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This paper considers the dependence between weather events, for exam-
ple, rainfall or snow-melt, and the number of water-related property insurance
claims. Weather events which cause severe damages are of general interest;
decision makers want to take efficient actions against them while the insur-
ance companies want to set adequate premiums. The modelling is challeng-
ing since the underlying dynamics vary across geographical regions due to
differences in topology, construction designs and climate. We develop new
methodology to improve the existing models which fail to model high num-
bers of claims. The statistical framework is based on both mixture and ex-
tremal mixture modelling, with the latter being based on a discretized gener-
alized Pareto distribution. Furthermore, we propose a temporal clustering al-
gorithm and derive new covariates which lead to a better understanding of the
association between claims and weather events. The modelling of the claims,
conditional on the locally observed weather events, both fit the marginal dis-
tributions well and capture the spatial dependence between locations. Our
methodology is applied to three cities across Norway to demonstrate its ben-
efits.

1. Introduction. Since large parts of society and the economy are weather-
sensitive, insurances against undesirable weather events have become an impor-
tant economical factor. Mills (2005) state that the payout by insurance companies
for weather related disasters in developing countries is three times higher than the
international aid. In order to set premiums correctly, the insurance companies re-
quire accurate models. Thus, it is necessary to understand which characteristics of
weather events are responsible for damages. While natural disasters such as Hurri-
cane Katrina, which caused damages of over $100 billion in 2005 [Knabb, Rhome
and Brown (2005)], lead to large monetary losses, the majority of insured losses
are related to small scale weather events [Mills (2005), Botzen and van den Bergh
(2008)]. Damages caused by precipitation are, for instance, studied by Schuster,
Blong and McAneney (2006) and Kubilay et al. (2013). In this paper, interest lies
in the impact of small-scale weather events, for example, heavy rain or snow-melt.
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Traditionally, in the actuarial literature, the distribution of the total money
claimed for a weather event is derived from a model for the joint distribution of the
number of claims N and the average claim size S per property affected in the event.
Klugman, Panjer and Willmot (2012) model this joint distribution, conditional on
weather covariates X, as[

(N,S) | X
] = [S | N ] × [N | X].

Hence, the average claim size S is considered to be conditionally independent of
the weather effects X, given the number of the claims N . The justification for this
assumption is that the severity of the insurance claims depend on various factors,
including the wealth of the population, the type of construction, building and re-
pair standards, the age of structures and general economic factors [Department for
Environment, Food and Rural Affairs (2004)]. A Gamma model is often assumed
for the claim size with covariate N [Frees and Valdez (2008), Haug et al. (2011)],
although mixed Gamma models have also been suggested [Yip and Yau (2005)].

The most critical part when modelling the distribution of [(N,S) | X] is the dis-
tribution of N | X due to the complex and strong effect of the covariates [Scheel
et al. (2013)]. So we focus our study on capturing the relationship between weather
covariates and the number of claims. We have a particular focus on the high num-
bers of claims, as these are the most critical for the insurance industry as this influ-
ences re-insurance strategies. We also derive the marginal distribution of N from
this model by integrating out the effect of the covariates over their distribution
π(X), that is,

(1.1) P(N = n) =
∫

P(N = n | X = x) × π(x)dx for n ≥ 0.

This component of our model is fundamental to any assessment of the impact of
climate change for the insurance industry as π(·) varies with climate change so
the associated marginal for N can be derived for any future period [Botzen and
van den Bergh (2012), Jenkins, Perry and Prior (2008), Sanders and Phillipson
(2003)].

We consider the insurance and weather data used by Haug et al. (2011) and
Scheel et al. (2013). The insurance data provide the daily number of claims caused
by either precipitation, surface water, snow melt, undermined drainage, sewage
back-flow or blocked pipes for all Norwegian municipalities between 1997 and
2006. Let Nk,t denote the number of claims on day t for municipality k. Table 1
details the set of meteorological and hydrological covariates Xk,t which are either
empirical or model generated with a single value for each covariate for day t and
municipality k. The weather data are derived by spatial interpolation, weighted
proportionally to the population density within the municipality. Norway’s climate
varies spatially due to the country’s large geographical extent and the input of the
Gulf Stream. For instance, western coastal areas observe relatively mild tempera-
tures and large amounts of rainfall while central (inland) areas, such as Oslo, are
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TABLE 1
Weather covariates Xk,t provided by the Norwegian Meteorological

Institute and the Norwegian Water Resources and Energy Directorate

Variable Description Unit

Rk,t Total amount of precipitation in day t mm
(Between 6 am on day t to 6 am on day t + 1)

Ck,t Mean temperature in day t ◦C
Dk,t Drainage run-off in day t mm
Sk,t Snow-water equivalent in day t mm

(Amount of water in form of snow)

drier and have more of a continental climate. These differences are likely to lead
to a spatial variation of the claim dynamics and have to be accounted for in the
modelling framework.

Scheel et al. (2013) propose a Bayesian Poisson hurdle (BPH) model for Nk,t |
Xk,t to account for the frequency of zero claims, Nk,t = 0, being larger than a
standard Poisson model would suggest, and the covariate mechanisms leading to
any claim being potentially different from the covariate effects for the number of
claims given damage occurred. They also derive additional simple covariates from
the covariates in Table 1. Formally, their probability model is then given by

(1.2) P(Nk,t = n | Xk,t ) =
⎧⎪⎨⎪⎩

αk,t if n = 0,

(1 − αk,t )
λn

k,t

n![exp(λk,t ) − 1] if n > 0,

where both λk,t > 0 and αk,t ∈ [0,1] depend on the covariates Xk,t . According to
distribution (1.2), αk,t corresponds to the frequency of zero claims while λk,t is
the rate of a zero-truncated Poisson distribution for the number of claims, given at
least one claim is reported.

Scheel et al. (2013) assess the predictive performance of their BPH model on a
weekly basis and the results are generally positive. Table 2 in Scheel et al. (2013)
indicates, however, that their BPH model substantially underestimates the most
important feature of the distribution, the high numbers of claims, and hence, un-
derpredicts the impact of high precipitation levels, especially for Oslo.

Figure 1 provides some insight into the causes of the lack of model fit for the
BPH model by Scheel et al. (2013). First, observations Nk,t > 3 for Oslo or Bergen
are not always associated with high amounts of precipitation on either the claim
day t or the previous day t − 1. While some claims are linked to weak rainfall
coinciding with snow-melt, others occur over periods of mild and dry weather.
The latter may be caused by localized weather events which are not recorded by
any measurement station. Further, claims caused by blocked pipes or sewage back-
flow are not necessarily related to the recent weather. Ignoring such effects may
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FIG. 1. Observed values for Rk,t and Rk,t−1 for the original data by Scheel et al. (2013) for
(a) Oslo and (b) Bergen. Days with Nk,t > 3 are highlighted, giving the value of Nk,t .

influence the estimated model and lead to biased estimation of the covariate ef-
fects. Finally, while claim numbers for Oslo lie between zero and three claims on
about 97% of days, much higher numbers occur and these are generally related
to high precipitation levels, sometimes in combination with snow-melt. A Poisson
distribution is incapable of fitting these extremes while accounting for the high
frequency of lower claims.

This paper introduces several new methods in order to improve the model fit
which have generic relevance to the modelling of insurance claim data. Interest
lies, in particular, in the days with high numbers of claims. We extend the zero-
truncated Poisson component in the BPH approach of Scheel et al. (2013) using
discrete extreme value and mixture models. Extreme value models such as the
generalized Pareto distribution (GPD) are widely applied to estimate the tail of a
random variable [Coles (2001), Holmes and Moriarty (1999), Li, Cai and Camp-
bell (2005)]. Here, a discretized analogue of the GPD is used since Nk,t takes
nonnegative integer values only. There are only very limited previous examples of
discrete extreme value models [Buddana and Kozubowski (2014), Prieto, Gómez-
Déniz and Sarabia (2014)] or mixture models [Bottolo et al. (2003), Smith and
Goodman (2000)] used in extreme value modelling, and none of these cover cases
where both are relevant and nonextreme values are simultaneously modelled, that
is, what we require for modelling the claims data.

In addition to advancing the statistical model, the input data are transformed fol-
lowing an exploratory analysis of the data for Oslo in Figure 1(a). This leads to the
derivation of new daily covariates which exploit temporal and spatial patterns in
Xk,t . Furthermore, we introduce a temporal clustering algorithm to obtain periods
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of consecutive days which are exposed to the same weather event for each munic-
ipality. The distribution of clustered claims, conditional on a set of cluster covari-
ates, is then modelled municipality-wise. Specifically, our methodology is applied
to the data for the municipalities of Oslo [Figure 1(a)], Bergen [Figure 1(b)] and
Bærum. The model estimates are used to assess dependence of claims over dif-
ferent municipalities, conditionally on the covariates, and to derive the marginal
distribution in expression (1.1) to predict the frequency of extreme claim numbers,
under the assumption of no climate change. We find that the clustered claims are
spatially independent, given the covariates, indicating that our model has captured
the key meteorological factors that explain water-related insurance claims in Nor-
way.

The remainder of this paper is organized as follows: Section 2 details our ex-
tensions of the zero-truncated Poisson distribution and introduces an approach to
optimize tail dependence for additional covariates. Section 3 defines the new daily
covariates and Section 4 introduces the temporal clustering algorithm. Our ex-
tended model is then applied to the three Norwegian municipalities in Section 5
where conditional, marginal and spatial properties of the claim process are esti-
mated. The paper concludes with a summary and discussion in Section 6.

2. Extension of the Bayesian Poisson hurdle model. This section details
our extensions to the Poisson hurdle model in expression (1.2). Specifically, we
focus on the zero-truncated Poisson component to obtain a better model for claim
occurrences Nk,t | (Xk,t ,Nk,t > 0). Since λk,t and αk,t are conditionally indepen-
dent, given the data [Scheel et al. (2013)], any change in this component does
not affect αk,t . For notational simplicity, the indexes k and t are dropped in the
following. Section 2.1 introduces a mixture model while Section 2.2 presents an
integer-valued GPD and combines it with the zero-truncated Poisson distribution
via an extremal mixture model. The marginal distribution for the number of claims
in an event is then derived in Section 2.3. Section 2.4 details a general methodol-
ogy to optimize the tail dependence between a response and a family of predictors
which is later applied in Section 4.

2.1. Mixture modelling. Figure 1, coupled with exploratory analysis, indicates
that claim dynamics are mainly driven by the observed precipitation and snow-melt
levels. However, some claims are reported over periods which exhibit mild and dry
weather, implying the occurrence of unobserved claim processes. Information on
the precise cause of damage, for example, snow-melt or sewage back-flow, may
allow the fit of a separate model for each cause but these data are not available.

We propose a two-component mixture distribution with discrete positive-valued
random variables Y and Z for N | (X,N > 0) to accommodate for the varying
weather-dependence of these claim types. The first component Y captures the de-
pendence of N on the weather covariates X while the second component Z consid-
ers the claims which are caused by unobserved processes. All claims on a day are
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assumed to come from exactly one of the two components. The probability mass
function for N | (X,N > 0) is then formally given by

(2.1) P(N = n | X,N > 0) = pP(Y = n | X) + (1 − p)P(Z = n), n ≥ 1,

where p denotes the probability of N | (X,N > 0) being distributed according to
Y | X, with the modelling of this distribution discussed in Section 2.2. We assume
that Z has a zero-truncated Poisson distribution with rate parameter κ > 0, with

(2.2) P(Z = n) = κn

n![exp(κ) − 1] , n ≥ 1.

Note, the case p = 0 in distribution (2.1) corresponds to the BPH model in (1.2)
without covariate structure and p = 1 gives exactly the BPH model if Y | X is
a zero-truncated Poisson distribution. The choice of only two components is due
to parsimony and the results in Section 5 indicate that this number appears to be
sufficient.

2.2. Extremal mixture modelling. Defining the mixture component Y | X in
model (2.1) as a zero-truncated Poisson distribution leads to a poor fit of the ex-
treme claim numbers for Oslo and Bergen in Figure 1. Hence, we extend the model
in order to allow for a more flexible tail behaviour. In particular, the lower claim
numbers are still modelled as being distributed according to a zero-truncated Pois-
son model but the highest observations are modelled using an extreme value tail
model. First, a distribution for the extremes of a discrete random variable is pre-
sented without the consideration of covariates. The zero-truncated Poisson model
is then combined with this distribution and covariates are included.

Consider the modelling of Y | Y > u, where u ∈ R is a high threshold. We
view that the best modelling approach for the discrete variable Y is to consider
it as Y = �H�, where H is a continuous random variable. In an extreme value
modelling framework, the distribution of H above a high threshold u is generally
modelled by a GPD with scale parameter σu and shape parameter ξ [Coles (2001)].
For a large enough choice of u, the distribution of H | H > u is then approximately
given by

(2.3) P(H ≤ h + u | H > u) = 1 −
(

1 + ξh

σu

)− 1
ξ

+
, h > 0,

where x+ = max(x,0), σu > 0 and ξ ∈ R, with the value for ξ = 0 interpreted as
the limit as ξ → 0. We then derive a discretized GPD to model Y | Y > u via a
GPD for H above threshold 
u�. The probability mass function for Y | Y > u, for
n > u, is formally given by

P(Y = n | Y > u) = P
(
H ≤ n | H > 
u�) − P

(
H ≤ n − 1 | H > 
u�)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
1 + ξ(n − 1)

σu

]− 1
ξ

+
−

[
1 + ξn

σu

]− 1
ξ

+
, ξ �= 0,

exp
(
−n − 1

σu

)
− exp

(
− n

σu

)
, ξ = 0.

(2.4)
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In the following, the distribution (2.4) is termed an integer-valued Generalized
Pareto distribution, IGPD(σu, ξ, u), above threshold u with scale σu and shape ξ .
Interpretation of the shape parameter ξ is equivalent to that of the GPD: a nega-
tive shape parameter ξ < 0 corresponds to the distribution being short-tailed, with
upper bound. Conversely, ξ > 0 indicates a power-law tail, much heavier than a
Poisson distribution.

It is interesting to examine how the properties of this distribution vary with the
threshold, that is, how the distribution changes as the threshold is increased to
v > u. The GPD has a threshold stability property, that is, if H − u | H > u ∼
GPD(σu, ξ), then for any higher threshold v > u,

H − v | H > v ∼ GPD
(
σu + ξ(v − u), ξ

)
.

As such, ξ is constant with increasing threshold while the scale parameter σu is
not. An equivalent property also holds for the defined IGPD. In particular, if Y |
Y > u ∼ IGPD(σu, ξ, u), then for any v > u,

(2.5) Y | Y > v ∼ IGPD
(
σu + ξ

(
v� − 
u�), ξ, v
);

see Appendix A for the proof. This is important since it allows the selection of a
threshold u for the IGPD via a threshold stability property, the same technique as
applied for a GPD [Coles (2001)].

Prieto, Gómez-Déniz and Sarabia (2014) and Hitz (2017) consider a similar
formulation to expression (2.4). The GPD has an asymptotic justification for its
form given by limit results of Pickands (1971) as the threshold tends to the upper
endpoint of the distribution. Similar limit results hold for discrete random variables
[Anderson (1970), Anderson (1980), Shimura (2012)] but these only hold for ξ ≥ 0
and are unable to provide nondegenerate limits for the Poisson distribution as the
tail decays too quickly. Thus, these limit results do not provide flexible tail models
for discrete random variables above nonlimit thresholds.

The Poisson distribution does not follow an IGPD exactly above any high
threshold u for any value of ξ . However, Anderson, Coles and Hüsler (1997) show
that asymptotically the distribution of the excesses of the threshold of a Poisson
variable GPD limit, with ξ = 0, if the threshold and the Poisson mean parameter
tend to infinity at appropriate rates. Therefore, an estimate of ξ that is statistically
significantly different from zero for the IGPD indicates that the tail of the under-
lying distribution is not Poisson.

The IGPD in expression (2.4) is combined with the zero-truncated Poisson dis-
tribution to form an extremal mixture distribution, that is, a distribution with dif-
ferent forms below and above a threshold u. Such mixtures have been widely
studied in a continuous variable setting [Behrens, Lopes and Gamerman (2004),
Carreau and Bengio (2009), Coles and Tawn (1991), Frigessi, Haug and Rue
(2002), MacDonald et al. (2011)] and the estimation of the threshold u is con-
sidered, also. Here, observations smaller than or equal to u are modelled as being
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zero-truncated Poisson distributed while being IGPD otherwise. The probability
mass function for Y | X is then given by

(2.6) P(Y = n | X) =
⎧⎪⎨⎪⎩

λn

n![exp(λ) − 1] , 1 ≤ n ≤ u,

CuP(Y = n | X, Y > u), n > u,

where Cu denotes the probability of a zero-truncated Poisson distribution with
parameter λ exceeding u and P(Y = n | X, Y > u) is given by model (2.4). The
parameters λ and σu both vary with the covariates X, with ξ constant, a standard
modelling assumption in extreme value modelling [Coles and Tawn (1996)]. Fol-
lowing Eastoe and Tawn (2009), from distribution (2.5), σu needs to be linear in
ξ to ensure that the structural form of the model is invariant to the precise choice
of threshold. However, σu is typically modelled in applications with a log-linear
model [Davison and Smith (1990)] which is not of the required form for threshold
invariance. To overcome this weakness, we propose taking

(2.7) σu = ζ + exp
(
β0 + βT X

)
,

with ζ > 0, β0 ∈ R and β ∈ R
q , where q denotes the number of covariates.

The model defined via the expressions (2.1), (2.2) and (2.4) leads to N | (X,N >

u) being a mixture of an integer-valued GPD, that is, Y | Y > u ∼ IGPD(σu, ξ, u),
and a truncated Poisson distribution, that is, Z | Z > u ∼ tPois(κ, u), with mixing
probability pu given by

(2.8) pu = pP(Y > u)

pP(Y > u) + (1 − p)P(Z > u)
.

Critically for model and threshold selection is the property of threshold-stability.
For any v > u and with v < u − σu/ξ for ξ < 0, the distribution of N | (X,N > v)

is also a mixture of IGPD(σv, ξ, v), and tPois(κ, v) variables with mixing proba-
bility given by expression (2.8) with u = v, and where σv = σu + ξ(
v� − 
u�),
with σu given by representation (2.5); see Appendix B for the proof. Thus both the
distribution and structure of the covariate effect in our model is not a function of
the threshold u, provided a sufficiently high threshold is selected.

2.3. Marginal distribution of claims. In addition to wanting to know about
how covariates lead to the largest number of claims, we are also interested in es-
timating the marginal distribution of the number of claims, as explained in the
Introduction. Although it is possible to estimate P(N = n) directly with some new
statistical model, it is likely to be complex due to the strong effects of the co-
variates, and it is unlikely to be self-consistent with the conditional distribution
of N | X. It is more natural to estimate P(N = n) using the estimated conditional
distribution P(N = n | X) described in Section 2.2 since the weather covariates X
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describe the key sources of variation of N . Specifically, we can write the marginal
survivor function for v > 0 as

P(N > v) = P(N > v | N > 0)P(N > 0)

=
∫

x
P(N > v | x,N > 0)π(x)dxP(N > 0),

(2.9)

where π is the joint density of X given that N > 0. The benefits of conditioning
on N > 0 first are that we only have to model the distribution of covariates when
they lead to a claim and we avoid the need to model P(N > 0 | X). For our model,
the term P(N > v | x,N > 0) is given by expression (2.1); P(N > 0) is estimated
empirically and the estimation of π(·) is discussed below.

From expressions (2.1) and (2.9), the distribution of N is given by the following
mixture model:

(2.10) P(N > v | N > 0) = p

∫
x
P(Y > v | x)π(x)dx + (1 − p)P(Z > v),

where Z does not depend on the covariates X but Y does. We then model the prob-
ability P(Y > v | x) using the extremal-truncated Poisson-IGPD mixture model
(2.6) with threshold u. It is generally sufficient to estimate the integral in expres-
sion (2.10) with the empirical distribution of X | N > 0 being sufficient for esti-
mating π . However, our exploratory analysis has shown that events of the form
Y > v, where v � u, that is, a large marginal quantile of Y , can only be achieved
when one of our weather covariates is in the upper tail of its distribution, so we
cannot simply use the empirical estimate of π in this case. For this case, we pro-
pose a univariate parametric tail model which is applied to the relevant marginal
component of X; details are explained in Section 5.3.

2.4. Optimizing tail dependence to develop new covariates. The generalized
linear modelling framework by Scheel et al. (2013) has limited ability to account
for the interaction effect of multiple risk factors; for example, snow-melt and rain-
fall. This is due to a range of reasons. These include: simple interaction terms not
capturing the nonlinearity of the known physical properties of the relationship, par-
simony, and a lack of weight given to extreme events, which is when the signal to
noise ratio is at its greatest. These weaknesses motivate our approach to construct
an additional covariate, based upon X, which overcomes these deficiencies and is
tuned using the extreme number of claims data.

Specifically, a new covariate X∗ is derived nonlinearly from X, as X∗ =
f (X, θ), with unknown parameters θ and the function f is selected based on the
context of the problem. Since X∗ is motivated by the extreme claim numbers, θ
should be selected such that the tail dependence between X∗ and N is maximized.
As the dependence structure between X∗ and N is invariant to the marginal distri-
butions [Nelsen (2006)], we transform the observations of X∗ and N to common
marginals. Furthermore, as our interest is in extreme values, we use a distribution
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with a heavy tail to emphasize the extremes and, therefore, we map (X∗,N) to
Fréchet margins. Specifically, we use the probability integral transformation with
the distributions of X∗ and N each being estimated empirically; see Section 4.3 for
details. Let (V1(θ),V2) denote the transformed variables. Although N is discrete,
the approximation by a continuous random variable is reasonable as the focus is on
the upper tail which has considerably variability. We adapt the approach by Russell
et al. (2016) for maximizing covariate combinations for extreme value analysis to
estimate θ . For notational simplicity, we write V1 instead of V1(θ) in the following
paragraphs and we will return to this notation at the end of the section.

The approach of Russell et al. (2016) is based on the properties of bivariate reg-
ular variation [Resnick (2013)], which is a weak assumption. For (V1,V2) iden-
tically distributed random variables with unit Fréchet margins, bivariate regular
variation means that for any Borel set B ⊂ [0,1] and v ≥ 1

(2.11) lim
s→∞P

(
V1 + V2 > sv,V1/(V1 + V2) ∈ B | V1 + V2 > s

) = v−1

({B}),

where 
 is known as the spectral distribution, corresponding to the distribution
function of a [0,1] random variable with mean 1

2 . Critically, bivariate regular
variation implies that V1 + V2 and V1/(V1 + V2) are asymptotically condition-
ally independent. The weakest tail behaviour between V1 and V2 occurs when

({0}) = 
({1}) = 1/2 and the strongest when 
({1

2}) = 1, the former and latter
corresponding to asymptotic independence [Ledford and Tawn (1996)] and perfect
dependence, respectively. The greater the mass that the spectral measure places
close to 1

2 , the stronger the tail dependence.
To apply the asymptotic property of bivariate regular variation in practice, we

need to be able to estimate 
 . In practice, we assume that the limit (2.11) holds
for a large finite value of s, that is, for 0 ≤ w ≤ 1, with

(2.12) P
(
V1/(V1 + V2) ≤ w | V1 + V2 > s̃

) = 
(w) ∀s̃ > s.

Given observations {(V1,i , V2,i)}mi=1, 
 can then be estimated by

(2.13) 
̃s(w) = 1

|Qs |
m∑

i=1

1
(
V1,i + V2,i > s,V1,i/(V1,i + V2,i) ≤ w

)
,

where Qs denotes the set of points (V1,i , V2,i) with V1,i + V2,i > s and 1 corre-
sponds to the indicator function. Empirical estimators of the spectral distribution of
this form are widely used [Einmahl, de Haan and Sinha (1997)]. Note, more recent
approaches impose a constraint on the mean [Boldi and Davison (2007), de Car-
valho and Davison (2014), Einmahl and Segers (2009), Hanson, de Carvalho and
Chen (2017)] and may be considered alternatively.

In the next step, we construct an objective function to assess the closeness of
the spectral density 
 to 1

2 . A classic way of measuring dependence in extremes
is via the coefficient of asymptotic dependence, χ , defined as

(2.14) χ = lim
s→∞P(V2 > s | V1 > s),
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with χ = 0 corresponding to asymptotic independence, χ = 1 to perfect depen-
dence, and larger values of χ corresponding to stronger asymptotic dependence
[Coles, Heffernan and Tawn (1999)]. In terms of 
 , we can write

(2.15) χ =
∫ 1

0
2 min(w,1 − w)d
(w).

Here, the term 2 min(w,1 − w) can be viewed as a weighting term, which down-
weights any departure of 
 from {1

2} as the weighting gives the value 1 at w = 1
2

and the weighting effect on χ decreases linearly away from this point. In empiri-
cal studies, using χ as an objective function to maximize over θ , we found that the
χ measure does not downweight strongly enough values of θ that lead to 
s(w)

putting mass near 0 and 1 (i.e., very weak dependence), and hence, results in poor
inference for θ . Part of the reason is that the threshold s is finite, so mass that
should be at 0 and 1 in the limit as s → ∞ is still away from these values, imply-
ing stronger dependence than is really present.

Instead of χ , we want a functional of 
(w) which downweights large depar-
tures of V1/(V1 + V2) from 1

2 more strongly, in particular giving them zero weight
if V1/(V1 + V2) is within ε,0 < ε < 1

2 of 0 or 1 to overcome the sub-asymptotic
choice of the threshold s in practice. For fixed ε, we propose the functional

(2.16) Dε =
∫ 1

0

[
1 − min

{∣∣∣∣ log( w
1−w

)

log( ε
1−ε

)

∣∣∣∣,1
}]

d
(w).

This functional, with a “tent-like” weighting function, has some similar properties
to χ , such as Dε = 0 and 1 for asymptotic independence and perfect dependence,
respectively, and increasing values indicate stronger asymptotic dependence. How-
ever, the key differences between χ and Dε are that if 
(w) puts all its mass within
ε distance of 0 and 1, then Dε = 0 but χ > 0 and also that Dε does not weights
small departures of V1/(V1 + V2) from 1

2 as much as χ does. Thus, there are ad-
vantages of using Dε over χ for estimating θ in order to give a strong relationship
between X∗ and N in their extremes.

The defined functional Dε can then be used to estimate the set of parameters θ ,
with each value of θ providing a different estimate {
̃s(w; θ) : 0 ≤ w ≤ 1}. Here,
the dependence measure Dε = Dε(θ) is estimated using

D̃ε,s(θ) =
∫ 1

0

[
1 − min

{∣∣∣∣ log( w
1−w

)

log( ε
1−ε

)

∣∣∣∣,1
}]

d
̃s(w; θ)

= 1 − 1

|Qs |
m∑

i=1

min
{∣∣∣∣ log(

V1,i (θ)

V2,i
)

log( ε
1−ε

)

∣∣∣∣,1
}
1
(
V1,i (θ) + V2,i > s

)
.

(2.17)

We select θ∗ as θ∗ = argmaxθ D̃ε,s(θ) and set X∗ = f (X, θ∗). The choice of ε

depends primarily on sample size and on 
̃ , with the larger the sample size and the
more concentrated 
̃s(w; θ) about 1

2 leading to smaller and larger ε, respectively.
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3. Defining new daily covariates. The original covariates Xk,t in Table 1
mainly summarize the daily weather conditions. However, the daily resolution and
the derivation of the covariate values via weighted spatial interpolation induce in-
accuracy in the input variables as critical information, such as the maximum rain-
fall intensity, is smoothed out over time and space. Consequently, weather events
which induce a substantial difference in the claim risk may appear similar in terms
of Xk,t , and hence, lead to an underestimation of the effect of severe rainfall events.
With a view to reducing this uncertainty, we analyze the spatial and temporal struc-
ture in Xk,t for the highest daily claim numbers in Oslo. This analysis motivates
the introduction of three new physically/topologically motivated daily covariates
for each municipality which exploit the spatial and temporal patterns in Xk,t as
an additional source of information. The generic relevance of these covariates is
demonstrated by applying them to both Bergen and Bærum in Section 5.

The absence of more detailed weather data excludes the possibility of a more
structured construction of covariates using physical rainfall-runoff models. Simi-
larly, using machine learning approaches to derive empirical relationships proved
unsuccessful relative to our approach of covariate construction, as it fails to ac-
count for our knowledge of physical/topological and neighbourhood structures be-
tween municipalities.

Section 3.1 introduces a covariate to capture the amount of snow-melt affecting
the properties. Sections 3.2 and 3.3 then define covariates associated to the tempo-
ral and spatial rainfall patterns, respectively. In the following, the notation k′ ∼ k

refers to municipalities k and k′ being adjacent.

3.1. Snow-melt. Long periods of snow-melt, or rapid melts of large volumes
of snow, can give flood levels that are comparable to large rainfall events. Hence,
periods of high temperatures or rain, conditional on snow being on the ground,
may affect the claim dynamics and induce a higher risk for property damages.
Information on the level of snow-melt is derived via the daily observed mean tem-
perature Ck,t and the snow-water equivalent Sk,t . Scheel et al. (2013) consider the
difference in the snow-water equivalent over a day, that is, Sk,t−1 − Sk,t . Positive
values then represent an additional source of water for properties to deal with while
negative values correspond to a rise of the amount of snow on the ground.

We argue that Sk,t−1 − Sk,t is limited in its capability to capture the risk in-
duced by snow-melt. First, an explanatory analysis concluded that a negative dif-
ference does not affect the claim dynamics on the day. Second, positive values
of Sk,t−1 − Sk,t only approximate the true amount of snow-melt in municipality k.
Certain topological factors are likely to be ignored since observations are weighted
according to the population density. Consider a city which lies at the foot of a
mountain range. Properties are then affected by the snow-melt both within the city
and on higher ground while Sk,t−1 − Sk,t captures the former only.

We use the observations for the adjacent municipalities to introduce a new snow-
melt covariate Sk,t as a spatially weighted average. In particular, our formulation
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for Sk,t varies from Scheel et al. (2013) as Sk,t > Sk,t−1 − Sk,t if an adjacent
municipality exhibits higher levels of snow-melt. Formally, Sk,t is defined by

(3.1) Sk,t = 1

1 + ωS
k

[
Sk,t−1 − Sk,t + ωS

k max
m∈{k,k′∼k}

(Sm,t−1 − Sm,t )
]
1{Ck,t≥0},

with weight ωS
k ≥ 0. The maximum term in (3.1) is derived over the set of adjacent

municipalities k′ ∼ k and k itself. Note, Sk,t = Sk,t−1 − Sk,t if the snow-melt in
municipality k exceeds snow-melt in its neighbours and Ck,t > 0, or if ωS

k = 0.
The indicator function is included in order to ensure that no snow-melt occurs for
temperatures Ck,t below 0◦C.

3.2. Surface water. An increased claim risk is induced by the interaction of
multiple weather events or the duration of one event over consecutive days. Scheel
et al. (2013) attempt to account for such processes via the values of two covariates:
the drainage run-off Dk,t and the aggregated rain on the previous three days, de-
noted by Rk,3t . Their results indicate that both Rk,3t and Dk,t have a small effect
on the distribution of Nk,t | Nk,t > 0. However, Rk,3t and Dk,t are limited in their
potential to explain interaction effects. Values for Dk,t change very slowly from
day to day, that is, Dk,t may be high despite the last rain being several days ago.
Further, Rk,3t cannot distinguish whether high amounts of rainfall were recorded
two or three days ago. The derivation of new covariates appears advisable.

To help our construction of a new covariate, we consider a highly idealized
model of the ability of infrastructure to handle surface water. Assume that a maxi-
mum ck mm of water drains off within a day. Here, the value ck may correspond to
a certain quantile of the observed rain and be linked to the capacity of the drainage
system. The amount of water left in the system on day t , Wk,t , is then given by

(3.2) Wk,t = (Wk,t−1 + Rk,t−1 + Sk,t−1 − ck)+.

A value of Wk,t greater than 0 implies that the previous weather events affect the
risk induced by the weather on day t , for instance, in the form of surface water.
Further, Wk,t is assumed to influence the claim dynamics if, and only if, Rk,t +
Sk,t > ck since the value of Wk,t in (3.2) decreases otherwise, implying that no
additional properties are threatened by surface water. This results in the definition
of a new amplifier covariate,

(3.3) Ak,t = Wk,t1{Rk,t+Sk,t>ck},

which captures the risk induced by heavy rainfall in combination with high surface
water levels.

3.3. Rainfall intensity. Since Rk,t corresponds to the aggregated precipitation
measurements over 24 hours, it provides little insight into the peak-daily intensity.
High values of Rk,t can be due to either short-term intense or longer-term moderate
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rainfall but the former is likely to induce a higher risk for property flooding. We
attempt to derive additional information from the spatial variation of {Rk,t } on
day t . To achieve this, we assume that the intensity correlates with the difference
in the precipitation levels of adjacent municipalities. Further, an intense rainfall
within a municipality is also taken to affect the claim dynamics of the adjacent
municipalities, though on a smaller scale.

These considerations result in our definition of the covariate intensity, Ik,t ,
which is based on the spatial pattern of {Rk,t } at day t . Let k̃ be the municipal-
ity, adjacent to municipality k, with the highest level of precipitation, that is,

k̃ = argmax
k′∼k

Rk′,t .

If Rk,t ≥ Rk̃,t , the centre of the rainfall event lies within municipality k, and hence,
may be rather intense. Similarly, if Rk̃,t > Rk,t , we consider the adjacent munici-
palities k′ ∼ k̃ to explore whether the rainfall event leads to the highest precipita-
tion levels in municipality k̃. In order to represent the impact of a rainfall event at
municipality k̃ for municipality k, we introduce a weight ωR

k ∈ [0,1] to downscale
the intensity. Finally, if the rainfall is centred in neither of these municipalities, the
rainfall is considered as not intense. The covariate value Ik,t is then defined as

(3.4) Ik,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rk,t − Rk̃,t if Rk,t > Rk̃,t ,

ωR
k

(
Rk̃,t − max

k′∼k̃
Rk′,t

)
if Rk̃,t > max

k′∼k̃
Rk′,t ,

0 otherwise.

Note, the last case in (3.4) corresponds to the municipalities k and k̃ observing
lower precipitation levels than at least one of their adjacent neighbours. The upper
bound for ωR

k is justified since Ik,t should not be higher than Ik′,t if the highest
precipitation levels are recorded for municipality k′. Similar to Ak,t , Ik,t only af-
fects the claim dynamics for high rainfall levels, Rk,t > ck , since the intensity of
the rainfall is presumably not important for the claim dynamics otherwise.

4. Clustering approach. We introduce an algorithm to obtain clusters of con-
secutive days which are exposed to the same severe weather event. This approach
is motivated by the observed dependence between Nk,t and Nk,t+1, in particular,
for their large values. For instance, the highest rainfall level in Figure 1(b) results
in observations of 11 and 50 claims on consecutive days. From a practical per-
spective, these observations are mainly due to two processes. First, the recording
process is lagged as some policy holders report a damage the same day while oth-
ers do so the following day. Second, the daily resolution potentially splits a weather
event across two or more observations. Hence, it is desirable to derive time peri-
ods, such that each of them covers a weather event and the subsequent period of
elevated claim risk, where the latter may correspond to no claims arising.
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Section 4.1 details our cluster algorithm which derives such periods of consec-
utive days, based on the covariates, and thus reduces the effects of claim lag in
the recording process. Covariates summarizing the weather events over the cluster
periods are defined in Section 4.2. The event-based covariates are then tuned to
increase their ability to describe the occurrence of the largest numbers of claims in
Section 4.3. We conclude by defining a probability model for the association be-
tween the clustered number of claims and weather covariates in Section 4.4, using
the approaches introduced in Section 2.

4.1. Derivation of cluster periods. Interest lies in the derivation of Jk clus-
tered weather periods for municipality k, {(αk,j , βk,j )}Jk

j=1, based upon Xk,t , where
αk,j and βk,j represent the start and end point, respectively, of the j th cluster.
While the daily claims within a cluster period [αk,j , βk,j ] are assumed to depend
on the same weather event, the claims in two different clusters are considered as
temporally independent. In particular, the claim dynamics on day αk,j are solely
dependent on the weather events on the same day, irrespective of the weather on
day βk,j−1.

Our approach to identify cluster start points αk,j is based upon two pre-specified
trigger events which affect the claim dynamics on subsequent days: rain on the cur-
rent day exceeding ck , Rk,t > ck , and snow-melt occurring, Sk,t > 0. The first
trigger event is motivated by the discussion in Section 3.2 while the second trigger
reflects our expectation that snow-melt in combination with rainfall induces a high
claim risk over several days. These events then initialize clusters of length greater
than or equal to one day. The main criterion for the end of a cluster considers
the change in the drainage run-off, that is, Dk,t = Dk,t − Dk,t−1. In particular, a
cluster period ends if Dk,t drops below a threshold dk . Additionally, clusters trig-
gered by snow-melt also end if no snow is left on the ground. The cluster approach
described above results in Algorithm 1.

4.2. Cluster data. The daily data have to be adapted to the cluster periods
derived by Algorithm 1. Consider the j th cluster period for municipality k with
start and end point αk,j and βk,j , respectively. Instead of the daily numbers of
claims, interest lies the aggregated number of claims over the j th cluster period
which is given as

(4.1) Ñk,j =
βk,j∑

t=αk,j

Nk,t .

While adaption of the original response Nk,t to the cluster periods is straightfor-
ward, more care is required for the explanatory variables. Scheel et al. (2013) find
that the amount of rainfall is correlated with Nk,t for Oslo, Bergen and Bærum
in terms of the Poisson component of the hurdle model. Further, the results also
suggest that snow-melt is informative for Bergen. Our analysis also revealed that
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Algorithm 1 Derive clusters for municipality k

Require: Weather covariates Sk,t ,Dk,t ,Rk,t and thresholds ck and dk

1: Go to first time point t = 1
2: while Unclustered observations left do
3: if Sk,t > 0 then
4: Set start point α = t and initial end point β = t + 1
5: while Dk,β > dk AND Sk,β > 0 do
6: Shift end point β ← β + 1

7: else if Rk,t > ck then
8: Set start point α = t and initial end point β = t + 1
9: while Dk,β > dk do

10: Shift end point β ← β + 1

11: else
12: Set start and end point to α = β = t

13: Store start and end points of cluster period (α,β)

14: Go to next time point t = β + 1
return Cluster periods

snow-melt is informative for Oslo when accounting for spatial patterns. We thus
derive cluster covariates which capture information related to these events. As the
daily amount of snow-melt does not take very high values, snow-melt for cluster
j is summarized via one covariate, the accumulated snow-melt over the cluster
period

(4.2) S�
k,j =

βk,j∑
t=αk,j

Sk,t ,

where Sk,t is defined via expression (3.1).
Considering rainfall, intense rainfall on a day and longer-term rainfall scenarios

have to be accounted for. To capture these characteristics, we define two covariates
Rmax

k,j and R�
k,j , respectively. While Rmax

k,j focuses on a single day over the cluster

period, R�
k,j , takes the amount of precipitation over all days into account. Let γj

denote the day with highest value Rk,t over the period αk,j to βk,j , that is, αj ≤
γj ≤ βj . Then

(4.3) Rmax
k,j = ηkAk,γj

+ Rk,γj
exp(ρkIk,γj

),

where Ak,γj
and Ik,γj

are defined as in (3.3) and (3.4), respectively. The parameters
ηk and ρk are selected to optimize the tail dependence of Rmax and Ñ , details are
given in Section 4.3. The nonlinear structure of expression (4.3) aims to account
for two separate claim processes which are associated to rainfall. In particular, the
first additive component accounts for the risk in terms of surface water induced by
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previous rainfall events while the second component considers the rainfall on the
day. The impact of the rainfall on the day for claims depends on both the rainfall
and its intensity. Our arguments for the construction of the covariates Ak,t and Ik,t

suggests that ηk ∈ [0,1] and ρk ≥ 0. Covariate R�
k,j is

(4.4) R�
k,j =

βk,j∑
t=αk,j

Rk,t − Rk,γj
,

that is, the aggregation of the rainfall, except for the highest day, in the cluster.
Note, R�

k,j takes the value zero if the j th cluster is of length 1.

4.3. Selection of parameter values. The covariates introduced in this work de-
pend on several parameters whose tuning is considered in this section. First, the
parameter ωS

k in (3.1) is selected based upon a simple generalized linear model fit
for the original daily data for municipality k. The parameter ωS

k has to be estimated
prior to the cluster algorithm since it is important to gain insight into whether
ωS

k = 0 or not. The maximum likelihood estimator of ωS
k is found using the model

Nk,t ∼ Poisson
(
exp

[
φ0 + φ1Sk,t

(
ωS

k

)])
.

The parameter may be estimated again after the clustering algorithm but the results
in Section 5 are obtained without this additional step.

The vector of covariate observations of the maximum rainfall covariate in ex-
pression (4.3), Rmax

k , depends on the parameters ρk , ηk and also on the weight ωR
k

via Ik,t . Since Ik,t and Ak,t are predominately designed with respect to the high
numbers of claims, ρk , ηk and ωR

k are selected such that the tail dependence be-
tween Rmax

k and Ñk in expression (4.1) is maximized. Here, we adapt the approach
detailed in Section 2.4 with X∗ = f (X, θk) = Rmax

k given by expression (4.3) and
the optimization is over a set of candidates for θk = (ηk, ρk,ω

R
k ). This involves first

transforming the data to Fréchet margins, selecting a threshold s above which the
conditional independence property (2.11) holds, then estimating 
̃s(w; θk) and fi-
nally deriving the distance measure D̃ε,s(θk) for each candidate. Combining these
ideas leads to the following selection process for the optimal candidate:

1. Derive the covariate values Rmax
k (θk) for each candidate θk on a grid.

2. Use the empirical distribution functions and the probability integral trans-
form to transform Rmax

k and Ñk to have Fréchet margins

N∗ = −
{

log
[

rank(Ñk)

m + 1

]}−1
, R∗ = −

{
log

[
rank(Rmax

k )

m + 1

]}−1

3. The threshold s in (2.13) is chosen as a 99.5% quantile of the set {N∗ + R∗}.
Further set

Qs = {
i = 1, . . . ,m : N∗

i + R∗
i > s := q0.995

(
N∗ + R∗)}

.
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4. Derive the distance measure as outlined in Section 2.4 by substituting V1,i =
N∗

i and V2,i = R∗
i into the distance measure in (2.17), where we used ε = 5×10−4.

5. The optimal set of parameters θ∗
k is then the one which provides the maxi-

mum of D̃ε,s(θk).

4.4. Statistical model and inference for clustered claims. We consider the
association between the response Ñk,j and the three defined covariates X̃k,j =
(R�

k,j ,S�
k,j ,R

max
k,j ) in expressions (4.1) through (4.4). Specifically, only clus-

ter periods with at least one claim are considered, that is, the distribution Ñk,j |
(X̃k,j Ñk,j > 0). The extremal mixture model introduced in Section 2 is applied
and so Ñk,j | (X̃k,j Ñk,j > 0) is modelled via a mixture of two random variables
Ỹk and Z̃k with mixture probability pk . Here, Ỹk is distributed according to expres-
sion (2.6) with the scale σk,u and the rate λk varying in the covariates while the
shape ξk is constant. Formally, we define

log(σk,u − ζk) = βk,0 + βk,1R
�
k,j + βk,2S�

k,j + βk,3R
max
k,j ,

logλk = δk,0 + δk,1R
�
k,j + δk,2S�

k,j + δk,3R
max
k,j .

(4.5)

The component Z̃ is defined as a zero-truncated Poisson distribution with rate
κk . As noted in Section 2.2, this model for Ñk,j is stable in its distribution and
covariate representational forms for all choices of the threshold uk .

For the data considered in the following Section 5, we found strong evidence,
by using the Bayesian Information Criterion (BIC) [Schwarz (1978)], that for our
chosen thresholds ζk = 0 could be taken without loss of efficiency. This has the
benefit of parsimony (reducing the number of parameters to 11) but removes the
threshold-stability of the covariate model (4.5) for the scale parameter of the IGPD.
Conclusions of the statistical analysis are approximately unchanged by our choice,
but we note that others may prefer to have retained the ζk parameter in the infer-
ence.

The selected statistical model is, thus, specified by 11 parameters which are
estimated via Bayesian inference. Specifically, a Metropolis–Gibbs algorithm is
used which updates each parameter values individually in turn; see Appendix C for
details. Alternatively, estimates may be obtained via an Expectation-Maximization
algorithm. However, we found that this led to poor estimates since the support of
Ỹ varies in the shape parameter ξk , in particular, in case ξk < 0.

5. Application to the insurance data. We apply the methodology developed
in Sections 2–4 to address the features of the insurance claims data we identified in
the Introduction. In this section, we present results for the municipalities of Oslo,
Bærum and Bergen, where the first two are adjacent and the latter is approximately
300 miles away from them. Oslo and Bergen were chosen since they have both
the highest number of policies and the largest average number of claims per day.
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Bærum was selected as it records the highest daily claim number over the 10-year
period for Norway.

Section 5.1 considers the derivation of the cluster weather periods and Sec-
tion 5.2 explores the model estimates. The marginal distribution for N is then
derived in Section 5.3 and we illustrate its use in predicting the frequency of very
large claims. As our covariate selection in Section 3 involves some parameters that
were either chosen or estimated, we conduct a sensitivity analysis in Section 5.4
to illustrate that the uncertainty of this stage of the analysis does not lead to any
major changes in our overall model fit. Finally, Section 5.5 investigates the extent
to which the fitted covariate model captures the spatial dependence between claims
for the adjacent municipalities of Oslo and Bærum.

5.1. Derivation of the cluster data. The first step to deriving the cluster peri-
ods for each of the three municipalities, via Algorithm 1, is the estimation of the
weight ωS

k in expression (3.1), as this is required for the snow-melt covariate Sk,t .
We do this using the method in Section 4.3 with ωS

k being found to be positive for
Oslo and Bergen, cities which are both located at the foot of mountain ranges and
may, hence, be exposed to snow-melt on higher ground. Further, we need to select
the thresholds ck and dk for surface water and drainage run-off, respectively. An
explanatory analysis for Oslo indicates that daily rainfall levels exceeding the 80%
quantile induce periods of higher claim numbers. Similarly, an increased claim risk
is found for the following days, as long as the change in drainage levels exceeds
the 80% quantile. Hence, we set ck = q0.8(Rk,t | Rk,t > 0) and dk = q0.8(Dk,t )

for each municipality individually.
With the clusters now identified, we use the optimization approach in Sec-

tion 4.3 to estimate the parameters (ηk, ρk,ω
R
k ) of Rmax

k,j in expression (4.3) to
help us derive the key covariate for our analysis. The optimization yields values of
ηk > 0 for all municipalities while ρk = 0 for Bærum and Bergen. Since Bergen
is surrounded by mountain ranges, values of the rainfall intensity of the event co-
variate, Ik,t of expression (3.4), may be potentially high but uninformative. The
sensitivity of the overall inference to these selected clusters and covariate parame-
ters is explored in Section 5.4.

Under the cluster identification described above, Table 2 shows that about one
third of the days are allocated to clusters of a length greater than 1. Further, clusters
are almost always less than 7 days, which is the window that the insurance industry
typically treats as a single event for re-insurance purposes. Figure 2 illustrates that,
post clustering, most of the high number of claims coincide with high values for
Rmax and R� , suggesting that our methods of Section 3 for constructing justifiable
covariates and their relationship to claims has been successful.

5.2. Model estimates. The IGPD threshold uk is set to be 4,2 and 4 for Oslo,
Bærum and Bergen, respectively, as these appear to correspond to levels which
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TABLE 2
Occurrence of cluster lengths for the three Norwegian

municipalities considered in Section 5

Cluster length 1 2 3 4 5 6 >6

Oslo 2091 254 57 98 43 23 17
Bærum 2453 105 43 92 46 19 18
Bergen 1868 340 55 131 39 23 11

only can arise due to weather induced claim sizes. For the model in Section 4.4,
we define uninformative priors for all model parameters and run a MCMC al-
gorithm for 100,000 iterations with every 50th sample being stored for analysis
after a burn-in period of 25,000 to generate a sample from the posterior distri-
bution. Convergence to the posterior distribution is checked via trace plots and
Brooks–Gelman–Rubin diagnostics [Brooks and Gelman (1998)] with three sam-
pled chains. Our R implementation took about 20 minutes per chain on a 2.80-GHz
Intel Core i7 processor. In the following, when the municipalities are considered
individually, the indexes are dropped for notational simplicity.

Summaries of the marginal posterior distributions of the 11 model parameters
are presented in Table 3. The posterior distributions of p indicate that 80–90%
of the observations with Ñ > 0 are estimated to be related to the weather covari-
ates X̃. Furthermore, ξ = 0 is contained in the 90% credibility interval for only
2 of the 3 municipalities. Hence, there is evidence that the tail behaviour of Ỹ is

FIG. 2. Dependence between the aggregated rain R� and the maximum rain within a day Rmax

for (a) Oslo and (b) Bergen. Periods with Ñ > 4 are highlighted.
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TABLE 3
Posterior mean and lower and upper 5% quantiles of the model parameters for Oslo, Bærum and

Bergen with threshold uk = 4,2 and 4, respectively

City Posterior p β0 β1 β2 β3 ξ δ0 δ1 δ2 δ3 κ

Oslo Mean 0.90 0.12 0.21 0.23 0.76 −0.32 −0.16 0.42 0.32 0.71 2.21
5% quant. 0.83 −0.61 0.09 0.10 0.46 −0.76 −0.30 0.29 0.22 0.57 1.65
95% quant. 0.96 0.81 0.33 0.35 1.03 0.15 −0.03 0.56 0.42 0.86 2.93

Bærum Mean 0.83 −1.80 0.15 0.35 1.31 0.16 −0.87 0.44 0.33 0.89 1.14
5% quant. 0.67 −2.92 −0.01 0.18 0.87 −0.40 −1.31 0.18 0.20 0.58 0.70
95% quant. 0.95 −0.90 0.34 0.53 1.70 0.82 −0.56 0.88 0.50 1.30 1.79

Bergen Mean 0.88 −0.61 −0.03 0.19 0.37 0.53 −0.52 0.15 0.13 0.41 1.23
5% quant. 0.79 −1.64 −0.17 0.05 0.17 0.10 −0.74 0.09 0.07 0.33 0.65
95% quant. 0.95 0.30 0.12 0.33 0.57 1.10 −0.35 0.20 0.20 0.49 1.99

not of a Poisson form for Bergen. The covariate effects (βi, δi : i = 1, . . . ,3) are
generally lower for Bergen than for Oslo and Bærum. Since Bergen exhibits higher
precipitation levels than Oslo and Bærum, the buildings are presumably designed
to withstand more severe rainfall events than the ones in Oslo. The posterior es-
timates further show that covariate effects are nonnegative except for β1, which
measures the effect of R� , that is, the accumulated effect of rainfall of the event
excluding the maximum daily rainfall. Hence, the increased risk induced by larger
values of R� is mainly captured via δ1. Collectively, this indicates that an increase
in R� results in more claims above 4 in Bergen but a reduction in the variability
of these claims over 4.

The municipalities of Oslo and Bærum exhibit similar covariate effects for each
of the covariates R� and S� , which is unsurprising given their spatial proximity.
Further, the estimates for the nonweather related rate κ differ by a factor of 2 for
Oslo and Bærum, which is consistent with the number of policies in Oslo being
about twice that of Bærum. The large difference of the β3 posteriors (i.e., the effect
of Rmax) between Oslo and Bærum is mainly driven by one large observation of
143 claims. Indeed, β3 has much more similar posterior means of 0.75 and 0.81 for
Oslo and Bærum, respectively, when leaving out each of the their highest number
of claims.

At each municipality, the estimated behaviour of Ñ | (X̃, Ñ > 0) is further in-
vestigated in Figure 3 which shows the changes in the estimated frequency for a set
of Ñ events for each covariate whilst fixing the other covariate values. In general,
the probability of a high number of claims increases with increasing values for
each of the three covariates, with Rmax being the main risk factor for high number
of claims. Further, the risk for very high numbers of claims increases more strongly
for Oslo and Bærum than for Bergen. For instance, a covariate value of Rmax = 50
results in a probability of 0.6 for observing more than 6 claims in Oslo while it is
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FIG. 3. Probability for certain events of Ñ | (X̃, Ñ > 0) for Oslo, Bærum and Bergen varying with
each of the covariates R� , S� and Rmax. The events are Ñ = 1 ( ), Ñ = 3 ( ), Ñ = 5
( ) and Ñ > 6 ( ). In Column 1, the probability is considered with respect to R� while the
remaining covariates are fixed at their minimum value. Equivalently, Columns 2 and 3 consider S�

and Rmax, respectively.

only ∼0.1 in Bergen. These findings are consistent with previous arguments that
properties in Bergen are likely to be designed to withstand higher precipitation
levels than in Oslo.

Table 4 assesses the fit of the estimated overall model for each possible value
less than or equal to the threshold u and for a pooled estimate for above u. This
assessment is derived for each of three nonoverlapping ranges of the covariates. In
particular, observations are split into three subsets with respect to Rmax: zero val-
ues, and below and above the median of the covariate given Rmax > 0 for which
empirical and model-based frequencies are estimated. The estimated frequencies
are derived from the marginal posterior predictive probabilities. For instance, for
the first case Rmax = 0, we derive the predictive frequency via expression (2.10)
and set π(x) as the product of empirical distributions of (R�,Rmax = 0) and S� ,
that is, rainfall and snow-melt are assumed to be independent. Table 4 illustrates
that the model-based estimated frequency for Ñ lies within the empirical 95% con-
fidence interval in all cases, where the confidence intervals are obtained by con-
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TABLE 4
Posterior mean and empirical frequencies ×102 for clustered claim numbers between 1 and 4 for
different rainfall settings for Oslo, Bærum and Bergen. For the empirical frequency, central 95%

confidence intervals are given in parentheses. The settings are (1) Rmax = 0,
(2) 0 < Rmax ≤ q0.5(Rmax | Rmax > 0) and (3) Rmax > q0.5(Rmax | Rmax > 0)

Oslo Bærum Bergen

Ñ Rmax Estimated Empirical Estimated Empirical Estimated Empirical

1 (1) 72 75 (72,79) 83 84 (80,87) 77 79 (74,83)

(2) 69 74 (69,80) 81 83 (78,90) 74 76 (72,81)

(3) 40 34 (28,41) 49 47 (39,57) 44 45 (40,51)

2 (1) 20 18 (14,21) 13 13 (9,17) 19 16 (12,21)

(2) 22 17 (12,23) 15 14 (9,21) 21 18 (13,22)

(3) 25 24 (17,30) 25 22 (14,31) 26 24 (18,30)

3 (1) 5 5 (1,8) 4 4 (0,9)

(2) 6 7 (2,14) 4 3 (0,8)

(3) 14 12 (6,19) 13 13 (7,19)

4 (1) 2 2 (0,6) 1 0 (0,5)

(2) 2 0 (0,6) 1 2 (0,6)

(3) 9 14 (7,21) 7 8 (2,13)

>uk (1) 1 0 (0,4) 3 4 (0,8) 0 0 (0,4)

(2) 1 1 (0,7) 4 2 (0,9) 0 1 (0,5)

(3) 13 16 (10,23) 25 31 (23,40) 10 11 (6,17)

sidering observations as realizations of a multinomial distribution with 5 possible
outcomes for Oslo and Bergen and 3 for Bærum.

To conclude our analysis on the estimated model for Ñ | (X̃, Ñ > 0), we com-
pare the full model to three less-complex alternatives: (i) a zero-truncated Poisson
as in (1.2), (ii) a Poisson-mixture without the extremal mixture model for Ỹ and
(iii) an extremal mixture model without the component Z̃. Table 5 gives the BIC
averaged over all posterior samples and results indicate that our full model fits the
data better than the competing models. Using the deviance information criterion
[Spiegelhalter et al. (2002)] largely supports this conclusion. The municipalities
are similar in showing evidence that the additional flexibility offered by both our
mixture and tail modelling components leads to substantial improvements.

5.3. Marginal distribution of clustered claims. The posterior distribution of
marginal distribution of Ñ is derived as the product of the posterior distributions
of P(Ñ > 0) and P(Ñ > v | Ñ > 0). The former probability is straightforward to
obtain by assuming that the occurrence of Ñ > 0 is Bernoulli distributed with a
uniform prior. Table 6 (Column 4) provides the posterior mean and central 90%
credibility intervals. The posterior probability for P(Ñ > v | Ñ > 0) is more com-
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TABLE 5
Average Bayesian Information Criterion (ABIC) and Deviance

Information criterion (DIC) for several competing models
considering the distribution of Ñ | (X̃, Ñ > 0) for Oslo, Bærum

and Bergen. The best model fit for each municipality is highlighted

Model City ABIC DIC

Poisson Oslo 2158 4.06
Bærum 1079 3.96
Bergen 2005 3.92

Poisson-Mixture Oslo 2137 5.74
Bærum 963 6.21
Bergen 1977 5.63

Poison-IGPD Oslo 2088 8.26
Bærum 939 8.69
Bergen 1937 8.75

Poisson-IGPD-Mixture Oslo 1779 3.18
Bærum 596 −0.62
Bergen 1632 4.72

plex to derive as it requires Monte Carlo integration over the weather covariates
using expression (2.10) by replacing π(x) by its the empirical estimate π̃ (x) for
X | Ñ > 0. For the posterior this needs evaluating for each of the J posterior sam-
ples θ (1), . . . , θ (J ) obtained by the MCMC algorithm in Section 5.2.

We use the posterior distribution of Ñ to assess the model fit in Section 5.2 in
terms of the marginal distribution of Ñ . An individual QQ plot is derived for each
sample θ (j), j = 1, . . . , J , from the posterior distribution and collectively these

TABLE 6
Estimated scale ν and shape η for Rmax | (Ỹ > u) ∼ GPD(ν, η) and standard errors. Column 3

provides the posterior mean and central 90% credibility intervals of the probability that Ñ > 100,
conditional on Ñ > 0. Column 4 gives the empirical maximum likelihood estimate and central 90%

confidence intervals of the frequency for Ñ > 0

Municipality ν η P(˜N > 100 | ˜N > 0) P(˜N > 0)

Oslo 37.6 −0.48 0.00029 0.391
(6.7) (0.11) (6.3 × 10−7,0.00096) (0.376,0.407)

Bærum 27.73 −0.47 0.00044 0.209
(4.8) (0.11) (5.1 × 10−5,0.00122) (0.197,0.222)

Bergen 67.34 −0.40 0.00052 0.393
(12.0) (0.10) (4.8 × 10−5,0.00148) (0.377,0.409)
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give the posterior intervals for the QQ plot. Figure 4 (Column 1) shows that our
model fits the whole distribution very well as the diagonal line lies within the 95%
credibility interval for each municipality. The fit is at its weakest for Oslo around
20 claims which is due to the occurrence of three claim periods with 22–25 claims
and two with 16–21 claims. For Bærum, the highest observation is not fitted ideally
due to it being by far the highest observation over the 10-year period, however, it
is still consistent with our model when uncertainty is accounted for.

Using this marginal assessment of fit, we can illustrate clearly how our clus-
tering approach improves upon an analysis of the daily data. We fit the model of
Section 2 to the original daily data with the covariates being the precipitation on
the previous and current day, Rt−1 and Rt , respectively, and the difference in the
snow-water equivalent St−1 −St . We set the IGPD threshold to u = 3 for Oslo and
Bergen while u remains unchanged for Bærum. The modification of the threshold
is required since the frequency of higher number of claims is lower in the daily
data than in the clustered data. Figure 4 (Column 2) shows a much worse model fit
for the daily data, in particular, for the medium to large claim numbers.

Interest lies in estimating the probability of extreme numbers of claims since
it appears that the marginal distribution of Ñ has a heavy tail, for example, the
largest claim event of 143 for Bærum substantially exceeds all events with other
large numbers of claims in this municipality. Hence, we want to estimate P(Ñ > v)

for large v, with v � u. Figure 3 shows that our conditional model indicates that
extreme claims are strongly associated with extreme values of Rmax but that the
other covariates have limited association. Hence, the use of empirical estimate
π̃(x) in expression (2.10) is likely to lead to underestimation of P(Ñ > v) since
this limits Rmax to the observed sample. Hence, a parametric model is required
to enable extrapolation for the distribution of Rmax, but we do not need to be
concerned with the other covariates.

To help motivate our approach, note that the first term on the right-hand side of
expression (2.10) is P(Ỹ > v), and that for v > u,

P(Ỹ > v) = P(Ỹ > v | Ỹ > u)P(Ỹ > u)

=
∫

x
P(Ỹ > v | x, Ỹ > u)π(x | Ỹ > u)dxP(Ỹ > u).

(5.1)

The probabilities P(Ỹ > u) and P(Ỹ > v | x, Ỹ > u) are estimated as described
as above, with the latter entirely determined by the IGPD. However for v � u

we used a semi-parametric model-based estimate of π(x | Ỹ > u). Specifically,
marginal exceedances of Rmax | Ỹ > u over some threshold uR are modelled by a
GPD(ν, η) model, with tail probability λ, that is, λ = P(Rmax > uR | Ỹ > u) and
the other covariates (R�,S�) | (Rmax > uR,Y > u) are fixed at their average
observed values (μ1,μ2) from this empirical conditional distribution. Hence, we
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FIG. 4. Posterior Quantile-Quantile plots for Oslo, Bærum and Bergen obtained by the full model.
Column 1 provides the results for the clustered data while Column 2 considers the original daily
data. The lines in each plot represent ( ) Posterior mean, ( ) Posterior median and ( )
Central 95% posterior interval.
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FIG. 5. Mean residual life plots (Row 1) and Quantile-Quantile plots with central 95% confidence
intervals of the fitted GPD distribution (Row 2) for π(Rmax | Ỹ > u) for the municipalities of Oslo,
Bærum and Bergen.

have a model for the density π(x | Ỹ > u) of

π̂(x | Ỹ > u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π̃(x | Ỹ > u) for rmax < uR,
λ

ν

(
1 + η

(
rmax − uE

)
/ν

)−1−1/η
+

× 1
(
r� = μ1,s� = μ2

)
for rmax ≥ uR.

The mean residual life plots in Figure 5 are used to select the threshold uR .
A threshold of uR = 0.1 mm seems suitable as the plot is approximately linear
above this level once uncertainty is accounted for. The level corresponds to the
smallest positive amount of rainfall. The GPD is fitted separately for each munici-
pality via maximum likelihood and estimates and standard errors for the scale pa-
rameter ν and shape parameter η for the GPD, as in expression (2.3), are provided
in Table 6. The estimated shape parameter η is negative for all three municipalities,
that is, the associated GPD is short-tailed with a finite upper end point. Figure 5
shows that the tail fit for Rmax | Ỹ > u is good for Oslo and Bærum while being
slightly off for Bergen.

Focusing on the case v = 100, Table 6 shows posterior summaries for the
P(Ñ > 100 | Ñ > 0) for the three municipalities. The results indicate that about
1 in 5000 events for Bergen will cause more than 100 claims. Considering that
about 2500 events were observed over a 10-year horizon, that corresponds to one
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occurrence every 20 years on average. The same approach implies that such an
event happens every 30–40 years for Oslo and Bærum. Hence, the observation of
143 claims for Bærum is a very rare event.

5.4. Sensitivity analysis. Several thresholds were fixed in Section 5.1 to derive
the cluster periods, as well as, the parameters ωR and (η, ρ) in expressions (3.4)
and (4.3), respectively. Specifically, c and d in Algorithm 1 were set to the 80%
quantile of the observed rainfall and difference in drainage, respectively, while the
threshold t in expression (2.17) was fixed to the 99.5% quantile in Section 4.3.
Here, interest lies in exploring the sensitivity of the results in Section 5.2 with
respect to these settings for c, d and t .

We start by considering the threshold t . If t is the 98.5% quantile, instead of the
99.5% quantile, then the estimated ρ is now positive for all three municipalities. To
assess sensitivity in terms of model fit, the full parametric model (4.5) is estimated
with the resulting new covariate values. By comparing the BIC and DIC of this
estimated model to the one in Table 5, we find little to no change in the BIC. In
particular, the largest difference is found for Bærum with an increase in BIC of 7.
With respect to the estimated covariate effects, Oslo and Bergen are very similar
while some larger changes are found for Bærum. The latter is related to the cluster
period with the highest number of claims as it is the period of rainfall which is both
most ’intense’ and contains the largest daily accumulation. Consequently, while
different threshold choices for t affect the estimated parameters, and potentially
the covariate effects, little sensitivity is found in terms of model fit and subsequent
inferences.

To assess the sensitivity on c and d , we consider the QQ plots for Ñ , considered
in Section 5.3, of the estimated models rather than comparing the BIC and DIC.
This is due to the clustered data being dependent on these thresholds, affecting
the interpretability of the BIC and DIC measures. We take d as the 75% and 85%
quantile while keeping c fixed to the original 80% quantile and vice-versa. The
QQ plots illustrate that these models fit the clustered data essentially as well as
the original model in Section 5.2. There is a slightly poor fit of the highest claim
numbers for Oslo and Bærum when c or d , corresponds to the 85% quantile. Since
higher values c or d imply, on average, shorter cluster periods, taking c or d too
high leads to some claims across days being classified as independent although
they are related to the same severe weather event. For instance, in the case of
Bærum, a higher c leads to a lower estimated p and a lighter tail which provides a
poorer fit of the extremes.

5.5. Examination of the conditional spatial claim dependence. Neighbouring
municipalities tend to have dependent numbers of aggregated claims from the same
weather event. This dependence is illustrated in the left panel of Figure 6, which
shows positive dependence of the claim numbers for the adjacent municipalities of
Oslo and Bærum, with there being a particularly strong dependence in the extreme
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FIG. 6. Plots of simultaneous (a) clustered claims for Oslo and Bærum and (b) the randomized
probability integral transformed samples using the estimated conditional distributions of claims
given weather at each municipality. Observations for which simultaneously more than 4 and 2 claims
are observed for Oslo and Bærum, respectively, are highlighted.

values. The plot is presented after the use of a square root transformation since
the marginal claim numbers distribution is heavy tailed. The estimated Kendall’s τ

has a central 95% confidence interval of (0.26,0.44) and this interval is invariant
to the square root, or any monotone, marginal transformation.

The only possible cause for this dependence in claims is through the spatial
dependence of the weather covariates, as claims in one region are not directly
related to those in a different area. Specifically, for any weather event at time t ,
it is logically reasonable that conditional independence of claim numbers given
weather conditions holds, that is,[

(Ñ1,t , Ñ2,t ) | (X̃1,t , X̃2,t )
] = [Ñ1,t | X̃1,t ] × [Ñ2,t | X̃2,t ],

where here the municipalities of Oslo and Bærum are numbered 1 and 2, respec-
tively. Thus a good test of the predictive ability of our selected weather covariates
is to test whether the conditional variables Ñ1,t | X̃1,t and Ñ2,t | X̃2,t are indepen-
dent or not.

The complexities of this assessment relates to the cluster periods of events at
the two locations not having identical start and end times and the discrete nature of
Ñk,t are discussed below. Ignoring these issues for the moment, in the right panel
of Figure 6 we show model-based estimates of P(Ñi,t ≤ ñi,t | X̃i,t = x̃i,t ), where
{(ñi,t , x̃i,t ) : t = 1, . . . ,m} denote the set of cluster periods data derived for mu-
nicipality i (i = 1,2). These two conditional distributions are evaluated using the
fitted model in Section 5.2. If the model is a good fit then, marginally, each vari-
able should be Uniform(0,1). This aspect of fit for each individual municipality
was assessed in Section 5.3. The points also appear to be relatively uniformly dis-
tributed over (0,1)2, indicating independence. Kendall’s τ for this joint sample has
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a central 95% confidence interval of (0.00,0.14), showing that the dependence has
been much reduced relative to the unconditional joint distribution. Furthermore, as
independence, corresponding to τ = 0, is in this interval, it is supportive of the hy-
pothesis that our selected covariates X̃ capture all the important weather features
related to claim numbers.

First, consider the issue of cluster periods not being identical for the two mu-
nicipalities. Many of the weather event clusters that are identified by the weather
cluster extraction scheme of Section 5.1 start at the same time, but some have
nonoverlapping periods. Between the j th and (j + 1)th occurrence when weather
cluster starts at exactly the same time for both municipalities, there are li,j ≥ 0
weather events for municipality i (i = 1,2). Of these li,j events, we select sepa-
rately the weather event giving maximum number of claims at each municipality
and the associated weather covariates from that event are recorded. In case of ties,
that is, two or more of the li,j clusters give the same maximum number of claims,
the first of these clusters is selected. We treat these events as joint spatial events
even though their start times do not necessarily always match up. Given that the
dependence in weather covariates is so strong between municipalities, in practice
this joint event definition process retains approximately 90% of the weather cluster
periods identified previously using municipality specific selection methods. As we
are interested in cases where Ñi,t > 0 for i = 1 and 2, then events which fail to
achieve this condition are discarded, leaving 50% and 70% of the total claims for
Oslo and Bærum, respectively. These are the data shown in Figure 6 and analysed
subsequently.

To account for the discrete nature of the clustered claims Ñ when evaluating
the model-based estimates of P(Ñi,t ≤ ñi,t | X̃i,t = x̃i,t ) we use the randomized
probability integral transform [Brockwell (2007), Smith (1985)]. Specifically, we
replace this conditional probability by a

(5.2) Uniform
[
P(Ñ ≤ ñi − 1 | x̃i , Ñ > 0),P(Ñ ≤ ñi | x̃i , Ñ > 0)

]
values, where the probabilities in expression (5.2) are set to their posterior means.

6. Discussion. We extended the modelling framework by Haug et al. (2011)
and Scheel et al. (2013) in order to improve the model fit for higher number of
claims. Additional information was gained by analysing the spatial and temporal
patterns with respect to snow-melt and precipitation. A temporal cluster algorithm,
based solely on the observed weather covariates, was introduced in order to reduce
the effects of potential lags in the recording process and to account for weather
events which affect the claim dynamics on consecutive days. The original daily
data were then adapted to the respective cluster periods and one covariate was
tuned to maximize its relevance to large claims.

A mixture model with an extremal mixture component was applied to model the
number of claims over the cluster periods. Results have shown good performance
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for lower as well as higher marginal and conditional numbers of claims. Further-
more, the spatial dependence between claims in different municipalities appears to
be accounted for by the derived weather covariates.

The derived model can also be applied to assess the impact of climate change.
Haug et al. (2011) use the daily data and perform an effect study, subject to the
insurance portfolio of properties of future periods being close in value and quality
to the one of the model fitting period. Their results indicate an increase in the claim
frequency for all municipalities. In order to perform a similar study with our new
model, it is necessary to simulate weather observations for cluster periods rather
than single days.

There are various way to extend the model presented in this paper. First, in the
model fitting of the extremal mixture model for claims, the distribution can be
restricted to a uni-modal form by excluding parameter settings which induce

P
(
Ỹ = 
u� − 1 | X̃

)
> P

(
Ỹ = 
u� | X̃

)
< P

(
Ỹ = 
u� + 1 | X̃

)
.

This set of inequalities imposes additional constraints on the parameters λ, σu

and ξ . This paper focused on the periods with Ñ > 0 but there is interest for all
periods. We considered a Poisson-IGPD mixture with the same parameter values
as for the zero-truncated Poisson-IGPD mixture in Section 4 and found that the
model underpredicts the frequency of periods with zero claims Ñ = 0. Hence, the
model could be extended via a hurdle component as in the BPH. Furthermore,
Figure 3 shows that the event Ñ = 1 has a probability of about 0.10 even for very
high values of Rmax due to the nonweather related mixture component. One may
argue that such predictions are unrealistic since extreme precipitation levels over
a day should lead to large damages, regardless of their intensity. Therefore, the
mixture probability p could be modelled as a function of the covariate Rmax.

Further research can also be undertaken from a spatial perspective. Spatial de-
pendence of the parameters of Ñ | (X̃, Ñ > 0) may be introduced to allow for a
better model fit similar to Scheel et al. (2013). For instance, the threshold u = 2 for
Bærum may be too low for the extremal mixture model but there are not enough
observations to raise it to u = 3. Additional information may be borrowed from
the adjacent municipalities, in particular Oslo, in order to achieve this. Spatial de-
pendence could be modelled via a conditional autoregressive prior [Besag (1974),
Besag, York and Mollié (1991)] on (β1, β2, β3) in (4.5).

APPENDIX A: THRESHOLD-STABILITY OF THE IGPD

LEMMA A.1. Let N be an integer-valued random variable with N | N > u ∼
IGPD(σu, ξ, u), u ∈ R. Then for any u < v < u − σu

ξ
, N | N > v ∼ IGPD(σu +

ξ(
v� − 
u�), ξ, v) for any σu > 0 and ξ ∈ R.

PROOF. We prove the lemma via the survival function P(N > n | N > v),
where n is integer with n > v. By applying conditional probabilities, the P(N >
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n | N > v) can be expressed by

P(N > n | N > v) = P(N > n | N > u)

P(N > v | N > u)

= P(H > n − 
u�)
P(H > 
v� − 
u�) ,

where N = �H�, with H a GPD with parameters σu and ξ . It follows that

P(N > n | N > v) = [1 + ξ(n−
u�)
σu

]−
1
ξ

+

[1 + ξ(
v�−
u�)
σu

]−
1
ξ

+

=
[

σu + ξ(n − 
u�)
σu + ξ(
v� − 
u�)

]− 1
ξ

+

=
[
σu + ξ(n − 
v� + 
v� − 
u�)

σu + ξ(
v� − 
u�)
]− 1

ξ

+

=
[
1 + ξ(n − 
v�)

σu + ξ(
v� − 
u�)
]− 1

ξ

+
,

which is the survival function of a IGPD above threshold v with scale parameter
σu + ξ(
v� − 
u�) > 0 and shape parameter ξ . �

APPENDIX B: THRESHOLD-STABILITY OF THE MIXTURE TAIL

LEMMA B.1. Let N be an integer-valued random variable with N |N > u

having distribution function

P(N = n | N > u) = pP(Y = n) + (1 − p)P(Z = n),

where Y ∼ IGPD(σu, ξ, u) and Z being a truncated Poisson above threshold u

with parameter κ . Then for any v > u, the random variable N | N > v, is dis-
tributed according to a mixture of an IGPD(σu + ξ(
v� − 
u�), ξ, v) and a trun-
cated Poisson above v with rate parameter κ and mixture probability

pv = pP(Y > v)

pP(Y > v) + (1 − p)P(Z > v)
.

PROOF. Consider any combination n > v > u. Then, based on conditional
probabilities,

P(N > n | N > v)

= P(N > n | N > u)

P(N > v | N > u)
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= pP(Y > n) + (1 − p)P(Z > n)

pP(Y > v) + (1 − p)P(Z > v)

= pP(Y > n | Y > v)P(Y > v) + (1 − p)P(Z > n | Z > v)P(Z > v)

pP(Y > v) + (1 − p)P(Z > v)
.

By defining

pv = pP(Y > v)

pP(Y > v) + (1 − p)P(Z > v)
,

we obtain

P(N > n | N > v) = pvP(Y > n | Y > v) + (1 − pv)P(Z > n | Z > v).

Based on the threshold-stability in Appendix A, Y | Y > v ∼ IGPD(σu + ξ(
v� −

u�), ξ, v). Further, Z | Z > v is a truncated Poisson above v with rate κ . Hence,
N | N > v is distributed according to a mixture of an IGPD and a truncated Pois-
son. �

APPENDIX C: DETAILS OF THE MCMC ALGORITHM

Let D = {(ñi, x̃i ), i = 1, . . . ,m} denote the set of observed claim numbers and
covariates effects. Further, a latent binary variable vi is introduced for each obser-
vation ñi which is defined by

vi =
{

1 if ñi is a realization from the distribution Ỹ ,

0 otherwise.

We set a Beta(1,1) prior π(p) on the mixing probability p and an improper prior
on the remaining parameters, π(β, δ, ξ, κ) ∝ 1. Hence, the posterior distribution
π(p,β, ξ, δ, κ, v1, . . . , vI | D) is proportional to

m∏
i=1

{[
pP(Ỹ = ñi | β, ξ, δ, x̃)

]vi
[
(1 − p)P(Z̃ = ñi | κ)

]1−vi
}
π(p).

Realizations from this posterior distribution are sampled by a Metropolis-within-
Gibbs algorithm which runs for a fixed number of iterations J . Let p(0), β(0),
ξ (0), δ(0) and λ(0) denote the initial parameter values. The update procedure for all
parameters within one iteration step j = 1, . . . , J is as follows:

At the start of iteration step j , the latent variables v
(j)
1 , . . . , v

(j)
m are sampled

from a Bernoulli distribution

v
(j)
i ∼ Bernoulli

(
w

(j)
i

)
.

The probability of observation ñi being sampled from the covariate-driven com-
ponent Ỹ , w

(j)
i , is given by

w
(j)
i = p(j−1)

P(Ỹ = ñi | β(j−1), ξ (j−1), δ(j−1), x̃i )

p(j−1)P(Ỹ = ñi | β(j−1), ξ (j−1), δ(j−1), x̃i ) + (1 − p(j−1))P(Z̃ = ñi)
.
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Since we placed a conjugate Beta prior on p, the parameter value is updated by
sampling from the full-conditional Beta posterior

p(j) ∼ Beta

(
I∑

i=1

v
(j)
i + 1, I −

I∑
i=1

v
(j)
i + 1

)
.

The model parameters β , ξ and δ are updated separately via Random-Walk–
Metropolis with Gaussian proposal. For the covariate effects β , the proposal β∗ is
accepted with probability

min
{

1,
∏

v
(j)
i =1,ñi>u

P(Ỹ = ñi | β∗, ξ (j−1), δ(j−1), x̃i)

P(Ỹ = ñi | β(j−1), ξ (j−1), δ(j−1), x̃i)

}
,

whilst the proposal ξ∗ has acceptance probability

min
{

1,
∏

v
(j)
i =1,ñi>u

P(Ỹ = ñi | β(j), ξ∗, δ(j−1), x̃i)

P(Ỹ = ñi | β(j), ξ (j−1), δ(j−1), x̃i)

}
.

Note, the likelihood needs only to be evaluated for the observations with latent
variable v

(j)
i = 1 and the number of observations ñi greater than the threshold.

Next, the covariate effects for the rate parameter κ are updated. Here, the likelihood
has to be evaluated for all observations with v

(j)
i = 1 as δ effects the threshold

exceedance model. The acceptance ratio is thus given by

min
{

1,
∏

v
(j)
i =1

P(Ỹ = ñi | β(j), ξ (j), δ∗, x̃i )

P(Ỹ = ñi | β(j), ξ (j), δ(j−1), x̃i )

}
.

Finally, the rate parameter κ is updated via an independence sampler with uniform
proposal distribution. The acceptance probability then yields to

min
{

1,
∏

v
(j)
i =0

P(Z̃ = ñi | κ∗)
P(Z̃ = ñi | κ(j−1))

}
.
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