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Modern biological techniques have led to various types of data, which
are often used to identify important biomarkers for certain diseases with ap-
propriate statistical methods, such as feature screening. Model-free feature
screening has been extensively studied in the literature, and it is effective
to select useful predictors for ultra-high dimensional data. These existing
screening procedures are conducted based on certain marginal correlations
between predictors and a response variable, therefore network structures con-
necting the predictors are usually ignored. Google’s PageRank algorithm has
achieved remarkable success. We adopt its spirit to adjust original screen-
ing approaches by incorporating the network information. We can then sig-
nificantly improve the performance of those screening methods in choosing
useful biomarkers, which is demonstrated in an intensive simulation study.
A couple of real genome datasets along with a biological network are further
analyzed by comparing results on both accuracy of predicting responses and
stability of identifying biomarkers.

1. Introduction. The explosion of high-throughput profiling technologies has
generated an unprecedented amount of high-dimensional data for bioinformatics
and biomedical research, such as gene expression data, single nucleotide poly-
morphisms (SNPs) and DNA methylation. These molecular characterizations have
led to the proposal of diagnostic and prognostic biomarkers for varieties of can-
cer types, which play an important role in revealing the mechanisms of disease
pathogenesis, selection of new therapeutic approaches and the prediction of later
clinical benefit [Martinezledesma, Verhaak and Trevino (2015), Fan, Han and Liu
(2014)].

The procedure of identifying these disease-related biomarkers can be regarded
as a statistical problem of variable selection or feature screening. The variable
selection methods have already detected some effective biomarkers to predict
diseases or personalize treatments in the clinic, such as the LASSO [Tibshirani

Received January 2017; revised May 2017.
1Supported in part by National Youth Top-notch Talent Support Program, National Natural Sci-

ence Foundation of China (11571218, 61402276, 11371236, 11422107 and 11690012), the State
Key Program in the Major Research Plan of National Science Foundation of China (91546202) and
Program for Innovative Research Team of SUFE.

Key words and phrases. Correlation, feature screening, model-free, network, ultra-high dimen-
sion, variable selection.

1250

http://www.imstat.org/aoas/
https://doi.org/10.1214/17-AOAS1097
http://www.imstat.org


NETWORK-BASED FEATURE SCREENING 1251

(1996)], the elastic net [Zou and Hastie (2005)] and the smoothly clipped absolute
deviation (SCAD) [Fan and Li (2001)]. Recently, network information is taken into
account in the penalties under the linear regression [Li and Li (2008), Pan, Xie and
Shen (2010), Yu and Liu (2016)].

The model-free feature screening approaches are popular in identifying useful
biomarkers for ultrahigh-dimensional data, where less evidence is present for iden-
tifying models and the computational expediency becomes challenging for current
variable selection approaches in practice. These screening methods are mainly con-
structed based on the marginal correlation measures and often possess the sure
screening property [Fan and Lv (2008)], where all truly important predictors can
be selected with probability tending to one as the sample size diverges to infinity.
These model-free methods include sure independence screening (SIS) [Fan and Lv
(2008)], sure independent ranking and screening (SIRS) [Zhu et al. (2011)], and
feature screening via distance correlation (DC-SIS) [Li, Zhong and Zhu (2012)],
which often focus on single markers that can discriminate patients with different
clinical characteristics, such as disease status.

Despite the success of these methods in prediction, the typical low reproducibil-
ity of these selected signatures combined with the difficulty to achieve a clear
biological interpretation remains obvious obstacle for the application in clinical
diagnosis [Cun and Fröhlich (2012)]. The reproducibility here refers to that the
identified variable subset should perform consistently across similar studies in
different labs or at different time, which is just one sufficient property of real
biomarkers [He and Yu (2010)]. One good indicator of biomarker reproducibil-
ity is the stability of feature screening results with respect to sampling variations
[He and Yu (2010)]. Good stability of feature selection is equally as important
as good prediction performance in biomarker discovery and has gained increas-
ing attention recently [Chuang et al. (2006), Shi, Yi and Ma (2015), Hawrylycz
et al. (2015)]. Due to similar discriminatory power of some different biomark-
ers and unstable algorithms across samples, it is common that the biomarkers of
the same disease identified by traditional methods in different studies hardly have
overlaps.

Diseases’ complexity brings another issue on feature screening methods. Dis-
eases such as asthma, diabetes or obesity, often involve altered interactions be-
tween thousands of genes who may act together in various signaling and regula-
tory pathways and protein complexes [Leiserson et al. (2015), Gustafsson et al.
(2014)]. Therefore, the impact of a specific genetic abnormality can spread along
these interactions and alter the activity of the connected gene products [Barabási,
Gulbahce and Loscalzo (2011)]. The structures of biological networks constructed
based on these interactions can be traced back for a better understanding of biolog-
ical processes and further used to identify human disease-associated genes [Vidal,
Cusick and Barabasi (2011)]. For example, the disease-genes have been shown to
be often characterized by large degrees in biological networks, and more likely to
interact with other disease-genes [Taylor et al. (2009)]. Previous feature screening
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methods may overlook these low discriminative biomarkers who are interacting
with some differentially expressed genes, or those who play a critical role in the
molecular mechanism of a complex biological network by interconnecting many
other genes.

Motivated by the challenges posed by the instability and complex interactions
in high-dimensional genome data, we propose a network-based feature screening
method by adopting the spirit of the Google’s PageRank algorithm and the Markov
chain theory, both can be integrated with those commonly used model-free fea-
ture screening approaches. The network information is embedded in the feature
screening by constructing a variant of “Google’s matrix” [Langville and Meyer
(2012)], which makes the proposed method less sensitive to the training samples.
We further study its theoretical properties based on the Markov chain theories.
Our numerical studies show that the integration of high-dimensional data and net-
work structures can improve both performance of prediction and reproducibility of
feature screening. The proposed procedure can detect various types of important
predictors, including those covariates with weak marginal effects but active in in-
teracting with other predictors. The experimental results on two publicly available
cancer datasets attest to the competitive predictive performance with the state-of-
art algorithms and the robustness against the inclusion or exclusion of some pa-
tients. More detailed analysis of one pancreatic adenocarcinoma dataset indicates
that many biomarkers identified by our method have been verified to be related
with pancreatic adenocarcinoma in biochemical or biomedical research, includ-
ing some genes with weak marginal effects who actually play a vital role in the
biological network. The KEGG pathway analysis further manifests that the pro-
posed screening procedure tends to identify sets of biomarkers with the significant
biological and functional correlations.

2. Method.

2.1. Network-based feature screening. Suppose we have p predictors to be
taken into account. Let c = (c1, . . . , cp)T be the ranking measurement in tradi-
tional feature screening, such as the absolute value of Pearson correlation [Fan and
Lv (2008)] and distance correlation [Li, Zhong and Zhu (2012)]. An adjacency ma-
trix A = (Ajl)p×p is used to represent a network structure, where Ajl = 1 if there
exists an edge between nodes j and l in the network and Ajl = 0 otherwise, and
all diagonal elements of A are set to be one to account for self-loops. For an undi-
rected graph, the adjacency matrix A is symmetric. The degree of node j is defined
as Dj = ∑p

l=1 Ajl .
We first construct the following matrix that includes both the original ranking

measures and the network information:

(2.1) S = (1 − d)1pc∗T + dA∗,
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where 1p is the p-dimensional column vector of ones, c∗ = c/1T
p c is the normal-

ized vector of marginal ranking measures, A∗ is the normalized counterpart of the
adjacency matrix A with the j lth element A∗

j l = Ajl/Dj and d is a weight lying
between zero and one which balances the original ranking measures and the net-
work information. Since each row sum of both matrices 1pc∗T and A∗ equals to
one, it ensures that S is also a stochastic matrix.

For a variable connected with many unimportant variables, the spurious corre-
lations due to noise may accumulate through the network. Thus, some variables
may be incorrectly chosen as active with the proposed method. Hereby, we use an
adaptive ranking measure c∗(r) in constructing the matrix S given in (2.1), where
r refers to the size of the variable set in which we believe all active predictors
have been included. To be specific, the original ranking values of top r predictors
are kept intact, and others are set to be a very small number much less than the
smallest marginal ranking measure. We denote the vector of ranking measures as
c(r). Finally, the vector of the normalized ranking measures c∗(r) = c(r)/1T

p c(r)
is used to construct the adaptive matrix S(r) similarly as given in (2.1). We will
ignore the parameter r in the following context for simple notation if no confusion
exists.

According to the Markov chain theory, as long as the matrix S is stochastic,
irreducible and aperiodic, there will be a unique vector of positive numbers v =
(v1, . . . , vp)T that satisfies the following stationary equation:

(2.2) vT = vT S,

subject to 1T
p v = 1, of which the proof can be found in Robert and Casella (1999).

Since the constant d lies in the interval (0,1), every element of the matrix S will be
positive, where the non-zero diagonal values create aperiodicity and the non-zero
off-diagonal elements result in irreducibility. In our proposed method, the station-
ary probabilities v1, . . . , vp serve as the network-based ranking measures, which
actually is the eigenvector of the matrix S corresponding to its largest eigenvalue
that happens to be one. As self-loops are considered, we have vj = c∗

j based on
equation (2.2) if the j th predictor is a singleton in the network.

In particular, for any starting vector v(0) satisfying the restriction 1T
p v(0) = 1,

the following power iteration algorithm will converge to the desired eigenvector
because the matrix S is stochastic, that is,

(2.3) v(k+1)T = v(k)T S.

This algorithm is computationally efficient even as we deal with a large set of
predictors.

2.2. Some properties. It is straightforward from (2.1) and (2.2) to obtain the
following equation:

(2.4) v = (1 − d)
(
Ip − dA∗T )−1c∗,
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where Ip is a p × p identity matrix. The matrix (Ip − dA∗T )−1 plays a crucial
role in adjusting the original ranking measure. The matrix Ip − dA∗T is nonsin-
gular and the norm of its inverse matrix satisfies [Langville and Meyer (2012),
Section 7.1]

(2.5)
∥∥(

Ip − dA∗T )−1∥∥∞ = (1 − d)−1,

where ‖ · ‖∞ is the norm refers to the largest absolute row sum of a matrix. We
shall avoid a large constant d that is close to one, which will make the network-
based ranking measure extremely sensitive to the choice of both the weight con-
stant d and the normalized adjacency matrix A∗ [Langville and Meyer (2012),
Chapter 6].

With the Taylor expansion, we further obtain from (2.4) that

(2.6) v = (1 − d)

{
Ip +

∞∑
k=1

dk(A∗T )k}c∗.

Thus, for a specific predictor X, its correlation with the response variable will
be adjusted by its connected explanatory variables, and their contributions to the
correlation will diminish quickly with respect to the distance to the considered
variable X along the network.

We obtain an algebraic inequality between the original and the network-based
ranking measures in the following theorem, which is useful for us to analyze the
asymptotic property of the proposed screening statistic.

THEOREM 1. For two nonnegative vectors c1 and c2 satisfying the constraint
1T
p c1 = 1T

p c2 = 1, we have

‖v1 − v2‖∞ ≤ ‖c1 − c2‖∞,

where vi = (1 − d)(Ip − dWT )−1ci , and W is a p × p stochastic matrix which is
irreducible and aperiodic. Furthermore, all elements of both v1 and v2 are non-
negative.

If we replace the vectors c1 and c2 with the sample and the population marginal
ranking measures, respectively, it is obvious from Theorem 1 that the resulting
distance is greater than that of the corresponding network-adjusted measures.
The sure screening property of marginal sample measures have been well stud-
ied [Fan and Lv (2008), Li, Zhong and Zhu (2012), Zhu et al. (2011)]. Hence,
if the network-based population measure can accurately identify the set of active
predictors, we shall expect the corresponding sample measure will capture these
variables with high probability.
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2.3. Choice of tuning parameters. There are two tuning parameters in the pro-
posed method of Section 2.1, the weight d which balances the original adaptive
ranking measure c(r) and the network information A, and the integer r refers to
the size of the variable set including all active predictors. We adopt a criterion
based on the random decoupling strategy as suggested by Barut, Fan and Verhas-
selt (2016) to choose these tuning parameters, which determines the number of
potentially active variables under a certain level of false positives.

We first generate the response Y ∗ by randomly permuting the original response
Y , while keeping the design matrix X intact. Since the randomly permuted re-
sponse Y ∗ is independent of the design matrix, the estimated marginal correlations
based on decoupled data represent the level of spurious correlations under the null
model that no predictors are useful [Barut, Fan and Verhasselt (2016)].

Given certain constants d and r , let

V ∗(d, r) = max
1≤j≤p

∣∣v∗
j (d, r)

∣∣,
where v∗

j (d, r) is the network-based ranking measure for the decoupled data X
and Y ∗ as computed in (2.2). In order to control the proportion of false pos-
itives, V ∗(d, r) is used to determine a threshold value by the following two-
stage procedure. First, the random permutation is repeated K times, resulting in
a set of values {V ∗

1 (d, r), . . . , V ∗
K(d, r)}. Second, the maximum value of the set

Ṽ ∗(d, r) = max{V ∗
1 (d, r), . . . , V ∗

K(d, r)} is used as the final threshold. Thus the
set of chosen variables under a certain level of false positives is

M̃d,r = {
j : vj (d, r) ≥ Ṽ ∗(d, r)

}
,

where vj (d, r) is the network-based ranking measure based on the original data.
The following criterion is then considered to choose the values for both d and r :

(d̂, r̂) = arg max
d,r

|M̃d,r |,

where |M̃d,r | refers to the cardinality of the set M̃d,r . In our analysis, we ran-
domly permute the original data five times as also used by Barut, Fan and Ver-
hasselt (2016). This criterion has been adopted with the following considerations.
Feature screening usually serves as a preliminary reduction step, and is often fol-
lowed by a conventional feature selection for further refinement. Thus, it is more
important for screening to retain all the truly active predictors opposed to feature
selection, which focuses on achieving a high true positive and a low false positive
simultaneously. The above criterion can lead to a model which includes as many
useful predictors as possible, which is consistent with the goal of screening.

3. Simulation studies. In this section, we assess the performance of the pro-
posed method of Section 2.1 with the simulated data. We consider two existing
popular feature screening approaches, SIS [Fan and Lv (2008)] and DC-SIS [Li,
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Zhong and Zhu (2012)] for the network-based screening implementation, denoted
as SIS-Network and DC-SIS-Network, respectively. Besides the above four meth-
ods, we also consider the following three alternatives:

• VS-Network: a variable selection method with the network-constrained penalty
proposed by Li and Li (2008), which incorporates information encoded by the
known biological networks into the variable selection procedure;

• HOLP: a screening technique based on high-dimensional ordinary least squares
projection, where the sure screening property holds without the restrictive
marginal correlation assumption [Wang and Leng (2016)];

• Screen3S: A data-driven conditional screening algorithm with three steps, which
enjoys the sure screening property under weaker assumptions on the model
[Hong, Wang and He (2016)].

3.1. Artificial networks. Simulation settings are summarized in Table S.1 of
Supplementary materials [Wu, Zhu and Feng (2018)]. We generate the datasets
with p = 5000 and n = 100. Two types of regulatory networks are considered in
this study. First, the degrees of the network are generated randomly from power-
law or exponential distributions, which are the two most common structures of
modeling biological networks [Barabasi and Oltvai (2004)]. A power-law degree
distribution implies that the network has few highly connected nodes which are
also known as hubs. By contrast, an exponential distribution indicates that the
system has a characteristic degree and there are no highly connected hubs. The
histograms of the variable degrees are plotted in Figure A.1 of Appendix. Sec-
ond, we set the first variable X1 as important, and it regulates six active variables,
X2, . . . ,X7. The variable X7 is connected with another inactive variable X8. Third,
for the remaining 4992 inactive variables, we use the R package “igraph”to ran-
domly generate the edges following the corresponding degree distribution. Thus,
there are one important variable with degree seven, five important variables with
degree two and one important variable with degree three.

We consider two models for generating datasets with discrete responses in the
simulation study:

(I) linear model (model I): Y = logit(XT β + ε),
(II) exponential model (model II): Y = logit(exp(XT β/2) + ε),

where logit(·) is the logistic function, ε ∼ N(0, σ 2) with σ 2 = βT β/rσ . The pa-
rameter rσ refers to the signal-noise ratio of the model, which is set to eight or 16
in our study. The predictors X are simulated from a multivariate normal distribu-
tion with marginal means 0 and marginal variances 1. Two correlation structures
� = (σjl)p×p are considered to represent different networks. The first correlation
matrix �1 corresponds to a “correlation” network with σjl = 0.5 if nodes j and
l are connected by an edge, otherwise σjl = 0. The second correlation matrix �2

corresponds to a “concentration” network with �2 = �−1
1 .
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For each model, four settings of the coefficient vector β are considered:

(i)

β =
(

4,
1

4
,

1

4
,

1

4
,

1

4
,

1

4
,

1

4
,0, . . . ,0

)T

;
(ii)

β =
(

4,
1

4
,

1

4
,

1

4
,−1

4
,−1

4
,−1

4
,0, . . . ,0

)T

;
(iii)

β =
(

1

4
,2,2,2,2,2,2,0, . . . ,0

)T

;
(iv)

β =
(

1

4
,2,2,2,−2,−2,−2,0, . . . ,0

)T

.

For the first two cases, the first variable X1 has a strong effect on the response,
and six other connected predictors have weak effects. Under settings (iii) and (iv),
the first variable’s effect is weak, and six other connected variables carry strong ef-
fects. Furthermore, under settings (ii) and (iv), some of the variables are negatively
related with the response Y .

Simulation suggests that the proposed method is computationally feasible. The
computation of original marginal correlations for 5000 predictors can be accom-
plished within five seconds using a laptop with standard configurations. The power
iteration for calculating network-based measures can converge within 100 overall
iterations and be accomplished within one minute. Although a number of permuta-
tions need to be computed for the choice of tuning parameters, as they can be ana-
lyzed in a highly parallel manner, the overall computational cost is still affordable.
To facilitate data analysis and applications beyond this study, we have developed
R code and made it publicly available at http://bb.shufe.edu.cn/bbcswebdav/users/
2011000070/Codes/Net_FS_FUN.R.

We assess the performance through the following criteria which have been
adopted in the literature [Li, Zhong and Zhu (2012), Zhu et al. (2011), among
others]:

(a) S : the minimum number of predictors required to ensure the inclusion of
all the truly active predictors. We report the median and the average absolute devi-
ation of the numbers out of 500 replications.

(b) Pa : the proportion of active predictors that are selected under a given
model size in 500 replications. For cases (i) and (iii), seven important predictors
will be divided into two categories: variable X1 that owns relatively high degrees in
the network and variables X2, . . . ,X7. For cases (ii) and (iv), they will be divided

http://bb.shufe.edu.cn/bbcswebdav/users/2011000070/Codes/Net_FS_FUN.R
http://bb.shufe.edu.cn/bbcswebdav/users/2011000070/Codes/Net_FS_FUN.R
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into three categories: variable X1, variables X2, X3, X4 which are positively cor-
related with the response and variables X5, X6, X7 which are negatively correlated
with the response.

(c) TPR and FPR: the true and false positive rates for identification perfor-
mance when the model size is determined using minimum prediction error crite-
rion via cross-validation.

(d) AUC: the area under an ROC curve for prediction performance, when
the model size is determined using minimum prediction error criterion via cross-
validation.

For the first criterion S , a better feature screening approach should lead to a closer
value to the true number of active variables, which is seven in this simulation
study. For the second criterion Pa , a better feature screening approach should give
a higher proportion of truly important variables given a model size. The numbers
of predictors considered in the model are chosen as [n/ log(n)] and [2n/ log(n)],
respectively, where [a] denotes the integer part of a. For the third and the fourth
criteria, a linear logistic regression model is always considered to further refine
the variable selection after feature screening, and used to predict responses. We
adopt 5-fold cross-validation to find the model with the minimum prediction error.
A better approach should have larger TPR and smaller FPR. An independent test
dataset with sample size 100 is generated in the same manner. Then prediction
performance is quantified using AUC based on predicted probability, of which a
larger value indicates better prediction.

3.1.1. Variable selection and prediction. In Tables 1, 2 and 3, we report the
simulation results of the above five criteria for models I–II with the power-law
degree distribution, the signal-noise ratio rσ = 16 and the correlation matrix �1
(Scenario 1). According to the result based on the criterion S in Table 1, the per-
formance of seven approaches are comparable under model I with the coefficient
setting (iii) except HOLP, where the model is linear and all active predictors are
positively correlated with the response Y . HOLP is slightly inferior to other meth-
ods as it is based on a linear model for continuous response. Moreover, the result of
the criterion Pa in Table 2 implies that the six methods can identify active variables
almost perfectly. Under model I with settings (i), (ii) and (iv), where the predic-
tors with low degrees in the network carry either weak or negative effects on the
response, it is observed from Table 1 that both SIS-Network and DC-SIS-Network
outperform their original counterparts significantly. The result of criterion Pa re-
ported in Table 2 indicates that these two network-based feature screening proce-
dures can identify most of the active predictors given model sizes [n/ log(n)] and
[2n/ log(n)]. Although in Table 2 with setting (iv), for variables X2–X4, the pro-
posed methods have Pa slightly smaller than their original counterparts, they can
more accurately identify the first variable X1 with weak effect, which is of greater
concern.
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TABLE 1
The median of the estimated size S out of 500 replications for Scenario 1, including the average

absolute deviation within parentheses

(i) (ii) (iii) (iv)

Model I
VS-Network 39.4 (28.4) 126.8 (87.8) 8.5 (1.5) 587.1 (28.9)

HOLP 539.5 (408.5) 1078.5 (734.5) 174.0 (128.5) 3638.0 (816.5)

Screen3S 20.0 (12.0) 74.0 (63.0) 8.0 (0.6) 2477.0 (1011.5)

SIS 20.0 (12.0) 86.5 (72.5) 8.1 (0.6) 2701.0 (918.0)

DC-SIS 27.5 (18.5) 122.5 (103.5) 8.0 (1.0) 3080.0 (1023.5)

SIS-Network 10.5 (2.5) 10.0 (2.0) 8.0 (1.0) 103.0 (93.0)

DC-SIS-Network 11.0 (4.0) 10.0 (2.0) 8.0 (1.0) 103.0 (92.0)

Model II
VS-Network 374.4 (100.4) 430.0 (104.0) 320.2 (112.0) 563.6 (15.5)

HOLP 3831.5 (823.0) 4233.5 (538.0) 3857.5 (804.0) 4398.0 (397.5)

Screen3S 3453.0 (1032.5) 3871.5 (743.5) 3664.0 (1045.5) 3945.0 (660.5)

SIS 1427.5 (938.0) 2255.5 (1212.5) 629.0 (483.0) 4023.5 (580.5)

DC-SIS 1230.0 (811.5) 1828.5 (1040.5) 506.0 (384.5) 3982.0 (599.0)

SIS-Network 15.0 (6.0) 16.0 (7.0) 23.0 (14.0) 250.0 (109.5)

DC-SIS-Network 12.0 (3.0) 14.0 (4.0) 23.0 (14.0) 143.5 (117.0)

Under model II, the advantages of the DC-SIS-Network are more prominent as
the nonlinear relationship is present between the response variable and the predic-
tors. In general, the network information is quite useful for screening those active
predictors in this study as implied in Tables 1 and 2.

When model size is determined using minimum prediction error criterion (Ta-
ble 3), the proposed methods have similar or better performance than the alterna-
tives. Although different predictors are used with different methods, the values of
AUC are similar when the true model is included in the family specified by the
working model. As the true model is model II, the misspecified working model
leads to relatively poor prediction for all methods. However, the proposed method
has achieved slightly better prediction.

We also examine the performance of the proposed method under the scenarios
of which the predictors are generated with a “concentration” network. The results
are summarized in Tables S.2–S.4 and S.17–S.19 of the Supplementary materials
[Wu, Zhu and Feng (2018)]. All methods perform slightly worse under the “con-
centration” network, but we observe similar favorable performance of the proposed
method.

Additional simulation results with different network structures, signal-noise-
ratios and types of responses are reported in the Supplementary materials [Wu,
Zhu and Feng (2018)], and similar conclusions can be drawn.
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TABLE 2
The proportion Pa of selected truly active predictor with a given number of predictors

([ n
log(n)

] = 22, [ 2n
log(n)

] = 44) in 500 replications for Scenario 1

(i) (ii) (iii) (iv)

X1 X2−7 X1 X2−4 X5−7 X1 X2−7 X1 X2−4 X5−7

Model I
VS-Network n

log(n)
1.00 0.91 1.00 0.91 0.58 1.00 0.99 0.00 0.30 0.22

2n
log(n)

1.00 0.95 1.00 0.95 0.67 1.00 1.00 0.02 0.50 0.35

HOLP n
log(n)

1.00 0.38 1.00 0.40 0.21 0.98 0.61 0.00 0.17 0.13
2n

log(n)
1.00 0.52 1.00 0.49 0.30 1.00 0.72 0.00 0.23 0.18

Screen3S n
log(n)

1.00 0.89 1.00 0.88 0.64 1.00 0.98 0.07 0.48 0.30
2n

log(n)
1.00 0.95 1.00 0.92 0.74 1.00 0.99 0.09 0.59 0.41

SIS n
log(n)

1.00 0.89 1.00 0.88 0.64 1.00 0.99 0.01 0.47 0.26
2n

log(n)
1.00 0.95 1.00 0.92 0.73 1.00 0.99 0.01 0.57 0.37

DC-SIS n
log(n)

1.00 0.86 1.00 0.86 0.61 1.00 0.97 0.00 0.45 0.23
2n

log(n)
1.00 0.92 1.00 0.90 0.70 1.00 0.99 0.01 0.56 0.33

SIS-Network n
log(n)

1.00 0.94 1.00 0.97 0.89 1.00 0.99 0.82 0.42 0.21
2n

log(n)
1.00 0.98 1.00 0.99 0.94 1.00 1.00 0.84 0.47 0.31

DC-SIS-Network n
log(n)

1.00 0.92 1.00 0.98 0.92 1.00 0.98 0.81 0.44 0.22
2n

log(n)
1.00 0.98 1.00 0.99 0.96 1.00 0.99 0.84 0.47 0.34

Model II
VS-Network n

log(n)
0.94 0.27 0.94 0.28 0.10 0.82 0.32 0.01 0.09 0.03

2n
log(n)

0.98 0.39 0.98 0.42 0.21 0.90 0.53 0.03 0.14 0.10

HOLP n
log(n)

0.18 0.04 0.14 0.03 0.02 0.10 0.05 0.00 0.01 0.02
2n

log(n)
0.28 0.06 0.20 0.06 0.03 0.16 0.08 0.01 0.03 0.04

Screen3S n
log(n)

0.95 0.23 0.94 0.23 0.13 0.82 0.39 0.01 0.09 0.07
2n

log(n)
0.96 0.31 0.97 0.31 0.19 0.89 0.48 0.01 0.14 0.10

SIS n
log(n)

0.95 0.23 0.94 0.23 0.13 0.82 0.39 0.01 0.10 0.07
2n

log(n)
0.96 0.31 0.97 0.32 0.19 0.90 0.49 0.01 0.14 0.09

DC-SIS n
log(n)

0.98 0.22 0.97 0.21 0.10 0.86 0.38 0.01 0.08 0.05
2n

log(n)
1.00 0.31 0.99 0.30 0.16 0.92 0.48 0.01 0.14 0.09

SIS-Network n
log(n)

0.93 0.60 0.89 0.59 0.56 0.94 0.58 0.18 0.11 0.16
2n

log(n)
0.93 0.66 0.93 0.64 0.63 0.94 0.64 0.22 0.15 0.18

DC-SIS-Network n
log(n)

0.94 0.65 0.94 0.66 0.60 0.94 0.57 0.19 0.12 0.18
2n

log(n)
0.95 0.71 0.96 0.71 0.69 0.95 0.64 0.23 0.21 0.19
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TABLE 3
The means of TPR, FDR, AUC out of 500 replications for Scenario 1, including the average

absolute deviation within parentheses

TPR FDR AUC TPR FDR AUC

Model I (i) (ii)
VS-Network 0.81 (0.10) 0.25 (0.09) 0.92 (0.02) 0.74 (0.12) 0.29 (0.29) 0.89 (0.05)
HOLP 0.36 (0.07) 0.68 (0.11) 0.91 (0.02) 0.30 (0.13) 0.73 (0.12) 0.88 (0.03)
Screen3S 0.76 (0.09) 0.28 (0.14) 0.92 (0.02) 0.66 (0.09) 0.40 (0.12) 0.88 (0.03)
SIS 0.76 (0.09) 0.28 (0.14) 0.92 (0.02) 0.66 (0.09) 0.40 (0.12) 0.88 (0.03)
DC-SIS 0.75 (0.11) 0.32 (0.11) 0.91 (0.02) 0.62 (0.09) 0.44 (0.13) 0.88 (0.03)
SIS-Network 0.82 (0.10) 0.25 (0.11) 0.92 (0.02) 0.78 (0.08) 0.24 (0.09) 0.89 (0.03)
DC-SIS-Network 0.82 (0.08) 0.26 (0.14) 0.92 (0.02) 0.78 (0.21) 0.26 (0.09) 0.89 (0.03)

(iii) (iv)
VS-Network 0.95 (0.05) 0.17 (0.07) 0.95 (0.02) 0.41 (0.11) 0.89 (0.07) 0.59 (0.05)
HOLP 0.53 (0.10) 0.53 (0.10) 0.88 (0.03) 0.07 (0.07) 0.94 (0.06) 0.56 (0.03)
Screen3S 0.95 (0.05) 0.14 (0.11) 0.95 (0.02) 0.25 (0.11) 0.79 (0.09) 0.60 (0.05)
SIS 0.95 (0.05) 0.14 (0.11) 0.95 (0.02) 0.22 (0.08) 0.81 (0.08) 0.59 (0.05)
DC-SIS 0.94 (0.06) 0.16 (0.09) 0.94 (0.02) 0.21 (0.08) 0.83 (0.07) 0.59 (0.05)
SIS-Network 0.95 (0.06) 0.14 (0.11) 0.95 (0.02) 0.44 (0.19) 0.75 (0.15) 0.63 (0.09)
DC-SIS-Network 0.95 (0.07) 0.14 (0.08) 0.95 (0.02) 0.42 (0.17) 0.76 (0.14) 0.63 (0.09)

Model II (i) (ii)
VS-Network 0.45 (0.16) 0.84 (0.10) 0.59 (0.08) 0.37 (0.08) 0.87 (0.07) 0.59 (0.07)
HOLP 0.03 (0.03) 0.98 (0.02) 0.57 (0.04) 0.03 (0.03) 0.97 (0.03) 0.56 (0.04)
Screen3S 0.25 (0.10) 0.79 (0.09) 0.63 (0.06) 0.22 (0.08) 0.81 (0.08) 0.61 (0.05)
SIS 0.25 (0.10) 0.79 (0.09) 0.62 (0.05) 0.22 (0.07) 0.81 (0.08) 0.61 (0.05)
DC-SIS 0.25 (0.11) 0.78 (0.09) 0.63 (0.05) 0.22 (0.07) 0.81 (0.08) 0.62 (0.05)
SIS-Network 0.51 (0.28) 0.65 (0.22) 0.65 (0.06) 0.43 (0.24) 0.68 (0.22) 0.64 (0.06)
DC-SIS-Network 0.54 (0.29) 0.63 (0.23) 0.66 (0.06) 0.47 (0.29) 0.65 (0.22) 0.65 (0.06)

(iii) (iv)
VS-Network 0.51 (0.20) 0.79 (0.13) 0.60 (0.04) 0.14 (0.14) 0.97 (0.02) 0.51 (0.04)
HOLP 0.03 (0.03) 0.98 (0.02) 0.56 (0.04) 0.01 (0.01) 0.99 (0.01) 0.55 (0.03)
Screen3S 0.34 (0.09) 0.70 (0.13) 0.62 (0.06) 0.03 (0.03) 0.97 (0.03) 0.55 (0.03)
SIS 0.34 (0.09) 0.70 (0.13) 0.62 (0.06) 0.03 (0.03) 0.97 (0.03) 0.55 (0.03)
DC-SIS 0.34 (0.20) 0.70 (0.15) 0.62 (0.06) 0.03 (0.03) 0.98 (0.02) 0.54 (0.03)
SIS-Network 0.61 (0.29) 0.64 (0.24) 0.65 (0.06) 0.24 (0.04) 0.97 (0.03) 0.57 (0.03)
DC-SIS-Network 0.63 (0.29) 0.65 (0.22) 0.66 (0.06) 0.31 (0.05) 0.96 (0.04) 0.60 (0.03)

3.1.2. Sensitivity analysis. We further consider the sensitivity of the proposed
method to the network choice. We employ two network structures with different
parameters. The first network (N1) is constructed based on the estimated correla-
tion matrix. A cutoff value η̃ is adopted to generate the sparse adjacency matrix A
as most genes only interact with a few genes, where Ajl = 1 if the absolute Pear-
son correlation between j th and lth variables is larger than η̃ and 0 otherwise. We
use η̃ = 0.3,0.4 and 0.5 to represent different interaction criteria. The second net-
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work (N2) is generated based on the true network used in this simulation study, but
of which τ̃ percent interactions are misspecified. We adopt τ̃ = 20 and τ̃ = 40 to
consider different misspecified levels. In this study, there are six important edges,
so the probability of at least one of them is misspecified will be around 0.738 and
0.953, respectively.

The summary results of S based on different prior networks are reported in Ta-
bles S.29 and S.30 of the Supplementary materials [Wu, Zhu and Feng (2018)]. It
is observed that the methods based on the estimated correlation matrix outperform
the corresponding marginal methods (SIS or DC-SIS), but are inferior to the pro-
posed methods incorporating the true or the lightly misspecified network structure.
Hence, we can definitely benefit from the prior network with the proposed method
if a large proportion of information provided by this network is correct.

3.2. Network constructed based on a real dataset. In the previous simulation
study, the “gene” measurements and the “biological” networks have been gener-
ated from parametric distributions, which may be overly simplified compared to
what is practically observed. To tackle this problem, we further conduct a simula-
tion study based on the the real dataset GSE71729, which will be fully examined
in the following section. Specifically, we use the observed gene expression and
the protein-protein interaction (PPI) network in H.sapiens from the High-quality
INTeractomes (HINT) database (http://hint.yulab.org/, version: 06 /03 /2013) [Das
and Yu (2012)]. There are seven active predictors of which the coefficients are gen-
erated under the same settings in Section 3.1. We randomly select one gene which
is connected with six other genes and regard these seven genes as active predic-
tors. Both models I and II are employed to simulate the response. The results are
reported in Tables S.31–S.33 of the Supplementary materials [Wu, Zhu and Feng
(2018)]. With more predictors together with a complicated correlation structure, it
is more challenging to screen important features than the previous study. However,
the proposed method still reaches favorable performance, especially for scenarios
with settings (i) and (ii).

4. Real data analysis. In this section, we analyze two real microarray gene
expression datasets with discrete responses based on the methods considered in the
previous section.

4.1. Data. The datasets GSE50493 and GSE71729 are publicly available in
the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). GSE50493 includes the gene expression of 72 samples from two classes:
the melanoma brain metastases (M-BM, 29 samples) and the melanoma extracra-
nial metastases (M-EM, 43 samples) [Chen et al. (2014)]. A total of 47,323
measurements are available on these samples. Identification of molecular differ-
ences between these two types of tumors would be useful in the development
of organ-specific therapeutic approaches. GSE71729 includes 145 primary and

http://hint.yulab.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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61 metastatic pancreatic ductal adenocarcinoma (PDAC) tumors, 17 cell lines,
46 pancreas and 88 distant site adjacent normal samples [Moffitt et al. (2015)].
Among them, we select 145 primary PDAC samples (P-PDAC) and 46 pancreas
normal samples (N-PDAC) with 19,749 measurements of gene expression for anal-
ysis.

The network information on genes are obtained based on a high-quality PPI
network. In this PPI network, there are 18,864 pairwise interactions among 6342
genes, where the remaining unpaired genes are treated as disconnected nodes. All
datasets used in this study have been already published and require no ethics ap-
proval.

4.2. Prediction performance. In the real data analysis, we use a two-stage pro-
cedure to predict responses, including a feature screening at the first stage and a
regular logistic regression analysis for discrete responses at the second.

We assess the prediction accuracy of different methods based on a 10-fold cross-
validation (CV) and a 5-fold CV, which are repeated 50 times on each dataset,
respectively. For both SIS-Network and DC-SIS-Network, the parameters d and
r are chosen with the method stated in Section 2.3, which is summarized in Ta-
ble S.34 of the Supplementary materials [Wu, Zhu and Feng (2018)]. Furthermore,
we use the 5-fold CV to determine the number of predictors retained in models
with feature screening methods under the constraint that the number is smaller
than the sample size. We then assess the prediction performance of each method
based on their AUC values.

In Table 4, we report the mean AUC and the corresponding average absolute
deviation. Those three methods incorporating network information (VS-Network,
SIS-Network and DC-SIS-Network) achieve comparable performance in predic-
tion, and outperform their competitors HOLP, Screen3S, SIS and DC-SIS.

4.3. Stability of gene selection processes. With a wealth of public molecular
datasets for the same disease, it is common that the biomarker signatures from
different studies have few overlaps, which leads to difficulties in biological ex-
plains. Therefore, in addition to prediction capabilities, the stability of the screen-
ing procedure is also crucial. The stability of a gene selection process is evaluated
by the following Jaccard coefficient in two settings, the 10-fold CV and the 5-
fold CV:

(4.1) JC = |G1 ∩ G2|
|G1 ∪ G2| ,

where G1 and G2 are the two considered gene sets, and |G| refers to the cardi-
nality of the set G. The value of Jaccard coefficient will achieve one if the com-
pared sets are just the same. According to the mechanism of CV, the training sets
are generated with 8/9 ≈ 89% overlap for 10-fold CV and 75% overlap for 5-
fold CV.
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TABLE 4
Prediction performance and stability of different methods in terms of AUC and Jaccard coefficient,

respectively

GSE50493 GSE71729

Methods 10-fold CV 5-fold CV 10-fold CV 5-fold CV

AUC:
VS-Network 0.689 (0.040) 0.623 (0.052) 0.883 (0.009) 0.881 (0.008)
HOLP 0.665 (0.052) 0.612 (0.051) 0.855 (0.021) 0.845 (0.015)
Screen3S 0.674 (0.042) 0.607 (0.049) 0.861 (0.016) 0.862 (0.022)
SIS 0.664 (0.042) 0.596 (0.047) 0.850 (0.013) 0.852 (0.015)
DC-SIS 0.667 (0.055) 0.606 (0.052) 0.851 (0.016) 0.853 (0.020)
SIS-Network 0.681 (0.043) 0.614 (0.045) 0.886 (0.020) 0.880 (0.011)
DC-SIS-Network 0.686 (0.050) 0.619 (0.047) 0.882 (0.019) 0.879 (0.014)

Jaccard coefficient:
VS-Network 0.245 (0.010) 0.101 (0.010) 0.436 (0.166) 0.290 (0.023)
HOLP 0.192 (0.053) 0.038 (0.021) 0.497 (0.246) 0.302 (0.093)
Screen3S 0.214 (0.045) 0.057 (0.013) 0.512 (0.186) 0.314 (0.103)
SIS 0.202 (0.063) 0.084 (0.061) 0.527 (0.226) 0.347 (0.113)
DC-SIS 0.167 (0.041) 0.093 (0.064) 0.490 (0.198) 0.303 (0.117)
SIS-Network 0.543 (0.112) 0.275 (0.095) 0.651 (0.229) 0.524 (0.114)
DC-SIS-Network 0.592 (0.141) 0.437 (0.103) 0.732 (0.217) 0.690 (0.135)

The mean measure obtained for each method on the two datasets over 50 times 10-fold cross valida-
tion or 5-fold cross validation. Average absolute deviation is shown within parentheses.

In Table 4, we have reported the mean Jaccard coefficients of the genes cho-
sen by seven models out of 50 replications, respectively. It is observed that both
SIS-Network and DC-SIS-Network have manifest superiority in terms of screen-
ing stability. For example, for the dataset GSE50493 with 5-fold CV, the methods
SIS-Network and DC-SIS-Network have average JC = 0.275 and 0.437, respec-
tively, compared to 0.101 (VS-Network), 0.038 (HOLP), 0.057 (Screen3S), 0.084
(SIS) and 0.093 (DC-SIS). Even when we consider the 10-fold CV where there is
89% overlap in the training samples, the four screening methods without the net-
work information and VS-Network identify very few same genes. The combined
information from both the biological networks and the gene expressions are quite
useful for improving the stability of retrieving important biomarkers.

4.4. Biomarker identification. Compared to SIS-Network, DC-SIS-Network
achieves better overall performance as demonstrated in previous two sections.
It gets competitive performance in prediction and higher gene selection stabil-
ity. Thus, we further analyze the biomarkers chosen by DC-SIS-Network for the
dataset GSE71729 as pancreatic ductal adenocarcinoma remains a lethal disease
with a 5-year survival of 4% [Moffitt et al. (2015)]. The details of the top 100 genes



NETWORK-BASED FEATURE SCREENING 1265

FIG. 1. The subnetworks of the top 100 genes identified by DC-SIS-Network for dataset GSE71729.
Nodes represent human genes, and they are connected by a link if they belong to the PPI network.
Each gene is labeled by its gene symbol. The genes that are not connected with any other top 100
genes are not displayed. The top 10 genes selected by DC-SIS-Network are highlighted in bold, but
the 4th gene MAPK6 is not shown since it is not connected with any other top 100 genes.

chosen by DC-SIS-Network are presented in Table S.35 of the Supplementary ma-
terials [Wu, Zhu and Feng (2018)], and the degrees of these genes and their ranks
provided by DC-SIS are also reported. The top 10 genes identified by DC-SIS
are highlighted in bold. It is shown that most of the active predictors with strong
marginal effects can still be selected by the network-based screening procedure.

Figure 1 shows the subnetwork structures of these top 100 genes, where the
genes that are not connected with any other top 100 genes are not displayed. The
top 10 genes selected by DC-SIS-Network are marked in bold in Figure 1, where
the 4th gene MAPK6 is omitted since it is not connected with any other top 100
genes. The results indicate that those biomarkers (e.g., GRB2, CREB3, UBQLN4,
ATXN1 and TK1) identified by DC-SIS-Network often play important roles in the
gene network, which are often overlooked by DC-SIS, and they interact with some
discriminative or even non-discriminative genes to form a collective biological
function.

In addition, we conduct enrichment analysis to examine the functional and bio-
logical relationships of the selected genes based on the KEGG pathway, which is
implemented using DAVID 6.8 [Huang, Sherman and Lempicki (2009a, 2009b)].
The pathway enrichment analysis is used for the identification of pathways that
are significantly over-represented in a given gene set, which may suggest possible
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functional characteristics of the given set. The pathways shared by the considered
gene set are compared to the background distribution. Specifically, a p-value of
a certain pathway is calculated using the hypergeometric distribution, given the
proportion of genes in the whole genome that are annotated to that pathway. The
pathway with smaller p-value is more significantly associated with the group of
genes. There are 34 out of the top 100 genes involved in the 27 pathways with the
p-values less than 0.05, while only 13 out of the top 100 genes detected by DC-
SIS have significantly p-values with seven pathways. We summarize the results
of the KEGG pathway terms in Table S.36 of the Supplementary materials [Wu,
Zhu and Feng (2018)], where the pathways that are also significant for DC-SIS
are highlighted in bold. For example, the pathway Pancreatic cancer is identified
by DC-SIS-Network with p-value 6.41 × 10−5, while it is not significant for DC-
SIS. This pathway includes some genes that process the normal duct epithelium
to pancreatic ductal adenocarcinoma in different stages, such as p53 and SMAD4
[Hruban et al. (2000)]. Transforming growth factor TGF-beta signaling pathway
(p-value: 2.18 × 10−4) has been shown to act both as a tumor suppressor and as
a tumor promoter in pancreatic cancer [Javle et al. (2014)], depending on tumor
stage and cellular context, which can be utilized in targeted therapy clinical tri-
als of pancreatic cancer. Many detected pathways based on DC-SIS-network are
also found to be related with pancreatic cancer by other studies, such as Adherens
junction (p-value: 9.81 × 10−5) and MAPK signaling pathway (p-value: 0.0262)
[Campagna et al. (2008)]. The KEGG pathway analysis imply that the proposed
network-based feature screening tends to select the genes in the same pathway as a
whole, which is very meaningful since the complex diseases are multifactorial bi-
ological events manifested through simultaneous changes in expressions of many
genes and proteins.

Furthermore, the disease-gene association is analyzed based on the Genetic
Association Database (GAD) by DAVID 6.8 [Huang, Sherman and Lempicki
(2009a, 2009b)], where the p-value of these top 100 genes identified by DC-
SIS-Network is 0.034 for the pancreatic adenocarcinoma. However, the similar
disease-gene association analysis for those top 100 genes selected by DC-SIS in-
dicates that these genes do not have a significant association with the pancreatic
adenocarcinoma. Most of biomarkers selected by the proposed procedure are con-
sidered to have diagnostic values for the pancreatic adenocarcinoma in the existing
literature. For example, GRB2 (the rank based on DC-SIS is 8253) was coimmuno-
precipitated with EGFR after EGF stimulation, and the expression of EGFR and
its ligand on pancreatic adenocarcinoma have been shown to be associated with
tumor aggressiveness [Huang et al. (2003)]. MDFI (the rank based on DC-SIS is
4684) is a tumor suppressor gene that has been found to be epigenetically modi-
fied in pancreatic adenocarcinoma [Jagirdar et al. (2013)]. In addition, mutations
of the TGFBR1 (the rank based on DC-SIS is 3234) are found in some of patients
with pancreatic adenocarcinoma [Wong and Lemoine (2009)]. SMAD4 (the rank
based on DC-SIS is 8993) is genetically inactivated in about 55% of all pancreatic
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adenocarcinomas, which is shown to influence the prognosis after surgical resec-
tion for invasive pancreatic adenocarcinoma [Tascilar et al. (2001)]. TP53 gene
(the rank based on DC-SIS is 5754) is mutated in 75% of sporadic pancreatic
adenocarcinomas and is regarded as a potential molecular marker of pancreatic
adenocarcinomas [Brune et al. (2008)].

5. Discussion. Gene networks are consistently developed with gradual under-
standing of complex relationships among genes. In previous studies, it is common
to identify biomarkers by measuring the marginal correlation between each pre-
dictor (gene) and a response variable (disease or survival time), and the network
information on these predictors are usually ignored. This often brings up some
confusing screening or variable selection results in similar biological studies. By
incorporating the gene network information, we are able to make use of prior
knowledge on gene relationships, and use the network-based correlation measures
to select important groups of genes. In practice, the computation of the network-
based measures is effective even for large-scale datasets, which can not only lead
to good response prediction but also provide stable biomarker selection.

Further biomarker analysis of the dataset GSE71729 indicates that the proposed
method tends to choose those genes in the same pathway as a whole, which have
been shown active in the development of the pancreatic adenocarcinoma in some
biological studies. As the network information is available, we advocate using the
network-based screening approaches so that we can capture more complicated in-
teractions between genes since the development of one disease is usually derived
from a complex biological process and it is not controlled by some genes individ-
ually.

This study can be potentially extended in multiple aspects. First, we have fo-
cused on data with a discrete or continuous response variable without censoring.
Since the research on prognosis outcomes with censoring survival time is also
very important, the incompletely observed data should be taken into account in the
development of network-based screening methods. Second, a undirected network
has been adopted for its lucid interpretation and widespread existence. With minor
modifications, the proposed approach can be extended to account for weighted or
directed networks.

APPENDIX

A.1. Proof of Theorem 1.

‖v1 − v2‖∞ = (1 − d)
∥∥(

I − dWT )−1
(c1 − c2)

∥∥∞
≤ (1 − d)

∥∥(
I − dWT )−1∥∥∞‖c1 − c2‖∞

= ‖c1 − c2‖∞.

The last equality follows from (2.5).
Moreover, it follows from (2.6) that all the elements of vectors v1 and v2 are

nonnegative.
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A.2. The histogram of node degrees.

FIG. A.1. The histogram of degrees of the variables in the simulated network A. (a) Pow-law
distribution, the maximum degree is 271; (b) Exponential distribution, the maximum degree is 29.

A.3. Some additional numerical studies. We also consider the following
models for generating continuous data in our simulation study:

(III) linear model (model III): Y = XT β + ε,
(IV) exponential model (model IV): Y = exp(XT β/2) + ε,

where ε ∼ N(0, σ 2) with σ 2 = βT β/rσ . The prior network and predictor X are
generated in the same manner as Section 3. A linear model is adopted for determin-
ing the final model size to obtain the values of TPR and FPR. Different from AUC
for the discrete response. The results with different network structures, signal-
noise-ratios and correlation matrices are reported in the Supplementary materials
[Wu, Zhu and Feng (2018)].

SUPPLEMENTARY MATERIAL

Some additional tables (DOI: 10.1214/17-AOAS1097SUPP; .pdf). The Sup-
plementary Materials includes some additional simulation results with differ-
ent network structures, signal-noise-ratios and types of responses, the top 100
biomarkers for the dataset GSE71729 identified by DC-SIS-Network and the cor-
responding KEGG pathway analysis results.
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