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The continued efforts to evaluate biomarkers’ predictive abilities and
identify optimal biomarker combinations are often challenged by the absence
of a gold standard, that is, the true disease status. Current methods that ad-
dress this issue are mostly developed for binary or ordinal diagnostic tests,
which do not fully utilize information provided by continuous biomarkers,
or require strong parametric assumptions. Moreover, limited methods exist to
allow for the inclusion of covariates—despite their crucial role in facilitat-
ing the accurate evaluation of biomarkers. In this paper, we proposed a latent
profile approach to evaluating diagnostic accuracy of biomarkers without a
gold standard. The method allows for flexible biomarker distributions and in-
corporation of previous knowledge about risk factors while simultaneously
permitting researchers to model paticipants’ characteristics that putatively af-
fect biomarker levels, and therefore provides information needed to develop
more personalized diagnostic procedures. Additionally, the proposed method
presents a potential strategy for biomarker combination when gold standard
information is unavailable, as it derives a composite risk score for the un-
derlying disease status. The method is applied to evaluate different cerebral
spinal fluid (CSF) biomarkers for Alzheimer’s disease (AD) detection. The
results show that CSF biomarkers hold significant potential for facilitating
early AD detection and for continuous disease monitoring. Furthermore, they
call attention to biomarker variability in subgroups and reexamination of CSF
biomarker distributions. Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

1. Introduction. In recent years, advances in biomarker discovery have re-
energized the field of diagnostic medicine, as researchers continuously strive to
obtain more convenient, economical, accurate, and/or timely diagnoses, by adding
or combining various biomarkers to create novel diagnostic procedures. If one
considers these biomarkers for use in creating diagnostic tests, traditional methods
for diagnostic testing provide a means of evaluation. Challenges arise when true
disease status, commonly referred to as the gold standard, is not available due to
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cost constraints, ethics issue, or a lack of necessary biotechnology. In traditional
diagnostic test setting, many methodologies have been proposed to address this
issue [van Smeden et al. (2013), Collins and Huynh (2014)]. For example, Zhou,
Castelluccio and Zhou (2005) proposed a nonparametric approach to evaluating
ordinal tests without a gold standard, which generalized the first model introduced
by Hui and Walter (1980). Qu, Tan and Kutner (1996) and Albert, McShane and
Shih (2001) introduced random effects to allow for dependence structure among
the tests. Several authors explored a Bayesian approach [Branscum et al. (2008),
Branscum et al. (2015), Wu et al. (2016)]. Wang, Zhou and Wang (2011), Wang
and Zhou (2012), discussed the evaluation when the gold standard is ordinal to
capture additional severity or subtype information. Different longitudinal models
were proposed for repeated test measurements [Cook, Ng and Meade (2000), Jones
et al. (2012)].

There are three major issues when applying these methods to biomarker eval-
uation. First, these methods were developed for binary or ordinal tests, yet most
biomarkers are continuous. Categorizing biomarkers can result in a loss of impor-
tant information. In fact, Albert and Dodd (2004) showed that different models
can become indistinguishable when only a small number of binary tests are used.
Moreover, many biomarkers lack an established threshold for use in delineating
clinically meaningful categories. Current methods for continuous tests without a
gold standard usually require strong parametric assumptions, such as multivari-
ate normality. Second, existing work rarely discusses the inclusion of covariates.
Some exceptions can be found in Bandeen-Roche et al. (1997), Branscum et al.
(2008), and Pfeiffer et al. (2008), where researchers included covariates to allow
for a varying prevalence. However, covariates can affect accuracy of the assess-
ments in at least one other way: they may influence the magnitude and accuracy
of test results in different subgroups. These effects are prevalent among biomarker
studies, as most biomarkers values can be highly sensitive to the protocol and as-
say applied, as well as other inter-individual differences such as age and gender.
A pooled analysis ignoring covariates can therefore lead to biased accuracy esti-
mates [Pepe (2003), Janes and Pepe (2009)]. Inclusion of covariates that affect test
results also allows researchers to relax the conditional independence assumption.
In fact, this approach is generally preferred in biomarker evaluations, as compared
with a random effects approach. This is due to the potential for covariates to ex-
plain, more explicitly, the mechanism by which dependence occurs, and to show
how biomarker levels vary with covariates, as well as how their diagnostic perfor-
mance differs among subpopulations—all are crucial issues in biomarker evalua-
tions. However, due to computational difficulty and identifiability issues, only a
limited body of work exists [Branscum et al. (2015), Huang and Bandeen-Roche
(2004)], and the methods are restricted to a single biomarker with covariate ef-
fect only in the disease group, or including only a small number of categorical
covariates, or to impose modeling constraints, such as assuming constant covariate
effect across disease groups. Third, biomarker studies usually have slightly dif-
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ferent foci than traditional diagnostic testing studies: In addition to assessing test
accuracy, biomarker studies often aim to propose novel biomarkers to combine
with, rather than to replace, current markers. Nevertheless, biomarker variation
across subgroups introduces another key question regarding how to synthesize the
information to achieve more personalized diagnoses.

Our research is motivated by such questions in AD biomarker studies. A definite
diagnosis of AD needs a neuropathological brain autopsy, which requires proper
medical resources and can only be conducted after a patient has died and pro-
vided consent. Moreover, AD-related pathophysiological changes are believed to
begin 10 years or more before any detectable clinical symptom, and decades before
sufficient cognitive impairment accrues to warrant a clinical diagnosis of AD—
an event that usually occurs five to 30 years before a patient’s death [Jack et al.
(2010)]. Therefore, all other difficulties aside, merely having sufficient follow-
up data to make a potential gold standard diagnosis is challenging. On the other
hand, this long time-gap provides an opportunity for early diagnosis and interven-
tion. Guided by the amyloid hypothesis [Selkoe (1991)], researchers seek to use
biomarkers to detect preclinical AD patients before extensive neuron damage and
synaptic loss occurs. Additionally, biomarker information can be useful for moni-
toring AD progression, as well as for evaluating new AD treatments and recruiting
specific subsets of patients for inclusion in AD clinical trials. Existing studies of-
ten rely on clinical AD diagnoses as the gold standard in their evaluations, due to
inadequate levels of follow-up data. Additionally, existing knowledge about risk
factors and covariates that affect biomarker level is often ignored. In this paper, we
propose a latent profile approach to simultaneously handling the above issues. The
approach further provides a risk score based on multiple biomarkers, risk factors,
and subjects’ characteristics, and therefore provides the opportunity for a more
personalized diagnosis.

2. Model. Let D denote the unobserved true disease status. For binary dis-
ease status, D = 1 indicates disease and D = 0 nondisease. For ordinal disease
status, D = 0, . . . ,L − 1 denotes level of severity, with higher value of D indi-
cating more severe status. Let �T = (T1, . . . , TK) denote K continuous biomark-
ers. We assume that for all biomarkers, a higher value is more indicative of a
more severe status. A latent profile model (or a finite mixture model with con-
tinuous component distributions) [Lazarsfeld and Henry (1968)] without covari-
ates is f (�t) = ∑L−1

d=0 πdγ d(�t), where �t = (t1, . . . , tK), πd = P(D = d), which
is usually referred to as the latent structure part, and the conditional density
γ d(�t) = P( �T = �t | D = d), which is usually referred to as the measurement
part. The conditional independence assumption among the biomarkers within each
severity group is commonly adopted to simplify the joint measurement model
γ d(�t) as its univariate products

∏K
k=1 γdk(tk). When this assumption does not hold,

a random effect approach can be used to account for the dependence [Qu, Tan and
Kutner (1996), Albert, McShane and Shih (2001)].
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To extend this model to incorporate covariate information, let X = (X1, . . . ,Xq)

denote the covariates that may affect biomarker values within each severity group
and Z = (Z1, . . . ,Zp) denote the covariates related to disease prevalence. The
elements in X and Z can be overlapping or mutually exclusive. We assume that
the biomarker values are conditionally independent, given the true disease status
D and the covariates X. In other words, we assume that the possible dependence
among biomarker values within each disease severity group can be explained by
covariates X, such as some subjects’ characteristics. Under this assumption, the
latent profile model with covariates is given as follows:

(2.1) f (�t | X,Z) =
L−1∑
d=0

[
πd(Z)

K∏
k=1

γdk(tk | X)

]
,

where πd(Z) = P(D = d | Z) and γdk(tk | X) = P(Tk = tk | D = d,X).
A natural way to model the varying prevalence πd(Z) = P(D = d | Z) is to

use polytomous regression. Specifically, let η(�zT
i αd) = P(Di = d | �Zi = �z) as in

a generalized linear model, subject to normalizing conditions
∑L−1

d=0 η(�zT
i αd) = 1,

∀�zi ∈ X , where i = 1, . . . ,N is the subject ID and X denotes the covariate space.
The model for the latent structure part is

η
(�zT

i αd

) = exp(�zT
i αd)

1 + ∑L−1
l=1 exp(�zT

i αl)
,

log
η(�zT

i αd)

η(�zT
i α0)

= �zT
i αd, d = 1, . . . ,L − 1,

where D = 0 is the baseline group with parameters α0 = (α00, . . . , α0p) =
(0, . . . ,0).

A transformation regression to describe the measurement part Tk | D,X is de-
fined as

Hk(Tik;λk) = �XT
i βkd + εik, εik

i.i.d.∼ G(·;νk),

where G(·;νk) is a distribution function with parameter νk , Hk(·;λk) is a pre-
specified monotonic function with parameter λk . When the error distribution is as-
sumed normal, the transformation accounts for possible skewness of the biomarker
values within each severity group.

Then, the latent profile model with covariates is given as follows:

(2.2) f (�t | X,Z) =
L−1∑
d=0

{
πd(Z)

K∏
k=1

[
J (tk;λk)γ̃dk

(
Hk(tk;λk) | X

)]}
,

where J (tk;λk) = ∂Hk(tk;λk)/∂tk is the Jacobian of transformation Hk(·;λk),
and γ̃dk(Hk(tk;λk) | X) = P(Hk(tk;λk) | D = d,X) = g(Hk(tk;λk) − XT βkd;νk)

with g(·;νk) denoting the corresponding density function of G(·;νk).
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The advantage of this model is that it allows for a varying disease prevalence
based on risk factors and simultaneous inclusion of differential covariates that af-
fect biomarker values. Currently, such models are limited and often require con-
stant covariate effects to ensure model identifiability [Huang and Bandeen-Roche
(2004)]. In contrast, we allow covariate effect βkd to depend on both biomarker
index k and disease status d , that is, covariates can have differential effects among
biomarkers and among disease groups.

To better understand this improvement, we consider an example when D is bi-
nary. The covariate-specific receiver operating characteristic (ROC) curve based on
the measurement model is ROCk(t, �X) = 1−G1(G

−1
0 (1− t)+ �XT βk0 − �XT βk1).

If covariate effects are assumed to be the same for every disease group with only
intercept terms differing, that is, βkd = {βkd0, βk1, . . . , βkq}, the ROC curve no
longer depends on covariates. In other words, when D is binary, assuming a con-
stant covariate effect across disease groups is equivalent to assuming that the
covariate-specific ROC curves are the same as the marginal ROC curves, which
is rarely the case in practice. A similar conclusion can be made about generalized
disease status, D. Justification for model identifiability with this flexible structure
is provided in Section 4.

3. Estimation.

3.1. An EM algorithm. The maximum likelihood estimates of parameters
θ = {αd,βkd, λk, νk | d = 0, . . . ,L − 1 and k = 1, . . . ,K} in model (2.2) can be
obtained by directly maximizing the observed data likelihood function, or by con-
sidering the true disease status as missing and applying the EM algorithm to the
complete data likelihood function below:

lc(θ) =
N∑

i=1

L−1∑
d=0

Id(Di) logπd( �Zi) +
N∑

i=1

K∑
k=1

logJ (tik;λk)

+
N∑

i=1

L−1∑
d=0

K∑
k=1

Id(Di) log γ̃dk

(
t
(λk)
k | X

)
,

where Id(Di) is an indicator function. It equals 1 if Di = d and equals 0 otherwise.
Details of the EM algorithm can be found in Appendix A. In particular, the

maximization in the M step can be broken down into two disjoint parts to simplify
the computation, one for αd and the other for λk , βkd and νk . In addition, these
two maximizations can be rewritten as a maximization of a weighted polytomous
regression likelihood and a maximization of a weighted transformation regression
likelihood. As a result, computational routine in a standard statistical package can
be adopted.

As mentioned before, the proposed model does not require constraints on the
covariate effects across disease groups. However, if such constraints are desired
based on scientific knowledge, we discussed an easy way to incorporate them in
the design matrix without having to do a constrained maximization.
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3.2. Biomarker accuracy and combination. After obtaining parameter esti-
mates of the model, accuracy measures of each biomarker can be easily derived.
For example, sensitivity, specificity, and the covariate-specific ROC curve can be
calculated based on P(Tk | D,X). Positive predictive value, negative predictive
value, and other measures can be obtained with additional quantity P(d). Fur-
thermore, the model based risk P(Di | �Ti, �Xi, �Zi, θ), obtained by applying Bayes’
Formula to P(Tk | D,X) and P(d), provides a potential way for biomarker com-
bination to improve accuracy. This risk score not only summarizes diagnostic in-
formation from multiple biomarkers when a gold standard is not available, but also
takes into consideration risk factors and subjects’ characteristics, hence offering a
more personalized diagnosis. However, if one wishes to evaluate the accuracy per-
formance of the combination rule, one needs to have an independent test sample.

3.3. Computational issues.

3.3.1. Initial parameter values. A wide choice of initial values are often
needed for latent profile models because the likelihood functions usually have mul-
tiple local maxima [McLachlan and Peel (2004)]. Accordingly, the following two
methods are used in our computation.

Initial values by clustering: Perform a crude clustering on the biomarker val-
ues ignoring covariates (e.g., K-means clustering). Label the resulting clusters
such that higher values of D corresponds to clusters with higher biomarker val-
ues. Initial values are then obtained by polytomous regression of label D on Z and
transformation regression of �T on X and D.

Random starting values: If prior information on disease severity group is avail-
able, the prevalence is generated accordingly. Otherwise, randomly generate L−1
numbers a1, . . . , aL−1 from the standard uniform distribution U(0,1). Set the
prevalence as �p = {a1, a2 −a1, . . . , aL−1 −aL−2,1−aL−1} and generate a disease
label for each subject from a multinomial distribution with probabilities �p. Then
the initial values are obtained as previously described.

3.3.2. Scaling the biomarker values. Scaling Tk by the nth root of the Jaco-
bian determinant detJ of transformation Hk can often make computation more
stable, especially when Tk’s have very different ranges or shapes. For exam-
ple, when the Box–Cox transformation [Box and Cox (1964)] is used, the scal-
ing is Zk = T

(λk)
k /(detJ )1/n, where (detJ )1/n = exp[(∑N

i=1(λk − 1) logTik)/n],
k = 1, . . . ,K . Other than numerical stability, this scaling also makes the Jacobian
term in equation (A.3) disappear:

∑N
i=1

∑K
k=1 logJ (tik;λ(t)

k ) = ∑N
i=1

∑K
k=1(λ

(t)
k −

1) log 1 = 0.

3.3.3. Spurious local maximizers. If the error distribution in the measurement
model is allowed to be heteroscedastic among disease groups, that is, Hk(Tik) =
�XT

i βkd + εikd, εikd
i.i.d.∼ N(0, σ 2

kd), a relatively large local maximum can occur as
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a consequence of fitting a disease group having only a few and very close obser-
vations (therefore the variance in the denominator of the likelihood function be-
comes very small). The resulting parameter estimates are usually called spurious
local maximizers. This problem is due to the fact that the likelihood function for a
heteroscedastic mixture model can be unbounded [Lehmann and Casella (1998)].

When the likelihood is unbounded, the maximum likelihood estimates do not
exist as a global maximizer. This does not invalidate our method, because maxi-
mizing the likelihood function is not our goal; rather, it is to find estimates that are
consistent. In this situation, there still exists a sequence of roots of the likelihood
function corresponding to local maxima for our model, and they are consistent,
efficient, and asymptotically normal. Further discussion can be found in Redner
and Walker (1984), Cheng and Traylor (1995). As a result, consistent estimates
can still be obtained via an EM algorithm. We obtain the maximizers of l2 by find-
ing the roots of its derivative l′2 instead of direct maximization to avoid diverging
to the unbounded area. After reaching convergence, one needs to examine the rel-
ative size or the variance of the fitted components to exclude possible spurious
local maximizers. This can also be handled by imposing constraints in the max-
imization, such as requiring that for each given k, σkd/

∑D
h=0 σkh ≤ R/(D + 1),

∀d = 0, . . . ,L − 1, where R is a pre-specified positive constant that restricts the
relative size of the component variances. We did not use the constraint approach
because: (1) in diagnostic settings spurious local maximizers can be easily identi-
fied with very minimal information about prevalence; (2) unconstrained maximiza-
tion is easier and faster than constrained ones; and (3) it can be useful to examine
all results because sometimes a fit with dissimilar components is not a spurious
solution.

4. Model identifiability. Due to an inherent “label switching” problem (the
distribution remains identical if the labels of the latent groups are switched) and
that the likelihood functions of these models usually have multiple local max-
ima, research on latent variable model identifiability has mainly focused on local
identifiability, which considers whether the likelihood can uniquely determine a
set of parameter values in its neighborhood. Specifically, a model is a function
p = f (θ) that maps points in the parameter space into the data space. The model
is locally identifiable at θ0 ∈ � if there exists some neighborhood Uθ0 of θ , such
that f (θ) �= f (θ0), ∀θ ∈ Uθ0 \ {θ0}. This suggests that F is locally invertable in
Uθ0 . By the weak inversion theorem, this is equivalent to the Jacobian matrix J (θ0)

having full column rank.
For latent class models, McHugh (1956) proposed sufficient conditions for local

identifiability of models with dichotomous observed variables. Goodman (1974)
extended these conditions to polytomous variables. Here we borrow these results
to obtain identifiability conditions for models with covariates.

The link function η(·) in the structure model and transformation Hk(·;λ) are
both monotonic functions and thus do not affect model identifiability. Therefore,
without loss of generality, we assume that they are both the identity function.
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Model (2.1) can then be rewritten as follows:

(4.1) f ( �T = �t | X,Z) =
L−1∑
d=0

[
πd(Z)

K∏
k=1

Jk∏
j=1

γdkj (tk | X)I [tk=j ]
]
,

with πd(Z) = Zαd and γdkj (tk | X) = Xβkdj .
Let {d = ∂f /∂πd | d = 1, . . . ,L − 1} and {�dkj = ∂f /∂γdkj | d = 0, . . . ,L −

1;k = 1, . . .K; j = 1, . . . , Jk} be the column vectors of the Jacobian matrix J

of the corresponding latent class model without covariates. Explicit expressions
of these vectors are not necessary for the following derivation, but can be found
in Wang, 2013, Wang and Zhou, 2014. When covariates are included, by the
chain rule, we have ∂f /∂αd = ∂f /∂πd × ∂πd/∂αd and ∂f /∂βdkj = ∂f /∂γdkj ×
∂γdkj /∂βdkj . Therefore the column vectors of the Jacobian matrix of model (4.1)
is

Ad =

⎛
⎜⎜⎝

d( �X1)π
′
d( �Z1αd) �Z1
...

d( �XN)π ′
d( �Z1αd) �ZN

⎞
⎟⎟⎠ ,

Bkjd =

⎛
⎜⎜⎝

�kjd( �X1, �Z1)g
′
kjd( �X1βkjd) �X1
...

�kjd( �XN, �ZN)g′
kjd( �X1βkjd) �XN

⎞
⎟⎟⎠ ,

where Ad is a N [(∏K
k=1 Jk) − 1] by p matrix and Bkjd is a N × ((

∏K
k=1 Jk) − 1)

by q matrix, d = 0, . . . ,L − 1, k = 1, . . .K , j = 1, . . . , Jk .
Therefore, the Jacobian matrix J ∗ of model (4.1), has a similar pattern as the Ja-

cobian matrix J of the corresponding latent class model without covariates, but has
N times as many rows as J . By applying condition (20-21) in Goodman (1974),
we have the following theorem:

THEOREM 1. Model (2.1) is locally identifiable at parameter θ = {αd,βkjd |
d = 0, . . . ,L − 1;k = 1, . . .K; j = 1, . . . , Jk} if the following conditions hold:

(i) N [(∏K
k=1 Jk) − 1] ≥ q × L[∑K

k=1(Jk − 1)] + p(L − 1);
(ii) P( �T = �t | Xi ,Zi) > 0, ∀ �T ;

(iii) column vectors in matrices {d(X0) | d = 1, . . . ,L − 1}, {�kjd(X0,Z0) |
d = 0, . . . ,L−1;k = 1, . . .K; j = 1, . . . , Jk} all together are linearly independent
for some X0 ∈ {X1, . . . ,XN } and Z0 ∈ {Z1, . . . ,ZN }; and

(iv) design matrix X and Z both have full rank.

The first condition simply requires that the degrees of freedom in the data is
greater than the number of free parameters in the model, a necessary condition for
model identifiability. The second condition means that all biomarker values in the
domain are potentially observable. Conditions (iii) and (iv) guarantee that column



1212 Z. WANG AND X.-H. ZHOU

vectors Ad and Bkjd are linearly independent, which means the model Jacobian
matrices J ∗ has full column rank. Therefore, the model is locally invertable at θ0.

5. Simulation studies.

5.1. Regular settings. This section assessed model performance under var-
ious correctly specified settings. In all simulations, we chose three biomarkers
(K = 3) and three disease categories (L = 3). In the latent structure model,
we assumed that a binary variable, Z ∼ Bernulli(0.5), affected the disease
prevalence P(Di = d | Zi = z) = η(αd0 + αd1z), d = 1,2. We chose α =
(α10, α11, α20, α21) = (−0.5,1,−1,1.5). This parameter value resulted in preva-
lence �p ≈ (0.51,0.31,0.19) among subjects with Z = 0 and �p ≈ (0.23,0.38,0.38)

among subjects with Z = 1, where �p = (P (D = 0 | Z),P (D = 1 | Z),P (D = 2 |
Z)). As a result, subjects with Z = 0 were the most healthy, with about 20% hav-
ing severe conditions, whereas risk factor Z = 1 leads to more subjects having
mild or severe conditions.

We used the Box–Cox and the Yeo–Johnson transformations for Hk(·;λk). We
assumed that a normally distributed variable, X ∼ N(0,1), affected the biomarker
performance via regression model Hk(Tik) = β̃kd0 + β̃kd1Xi + εik , d = 0,1,2,
with λ = 1,0.5 or 0. This can be reparameterized as Hk(Tik) = βk0 + βk1Xi +
βk2I1(Di) + βk3I2(Di) + βk4XiI1(Di) + βk5XiI2(Di) + εik , k = 1, . . . ,K . Error
distributions were generated as εik ∼ N(0,0.52) for all biomarkers. Two sets of
coefficient values were used: βk = (5,−1,1,2.5,0.5,1.5) representing biomark-
ers with good discriminating ability, and βk = (5,−1,0.5,1,0.5,1.5) representing
biomarkers with fair discriminating ability. For the first scenario, the covariate-
specific AUC for discriminating D = 0 versus D = 1 is �(

βk2+βk4X
σk

) = �(2 + X)

(� denotes the standard normal cumulate distribution function) with an aver-
age value of the covariate-specific AUC in this population being �(

βk2√
σ 2

k +β2
k4

) =
�[(0.52 + 0.52)−1/2] ≈ 0.92. The covariate-specific AUC for discriminating D =
1 versus D = 2 is �(3 + 2X), with an average value in this population being
�[1.5(1 + 0.52)−1/2] ≈ 0.91. Similarly, for the second scenario, the covariate-
specific AUC for discriminating D = 0 versus D = 1 is �(1 + X), with the aver-
age value in this population being �[0.5(0.52 + 0.52)−1/2] ≈ 0.76. The covariate-
specific AUC for discriminating D = 1 versus D = 2 is �(1 + 2X), with the aver-
age value in this population being �[0.5(0.52 + 12)−1/2] ≈ 0.67.

Simulation results for biomarkers that have good or fair diagnostic perfor-
mances with the Box–Cox transformation were shown in Table 1 and Table 2.
Results for the Yeo–Johnson transformation are similar (not shown). In each sce-
nario, we considered sample sizes N = 500 and N = 800. All results were based
on 1000 simulation replicates.

These results suggest that the proposed method converged to the true param-
eter values. In the current settings, parameters λk and αd can be well estimated
with a sample size of 500. Increasing the sample size to 800 did not change the
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TABLE 1
Mean and standard error (in parentheses) estimates based on 1000 simulations for biomarkers with

good performance

N = 500

α10 = −0.5 α11 = 1 α20 = −1 α21 = 1.5

−0.498 (0.18) 1.005 (0.26) −1.007 (0.19) 1.513 (0.26)

βk0 = 5 βk1 = −1 βk2 = 1 βk3 = 2.5 βk4 = 0.5 βk5 = 1.5

k = 1 5.131 (0.89) −1.044 (0.27) 1.052 (0.29) 2.644 (0.77) 0.515 (0.14) 1.573 (0.44)
k = 2 5.080 (0.72) −1.030 (0.23) 1.035 (0.25) 2.600 (0.67) 0.510 (0.12) 1.553 (0.38)
k = 3 5.020 (0.30) −1.008 (0.11) 1.014 (0.14) 2.539 (0.36) 0.501 (0.09) 1.516 (0.21)

λ1 = 1 λ2 = 0.5 λ3 = 0 σ1 = 0.5 σ2 = 0.5 σ3 = 0.5

1.007 (0.15) 0.503 (0.09) 0.001 (0.02) 0.522 (0.15) 0.513 (0.13) 0.502 (0.07)

N = 800

α10 = −0.5 α11 = 1 α20 = −1 α21 = 1.5

−0.502 (0.14) 1.006 (0.20) −0.998 (0.15) 1.501 (0.20)

βk0 = 5 βk1 = −1 βk2 = 1 βk3 = 2.5 βk4 = 0.5 βk5 = 1.5

k = 1 5.064 (0.70) −1.023 (0.21) 1.026 (0.23) 2.571 (0.59) 0.508 (0.11) 1.540 (0.34)
k = 2 5.022 (0.53) −1.009 (0.17) 1.014 (0.18) 2.540 (0.49) 0.503 (0.09) 1.516 (0.28)
k = 3 5.019 (0.24) −1.007 (0.09) 1.008 (0.11) 2.527 (0.28) 0.502 (0.07) 1.515 (0.16)

λ1 = 1 λ2 = 0.5 λ3 = 0 σ1 = 0.5 σ2 = 0.5 σ3 = 0.5

1.001 (0.12) 0.499 (0.07) 0.001 (0.02) 0.511 (0.12) 0.504 (0.10) 0.502 (0.06)

results much. On the other hand, bias in the estimates for βkd decreased when the
sample size increased. This is because, in our model, βkd was assumed to differ
across biomarkers and disease groups. The effective sample size for estimating
βkd was less than that for estimating λk and αd . In addition, the biases for βkd

and σk are smaller with smaller λk . Comparing these two tables, the strength of
biomarkers’ diagnostic ability seem to reduce the bias and standard error of the
estimates. Note that bias and standard error appears to be smaller for βk2 and βk3
in Table 2 as compared to Table 1 because the magnitude of the true parameter
values are different between these two tables (in order to have biomarkers with
different discriminating ability).

In the simulations reported in Table 1 and Table 2, although we used the same
parameters to generate biomarker results for all three biomarkers, we allowed βkd
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TABLE 2
Mean and standard error (in parentheses) estimates based on 1000 simulations for biomarkers with

fair performance

N = 500

α10 = −0.5 α11 = 1 α20 = −1 α21 = 1.5

−0.505 (0.25) 1.008 (0.35) −1.002 (0.22) 1.513 (0.30)

βk0 = 5 βk1 = −1 βk2 = 0.5 βk3 = 1 βk4 = 0.5 βk5 = 1.5

k = 1 5.136 (1.08) −1.051 (0.33) 0.527 (0.19) 1.055 (0.34) 0.520 (0.18) 1.580 (0.51)
k = 2 5.084 (0.89) −1.036 (0.29) 0.513 (0.16) 1.039 (0.29) 0.519 (0.16) 1.556 (0.45)
k = 3 5.025 (0.41) −1.011 (0.16) 0.510 (0.11) 1.020 (0.17) 0.502 (0.11) 1.518 (0.25)

λ1 = 1 λ2 = 0.5 λ3 = 0 σ1 = 0.5 σ2 = 0.5 σ3 = 0.5

1.001 (0.18) 0.499 (0.11) 0.000 (0.03) 0.521 (0.17) 0.513 (0.15) 0.502 (0.09)

N = 800

α10 = −0.5 α11 = 1 α20 = −1 α21 = 1.5

−0.499 (0.19) 1.006 (0.27) −0.999 (0.17) 1.502 (0.23)

βk0 = 5 βk1 = −1 βk2 = 0.5 βk3 = 1 βk4 = 0.5 βk5 = 1.5

k = 1 5.082 (0.86) −1.030 (0.26) 0.517 (0.14) 1.035 (0.27) 0.512 (0.14) 1.548 (0.40)
k = 2 5.025 (0.65) −1.012 (0.21) 0.508 (0.11) 1.016 (0.21) 0.506 (0.12) 1.521 (0.33)
k = 3 5.023 (0.32) −1.001 (0.12) 0.507 (0.09) 1.010 (0.13) 0.502 (0.08) 1.518 (0.20)

λ1 = 1 λ2 = 0.5 λ3 = 0 σ1 = 0.5 σ2 = 0.5 σ3 = 0.5

1.000 (0.14) 0.497 (0.08) 0.001 (0.02) 0.514 (0.14) 0.504 (0.11) 0.503 (0.07)

to be different in the estimations. Therefore, the results displayed here represent
the model’s performance when biomarkers had different diagnostic accuracy. The
same parameters βkd in the data generation were used for the sake of clarity in the
presentation, and to help examine the possible effects of different transformations
on the estimates. As a reference, Table 6 in Appendix B shows the results with one
good biomarker and two fair biomarkers.

5.2. Model misspecfications. This section investigates the model performance
under two types of misspecified situations: deviations from the conditional inde-
pendence assumption and inclusion of noninformative biomarkers.

For deviations from the conditional independence assumption, we used the same
parameter specifications as Table 2 in the previous section, but adopted a mul-
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tivariate error term to induce additional correlations among the biomarkers. We
considered positive or negative correlation between two of the biomarkers, as well
as among all three biomarkers, after adjusting for all covariates. Results on mean
bias and mean square error (MSE) were summarized in the top portion of Table 3.
To keep the results concise, we only present the results regarding AUC values for
distinguishing disease level 1 versus disease level 0, denoted by AUC1 vs. 0. Results
for AUC2 vs. 1 are similar.

These results suggest that, residual correlations can lead to biased AUC esti-
mates and the biases are not diminishing, even with increased sample size. On the
other hand, magnitude of the biases is minimal, for example, even for correlation
0.8, the average bias in AUC estimates are less than 8%, suggesting the proposed
model has adequate robustness with respect to this type of violation.

We also investigated the effect of including noninformative biomarkers in the
model. The results are shown in Table 3. We found that including noninformative
biomarkers can lead to biased results and higher MSE. This effect is greater if
more noninformative biomarkers are included. Larger sample size can help reduc-
ing these biases. Although the proposed model exhibits adequate robustness with
respect to including a small number of noninformative biomarkers, we would like
to emphasize that the model was not designed for variable selection. For applica-
tion purposes of such a model, the researchers should have adequate understanding
of the biomarkers and select only the ones that have established predictive ability
of the disease based on biological information or previous knowledge.

5.3. Setting that mimics the real data application. This section conducted
simulations that intend to mimic the settings in our real data application in Sec-
tion 6. The model has two disease levels but more covariates, including categorical
and continuous. The simulation parameters are specified according to the model
estimates based on real data application. Results are shown in the bottom rows of
Table 3. We found that both bias and MSE are small, for example, the average bias
is less than 0.6%, even with a sample of size 300.

6. Example: Application to Alzheimer’s disease data. AD is a progressive
and fatal neurodegenerative disorder that affected 5.2 million people in the United
States in 2013. Without advanced therapy, this number is predicted to rise to 13.8
million by 2050 [Hebert et al. (2013)]. The reason for the current lack of effec-
tive AD therapy is the decades-long preclinical stage where too much neurode-
generation occurs before any clinical diagnosis can be made. Therefore, great ef-
fort has been put into preclinical AD detection. Studies suggested that the CSF
biomarkers total tau (t-tau), phosphorylated tau (p-tau181p), and amyloid β 1-42
(Aβ42) changes about 15 years before clinical AD onset and are particularly rele-
vant to tracking the pathological onset and preclinical stages of AD [Bateman et al.
(2012)]. Appropriate assessment and effective combination of these biomarkers for
early AD detection can provide a critical opportunity for therapeutic intervention,
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TABLE 3
Simulation results of mean bias (×10) and MSE (×10) in parenthesis of AUC1 vs. 0 estimates based on the proposed method

N = 300 N = 500 N = 800

Models T1 T2 T3 iT ∗
1 T1 T2 T3 iT1 T1 T2 T3 iT1

ρ(T1, T2) = 0.1 0.25† 0.18 0.05 NA 0.24 0.17 −0.07 NA 0.25 0.16 −0.08 NA
(0.02)‡ (0.02) (0.02) (NA) (0.01) (0.01) (0.01) (NA) (0.01) (0.01) (0.01) (NA)

ρ(T1, T2) = 0.2 0.26 0.26 −0.06 NA 0.25 0.25 −0.07 NA 0.25 0.25 −0.08 NA
(0.02) (0.02) (0.02) (NA) (0.01) (0.02) (0.01) (NA) (0.01) (0.01) (0.01) (NA)

ρ(T1, T2) = −0.2 0.23 −0.06 −0.03 NA 0.23 −0.07 −0.05 NA 0.23 −0.08 −0.07 NA
(0.02) (0.02) (0.03) (NA) (0.01) (0.01) (0.01) (NA) (0.01) (0.01) (0.01) (NA)

ρ(T1, T2) = 0.3 0.28 0.34 −0.06 NA 0.27 0.33 −0.07 NA 0.27 0.33 −0.08 NA
(0.02) (0.03) (0.02) (NA) (0.01) (0.02) (0.01) (NA) (0.01) (0.02) (0.01) (NA)

ρ(T1, T2) = 0.5 0.32 0.51 −0.06 NA 0.31 0.51 −0.07 NA 0.31 0.50 −0.08 NA
(0.02) (0.04) (0.02) (NA) (0.02) (0.04) (0.01) (NA) (0.01) (0.03) (0.01) (NA)

ρ(T1, T2) = 0.8 0.40 0.79 −0.04 NA 0.40 0.78 −0.06 NA 0.40 0.78 −0.07 NA
(0.03) (0.08) (0.03) (NA) (0.02) (0.07) (0.01) (NA) (0.02) (0.07) (0.01) (NA)

ρ(T1, T2, T3) = 0.1 0.21 0.16 0.07 NA 0.21 0.14 0.06 NA 0.21 0.14 0.04 NA
(0.02) (0.02) (0.02) (NA) (0.01) (0.01) (0.01) (NA) (0.01) (0.01) (0.01) (NA)

ρ(T1, T2, T3) = 0.3 0.17 0.29 0.34 NA 0.18 0.28 0.33 NA 0.17 0.28 0.31 NA
(0.02) (0.03) (0.04) (NA) (0.01) (0.02) (0.02) (NA) (0.01) (0.01) (0.02) (NA)

ρ(T1, T2, T3) = 0.6 0.04 0.49 0.77 NA 0.12 0.54 0.82 NA 0.18 0.56 0.83 NA
(0.09) (0.07) (0.12) (NA) (0.03) (0.05) (0.10) (NA) (0.01) (0.04) (0.08) (NA)
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TABLE 3
(Continued)

N = 300 N = 500 N = 800

Models T1 T2 T3 iT ∗
1 T1 T2 T3 iT1 T1 T2 T3 iT1

�T + iT1 ∼ X 0.22 0.10 −0.06 -0.03 0.20 0.08 −0.05 0.00 0.14 0.08 −0.06 −0.01
(0.02) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

�T + iT1 + iT2 ∼ X −0.30 −0.13 −0.27 0.06 0.10 0.03 −0.09 0.01 0.02 −0.03 −0.16 0.02
(0.42) (0.14) (0.10) (0.03) (0.14) (0.05) (0.03) (0.02) (0.18) (0.06) (0.04) (0.01)

�T + iT1 + iT2 + iT3 ∼ X −0.35 −0.15 −0.27 0.04 −0.21 −0.13 −0.22 0.03 −0.13 −0.07 −0.23 0.02
(0.48) (0.15) (0.10) (0.03) (0.38) (0.12) (0.08) (0.02) (0.39) (0.12) (0.07) (0.01)

Real data setting −0.06 0.05 0.05 NA −0.07 0.05 0.06 NA −0.07 0.05 0.06 NA
(0.00) (0.00) (0.00) (NA) (0.00) (0.00) (0.00) (NA) (0.00) (0.00) (0.00) (NA)

∗iTk denotes the kth noninformative biomarker.
†Mean bias on scale of ×10−2.
‡MSE on scale of ×10−3.
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disease monitoring, and to lessen the time and cost for clinical trials. We applied
the proposed method to avoid using imperfect clinical diagnoses and to take into
account AD risk factors and patients’ characteristics that may affect biomarker
levels.

Our analyses used data from the Alzheimer’s Disease Neuroimaging Initiative
(ANDI) (http://adni.loni.ucla.edu/). The ADNI study is a multicenter longitudi-
nal observation study launched in 2004 in the United States and Canada. It is
conducted to examine whether biomarkers, and clinical and neuropsychological
assessments, can be combined to measure the progression of mild cognitive im-
pairment (MCI) and early AD patients. ADNI enrolled subjects from three groups:
cognitively normal (CN) subjects, subjects with MCI, and subjects with early AD
based on clinical assessments. Detailed information about the study’s design and
inclusion and exclusion criteria can be found at http://www.adni-info.org. Briefly,
all participants were recruited between the ages of 55 and 90 years and had at least
six years of education. Participants who took specific psychoactive medications, or
who had other neurological disorders, were excluded. CSF biomarkers, including
Aβ42, t-tau, and p-tau181p , along with subjects’ demographic and clinical informa-
tion, were obtained at baseline. After the baseline visit, subsequent visits occurred
at six- or 12-month intervals but mostly without additional CSF measurements.

We applied the proposed model to compare and combine CSF biomarkers,
Aβ42, t-tau, and p-tau181p , for detecting preclinical AD related pathophysiolog-
ical changes, which we will call the AD signature. Our analysis used a cross sec-
tional dataset at baseline of all currently available ADNI subjects as of April 7th,
2015 with at least one CSF biomarker measurement. There were 808 subjects (223
CN, 457 MCI, and 127 early AD). Two latent disease groups were used for this
problem, defined by the presence or absence of an AD signature. CSF Aβ42, t-tau,
and p-tau181p are believed to reflect different processes in AD pathology [Storandt
et al. (2012)], so we assumed the correlation among them within subjects with the
same AD signature status can be explained by covariates. Covariates in the latent
structure model included risk factors age, presence of ApoE 4 alleles, and educa-
tion. Covariates in the measurement model were age, gender, and the interaction
term between age and D. Thus, age could have different impacts on biomarkers
among subjects with or without an AD signature. We used the Box–Cox trans-
formation for Hk(·;λk). A total of 790 subjects with complete biomarker and co-
variate information were included in the analysis. Results were shown in Table 4,
where D1 stands for D = 1, denotes the group with an AD signature. Confidence
intervals are obtained based on nonparametric bootstrap [Efron (1981)] with 1000
bootstrap replications. We note here that bootstrap confidence intervals are approx-
imation of the actual confidence intervals [Efron (1987)].

These results are consistent with current knowledge that older age and ApoE
4 allele are risk factors for AD. Specifically, the results suggest that the log odds
of having an AD signature is about 0.7 (95% bootstrap CI: 0.4, 0.9) higher for a
10-year increase in age, adjusting for ApoE 4 and education. Subjects with ApoE 4

http://adni.loni.ucla.edu/
http://www.adni-info.org
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TABLE 4
Estimates and 95% bootstrap CI (in parentheses) for CSF Aβ42, t-tau, and p-tau181p (estimates in

bold indicate a significant effect)

Structural (prevalence) model P(D | Z)

(Intercept) Age (×10) ApoE 4 Education

D = 1 −5.52 (−7.75,−3.33) 0.67 (0.42,0.93) 2.60 (2.23,3.03) −0.03 (−0.09,0.04)

Measurement model P(T | D,X)

Aβ42 t-tau p-tau181p

(Intercept) 13.88 (7.96,25.19) 2.40 (2.07,2.87) 2.87 (2.40,3.52)

D1 −1.83 (−5.26,−0.23) 0.81 (0.43,1.36) 1.04 (0.54,1.72)

Age (×10) −0.11 (−0.04,0.45) 0.05 (0.02,0.09) −0.01 (-0.06, 0.03)
Gender = Male −0.15 (−0.51,0.02) −0.03 (−0.07,−0.01) −0.02 (-0.07, 0.03)
D1 × Age (×10) −0.10 (−0.41,0.11) −0.07 (−0.12,−0.03) −0.06 (−0.14,−0.00)

λ 0.33 (0.15,0.49) −0.19 (−0.30,−0.09) −0.07 (−0.17,0.04)

σ 1.10 (0.45,2.51) 0.17 (0.11,0.27) 0.31 (0.21,0.44)

alleles are estimated to have about exp(2.60) = 13.5 fold higher odds of develop-
ing an AD signature (95% bootstrap CI: 9.3, 20.7), adjusting for age and education.
Additionally, education seems to have a protective effect against AD related patho-
physiological changes, but this effect was not significant based on these data. On
the biomarker side, we found that subjects with AD pathology have significantly
lower levels of Aβ42 and higher levels of t-tau and p-tau181p , consistent with the
amyloid hypothesis. Normal aging process is revealed by lower level of Aβ42 and
p-tau181p , and higher levels of t-tau in older adults, suggesting that different di-
agnostic criteria should be considered for different age groups. Males apprear to
have lower levels than women for all three biomarkers. In addition, the estimates
for λ were about 0.33 for Aβ42, −0.19 and −0.07 for t-tau and p-tau181p , which
challenge the conventional assumption that Aβ42 has normal distribution, and that
tau measures are log normal.

Based on the model, one can compute the estimated covariate-specific ROC
curves. As an example, we plotted the estimated age-specific ROC curves for CSF
biomarker Aβ42, t-tau, and p-tau181p in Figure 1. The plots suggest that the ROC
curves differ among age groups for both t-tau and p-tau181p , with higher AUCs for
younger groups. These results also suggest that including covariates in the model
and allowing for the covariate effect to vary between disease groups are important.
On the other hand, the age-specific ROC curves for Aβ42 do not vary much among
these age groups. One explanation is that Aβ42 changes much earlier than tau
in AD pathophysiology; it is possible that, at this stage it is already relatively
stabilized.
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FIG. 1. Age-specific ROC curves for CSF Aβ42, t-tau, and p-tau181p in detecting an AD signature.

Combinations of CSF biomarkers have not been well examined due to the un-
observed AD signature. Current research mostly uses CSF Aβ or tau protein sep-
arately or CSF tau/Aβ ratio as measures to classify subjects with or without an
AD signature. In addition, to assess the diagnostic accuracy of these biomarkers,
our model suggested a way to synthesize information from different biomarkers to
reach a potentially better diagnosis. Specifically, we can use the model based risk
P(Di | �Ti, �Xi, �Zi, θ) as a score for diagnosing whether AD related pathophysio-
logical change has started. This risk score summarizes diagnostic information from
multiple biomarkers, risk factors, and subjects’ characteristics, and therefore offers
a more personalized diagnosis.

Due to the unobserved gold standard, we evaluated the risk scores against clin-
ical diagnoses at the last available follow-up using a subset of individuals who
enrolled during the first phase of ADNI study (ADNI1: 2004–2010) and thus have
relatively longer follow-up. The risk score results in an AUC of 0.78, higher than
that based on any one of the biomarkers (Aβ: 0.75, t-tau: 0.73, p-tau181p: 0.72).
The improvement is more evident at the clinically relevant region of the ROC plot,
where the false positive rate is low and true positive rate is high (plot not shown).
For example, when choosing cut-points that give 0.8 in specificity, sensitivity for
detecting an AD signature based on Aβ42, t-tau, or p-tau181p is 0.59, 0.55, and
0.57, respectively; while sensitivity based on the risk score is 0.69. It is worth not-
ing that the reference standard used here, the clinical diagnosis, is imperfect. This
can mask the good performance of the biomarkers, especially when they are in fact
superior to the clinical diagnosis [Pepe (2003)]. Additionally, since the clinical di-
agnosis is likely to miss preclinical AD subjects without manifested symptoms, it
will erroneously decrease the specificity estimate of the biomarkers. Nevertheless,
these results partially validate the advantage of biomarker combination based on
the proposed model. Additionally, we found that the risk scores are well-separated
in the population, as shown in Figure 2. The histogram of the risk scores put most
of the subjects either in the very low risk end or in the very high risk end of the
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FIG. 2. Histograms of model based combined score and single biomarkers.

distribution. Only 7.7% of the subjects had an estimated risk between 0.2 and
0.8, or 13.2% between 0.1 and 0.9. This suggests that the model-based risk had
good discriminant ability to separate subjects with and without an AD signature.
By contrast, the histograms for single biomarkers put most subjects in the middle
range.

We also compared the estimated proportions of subjects that have an AD signa-
ture (according to model estimates) with their clinical diagnoses. The results are
shown in Table 5. It is evident that the proportion of subjects with an AD signa-
ture increased from about 31% in the early MCI group to 86% in the AD group,
representing a progression. Additionally, there were about 26% of subjects in the
CN group that had an AD signature according to the model. This portion likely
indicates that the subjects exhibit preclinical AD pathophysiological changes but
still appear to have normal cognition.

7. Summary and discussion. In this paper we proposed a latent profile model
for assessing the accuracy of continuous biomarkers or diagnostic tests without a
gold standard. We did not discuss the choice of number of classes, because in
diagnostic testing studies, the number of disease classes is often apparent and gov-
erned by the scientific questions. Compared with currently available methods, this

TABLE 5
Numbers and proportions of subjects that have an AD signature by groups with different clinical

diagnoses

Clinical diagnosis AD signature present AD signature absent

CN 57 (26.3%) 160 (73.7%)
EMCI1 58 (30.7%) 131 (69.3%)
LMCI2 168 (64.9%) 91 (35.1%)
AD 107 (86.3%) 17 (13.7%)

1/2: Early/Late MCI–meet ADNI MCI criteria, objective memory loss measured by education ad-
justed scores on delayed recall of one paragraph from Wechsler Memory Scale Logical Memory II
(≥16 years: 9–11; 8–15 years: 5–9; 0–7 years: 3–6) for EMCI, (≥16 years: ≤8; 8–15 years: ≤4; 0–7
years: ≤2) for LMCI.
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model has several advantages. First, the model can include covariates in both the
latent structure model and the measurement model. The former can help to exam-
ine the impact of risk factors on constructs that are difficult to measure, such as
the pathophysiological process in a preclinical AD brain. The latter can be helpful
in understanding biomarkers’ performances in subgroups of patients with different
characteristics. This is especially valuable for obtaining a more personalized diag-
nostic procedure and for achieving higher diagnostic accuracy for each individual
subject. Second, the model for covariate effect is much more flexible—there is no
constraint on covariate type (i.e., categorical or continuous); additionally, covari-
ates can have different impacts on different biomarkers and within different disease
severity groups. Third, the transformation on the biomarker values attempts to ac-
count for possible skewness. Last, the method can deal with categorical disease
status. An R package “latentreg” has been developed for the proposed methods to
accommodate more general data structures and research questions.

We present the model in the situation where the latent disease status is binary
or ordinal. However, this assumption is only used to identify a unique solution
among several equivalent ones caused by the “label switching” problem in latent
class or latent profile models. There is no additional constraint imposed for the
estimation. Therefore, this assumption is not essential if there are other pieces of
information that can help to determine the labeling of the latent disease groups—
for example, the group labels can be determined if the sizes of the latent groups are
known. As a result, when additional information is available to label the groups,
the proposed methods can be applied to situations where the latent disease status
is nominal. In this case, different intervals of the biomarker values do not translate
to severity information but indicate nominal disease status, such as subtypes. As a
result, it is possible for subjects with higher or lower biomarker levels to have easy
to treat disease subtypes than whose with intermediate biomarker level, and vice
versa.

When applying latent variable models, one should realize that all these models
merely offer a tool to “cluster” the population into groups in which the manifest
variables (biomarkers) are relatively homogenous. These models cannot directly
identify disease groups. In other words, these models do not guarantee the re-
sulting clusters are grouped according disease status of interest. In our applica-
tion, we chose biomarkers that are biologically relevant to AD pathophysiology,
so that disease status was the fundamental factor that lead to the heterogeneity of
the biomarker values. However, one should carefully evaluate this assumption in
each application.

One possible extension to the proposed method is to use a semi-parametric
transformation with an unspecified H instead of a Box–Cox transformation. In
this case, the transformation H is a nuisance parameter with infinite dimensions,
the maximum likelihood approach did not apply. One possible choice is to use
estimating equations in each M step to estimate H . This type of algorithm (some-
times referred to as an EM-like algorithm) has been used in practice and appears
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to lead to reasonable results [Benaglia, Chauveau and Hunter (2009)]. However,
one needs to prove its convergence and consistency of the results, since estimating
equations uses a different criterion than maximizing the likelihood and no longer
guarantee the non-decreasing property in a typical EM algorithm.

The proposed model assumes that the dependence among biomarkers can be ex-
plained by disease status and other covariates. Therefore, another extension to the
model is to introduce random effects, if one suspects that there are remaining cor-
relations due to unobserved covariates. While more complicated model structures
may be relatively easy and perhaps tempting to adopt (aside from the potential
computational burden), one should be cautious when doing so as they are often
hard to validate. Additionally, the identifiability issue for such models must be
resolved before adopting them in practice.

APPENDIX A

An EM algorithm. E step computes the expectation of the complete data log
likelihood given the observed data:

E
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where superscript (t) denotes iteration number, g
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k (tik) − �xT

i β
(t)
kd )]ηd(�zT

i α(t))∑L−1
d=0 {∏K

k=1[g(t)
k (H

(t)
k (tik) − �xT

i β
(t)
kd )]ηd(�zT

i α(t))} .

M step maximizes the expected complete data log likelihood given in (A.1). Let

l1
(
α

(t+1)
d

) =
N∑

i=1

L−1∑
d=0

P
(t)
i (d) logη

(�zT
i α

(t+1)
d

)
,(A.2)

l2
(
λ

(t)
k ,β

(t)
kd , ν

(t)
k

) =
N∑

i=1

K∑
k=1

logJ
(
tik;λ(t)

k

)
(A.3)

+
N∑

i=1

L−1∑
d=0

K∑
k=1

P
(t)
i (d) logg

(t)
k

(
H

(t)
k (tik) − �xT

i β
(t)
kd

)
.
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Then the function to be maximized is l1(α
(t)
d ) + l2(λ

(t)
k ,β

(t)
kd , ν

(t)
k ). Since parame-

ters α
(t)
d are only involved in l1(α

(t)
d ), and parameters λ

(t)
k , β

(t)
kd and ν

(t)
k are only

involved in l2(λ
(t)
k ,β

(t)
kd , ν

(t)
k ), the maximization can be broken down into two parts:{
α

(t+1)
d

}
d=0,...,L−1 = argmax l1

(
α

(t)
d

)
,{

λ
(t+1)
k , β

(t+1)
kd , ν

(t+1)
k

}
d=0,...,L−1,

k=1,...,K

= argmax l2
(
λ

(t)
k , β

(t)
kd , ν

(t)
k

)
.

A close examination of equation (A.2) reveals that l1(α
(t)
d ) has the same form

of the log likelihood function of a polytomous regression with N observation L

categories, except that the group indicator Id(Di) is replaced by its expected value
P (t)(d). Since

∑L−1
d=0 P (t)(d) = 1, l1(α

(t)
d ) is a proper log likelihood function. Ad-

ditionally, l1(α
(t)
d ) is concave, thus its maximization can be carried out by borrow-

ing a polytomous regression routine that exists in many statistical softwares. Our
computation utilizes the R function “multinom” in the package “nnet”.

The second part of the maximization function, l2(λ
(t)
k ,β

(t)
kd , ν

(t)
k ), given in equa-

tion (A.3), is also a proper log likelihood function. In fact, it is the log like-
lihood function of a transformation regression model with N × L × K obser-
vations, weights P

(t)
i (d), transformation H

(t)
k (·), and error distribution G

(t)
k (·).

In fact, the original N × K observations can be considered replicated L copies
with 1 copy for each disease severity group. This log likelihood function takes
the total N × L × K observations, but weights them according to the probabil-
ity of a subject belonging to a disease severity group P

(t)
i (d), computed in the E

step. This is clearer with matrix notation. Assume that X(D) is the design ma-
trix defined by the measurement model P(Tk | D,X), including all covariates X
and their interactions with D. Create a stacked design matrix Xst with N × L

rows, Xst = [X(D = 0)′, . . . ,X(D = L − 1)′]′, where superscript ′ denotes ma-
trix transpose. Similarly, created a stacked outcome vector Y

(t)
k,st with N × L el-

ements, Y
(t)
k,st = (Y

(t)′
k , . . . , Y

(t)′
k )′, where Y

(t)
k is a vector with N elements of the

transformed outcomes H
(t)
k (tik) at the t th EM iteration. In addition, let W be a

N × L by N × L diagonal matrix W
(t) = diag{P (t)(0), . . . ,P (t)(L − 1)}, where

P (t)(d) = (P
(t)
1 (d), . . . ,P

(t)
N (d)), d = 0, . . . ,L − 1. Then equation (A.3) can be

rewritten as follows:

(A.4) l2 =
K∑

k=1

W
(t) logg

(t)
k

(
Y

(t)
k,st −Xstβ

(t)
kd

) +
K∑

k=1

logJ
(
tik;λ(t)

k

)
.

Maximization can be performed with these stacked matrices as if D is known.
The above formulation with a design matrix also makes it easy to impose con-

straints on the covariate effect βkd . For example, if some of the covariates are
assumed to have the same effect across disease groups, one can simply remove
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the corresponding interaction terms between D and these covariates in Xst . Sim-
ilarly, if the design matrix and outcome vectors for each k are stacked, and the
interaction terms between the covariate effects and the biomarkers are included,
constraints on the covariate effects across different biomarkers can easily be im-
posed. Here, we do not further complicate the design matrix since the constraints
on covariate effects across different biomarkers are used less commonly.

APPENDIX B

TABLE 6
Mean and standard error (in parentheses) estimates based on 1000 simulations for biomarkers with

different performances

N = 500

α10 = −0.5 α11 = 1 α20 = −1 α21 = 1.5

−0.502 (0.21) 1.007 (0.30) −1.005 (0.20) 1.512 (0.26)

βk0 = 5 βk1 = −1 βk2 = 1 βk3 = 2.5 βk4 = 0.5 βk5 = 1.5

k = 1 5.127 (0.95) -1.045 (0.29) 1.049 (0.31) 2.641 (0.81) 0.519 (0.15) 1.575 (0.46)

βk0 = 5 βk1 = −1 βk2 = 0.5 βk3 = 1 βk4 = 0.5 βk5 = 1.5

k = 2 5.075 (0.85) -1.032 (0.28) 0.513 (0.15) 1.034 (0.28) 0.516 (0.15) 1.550 (0.43)
k = 3 5.020 (0.38) -1.008 (0.15) 0.511 (0.10) 1.017 (0.16) 0.500 (0.10) 1.514 (0.24)

λ1 = 1 λ2 = 0.5 λ3 = 0 σ1 = 0.5 σ2 = 0.5 σ3 = 0.5

1.004 (0.16) 0.499 (0.11) 0.000 (0.03) 0.520 (0.16) 0.512 (0.15) 0.502 (0.08
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