weighted sum
of the score statistics for testing individual variant effects [Wu et al. (2011)]. Meth-
ods in this broad category include the C-alpha test [Neale et al. (2011)], SKAT
[Wu et al. (2011)], and LSKM [Kwee et al. (2008)] for unrelated individuals and
have been extended to allow related individuals [Chen, Meigs and Dupuis (2013),
Schaid et al. (2013), Schifano et al. (2012), Wang et al. (2013a, 2013b)]. In par-
ticular, this approach assumes random effects for individual variants and tests the
regression coefficients of the variants by a variance component score test. Since
the aggregation is on individual score statistics instead of on variants, kernel tests
allow different directions and magnitudes of effects for individual variants. It has
been shown that burden tests are more powerful when the variants to be tested are
most causal with effects of the same direction and similar magnitudes, whereas
kernel tests are more powerful when the effects of causal variants are in differ-
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ent directions or a large proportion of neutral variants present [Chen, Meigs and
Dupuis (2013), Lee, Wu and Lin (2012), Schaid et al. (2013), Wang, Chen and
Yang (2012), Wu et al. (2011)]. To borrow strength from both approaches and
avoid loss of power in certain scenarios, it is possible to combine test statistics
from the two categories [Jiang and McPeek (2013), Lee, Wu and Lin (2012), Lee
et al. (2012)], albeit determining the optimal combination weight may be problem-
atic in real data applications, and the null distribution of the combined statistic is
usually hard to derive.

In the category of burden tests, considerable effort have been made to seek
weighting strategies that allow for the presence of both risk and protective vari-
ants [Fang, Zhang and Sha (2014), Han and Pan (2010), Lin and Tang (2011), Liu
and Leal (2010), Sha and Zhang (2014), Sha et al. (2012)]. However, as the optimal
weights are functions of the genotype data, the resulting test statistic does not fol-
low χ2

1 null distribution as in fixed-weight score-based burden tests. None of these
methods derive the explicit null distribution after employing the optimal weights,
but use permutations to evaluate the p-value instead. Since permutations are com-
putationally expensive for whole genome analysis and also not straightforward
when the samples include related individuals, the application of these permutation-
based methods is largely restricted in GWASs with pedigrees. Moreover, because
all these burden tests use prospective regression (which considers trait as random
response and genotype data as fixed predictors), the LD correlation among the
considered variants is often hard to be incorporated into the weights.

In this paper, we focus on association mapping of quantitative traits on geno-
type data with complex correlations. Specifically, we try to answer the following
questions:

(1) How to model the genotypic correlations across both samples and variants
simultaneously in an efficient way?

(2) How to choose the optimal weights of a burden test in the presence of com-
plex genotypic correlations?

(3) Is there a connection between burden tests and kernel tests, under certain
weighting strategies?

(4) How are the optimal weights adaptive to the direction of individual variant
effects?

To address these, we propose the Adaptive-weight Burden Test (ABT), a ret-
rospective, mixed-model test, which incorporates complex genotypic correlations
and adopts data driven weights to improve power. We show that the explicit null
distribution of the ABT can be obtained by appropriately projecting genotype data
and combining independent individual score tests. Therefore, compared to other
permutation-based optimal tests, ABT is computationally more efficient.

The rest of the paper is organized as follows. Section 2 presents the relevant
background of genetic association testing and some preliminaries regarding the
single variant MASTOR test [Jakobsdottir and McPeek (2013)], including its ex-
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tension to a retrospective, fixed-weight burden test. Based on these preliminaries,
we introduce the statistical framework of the ABT test, sketch some of its theo-
retical properties and illuminate its connection to the kernel tests. In Section 3,
we demonstrate via synthetic data that the proposed ABT test is generally more
powerful than the fixed-weight burden test and family-based SKAT under various
scenarios, well-controlling for the type I error. Furthermore, the weights of ABT
are able to adapt to the direction of individual variant effects. In Section 4, we
illustrate the use of our ABT test by a gene-based association analysis of fast-
ing glucose using data from the NHLBI “Grand Opportunity” Exome Sequencing
Project. Finally, in Section 5, we present some concluding remarks.

2. Statistical framework of the ABT. Consider an association study where
a group of n individuals are sampled for phenotype, covariate and genotype data.
For simplicity, we do not assume any missingness in the data (i.e., each individ-
ual is assumed to have complete data in phenotypes, covariates and genotypes),
though all the results hereafter can be extended to the incomplete data case in
a way similar to Jakobsdottir and McPeek (2013). The phenotype data are col-
lected for a quantitative trait and denoted by a vector Y of length n. The co-
variates form an n × k matrix Z, with the columns representing k nongenetic
variables (intercept included) such as age, sex and body mass index (BMI). We
consider testing for association between the quantitative trait and a genetic re-
gion of m variant sites. Each typed variant is assumed to be biallelic, with the
alleles arbitrarily labeled as “0” and “1.” So, the genotype data can be writ-
ten as an n × m matrix G = [G1,G2, . . . ,Gm] with the (i, j)th element coded
as Gij = 1

2 × (the number of alleles of type 1 in individual i at variant site j),1 ≤
i ≤ n,1 ≤ j ≤ m. These m variants are further assumed to have a certain LD struc-
ture, with the correlation matrix defined as

R =

⎛
⎜⎜⎜⎝

1 r12 · · · r1m

r12 1 · · · r2m

...
...

. . .
...

r1m r2m · · · 1

⎞
⎟⎟⎟⎠ ,

where rij = (p11 − pipj )/
√

pi(1 − pi)pj (1 − pj ),1 ≤ i �= j ≤ m, is the correla-
tion coefficient between variant i and variant j , pi and pj are the allele frequencies
of variants i, j respectively, and p11 is the frequency of the haplotype having al-
leles 1 at both variants. In addition to the correlation among genetic markers, we
also consider the correlation (i.e., relatedness) among sampled individuals in this
current work. We assume a known pedigree structure for the sampled individuals
and define the kinship matrix as

� =

⎛
⎜⎜⎜⎝

1 + h1 2φ12 · · · 2φ1n

2φ12 1 + h2 · · · 2φ2n

...
...

. . .
...

2φ1n 2φ2n · · · 1 + hn

⎞
⎟⎟⎟⎠ ,
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where hi is the inbreeding coefficient of individual i, and φij is the kinship
coefficient between individuals i and j,1 ≤ i, j ≤ n. For outbred individuals,
the kinship matrix can be considered as the correlation matrix among individual
genotypes. As a special case, for unrelated individuals, the kinship matrix reduces
to the identity matrix.

To conveniently model genotypic correlations caused by both familial relation
and LD, we will treat genotypes as random and conduct a retrospective analy-
sis based on G|(Y ,Z). This approach, originated from the MQLS [Thornton and
McPeek (2007)] and MASTOR [Jakobsdottir and McPeek (2013)] tests, is differ-
ent from most existing association testing methods for related individuals, such as
the MONSTER [Jiang and McPeek (2013)], family-based burden test, and family-
based SKAT [Chen, Meigs and Dupuis (2013)], which are all based on a prospec-
tive model Y |(G,Z). The next few subsections proceed as follows. For a better
understanding, we begin with a brief introduction to the single variant MASTOR
test and extend it to a retrospective, fixed-weight burden test. Next, we derive the
ABT statistic and illuminate its connection with kernel tests.

2.1. MASTOR for single variant effect. In single variant analysis, MASTOR
[Jakobsdottir and McPeek (2013)] is a retrospective, quasi-likelihood score test for
genetic association of a quantitative trait in samples with related individuals. MAS-
TOR is able to gain additional power by making full use of the sample relationship
information to incorporate partially missing data, therefore, it is more advanta-
geous than other competitors. Considering a biallelic genetic variant X of interest
(an example in our general setting described above is to let X = Gj ,1 ≤ j ≤ m),
the MASTOR test statistic (for complete data) takes the form

(2.1) SMAS = (V T X)2

V̂ar0(V
T X|Y ,Z)

,

where V = �̂
−1
0 (Y − Zβ̂0) is the transformed phenotypic residual obtained from

the model Y = Zβ0 + ε,ε ∼ N(0,�0). Here, β0 represents the regression coeffi-
cients under the null hypothesis of no genetic association, and �0 is the trait covari-
ance matrix under the null, usually taking a variance component form σ 2

e I +σ 2
a �.

Let P = �̂
−1
0 − �̂

−1
0 Z(ZT �̂

−1
0 Z)−1ZT �̂

−1
0 . V is often short notated as PY . Un-

der the assumption of the retrospective model that Var0(X|Y ,Z) = σ 2
X�, where

σ 2
X is an unknown scalar representing the variance of X, Equation (2.1) can be

written as

(2.2) SMAS = (V T X)2

(V T �V )σ̂ 2
X

= (Y T PX)2

(Y T P�PY )σ̂ 2
X

.

When the Hardy–Weinberg equilibrium (HWE) is assumed at the variant, a
simple estimator of σ 2

X can be obtained as σ̂ 2
X = p̂(1 − p̂)/2, where p̂ =

(1T �−11)−11T �−1X is the best linear unbiased estimator (BLUE) [McPeek,
Wu and Ober (2004)] of the allele frequency p of X, and 1 denotes a vector
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with every element equal to 1. In practice, a more general and robust estimator
σ̂ 2

X = XT UX/(n − 1) can be used instead [Thornton and McPeek (2010)], where
U = �−1 − �−11(1T �−11)−11T �−1. Under the null, the MASTOR statistic fol-
lows a χ2

1 distribution.

2.2. Retrospective, fixed-weight burden test. MASTOR can be extended to
multiple-variant testing, that is, to test association between trait and a set of ge-
netic variants. An easy extension is through burden tests, which are constructed
following a two-step procedure—first, collapse multiple variants into a genetic
burden score by linear combination, and then obtain the test statistic similarly as
in single-variant tests. Following this formulation, we introduce a fixed-weight bur-
den test for association between a quantitative trait and genotype data with LD and
sample relatedness. We acronymize this method by FBT, where the F stands for
“fixed-weight” or “family-based,” yet, in the latter sense, this retrospective burden
test is different from the prospective famBT method of Chen, Meigs and Dupuis
(2013). Fixed-weight here refers to the setting of prescribed weights, in contrast
to the weights derived in the next subsection which are data adaptive. Contrary to
other burden tests, FBT is based on a retrospective model analogous to MASTOR
and also possesses nice properties, such as ability to incorporate partially missing
data and robustness to misspecification of the phenotype model. A similar method
can be found in Schaid et al. (2013), with a different approach adopted for defin-
ing residuals in the null trait model and deriving covariances of the genetic burden
score.

For genotype data G consisting of m variants with corresponding allele frequen-
cies p1,p2, . . . , pm, we consider the weighted-sum burden score

(2.3) X =
m∑

i=1

wiGi = GW ,

where W = [w1,w2, . . . ,wm]T is a prescribed weight vector. Following the MAS-
TOR statistic (2.1), a fixed-weight burden test statistic based on X can be con-
structed as

(2.4) SFBT = (V T X)2

V T �̂XV
,

where �̂X is an estimator of the covariance matrix of X under the null. Analo-
gous to MASTOR, it can be shown that conditioning on W ,Y ,Z, SFBT follows
a χ2

1 distribution under the null hypothesis that the genetic score X is not as-
sociated with Y , that is, the set of variants G has no genetic effects on Y after
collapsed into X. Furthermore, if the vectorized G has a Kronecker product co-
variance structure, then �X can be expressed in terms of the weight vector, across-
column covariance, and across-row correlation as �X = (W T DRDW )�, where
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D = diag{σj },1 ≤ j ≤ m and σj is the marginal standard deviation of variant Gj

(see Section 1 of the supplemental article [Wu et al. (2018)]).
Correspondingly, if R and � are assumed known, an appropriate estimator of

�X is

(2.5) �̂X = (
W T D̂RD̂W

)
�,

where the j th diagonal element of D̂ is estimated as σ̂j =
√

p̂j (1 − p̂j )/2,1 ≤
j ≤ m under HWE, with p̂j , the BLUE of the allele frequency pj as previously
defined. Therefore, the FBT statistic becomes

(2.6) SFBT = W T GT V V T GW

[W T (D̂RD̂)W ](V T �V )
.

Clearly, SFBT is invariant to the scale of W . As a special case, when m = 1, SFBT
in (2.6) reduces to SMAS in (2.2).

In general, the complex correlation structure in the genotype data, that is, both
R and � in (2.6), is not assumed known a priori and needs to be estimated from
the data. For simplicity, in our analysis we assume that the across-row correla-
tion � (or the entire pedigree structure) is known. We note that assuming � to be
known is reasonable since the information of sample relatedness is often available
for most family-based studies [Splansky et al. (2007)]. When population struc-
ture or cryptic relatedness presents, � can be estimated from genome screen data
[Thornton and McPeek (2010)]. As for the across-column correlation R, one may
obtain its estimate R̂ from a reference population, for example, the one provided
by the 1000 Genomes Project [The 1000 Genomes Project Consortium (2010)].
When the reference panel information is not available, a simple and practical way
to calculate R̂ from G is to use the sample correlation of the matrix �−1/2G. This
estimation, however, has a nonnegligible impact on the performance of the test
statistic in terms of type I error and power. This issue will be further discussed in
Section 3.3.

2.3. Adaptive-weight burden test. A common problem in existing burden tests
is to have the variant weights prespecified or set in some ad hoc way, thereby lack-
ing theoretical justification for the test to be statistically powerful. For example,
one may use a simple sum method to assign equal weights to the variants. A better
strategy is the weighted sum method [Madsen and Browning (2009)], which as-
signs weights according to allele frequency, that is, wj ∝ 1/

√
p̂j (1 − p̂j ). It has

been shown that with prescribed weights, burden tests cannot distinguish the ef-
fects from risk and protective variants, that is, when the minor alleles across all
sites have effects in different directions—some positive and some negative [Chen,
Meigs and Dupuis (2013), Schaid et al. (2013), Wu et al. (2011)]. To overcome this
deficiency, several adaptive burden tests have been proposed [Fang, Zhang and Sha
(2014), Han and Pan (2010), Lin and Tang (2011), Liu and Leal (2010), Sha and
Zhang (2014), Sha et al. (2012)], however, most of these weighting strategies are
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empirical and cannot make full use of the complex correlation information. Hence,
although easy to implement, burden tests are usually not preferred in real applica-
tions where no a priori information exists on the effect of individual variants. This
motivates us to look for a burden test that is able to “let the data speak for them-
selves,” that is, with weights adaptive to the direction of individual variant effects.

Let A = D̂RD̂ and B = bbT where b = GT V . From the generalized Rayleigh
quotient form of (2.6), we can show that the weight vector W ∗ that maximizes
SFBT satisfies

(2.7) W ∗ ∝ A−1b = (D̂RD̂)−1GT V .

Another representation of W ∗ is a vector proportional to (or, with the same di-
rection as) the eigenvector of A−1B corresponding to the largest eigenvalue. We
refer to burden tests with such weights as ABT and denote the maximized burden
statistic by SABT. It follows by plugging in W ∗ to (2.6) that

(2.8) SABT = V T G(D̂RD̂)−1GT V

V T �V
.

The key question now pertains to derivation of the null distribution of SABT.
Note, maximizing SFBT enables the weights to accommodate to the direction of

individual variant effects, however, this optimization may not necessarily lead to
maximal power. Since W ∗ itself is a function of G, SABT may not follow a χ2

1 dis-
tribution under the null hypothesis. One may attempt to obtain its null distribution
through integrating out W ∗ by

∫
f0(SFBT|W = W ∗) dF (W ∗), where f0 is the PDF

of χ2
1 —the null density of SFBT, and F denotes the distribution function of W ∗ de-

termined by (2.7). We notice that the term G(D̂RD̂)−1/2 in the numerator of (2.8)
is a transformed genotype matrix of m genetic variants with only across-row cor-
relations. Therefore, by matrix algebra, SABT can be considered as the summation
of the MASTOR statistics from m independent variants (after appropriate projec-
tion to eliminate LD correlations and standardize marginal variances), and hence
follows χ2

m distribution under the null hypothesis. This finding greatly simplifies
the p-value calculation as compared to other permutation-based approaches [Fang,
Zhang and Sha (2014), Han and Pan (2010), Lin and Tang (2011), Liu and Leal
(2010), Sha and Zhang (2014), Sha et al. (2012)] and makes ABT suitable to real
applications of genome-wide analysis. When R is unknown in (2.8), we replace
it with an estimate from G. We will show through a connection with kernel tests
that in such a case the null distribution of SABT can be determined by a mixture of
χ2

1 ’s.
As a simplified example using the configuration of unrelated individuals and

common variants (see Scenario I in Section 3.1), Figure 1 demonstrates the empir-
ical cumulative distribution functions (ECDFs) of SABT and SFBT obtained from
10,000 simulated replicates under the null. The simulation is based on n = 1600
individuals and a varying number of variants (m = 10,50,100), with moderate
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FIG. 1. Empirical CDFs (shown in different markers) of SABT and SFBT based on 10,000 simu-
lated replicates under the null hypothesis and their theoretical CDFs (shown in different line types).

correlation (0.5) between the latent standard normal random variables which are
used to generate haplotypes in LD by dichotomization. The details are available in
Section 3.1.

2.4. ABT as a kernel test with generalized Madsen–Browning weights. The
novel finding of the null distribution of SABT illustrated in the previous subsec-
tion provides us the motivation to further explore the relation between ABT and
family-based kernel tests. Kernel tests (also called “quadratic tests” or “variance
component tests”) assume random effects for the regression coefficients of multi-
ple variants. Specifically, family-based kernel tests under our study design is based
on a prospective model

(2.9) Y = Zβ + Gγ + ε, ε ∼ N
(
0, σ 2

e I + σ 2
a �

)
.

In this model, γ is a vector of the genetic effects, and its j th component follows
a distribution with mean 0 and variance w2

j τ , 1 ≤ j ≤ m. Here, wj is a fixed,
prescribed weight for the j th variant effect. Testing γ = 0 is equivalent to testing
the common variance component τ = 0. Following this formulation, Chen, Meigs
and Dupuis (2013) developed the famSKAT statistic for testing association of a
quantitative trait in family samples as

(2.10) SKT = V T GWWGT V ,

where W = diag{wj },1 ≤ j ≤ m.
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Under the null hypothesis, SKT follows the distribution of
∑m

i=1 λiχ
2
1,i where

λi ’s are the eigenvalues of the matrix WGT PGW, and χ2
1,i ’s are independent χ2

1
random variables. We note that the W matrix in the above formula plays the role of
the square root of the W matrix defined in Chen, Meigs and Dupuis (2013), and the
P matrix in our notation is connected to the P 0 matrix defined in Chen, Meigs and
Dupuis (2013) by P = �̂

−1
P 0�̂

−1. Comparing the ABT statistic (2.8) with the
famSKAT statistic (2.10), we see that ABT, though straightforwardly derived from
the fixed-weight burden test under retrospective setting, can be treated formally as
a kernel test with the weight matrix

(2.11) W # = (
V T �V

)−1/2
(D̂RD̂)−1/2.

This interesting finding shows that, using data-driven weights selected under the
guidance of complex correlations � and R in the genotype data, burden tests
and kernel tests reach a formal equivalence, regardless of fixed or random effect
models, and the underlying prospective or retrospective models on which they are
based.

From the kernel test perspective, the weight matrix W # ∝ (D̂RD̂)−1/2. The
diagonal components of this matrix, when all variants in the genetic region to
be tested are in linkage equilibrium, that is, R = I , become the commonly
used Madsen–Browning weights [Madsen and Browning (2009)], that is, wj ∝
1/

√
p̂j (1 − p̂j ). We therefore call W # in equation (2.11) the generalized Madsen–

Browning (GMB) weights. We note that the GMB weights refer to the entire ma-
trix of W #, not just its diagonal components, because the weight of an individual
variant statistic should also be affected by the weights of other variant statistics
on linked sites in the presence of LD. Another analogous view of the ABT statis-
tic to the famSKAT statistic is through a two-step calculation. First, eliminate LD
correlations in the genotype matrix G by right multiplying (D̂RD̂)−1/2, and then
obtain a weighted sum of the individual score statistics for the transformed variants
of the decorrelated genotype matrix G(D̂RD̂)−1/2. The weight matrix used in the
second step, denoted as W̃ , is a diagonal matrix given by W̃ = (V T �V )−1/2I .
This indicates that ABT is indeed a kernel test on the decorrelated genotype ma-
trix, using identical weights equal to (V T �V )−1/2. It is not surprising to see that
the weights W̃ of these individual score statistics do not depend on the marginal
variances because the decorrelated genotype matrix G(D̂RD̂)−1/2 has an identity
covariance matrix.

Similar to kernel tests, we may obtain an alternative for the null distribution of
ABT as

∑m
i=1 λiχ

2
1,i , where λi ’s are the eigenvalues of the matrix W #GT PGW #

and χ2
1,i ’s are independent χ2

1 random variables. We will call χ2
m the theoretical

null distribution of ABT and call the mixture of χ2
1,i ’s the practical null distribu-

tion of ABT. The latter is usually used when the complex genotypic covariance
structure does not follow a Kronecker product form, that is, � and R are not sep-
arable [Fuentes (2006)], and R is unknown and needs to be estimated from G.
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These two null distributions and their impact on the performance of ABT will be
further explored in Section 3.3. Since ABT is derived from the burden test frame-
work, yet takes a form of kernel tests, we expect it to be more appropriate than the
unified method of linear-combining fixed-weight burden and kernel test statistics
as aSFBT + (1 − a)SKT, 0 ≤ a ≤ 1 [Jiang and McPeek (2013), Lee, Wu and Lin
(2012)]. Further evidence can be found in our simulation results in Section 3.4.

3. Simulation studies. In this section, we perform simulations to assess the
type I error rate of ABT and compare its power to that of FBT, family-based kernel
test (abbreviated as KT) and MONSTER [Jiang and McPeek (2013)]. As a by-
product of these simulations, we also illustrate that the weights of ABT can adapt
to the direction of the true genetic effects.

3.1. Data generation scenarios. We simulate data under nine genotypic sce-
narios (I–IX) using different variant (common/rare/mixed) and individual (unre-
lated/related/mixed) settings, as shown in Table 1.

In these simulations, we generate genotype data for 1600 individuals and a
varying number of variants with minor allele frequencies (MAFs) sampled inde-
pendently from uniform distribution. For common (Scenarios I, IV, VII) and rare
variants (Scenarios II, V, VIII), the MAFs are sampled from unif(0.1,0.5) and
unif(0.01,0.1), respectively. For mixed variants (Scenarios III, VI, IX), we con-
sider both common and rare variants with equal proportions. To simulate genotype
data for unrelated individuals (Scenarios I, II, III), we first generate a latent con-
tinuous random sample for each individual from a multivariate normal distribution
with mean 0 and compound symmetric covariance matrix � = (1 − η)I + η11T .
These latent samples are then dichotomized by thresholding according to the vari-
ants’ MAFs to form binary haplotypes. Finally the genotype data G are obtained
by adding two independent haplotypes, inducing an LD structure that depends on
the prespecified parameter η. Note, the LD covariance matrix indeed depends on
both η and the variants’ MAFs, as described in Section 2 of the supplemental arti-
cle [Wu et al. (2018)]. Also, with dichotomization, the haplotype covariance matrix
is no longer �, however, the parameter η can still be used to roughly indicate the

TABLE 1
Data generation scenarios

Individual setting Variant setting

Common Rare Mixed

Unrelated I II III
Related IV V VI
Mixed VII VIII IX
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FIG. 2. Basic family structure of 16 members coming from three generations, used in the simulation
studies to generate data for related individuals.

LD correlation level among variants in G. We also note that this latent correla-
tion coefficient η should not be obfuscated with the random effect parameter ρ

used in Jiang and McPeek (2013), as they have obviously distinct meanings—η

describes the latent correlation of the LD structure among variants in retrospective
model, whereas ρ captures the heterogeneity of the random effects in prospective
model.

Simulations for related individuals (Scenarios IV, V, VI) are based on a pedigree
configuration with 100 outbred, 3-generation families, each containing 16 individ-
uals related as in Figure 2. In order to simulate G with correlations across both
samples and variants, as described above, we first generate multiple variant geno-
type data independently for founders. The genotype data for nonfounders are then
generated by Mendelian “gene-dropping” along generations, assuming no recom-
bination within haplotypes. In mixed individual setting (Scenarios VII, VIII, IX),
the samples are drawn from 80 families (related as in Figure 2) and 320 unrelated
individuals.

The quantitative trait data are generated from model (2.9). We assume that the
design matrix Z includes the intercept and a covariate sampled independently
from the standard normal distribution, with the corresponding coefficient vector
β = (1,0.6)T . For the variants in the genotype data G, we determine their genetic
effects (denoted by γ , a vector of length m) in each scenario. In the simulation
of type I error, we set γ = 0. For the simulation of power, the genetic effects
are generated under four different compositions of risk/protective/neutral variants,
where the proportion of risk to protective varies from balanced (1 : 1) to unbal-
anced (2 : 1). The covariance of the quantitative trait Y (or the error term ε) takes
a variance-components form σ 2

e I +σ 2
a �, where σ 2

e represents variance due to ran-
dom measurement error and σ 2

a stands for variance attributed to additive polygenic
random effects. The settings of these parameters σ 2

e , σ 2
a , and γ in the simulations

are listed in Table 2. For better illustration, we set larger magnitudes for γ in the
rare variant Scenarios (II, V, VIII) to ensure enough power.
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TABLE 2
Parameter settings of variance components and genetic effects in simulations

Scenario σ 2
e σ 2

a R/P/N under Ha Settings of γ under Ha

I, III 10 0 45/45/10 γ R
i.i.d.∼ unif(0.05,0.2), γ P

i.i.d.∼ unif(−0.2,−0.05)

50/40/10 γ R
i.i.d.∼ unif(0.05,0.175), γ P

i.i.d.∼ unif(−0.23,−0.05)

55/35/10 γ R
i.i.d.∼ unif(0.05,0.155), γ P

i.i.d.∼ unif(−0.271,−0.05)

60/30/10 γ R
i.i.d.∼ unif(0.05,0.138), γ P

i.i.d.∼ unif(−0.325,−0.05)

II 10 0 45/45/10 γ R
i.i.d.∼ unif(0.05,0.5), γ P

i.i.d.∼ unif(−0.5,−0.05)

50/40/10 γ R
i.i.d.∼ unif(0.05,0.445), γ P

i.i.d.∼ unif(−0.569,−0.05)

55/35/10 γ R
i.i.d.∼ unif(0.05,0.4), γ P

i.i.d.∼ unif(−0.657,−0.05)

60/30/10 γ R
i.i.d.∼ unif(0.05,0.363), γ P

i.i.d.∼ unif(−0.775,−0.05)

IV, VI, 2 2 45/45/10 γ R
i.i.d.∼ unif(0.05,0.2), γ P

i.i.d.∼ unif(−0.2,−0.05)

VII, IX 50/40/10 γ R
i.i.d.∼ unif(0.05,0.175), γ P

i.i.d.∼ unif(−0.23,−0.05)

55/35/10 γ R
i.i.d.∼ unif(0.05,0.155), γ P

i.i.d.∼ unif(−0.271,−0.05)

60/30/10 γ R
i.i.d.∼ unif(0.05,0.138), γ P

i.i.d.∼ unif(−0.325,−0.05)

V, VIII 2 2 45/45/10 γ R
i.i.d.∼ unif(0.05,0.5), γ P

i.i.d.∼ unif(−0.5,−0.05)

50/40/10 γ R
i.i.d.∼ unif(0.05,0.445), γ P

i.i.d.∼ unif(−0.569,−0.05)

55/35/10 γ R
i.i.d.∼ unif(0.05,0.4), γ P

i.i.d.∼ unif(−0.657,−0.05)

60/30/10 γ R
i.i.d.∼ unif(0.05,0.363), γ P

i.i.d.∼ unif(−0.775,−0.05)

Note: Variance components σ 2
e and σ 2

a represent variances attributed to random measurement error
and additive polygenic random effects in the phenotypic model. Under Ha , each scenario contains
four settings of genetic variants depending on the number of risk, protective, and neutral variants
(R/P/N). The genetic effects of risk and protective variants are denoted by γ R and γ P respectively.

3.2. Assessment of type I error. To assess type I error, we generate 10,000
simulated data replicates from the trait model (2.9) under the null γ = 0, for each
scenario and each combination of m = 10,50,100 and η = 0.2,0.5,0.8. From the
association testing results by ABT, we obtain the empirical type I error rates at
nominal levels 0.01 and 0.05, as presented in Table 3. Under all scenarios and for
all nine combinations of m and η, we observe that the empirical type I error rates
of ABT are not significantly different from the nominal, based on a z-test at level
0.05. This shows that ABT is able to correctly control the type I error.

3.3. Conservativeness of ABT and analysis of eigenvalues. It is worth noting
that the type I error rates presented in Table 3 are calculated from the practical null
distribution of ABT instead of from the theoretical null distribution. In practice,
we found that when genotypic correlations across both samples and variants exist,
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TABLE 3
Empirical type I error of ABT under various scenarios and nominal levels

m η I II III IV V VI VII VIII IX

Nominal level = 0.01
10 0.2 0.0105 0.0106 0.0093 0.0109 0.0100 0.0108 0.0087 0.0090 0.0099

0.5 0.0112 0.0094 0.0102 0.0098 0.0115 0.0092 0.0108 0.0091 0.0087
0.8 0.0111 0.0094 0.0096 0.0100 0.0083 0.0104 0.0087 0.0089 0.0083

50 0.2 0.0103 0.0089 0.0100 0.0090 0.0097 0.0109 0.0089 0.0091 0.0087
0.5 0.0085 0.0104 0.0099 0.0106 0.0088 0.0083 0.0094 0.0080 0.0098
0.8 0.0102 0.0092 0.0094 0.0089 0.0095 0.0080 0.0083 0.0089 0.0086

100 0.2 0.0092 0.0082 0.0083 0.0089 0.0087 0.0081 0.0097 0.0080 0.0089
0.5 0.0088 0.0087 0.0082 0.0102 0.0085 0.0082 0.0086 0.0092 0.0098
0.8 0.0087 0.0088 0.0090 0.0087 0.0096 0.0087 0.0085 0.0080 0.0085

Nominal level = 0.05
10 0.2 0.0490 0.0512 0.0499 0.0499 0.0517 0.0509 0.0518 0.0473 0.0525

0.5 0.0475 0.0495 0.0492 0.0487 0.0497 0.0497 0.0505 0.0504 0.0513
0.8 0.0500 0.0484 0.0488 0.0521 0.0467 0.0513 0.0499 0.0474 0.0487

50 0.2 0.0510 0.0484 0.0497 0.0461 0.0476 0.0475 0.0468 0.0462 0.0473
0.5 0.0483 0.0500 0.0465 0.0459 0.0478 0.0504 0.0472 0.0465 0.0484
0.8 0.0487 0.0493 0.0486 0.0487 0.0482 0.0459 0.0480 0.0466 0.0468

100 0.2 0.0480 0.0487 0.0473 0.0474 0.0468 0.0475 0.0477 0.0466 0.0476
0.5 0.0460 0.0460 0.0458 0.0501 0.0462 0.0462 0.0462 0.0482 0.0481
0.8 0.0458 0.0479 0.0479 0.0481 0.0496 0.0465 0.0469 0.0490 0.0469

Note: The empirical type I error rate is calculated based on 10,000 simulated genotype replicates
under the null hypothesis. The large sample 95% CIs for nominals 0.01 and 0.05 are [0.0080,0.0120]
and [0.0457,0.0543], respectively.

using the theoretical null distribution of χ2
m tends to make ABT conservative. We

include the type I error results for ABT based on χ2
m in Section S.3 of the supple-

mental article [Wu et al. (2018)]. There, we observe smaller empirical type I error
rates with increasing η or by including related individuals in the sample (Scenar-
ios IV–IX). A sensible explanation for this phenomenon may be attributed to the
estimation bias of DRD. Comparing equations (2.8) and (2.2) reveals that ABT is
essentially a generalized, multiple-variant MASTOR test; when R is known, the
m individual score statistics from the decorrelated genotype matrix G(D̂RD̂)−1/2

are independent and hence yield a χ2
m null distribution. However, in practice (and

also in our simulations), when the complex genotypic covariance structure does not
follow a Kronecker product form and the LD covariance needs to be estimated, the
across-column sample covariance of �−1/2G may not provide an accurate esti-
mation of DRD. Hence, the across-column covariance matrix of G(D̂R̂D̂)−1/2

is not an identity matrix, though it is nearly identity for some cases, for example,
Scenarios I, II, and III with unrelated individuals only. The residual across-column



1572 X. WU ET AL.

FIG. 3. Variability of eigenvalues in Scenarios IX and I. Panel (A): Box plots of sum of eigenval-
ues from 10,000 simulated replicates in scenario IX for m = 10 and η = 0.2,0.5,0.8; Panel (B):
Box plots of sum of eigenvalues from 10,000 simulated replicates in scenario I for m = 10 and
η = 0.2,0.5,0.8; Panel (C): Box plots of individual eigenvalues from 10,000 simulated replicates in
scenario IX for m = 10 and η = 0.8; Panel (D): Box plots of individual eigenvalues from 10,000
simulated replicates in scenario I for m = 10 and η = 0.8.

correlation among the transformed variants results in the practical null distribution∑m
i=1 λiχ

2
1,i with

∑m
i=1 λi ≤ m, which causes the conservativeness of ABT based

on χ2
m.

To better illustrate how the complex covariance structure in genotype data in-
fluences the eigenvalues λi of the matrix W #GT PGW #, we present the box plots
of

∑m
i=1 λi in Figure 3 [see panels (A) and (B)], generated from 10,000 simulated

replicates for m = 10 and η = 0.2,0.5,0.8 following Scenarios IX and I, respec-
tively. We observe that for Scenario IX, where complex correlations exist,

∑m
i=1 λi

deviates from 10 and shows a decreasing trend as η increases [Figure 3, panel (A)]
due to the residual correlation among the transformed variants. In contrast, for Sce-
nario I where only LD correlation exists, DRD can be accurately estimated, and
hence the individual score statistics can be treated as independent leading to the
ABT null distribution approximated as χ2

m. This can be seen from
∑m

i=1 λi ≈ m

in Figure 3, panel (B). These results provide a reasonable explanation to the con-
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servativeness of ABT based on χ2
m, as observed from the additional type I error

results in Section 3 of the supplemental article [Wu et al. (2018)]. In Figure 3, pan-
els (C) and (D), we further present box plots for individual λi’s (ordered from large
to small) generated from the 10,000 simulated replicates for m = 10 and η = 0.8
from Scenarios IX and I, respectively. When complex genotypic correlations exist
(Scenario IX with η = 0.8), the individual λi’s disperse around 1 with a majority
less than 1. On the other hand, when only LD correlation exists (Scenario I with
η = 0.8), all individual λi’s are very close to 1. This shows that the across-column
covariance matrix of G(D̂R̂D̂)−1/2 is nearly an identity matrix in this case.

3.4. Power comparison. To assess power, we simulate 1000 data replicates
using parameter settings described in Table 2, for each scenario with m = 100
and η = 0.2,0.5,0.8. Here, we use equal weights for the FBT, KT, and MON-
STER statistics. The MONSTER test is constructed on a grid of 11 equally spaced
points—ρ1 = 0, ρ2 = 0.1, . . . , ρ10 = 0.9, ρ11 = 1, as in its original paper [Jiang
and McPeek (2013)]. The empirical power of FBT, KT, MONSTER, and ABT for
typical scenarios (II, IV, V, IX) at α = 0.05 are shown in Figure 4 (the case of
α = 0.01 is included in Section S.4 of the supplemental article [Wu et al. (2018)]).
Compared to the other three tests, ABT achieves considerably higher power under
different settings of η and γ in all these scenarios. In particular, we observe that,
due to the coexistence of risk and protective variants (though their relative propor-
tion varies), FBT loses power, and KT and MONSTER have similar and overall
good performance. Under weak LD settings (η = 0.2), ABT has comparable power
to KT and MONSTER, whereas when η is moderate (0.5) or large (0.8), ABT has
higher power than others. This is as expected since ABT is able to incorporate
the LD covariance information using retrospective model whereas other methods
cannot.

3.5. Adaptability of weights W ∗ to the direction of genetic effects. One obvi-
ous advantage of ABT over other fixed-weight tests is that the weights W ∗ adapt to
the direction of true genetic effects. In Section 2.3, we have shown that W ∗ is able
to maximize the test statistic of FBT. In order to understand how W ∗ can help gain
power in contrast to prescribed weights, we compare the signs of W ∗ to those of
the genetic effects γ using the simulated data sets in the power analysis. Figure 5,
panel (A), presents box plots of the weights W ∗ across the 1000 replicates in Sce-
nario IV for m = 40, η = 0.8 with balanced setting of γ . We note that, under this
setting, the first 45% components of γ are positive followed by the next 45% be-
ing negative, and the remaining 10% are zeros. This box plot clearly demonstrates
that on average, the weights W ∗ are able to track the direction of true genetic ef-
fects resulting in stronger association of the weighted sum genetic score. On the
contrary, if one adopts FBT with the Madsen–Browning weights (which are all
positive), the effects from risk and protective variants will be canceled through lin-
ear combination, thereby weakening the association of the weighted sum genetic
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FIG. 4. Empirical power of FBT, KT, MONSTER, and ABT at α = 0.05, based on 1000 simulated
replicates with m = 100. Panel (A): Scenario II; Panel (B): Scenario IV; Panel (C): Scenario V;
Panel (D): Scenario IX.

score. Figure 5, panel (B), provides the average of mismatch rates (i.e., propor-
tion of γ × W ∗ < 0 over the causal variants, where × denotes component-wise
product of two vectors) across the 1000 replicates in Scenarios II, IV, V, and IX
for m = 100, η varying from 0 to 0.9, and under balanced setting of γ . We ob-
serve that for these scenarios, the average mismatch rates are about 22%–34% and
slowly increasing with η. Intuitively, lower mismatch rates are indicative of bet-
ter adaptability of W ∗ leading to higher power. This intuition is verified from the
constant lower average mismatch rate in Scenarios IV and V [lines with circle and
triangle markers compared to lines with square and diamond markers in Figure 5,
panel (B)] and the consistent higher power of ABT in Scenarios IV and V [panels
(B) and (C) in Figures 4 compared to panels (A) and (D)].

4. Application: Association analysis of the GO-ESP data. The NHLBI
“Grand Opportunity” Exome Sequencing Project (GO-ESP) is a study for identi-
fying genetic variants in coding regions (exons) of the human genome that are as-
sociated with heart, lung, and blood diseases. By pioneering the application of next
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FIG. 5. Illustration of adaptability of W∗ to the direction of true genetic effects. Panel (A): Box
plots of weights W∗ across 1000 simulated replicates in Scenario IV for m = 40 and η = 0.8 with
balanced setting of γ ; Panel (B): Average mismatch rates across 1000 simulated replicates in Sce-
narios II, IV, V, and IX for m = 100, η varying from 0 to 0.9, and under balanced setting of γ .

generation exome sequencing across diverse, richly phenotyped populations, this
project aims to discover novel genes and mechanisms contributing to heart, lung,
and blood disorders. Our use of the GO-ESP data was approved by the Institutional
Review Board of Virginia Tech. In the GO-ESP, a total of 499 Framingham Heart
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Study (FHS) participants were selected for exome sequencing, leading to 460 fin-
ished sequence data in dbGaP (dbGaP Study Accession: phs000401.v12.p10). In-
dividual level phenotype data were collected for 463 participants, including the
fasting glucose measurements at multiple time points (some individuals are from
cohort 2 of the FHS with at most eight measurements, whereas others are from
cohort 3 with at most two measurements). Our association analysis treats the fast-
ing glucose level at first visit as the quantitative trait. To avoid noise and have
results comparable to other fasting glucose studies, type 2 diabetics (indicated by
ESP_t2diabetes_baseline = 1) and individuals with fasting glucose > 125 mg/dl
were excluded from our analysis. Among the remaining 427 phenotyped individ-
uals, 173 are from 64 families, and the rest are unrelated individuals. We then
adjusted the quantitative trait for age and sex and tested its association with the
gene regions located on all 22 chromosomes.

Table 4 reports ten top-ranked p-values for testing the association between fast-
ing glucose level and gene regions on all 22 chromosomes based on the GO-ESP
data by using ABT. For comparison, the FBT, KT, and MONSTER p-values are
also listed. Among these genes, CYP1A2 encodes a member of the cytochrome
P450 superfamily of enzymes which catalyze many reactions involved in drug
metabolism and synthesis of cholesterol, steroids, and other lipids. Variants from
this gene were found to affect the risk of impaired fasting glucose in hyperten-
sion caused by coffee consumption [Palatini et al. (2015)], show associations
with higher serum clozapine concentrations and an increased risk of developing

TABLE 4
P-values for association of fasting glucose level with gene regions on 22 chromosomes based on the

GO-ESP data

# genotyped
SNPs

p-value based on

Gene Chr ABT FBT KT MONSTER

MIR411 14 2 3.51 × 10−5 5.91 × 10−2 3.19 × 10−2 3.28 × 10−2

LINC00472 6 5 8.55 × 10−5 4.60 × 10−1 8.18 × 10−2 8.74 × 10−2

KRTDAP 19 10 2.19 × 10−4 4.02 × 10−1 1.19 × 10−4 2.10 × 10−4

FXYD6-FXYD2 11 19 3.70 × 10−4 6.56 × 10−1 1.43 × 10−3 1.12 × 10−3

GHITM 10 9 4.11 × 10−4 1.26 × 10−1 1.28 × 10−5 3.38 × 10−5

CYP1A2 15 15 4.78 × 10−4 1.51 × 10−2 3.76 × 10−5 2.69 × 10−4

GIPR 19 12 5.69 × 10−4 4.27 × 10−1 1.16 × 10−1 1.25 × 10−1

SRRM3 7 15 6.08 × 10−4 1.27 × 10−1 1.51 × 10−1 1.54 × 10−1

CDKL3 5 12 6.18 × 10−4 2.22 × 10−1 5.90 × 10−2 5.89 × 10−2

FST 5 8 7.39 × 10−4 8.56 × 10−1 1.38 × 10−2 1.15 × 10−2

Note: The quantitative trait—fasting glucose level was adjusted for age and sex. For
FBT, KT, and MONSTER, Madsen–Browning weights were used. MIM numbers of
genes: KRTDAP[617212], FXYD6[606683], FXYD2[601814], CYP1A2[124060], GIPR[137241],
CDKL3[608459], FST[136470].
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insulin and lipid elevations and insulin resistance on a given dose of clozapine
[Melkersson et al. (2007)]. The glucose-dependent insulinotropic polypeptide re-
ceptor (GIPR) gene has been extensively studied and demonstrated to stimulate
insulin release in the presence of elevated glucose. GIPR was found to play a role
in the incretin effect and in early pathophysiologic pathways that could lead to
impaired glucose tolerance and type 2 diabetes in humans [Saxena et al. (2010)].
More findings about this gene regarding regulating glucose and insulin metabolism
in humans were reported in recent GWASs [Ingelsson et al. (2010), Qi et al.
(2012)]. The FST gene is an important regulator of activin, which might have im-
portant roles in insulin resistance and the onset and development of type 2 diabetes
[Hansen et al. (2013), Wu et al. (2012)].

5. Conclusions. The burden tests and the kernel tests are supposedly the two
major classes of methods for multiple-variant association analyses that are widely
used in genetic association studies. Though each has its advantages, there are two
deficiencies shared in common in their implementation to genotype data with com-
plex correlations:

(i) Existing methods in both classes are mostly developed under the prospec-
tive regression setting (focusing on characterizing the conditional expectation of
random trait measurements given covariates and genotypes), where accounting for
LD correlations among variants is not straightforward.

(ii) The weights adopted in both classes are usually prescribed, which are not
adaptable to the direction of individual variant effects, and therefore may not
achieve optimal performance for association testing.

In view of these issues, we first develop a retrospective, fixed-weight burden
test to incorporate genotypic correlations across both samples and variants, and
then employ data-driven weights to maximize the statistic of this fixed-weight bur-
den test. The resulting Adaptive-weight Burden Test can be easily constructed by
first projecting genotype data to eliminate LD correlations and then combining in-
dependent MASTOR tests on the transformed variants. The ABT testing method
sheds light on a number of aspects as described below.

First, by using a retrospective setting and treating genotype data as random, the
ABT is able to directly model correlations across both samples and variants which
exist universally in genotype data collected for current genetic association studies.
This is highly desirable because very few existing methods can make full use of
the valuable genotypic correlation information arising from both Mendelian inher-
itance and nonrandom association of alleles at different loci. A literature search
revealed that the MONSTER test is perhaps the closest method accounting for the
complex genetic correlations. However, because of its prospective setting, MON-
STER cannot model LD correlation among variants directly, though this informa-
tion can be thought of being implicitly carried through formulating the covari-
ance Rρ of the variant random effects vector β . In addition, its application may
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be restricted by the compound symmetric assumption of the covariance structure
Rρ . Moreover, modeling phenotypes as fixed is also theoretically appealing be-
cause it makes fewer assumptions about the phenotypic covariance structure [Price
et al. (2010b)]. These facts clearly show the advantage of retrospective modeling
to prospective modeling in genetic association analysis.

Second, ABT adopts data-driven weights in the collapsing procedure. Unlike
many other existing weighting strategies for burden tests or kernel tests, which lack
theoretical justification, these weights guarantee ABT to be statistically powerful.
The calculation of the data-driven weights is straightforward, and the resulting
ABT statistic is shown to have an explicit null distribution. Through extensive
simulations, we demonstrated that ABT is able to control type I error and achieves
higher power than the other three competing methods FBT, KT, and MONSTER in
almost all scenarios with moderate or large LD correlation. Further investigation
reveals that the weights of ABT are able to adapt to the direction of true genetic
effects. This overcomes the main drawback of fixed-weight burden tests, which
lose power in the presence of both risk and protective variants.

Third, although ABT is derived from a burden test perspective, we showed that it
is formally equivalent to a family-based kernel test with the GMB weights. This in-
teresting finding can be used to guide the selection of weights in traditional kernel
tests to accommodate LD correlation among variants. It also motivates statistical
geneticists to reconsider and to explore in-depth the relation between burden tests
and kernel tests. Our simulations demonstrate that, when genotypic correlations
exist across both samples and variants, using the theoretical null distribution of χ2

m

results in a conservative test. A plausible explanation for this may be attributed to
the covariance estimation bias in the decorrelation procedure. Additional eigen-
value analysis in our simulation study confirms this conjecture. Hence, we suggest
using the practical null distribution (mixture of χ2

1 ’s) when complex genotypic
correlations are not separable and when LD correlation R needs to be estimated
from genotype data G.

Finally, as a retrospective association test, ABT is expected to have several ad-
ditional advantages, for example, in borrowing information from partially infor-
mative data and in maintaining robustness to phenotype model misspecification.
The present work is an initial study toward a complete exploration on the under-
pinning and characteristics of this newly developed method. As more and more
high-throughput sequencing data on samples with complex correlation structure
become available in recent GWASs, it is of significant importance to investigate
the performance of ABT in detecting association for rare variants and for sam-
ples with population or cryptic relatedness structure. This will be pursued else-
where.
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SUPPLEMENTARY MATERIAL

Mathematical justifications and additional results (DOI: 10.1214/
17-AOAS1121SUPP; .pdf). The supplementary materials of the paper are orga-
nized as follows. Supplement S.1 provides the theoretical justification of the co-
variance matrix of genetic burden score X. Supplement S.2 derives the LD covari-
ance of the simulated genotype data for founders. In Supplement S.3, additional
results from Section 3.3 on the empirical type-I error of ABT based on χ2

m null
distribution in simulation studies are summarized in Table S1. Supplement S.4 in-
cludes additional power comparison results at α = 0.01, for Scenarios II, IV, V,
and IX.
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