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In 2009, the National Academy of Sciences published a report ques-
tioning the scientific validity of many forensic methods including firearm
examination. Firearm examination is a forensic tool used to help the court
determine whether two bullets were fired from the same gun barrel. During
the firing process, rifling, manufacturing defects, and impurities in the barrel
create striation marks on the bullet. Identifying these striation markings in
an attempt to match two bullets is one of the primary goals of firearm ex-
amination. We propose an automated framework for the analysis of the 3D
surface measurements of bullet land impressions, which transcribes the in-
dividual characteristics into a set of features that quantify their similarities.
This makes identification of matches easier and allows for a quantification
of both matches and matchability of barrels. The automatic matching routine
we propose manages to (a) correctly identify land impressions (the surface
between two bullet groove impressions) with too much damage to be suitable
for comparison, and (b) correctly identify all 10,384 land-to-land matches of
the James Hamby study (Hamby, Brundage and Thorpe [AFTE Journal 41
(2009) 99-110)).

1. Introduction. Firearm examination is a forensic tool used to help the court
determine whether two bullets were fired from the same gun barrel. This process
has broad applicability in terms of convictions in the United States criminal justice
system. Firearms identification has long been considered an accepted and reliable
procedure, but in the past ten years has undergone more significant scrutiny. In
2003, in United States versus Green, the court ruled that the forensic expert could
not confirm that the bullet casings came from a specific weapon with certainty,
but could merely “describe” other casings which are similar. Further court cases
in the late 2000s expressed caution about the use of firearms identification evi-
dence [Giannelli (2011)].

In 2009, the National Academy of Sciences published a report [National
Research Council (2009)] questioning the scientific validity of many forensic
methods including firearm examination. The report states that “[m]uch foren-
sic evidence—including, for example, bite marks and firearm and toolmark
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identification—is introduced in criminal trials without any meaningful scientific
validation, determination of error rates, or reliability testing to explain the limits
of the discipline.”

Rifling, manufacturing defects, and impurities in a barrel create striation marks
on the bullet during the firing process. These marks are assumed to be unique to
the barrel, as described in a 1992 AFTE article [AFTE Criteria for Identification
Committee (1992)]. “The theory of identification as it pertains to the comparison
of toolmarks enables opinions of common origin to be made when the unique
surface contours of two toolmarks are in sufficient agreement.” The article goes
on to state that “Significance is determined by the comparative examination of two
or more sets of surface contour patterns comprised of individual peaks, ridges, and
furrows.”

From a statistical standpoint, identification of the gun that fired the bullet(s)
requires that we compare the probabilities of observing matching striae under the
competing hypotheses that the gun fired, or did not fire, the crime scene bullet. If
indeed the uniqueness assumption is plausible, the latter probability approaches
zero and the former approaches (but never reaches) one.

Current firearm examination practice relies mostly on visual assessment and
comparison of striation. Indeed, the AFTE Theory of Identification (https://afte.
org/about-us/what-is-afte/afte-theory-of-identification) explicitly requires that ex-
aminers evaluate the strength of similarity between two samples relative to other
comparisons they may have carried out in the past. An attempt to quantify the de-
gree of similarity consists in counting the number of consecutively matching striae
(CMS) between two bullets, first proposed by Biasotti (1959). This approach has
two drawbacks, however. First, determining matching striae is still a subjective
activity. Second, as discussed by Miller (1998), the number of CMS may be high
even if the bullets were not fired by the same gun.

Here, we focus on the question of defining a metric that can be used to ob-
jectively compare two bullets. We propose a framework which allows for the au-
tomatic analysis of the surface topologies of bullets, and the transcription of the
individual characteristics into a set of features that quantify their similarities. This
allows for an objective and quantitative assessment of striae-based bullet matches.

We work with images from the James Hamby Consecutively Rifled Ruger Bar-
rel Study [Hamby, Brundage and Thorpe (2009)]. Ten consecutively rifled Ruger
P-85 pistol barrels were obtained from the manufacturer and fired to produce 20
known test bullets and 15 unknown bullets for comparison. 3D topographical im-
ages of each bullet were obtained using a NanoFocus lens at 20x magnification
and made publicly available on the NIST Ballistics Database Project? in a format
called x3p (XML 3-D Surface Profile). The x3p format conforms to the ISO5436-2
standard® and is implemented to provide a simple and standard conforming way to

2http://www.nist.gov/forensi(:s/ballisticsdb/hamby—consecutively—riﬂed—bau‘rels.(:fm
3 http://sourceforge.net/p/open- gps/mwiki/X3p/
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(b) Frontal view of a bullet land impression (lower end of the view is the bottom of the bullet).

FIG. 1. Example of a groove-to-groove scan of a bullet land impression. The red-dotted rectangle
on the right shows the location and orientation of the segment.

exchange 2D and 3D profile data. It was adopted by the OpenFMC (Open Forensic
Metrology Consortium®), a group of academic, industry, and government firearm
forensics researchers whose aim is to establish best practices for researchers using
metrology in forensic science. We have developed an open-source package for an-
alyzing bullet land impressions written in R [R Core Team (2016)]. This package
is called bulletr [Hofmann and Hare (2016)] and enables direct reading and manip-
ulation of x3p files. It also implements all of the methods we propose in this paper.
A different package exists for reading x3p files called x3pr [OpenFMC (2014)],
developed by Petraco (2014), but it is not designed to carry out calculations like
the ones we propose after the x3p files have been read.

Each fired bullet is provided in the form of a set of six x3p files, where each
file is a surface scan between adjacent groove impressions on the bullet, called a
“land” or land impression. The shoulders are the raised portion of the surface be-
tween the groove impression and the land impression. In the Hamby data, typical
length (shoulder-to-shoulder) of a land impression is about 1998.28 micrometers
or 2 millimeters. For notational simplicity, we refer to a particular land impression
of a bullet as bullet X-Y, where X is the bullet identifier, and Y is the land num-
ber. An example of plotting one of these land impressions is given in Figure 1(a)
and (b). These figures show side and top profiles of the land, respectively. The tilt
of the lines to the left in Figure 1(b) is not an artifact, but a direct and expected con-
sequence of the spin induced by the rifling during the firing process. Depending on

4http :/lwww.openfmc.org/


http://www.openfmc.org/

AUTOMATIC MATCHING OF BULLET LAND IMPRESSIONS 2335

whether a barrel is rifled clockwise or counterclockwise, the striations have a left
or right tilt. The direction of the rifling is a class characteristic, that is, a feature
that pertains to a particular class of firearms, and is not unique at the individual
barrel/bullet level.

The typical number and width of striation markings on bullets varies signifi-
cantly depending on the gun barrel. For instance, a Smith and Wesson barrel with
a land-width of 2.4 millimeters contained an average 60 striae, with an average
width of about 0.08 millimeters [Chu et al. (2011)].

The purpose of our paper is to present an automatic matching routine that al-
lows for a completely objective assessment of the strength of a match between
two bullet land impressions. While we assess the performance of the algorithm
in terms of a binary decision of match versus nonmatch using a 50% probability
cut-off, our primary goal is to highlight the features that are statistically associ-
ated with matches and nonmatches, and to provide a quantitative assessment of
this association. In a real-world application of our algorithm, the raw scores would
need further analysis and scrutiny, and it is likely that a 50% cut-off would be an
inappropriate choice on the basis of reasonable doubt.

Our algorithm is fully open source and available on GitHub [Hofmann and Hare
(2016)]. This transparency allows for a greater understanding of the individual
steps involved in the bullet matching process, and allows other forensic examin-
ers, as well as outside observers, to examine the factors that discriminate between
known bullet matches and nonmatches. We have chosen to perform the match-
ing on a land-to-land level, rather than bullet-to-bullet level. Although doing so
introduces an implicit assumption of independence between land impressions, as-
suming independence only serves to make the task more challenging.

The remainder of this paper is structured as follows: We first briefly review some
earlier work. We then discuss two methods for modeling the class structure of the
bullet surfaces. Finally, we proceed to describing an automatic matching routine
which we evaluate on the bullets made available through the Hamby study.

2. Previous work. There have been attempts to develop automatic or semi-
automatic matching protocols, but most have focused on breech face and firing pin
marks [e.g., Riva and Champod (2014)] or discuss a single attribute for comparison
[e.g., Chu et al. (2011), Vorburger et al. (2011)]. Still others refer to proprietary al-
gorithms [Roberge and Beauchamp (2006)]. We briefly review some of this earlier
work in what follows.

The original paper on the complete Hamby study already reports the successful
use of several computer-assisted methods. However, aside from a zero false posi-
tive rate, false-negative error rates for bullets are not given nor are error rates for
land-to-land matches mentioned.

Lock and Morris (2013) proposed an approach to quantify similarity of tool-
marks. Their algorithm determines an optimal matching window between two
toolmark signatures, and then performs a set of both coordinated and independent
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F1G. 2. Side profile of the surface measurements (in um) of a bullet land impression at a fixed
height x. Note that the global features dominate any deviations, corresponding to the individual
characteristics of striation marks.

shifts. Given a match, the coordinated shifts would be expected to yield correlation
values higher than those obtained from independent shifts. This is assessed using
a Mann—Whitney U-Statistic.

A procedure for bullet matching using the BulletTrax3D system is described in
Roberge and Beauchamp (2006). Their study used a different set of ten consecu-
tively rifled barrels; matches are identified based on a bullet-to-bullet correlation
score. The authors state that this process “could be automated,” but no implemen-
tation of the algorithm is available.

Modern automated techniques using 3D images have also been proposed by
Riva and Champod (2014). However, the authors focused on cartridge cases and
not bullets. This might seem like a trivial distinction, but it has implications for
the development of the algorithm. Their algorithm performs alignment of striae by
rotation of the XY plane, which is not generalizable to bullets in which the XY
plane is not flat.

Other work on 3D images has been described by Petraco and Chan (2012),
who also focus on cartridge cases, as well as screwdriver striation patterns, and by
others [e.g., Chu et al. (2010, 2011), Vorburger et al. (2011)].

3. Bullet signatures. To analyze the striation pattern, we extract a bullet pro-
file [Ma et al. (2004)] by taking a cross section of the surface measurements at a
fixed height x along the bullet land impression, as previously illustrated in Fig-
ure 1. Figure 2 shows a plot of the side profile of a bullet land impression. It can
be seen that the global structure of the land dominates the appearance of the plot.
The shoulders can be clearly identified on the left and right side, and the curvature
of the surface is the most visible feature in the middle.

The smooth curve on the plot represents a segment of a perfect circle with the
same radius as the bullet. While the circle is an obvious first choice for fitting
the structure, it does not completely capture the bullet surface after it was fired.
A discussion of a circular fit and the remaining residual structure can be found in
the Supplementary Material, Section 1 [Hare, Hofmann and Carriquiry (2017)].

Instead of a circular fit, we use multiple loess fits to model the overall structure
and extract the bullet markings.
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3.1. Identifying shoulder locations. We first identify the location of the left
and right shoulders in the image. The groove impressions are assumed to contain
no information relevant for determining matches, and the shoulders identify the lo-
cation at which the land impression begins. The shoulders also dominate the struc-
ture and, therefore, need to be removed. Fortunately, the location and appearance
of the shoulders in the surface profiles is quite consistent. Surface measurements
reach local maxima around the peak of the shoulder at either end of the range of y,
and we can then follow the descent of the surface measurements inwards to the
valley of the shoulder. The location of the valleys mark the points at which we
trim the image. The procedure can be described as follows:

1. At a fixed height x, extract a bullet’s profile [Figure 3(a), with x =
243.75 pum].

2. For each y value, smooth out any deviations occurring near the minima by
twice applying a rolling average with a pre-set smoothing factor s. [Figure 3(b),
smoothing factor s = 35 (data points) corresponding to 55 um].
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(a) Step 1 of identifying shoulder locations: For a fixed height (x = 243.75 um) surface
measurements for bullet 1-5 are plotted across the range of y.
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(b) Step 2 of identifying shoulder locations: The surface measurements are smoothed twice with a
smoothing factor of s = 35. The orange rectangle shows an example of the smoothing window.
Valleys and peaks are detected, if they are not within the same window.
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(c) Steps 3-6 of identifying shoulder locations: After smoothing the surface measurements extrema
on the left and right are detected (marked by vertical lines, red indicating peaks and blue indicating
valleys). Values outside the blue boundaries are removed (shown in grey).

FIG. 3. Overview of all six steps of the smoothing algorithm to identify and remove shoulders and
groove impressions from the bullet images.
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3. Determine the location of the peak of the left shoulder by finding the first
doubly-smoothed value y; that is the maximum within its smoothing window (e.g.,
such that y; > y;_1 and y; > y;+1, where i is between 1 and [s/2]). We call the
location of this peak p¢ [see Figure 3(c)].

4. Similarly, determine the location of the valley of the left shoulder by finding
the first double-smoothed y; that is the minimum within its smoothing window.
Call the location of this valley v,.

5. Reverse the order of the y values and repeat the previous two steps to find
the peak and valley of the right shoulder, (p;, v,).

6. Trim the surface measurements to values within the two shoulder valleys
(i.e., remove all records with y; < vy and y; > v,) [see Figure 3(c)].

The smoothing factor s introduced in the algorithm represents the window size
to use for a rolling average. Higher values of s therefore lead to more smoothing.
Empirically, a value of s = 35 for the smoothing factor seems to work well (the
smoothing factor is further discussed in Section 4.4). It is important to note that the
smoothing pass is done twice, that is, the smoothed data are once again smoothed
by computing a new rolling average with the same smoothing factor. This bears
some similarities to the ideas of John Tukey in his book Exploratory Data Analysis,
where he describes a smoothing process called “twicing” in which a second pass
is made on the residuals computed from the first pass and then added back to the
result [Tukey (1977)]. This has the effect of introducing a bit more variance back
into the smoothed data. We instead performed a second smoothing pass on the
smoothed data, which has the effect of weighting observations near the center of
the window the highest, with the weights linearly dropping off as we reach either
end of the smoothing window.

3.2. Removing curvature. Next, we fit a loess regression to the data. Loess
regression [Cleveland (1979)] is based on the assumption that the relationship be-
tween two random variables X and Y can be described in the form of a smooth,
continuous function f with y; = f(x;) + ¢; for all valuesi =1, ..., n. The func-
tion f is approximated via locally weighted polynomial regressions. Parameters of
the estimation are «, the proportion of all points included in the fit (here, @ = 0.75),
the weighting function and the degree of the polynomial (here, we fit a quadratic
regression).

The main idea of locally weighted regression is to use a weighting routine that
emphasizes the effect of points close to the fitting location and n-emphasizes the
effect of points as they are further away. The weighting function used here is the
tricubic function w(d) = (1 — d3)3, for d € [0, 1] and w(d) = 0 otherwise. Here,
d is defined as the distance between x; and the location of the fit x,, divided by the
overall range of the included data, so as to map the results to a [0, 1] range as the
definition requires.

Figure 4(a) shows the loess fit, in blue, overlaid on the processed image of
bullet 1-5. The fit seems to do a reasonable job of capturing the structure of the



AUTOMATIC MATCHING OF BULLET LAND IMPRESSIONS 2339

= 210

180

o
g

Relative Height (in um
N
8

©
8

500 2000

1000 1500
Relative Location (in um)

(a) Loess fit for bullet 1-5.
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(b) Residuals of loess fit for bullet 1-5.

FI1G. 4. Fit and residuals of a loess fit to bullet 1-5 (Barrel 1). The residuals define the signature of
bullet 1-5.

image. Figure 4(b) shows the residuals from this fit. These residuals are called the
signature of bullet 1-5.

4. Automatic matching. Applying the loess fit to a range of different signa-
tures (see Figure 5 for signatures extracted at heights between 50 um and 150 pm)
shows the 3D striation marks from two bullets. Signatures of bullet 1 are shown on
the left (all extracted from heights below 100 «m) and signatures of bullet 2 are
shown on the right (extracted at heights above 100 um). Signatures are manually
aligned, resulting in many of the striation marks to continuously pass from one
side to the other. Visually, this allows for an easy assessment of these two bullet
land impressions as a match. However, this match relies on visual inspection and
is therefore subjective. The goal of this section is to eliminate the need for a visual
inspection during the matching process and replace it by an automatic algorithm.
This also allows for a quantification of the strength of the match.

In this section, we describe the algorithm for matching signatures first, and the
impact of parameter choices in the subsections thereafter.

4.1. Algorithm. Figure 6 gives an overview of the automated matching rou-
tine: We first identify a stable region for each bullet land and extract the signature
at the lowest height in this region, because typically, individual characteristics are
best expressed at the lower end of the bullet (see the Supplementary Material, Sec-
tion 3, for a more detailed discussion).

All of the other steps are done on pairs of bullet land impressions:

1. Smooth the two signatures using a loess with a very small span [see Figure 6(a)].
2. Use cross-correlation to find the best alignment of the two signatures: shift one
of the signatures by the lag indicated by the cross-correlation function [see



2340 E. HARE, H. HOFMANN AND A. CARRIQUIRY

F1G. 5. 3D view of the manually adjusted side-by-side comparison of bullet 1-5 and bullet 2-1 after
removing the curvature. Bullet 2-1 is shaded light grey in the background.

Figure 8 for the cross-correlation function and Figure 7(b) for the resulting
shift].

3. Using a rolling average, identify peaks and valleys for each of the signatures by
identifying points at which the derivative of the signature is equal to zero. We
then define an interval around the location of the extrema on each side as one
third of the distance to the location of the next extrema [see Figure 6(b)]. Peaks
and valleys constitute the striation marks on the bullet.

4. Match striations across signatures: based on the intervals around the extrema as
defined above, we identify common intervals as the areas in which two or more
of the individual intervals overlap: a joint interval is defined as the smallest
interval that encompasses all of the overlapping intervals. A joint interval is
then called a match(ing stria) between the signatures, if all of the intervals are
of the same type of extrema, that is, they are either all peaks or all valleys. In
Figure 6 all matches are shown as color-filled rectangles corresponding to their
type of extrema (peaks are shown in orange, and valleys in green). Nonmatching
intervals are left grey.

5. Extract features from the aligned signatures and the matches between them:
many different features can be extracted from the aligned signatures. Here, we
describe a few of the ones that can be found in the literature and some that we
found to be of practical relevance:

(i) Maximal number of CMS (consecutive matching striae), and, similarly,
the number of consecutively nonmatching striae (CNMS),
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(b) Using a rolling median peaks and valleys are identified for each signature. Peaks and valleys on
the signature correspond to striation marks on the bullet’s surface.
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(c) Rectangles in the back identify a striation mark on one of the bullets. Matching striation marks
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are indicated by color filled rectangles and marked by an “o0”.

FI1G. 6. Matching striation marks: smooth (a), identify peaks and valley (b), and match peaks and
valleys between signatures (c).

(i1)) Number of matches and nonmatches,
(iii) The value of the cross-correlation function (ccf) between the aligned sig-
natures [Vorburger et al. (2011)],
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F1G. 7. Signatures of bullets 1-5 and 2-1 taken at heights of x = 100 um. A horizontal shift of the
values of bullet 1-5 to the right shows the similarity of the striation marks.

(iv) Average difference D between signatures, defined as the Euclidean verti-
cal distance between surface measurements of aligned signatures. Let f(¢)
and g(¢) be smoothed, aligned signatures:

1

D*=_ Z[f(r) -2,

(v) The sum S of average absolute heights of matched extrema: for each of
the two matched stria, compute the average of the absolute heights of the
peaks or valleys. S is then defined as the sum of all these averages.

The difference D between signatures is here defined as the Euclidean distance (in
pm). In the paper by Ma et al. (2004), distance is defined as a measure relative

00] " ‘

O ‘ ‘”"‘”\H\H\\\H‘HHHHHHHHHHHH
-100 -50 0 50 100
Lag k

o
©

o
[«2]

Correlation
o
w

F1G. 8. Cross-correlation function between the two signatures shown in Figure 7(a) at lags be-
tween —100 and 100. The correlation is maximized at a lag of —2, indicating the largest amount of
agreement between the signatures. Figure 1(b) shows the slight change resulting from the lag-shifted
signatures.
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to the first signature, which serves as a comparison reference and is therefore a
unitless quantity.

Counting the maximal number of CMS is part of the current practice to iden-
tify bullet matches [Nichols (1997, 2003a, 2003b)]. In the example of Figure 6,
the number of consecutive matching striations (CMS) is fifteen, a high number
suggestive of a match between the land impressions. Note that the definition of
CMS we use does not match the one given in Chu et al. (2013). There, CMS is
defined only in terms of matching peaks without regarding valleys. Additionally,
peaks in Chu et al. (2013) are used only if they can be identified and matched
“within a tolerable range” between land impressions. The definition given here is
computationally less complex, but should yield highly correlated values, because
of the requirement to only consider signatures from a stable region in the land (see
Section 4.3 for further details on stability of regions). In the Hamby study, the def-
inition of CMS by Chu et al. (2013) leads to approximately half of the values of
CMS defined in this paper (with a correlation coefficient between the values of the
two definitions of about 0.92). For lead bullets, such as used in the Hamby study,
Biasotti (1959) considered four or more consecutive peaks (corresponding to eight
or more consecutive lines in our definition) to be sufficient evidence of a match.

Determining a threshold such that CMS values above the threshold indicate a
match with high reliability is beyond the scope of this work, even though it is
critically important in practice. We provide some ideas in the next section, but
first we assess the robustness of the matching algorithm to different choices of the
parameter values.

4.2. Horizontal alignment. Signatures of each of the two land impressions, 1-
5 and 2-1, in Figure 5 are shown in Figure 7 extracted at a height of x = 100 pm.
Striation marks show up in these representations as peaks and valleys. The individ-
ual characteristics are prominent and, again, suggest a match between the land im-
pressions. A horizontal shift of one of the signatures [result shown in Figure 7(b)]
emphasizes the strong similarities between signatures. For this alignment, we use
the cross-correlation function to find a maximal amount of agreement between the
signatures [Bachrach (2002), Vorburger et al. (2011), Chu et al. (2010, 2013)].
This horizontal shift is based on the cross-correlation between the two signatures:
let f(¢) and g(¢) define the signature values at ¢, where ¢ are locations between
0 pm and about 2500 pm, 1.5625 pm apart. The cross-correlation between f and
g atlag k is then defined as

(f*k) =) ft+hkg),
t

with suitably defined limits for the summation.
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FI1G. 9. Signatures for barrel 3, bullet 1-1 extracted from varying heights. Initially, the match be-
tween signatures taken at heights 25 um apart is affected strongly by some break off at the bottom
of the bullet. At a level of 175 pum the bullet’s signature stabilizes. For this land impression, matches
should not be attempted at lower heights.

4.3. Impact of bullet height. The height at which signatures are extracted for
a comparison between bullet land impressions matters—signatures taken from
heights that are further apart, show more pronounced differences between the sig-
natures. This poses both a caveat to matching attempts as well as an opportunity
for quality control: we have to be aware of the height that was used in a matching.
Visually, matches degrade if the signatures upon which the match is based are from
heights further than 200 um apart (see the Supplementary Material, Section 2, for
more discussion). However, we can extract signatures from multiple heights of the
same bullet land impression for an initial assessment of its quality. By compar-
ing signatures from heights that are not too far apart—25 pum to 50 um—we get
an indication whether the signatures come from a rapidly changing section of the
surface, indicative of a break-off or some other damage, or from a stable section,
where we have a reasonable expectation of finding matches to other signatures. In
the approach here, we keep increasing the height x at which the signature is taken
until we find a section with a stable pattern. This process is shown in Figure 9 at the
example of bullet 1-1 from barrel 3, where “stability” is defined as two aligned sig-
natures from heights chosen 25 wm apart having a cross-correlation of at least 0.95.

4.4. Varying smoothing factor. As mentioned earlier, the algorithm for detect-
ing peaks and valleys depends on the selection of a smoothing window, called the
smoothing factor or span. A smoothing factor of k means that the k closest ob-
servations to x, are considered for a fit for x,. Because surface measurements are
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FI1G. 10. Peak/valley detection at smoothing factors of 5, 25, and 45, respectively. Note that a
smoothing factor of 5 yields enough noise that many very minimal overlapping peaks and valleys are
detected, while a smoothing factor of 45 might over-smooth and cause the peaks/valleys to either end
disappear or shift horizontally from their original position in the signature.

recorded at equal sampling intervals (here, of 1.5625 um), we decided to only
consider odd smoothing factors 2k 4 1, which means that the k observations to the
left and right of x, are considered for a local fit of x,. For detecting and removing
the shoulders prior to fitting a loess regression, we selected a smoothing factor of
35, while for detecting the peaks/valleys of the loess residuals a smoothing factor
of 25 seems more appropriate.

Figure 10 displays the peaks and valleys detected in the same signature at
smoothing factors of 5, 25, and 45, respectively. The dark line corresponds to the
smoothed values, while the grey line in the back shows the raw signature. The
choice of smoothing factor is a classical decision of a bias/variance trade-off. It is
immediately clear that a small smoothing factor like 5 is a poor choice. It results in
a significant amount of noise in the data such that even just a point or two can skew
the rolling average enough for a peak or valley to be detected. Given that striation
widths are typically much larger, we are in effect muddying the waters by perform-
ing such minimal smoothing. Another consideration is that the smoothing should
not fall below the resolution of the equipment at which the surface measurements
are taken—so as to not introduce artifacts in the analysis.

A larger smoothing factor on the other hand (like 45), seems to be a more plau-
sible option. Most of the peaks/valleys present which are detected by a smoothing
factor of 25 are also detected at 45. However, some notable issues arise. Notice
that the valley on the right-hand side of the image is smoothed out, and thus not
detected. On the left-hand side, a double peak is detected—that might be a ques-
tionable decision—but there are several peaks in the middle, that are smoothed out,
for example, the peak at around y = 750. That is, in many cases, large windows
are smoothing out some of the structure that we wish to see. Furthermore, it can be
seen that the peaks/valleys are often shifted relative to their position in the original
loess residuals, or in the smoothed data with smaller smoothing factors.
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(a) Barrel 6 Bullet 2-1.
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(d) Unknown Bullet Q-4.

(c) Unknown Bullet B-2.

FIG. 11. [Images of the four land impressions that got flagged during the quality assessment. All of
them show scratch marks (tank rash) across the striation marks from the barrel. They are excluded
from the remainder of the analysis.

5. Evaluation. In order to get a better understanding of how the matching al-
gorithm works in known matches and nonmatches, we investigate its performance
using the James Hamby study data. As a first step, we automatically assess the
quality of each of the land impressions by checking that we can identify a sta-
ble region. For this, we compute the cross-correlation of signatures extracted from
heights 25 pm apart. For a stable region, we require a minimum of 0.95 for the
cross correlation. Four land impressions from different bullets are flagged as prob-
lematic in this respect. A visual inspection (see Figure 11) shows that each one
of these land impressions has scratch marks across the surface, also known as
“tank rash” [Hamby, Brundage and Thorpe (2009)]. We exclude these four land
impressions from further matching considerations and run all remaining land im-
pressions from the unknown bullets against all remaining land impressions from
known bullets for matches, that is, we are comparing 15 x 6 —2 =90 — 2 = 88
land impressions from unknown bullets against 2 x 10 x 6 —2 =120 —2 =118
land impressions from known bullets, yielding a total of 10,384 land-to-land com-
parisons. Out of these comparisons, there are 172 known matches (KM), while
the rest are known nonmatches (KNM). Ideally, results look like the results in Fig-
ure 12: Figure 12(a) shows the distribution of the number of maximum consecutive
matching striae between land impression C-3 and all 118 land impressions from
known bullets. Two land impressions show a high CMS. These correspond to the
known matches with C-3, shown in Figure 12(b) and (c). Unfortunately, not all
results are as clear cut. It might not be reasonable to assume that we can match all
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impression with the top matching CMS.

FI1G. 12.  Showcase scenario when matching with CMS works very well. Unfortunately the matches
are not always that convincing.

land impressions, but the idea is to try to maximize the number of matches to get
an overview of what we might be able to expect from an automated match.

Figure 13 shows the strong connection between the maximal number of consec-
utive striae and matches in the Hamby study. All 42 pairs of land impressions with
at least thirteen CMS in common are matches. There are two things that should be
noted at this point: the automated algorithm finds a relatively high number of CMS
even for nonmatches. On average, there are 2.31 maximal CMS between known
nonmatches (with a standard deviation of 1.4). Known matches share on average

1.00-

3000 :
€ 2000 i
3
o
8 )

I 0.00-
| 1

o
o
a

Proportion
o
wn
O

o
N
a

0123456789 1011121314151617181920+

maximum CM
012345678 91011121314151617181%20+

maximum CMS Known match [ll Known non-match

F1G. 13.  Distribution of maximal CMS (left). Conditional barchart [Hummel (1996)] on the right:
heights show probability of match/nonmatch given a specific CMS. All land-to-land comparisons
with at least 13 CMS are matches.
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FI1G. 14. Known mismatch with a relatively large number of maximal consecutive matching striae
(twelve) in the middle. The pattern in the middle does look surprisingly similar; however, the outer
ends of the signatures easily reveals this comparison as mismatch.

8.49 maximal CMS, with a standard deviation of 5.65. While the probability for
a match increases with the number of maximal CMS, a large number of maximal
CMS by itself is not indicative of a match, as was previously pointed out by Miller
(1998). Figure 14 shows a known mismatch between two land impressions that
share twelve consecutively matched striae. Visually we can easily tell that these
two land impressions do not match well.

For smaller numbers of CMS, the percentage of false positives quickly in-
creases. However, if we take other features of the image into account, we can
increase the number of correct matches considerably: Figure 15 gives an overview
of the densities of all of the features derived earlier, for known matches (KM) and

Consecutive Matching onsecutlve Non- Match _
Striae (CMS) ing Striae (CNMS) FAEHEES ERET-WELEEs

0 100
0.10- 0.075; 0.05
0.050- 0.04
0.05-
0.025- :
0.00- g 0. ooo o % 004,

0 10 20 3b 20 30
Average difference (D) ‘ Sum of peaks (S) Cr?:: Ct(]:g;retli%on ‘
0.075-
0.050-
Matches
0.025- Known matches
&(no\)lvn non-matches
. 0. ooo KNM)
5 15 20 25 000 0.25 0.50 0.75 1.00

FIG. 15. Overview of all the marginal densities for features described in Section 4.1. Shifts in the
mode of the density functions between known matches and known nonmatches indicate the variable’s
predictive power in distinguishing matches and nonmatches. Predictive power is shown in more detail
in Figure 16.
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FI1G. 16. ROC curves for all of the features described in Section 4.1. Variables are sorted according
to their area under the curve (AUC). The equal error rate (EER) is marked by a point on the ROC
curve. Except for the distance D between signatures, all individual features derived from the surface
measurements and the aligned striation marks are more predictive than the maximal CMS.

known nonmatches (KNM). The densities of almost all of the features show strong
differences between matches and nonmatches. For example, a high amount of
cross-correlation between two signatures is indicative of a match—in the Hamby
study, only known matches have a cross-correlation of 0.75 or higher. There are 97
land-to-land comparisons with a cross-correlation that high.

All of the features in Figure 15 show large, if not significant, differences be-
tween matches and nonmatches. The predictive power of each one of these fea-
tures is shown in the form of the Receiving Operating Characteristic (ROC) curves
in Figure 16. The features are arranged in descending order according to the area
under the curve (AUC). The dots mark the equal error rate, that is, the location on
the ROC curve, where false positive and false negative error rates are the same.
The smaller the value, the better. We see that in this instance a low equal error rate
(EER) goes hand in hand with high predictive power as measured in AUC. The
feature with the highest individual predictive power is S, the sum of the average
heights of two signatures at peaks and valleys. The maximal number of CMS is
only in the seventh position here. The overall high AUC values indicate that we
can successfully employ machine learning methods to distinguish matches from
nonmatches.

Using recursive partitioning, we fit a decision tree [Breiman et al. (1984),
Therneau, Atkinson and Ripley (2015), Milborrow (2015)] to predict matches be-
tween land impressions based on features derived from the image files. The result-
ing tree is shown in Figure 17. A total of 132 land impressions is being matched
correctly. Interestingly, the number of consecutive matching striae does not feature
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FI1G. 17. Decision tree of matching bullets based on recursive partitioning. The rectangular nodes
are the leaves, giving a short summary consisting of the number of observations in the leaf (bottom
left), the corresponding percentage of the total (bottom right). The number at the top shows the
fraction of these observations that are a match. A 1 or a O therefore indicate a homogeneous (or
perfect) node.

in this evaluation. Instead of CMS, cross-correlation (ccf) between the signatures
is very important in the matching process by the decision tree. Aside from cross
correlation, the total number of matches is also included in the decision rule. Be-
tween cross-correlation and CMS, cross-correlation has higher predictive power.
This does not contradict earlier findings emphasizing the value of CMS on vi-
sual assessments of bullet matches: in those papers, assessments were based on
purely visual inspection of either actual bullets or 2D microscopic images of bul-
lets. Neither one of these methods allows for an assessment of cross-correlations.
This is one of the benefits of switching to a digitized version of the images that
preserves the 3D surface structure. The findings about the discriminating power of
cross-correlation are consistent with the results of the study by Ma et al. (2004).
However, in that study, the authors did not consider the number of matches and
nonmatches.

Another benefit of the digitized version of the images is that we can apply sev-
eral hundred decision trees to combine in a random forest [Breiman (2001), Liaw
and Wiener (2002)]. For each of the trees in a random forest, only two-thirds of
the observations are used for fitting, while the remaining third is used to evaluate
the tree’s predictive power and accuracy, or its reverse, the error rate. Because er-
rors are determined from the one-third of held-back observations, this error rate
is called the out-of bag (OOB) error. Figure 18 shows the cumulative out-of-bag
error (OOB) rate for 300 trees.

After about 100 trees, the error rate of land-to-land comparisons stabilizes at
0.0039. This is a weighted average between false positive error rate of 0.0001
and an error rate of false negatives of 0.2267. This out-of-bag error rate is over-
estimating the actual error in the Hamby study: here, the final random forest based
on 300 trees is able to correctly predict all known matches and nonmatches (see
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F1G. 18. Cumulative out-of-bag error rate of a random forest fit to predict land-to-land matches
from image features.

Figure 19). Note that this error rate is based on land-to-land comparisons and is ex-
pected to be much lower for bullet-to-bullet comparisons. In the case of the Hamby
data, even a single tree results in an overall error rate of zero, if we require that a
match of two bullets occurs when at least two of the bullet’s land impressions are
matched. This makes the errors in the automated approach smaller than the human
error in the Hamby study. Out of the 507 participants who returned results, eight
(out of 15 x 507 = 7605) bullets were not matched conclusively, corresponding to
arate of 0.0011.

For the Hamby data, error rates based on bullet-to-bullet matches do not carry
a lot of weight because of the small size of the study: fifteen unknown bullets
are successfully matched to two pairs of ten bullets. Matching bullets can only be
tested realistically in a much bigger experiment. Another thing to note about the
random forest’s error rates is that they are based on probability cutoffs of 0.5, that
is, whenever the predicted probability of a match exceeds 0.5, a match is declared.
Basing this decision on a threshold fixed at 0.5 may not be the best approach. In
practice, examiners are allowed a third option of “inconclusive.” On a probability
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F1G. 19. Prediction results from the tree and the forest. Using a cut-off probability of 0.5 the forest
correctly predicts every single comparison. Compared to the tree, the forest’s prediction probabilities
are shrunk toward either end of the prediction range.
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FI1G. 20. Importance of features in the random forest. Importance is measured in terms of mean
decrease in gini index when including the variable in a decision tree.

spectrum of outcomes, we could therefore introduce an interval of “inconclusive”
results in the middle of the spectrum—which turns out to be unnecessary in the
Hamby study, because, here, the results from the random forest are very clear cut.
Figure 19 shows a comparison of the predicted probabilities of a match by the tree
and the random forest. As expected, the random forest provides a more realistic
estimate of the uncertainty in the classification.

Besides resulting in a probabilistic quantification of matches, random forests
also provide an assessment of the importance of each of the features derived from
the bullets’ 3D topological surface measurements. Figure 20 shows an overview of
the importance of each variable measured as the mean decrease in the Gini index
when the variable in question is included in a tree (for the exact values please refer
to the Supplementary Material, Section 5).

The variables with the most predictive power are cross-correlation and the over-
all number of matching extrema, followed by the total depth of joint striations §
and total number of nonmatches. CMS is found only in sixth place.

Besides including results from known matches against known nonmatches, we
can increase the number of comparisons in the Hamby study to include all possi-
ble land-to-land comparisons. This effectively doubles the number of data points
available. Comparisons not previously included in fitting the random forest can
also be used as an additional source for assessing error rates. Results for this and a
more detailed discussion can be found in the Supplementary Material, Section 4.

6. Discussion. We present an algorithm which detects the most prominent
but least relevant structure of a bullet from a firearms identification perspective,
removes these features, and produces residuals which allow for the easy identifi-
cation of markings. We have generalized this algorithm to align the residuals from
two bullets to automatically determine whether they are indistinguishable. A ran-
dom forest model provides a probabilistic assessment of the strength of a match,
along with an ordering of the relevance of features. Matching bullets is clearly not
a one-step process, but rather a sequence of data analysis tasks each deserving at-
tention. As there is no scientific standard in place at this point in time, our intent is
to explain an approach to addressing these tasks, while documenting all steps and
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providing all code so other researchers and forensic scientists can reproduce and
expand on our findings.

The matching algorithm is sensitive to the parameter choices made. The heights
at which signatures are extracted (currently 25 pum apart) to evaluate stability, as
well as the cross-correlation factor (currently 0.95) we set as a minimum thresh-
old do affect the final outcome. Another parameter that must be selected is the
amount of smoothing when identifying peaks and valleys (currently, a window of
23.4375 pm is used, corresponding to a window of 7 values to the left and the
right of an observation). We try to lay out in the paper the impact that each of the
parameter choices has on the matching performance, but more research and better
data are needed to define an optimized scenario.

The Hamby study serves as our evaluation “database.” It consists of only 35
bullets—this is obviously not a particularly realistic scenario for an automatic
matching procedure, but for now we are unaware of other databases containing
bullets in the x3p format that we could add to our study.

The feasibility of creating a database of images that could be used to identify
guns used in crimes was evaluated in a 2008 report [Committee to Assess the
Feasibility, Accuracy and Technical Capability of a National Ballistics Database
(2008)] by the National Research Council. The committee investigated the scala-
bility of NIBIN (National Integrated Ballistic Information Network), which uses
proprietary matching algorithms provided by IBIS. The bottom line of the report
was that in spite of the many technical and practical hurdles, solutions to all but
one problem could be found. The problem that remained is that statistically, the
quality of the matching algorithm (in this case, of breech-face marks and firing pin
impressions) could not withstand a hugely increased number of records without
overwhelming forensic examiners, who have to examine possible matches sug-
gested by the system. The findings of the NRC report on imaging are based on
two-dimensional greyscale images, which the committee argued were not reliable
enough for distinguishing between fine marks. This finding coincides with the as-
sessment by De Kinder, Tulleners and Thiebaut (2004) based on the IBIS Heritage
system. A further reassessment by De Ceuster and Dujardin (2015) came to the
same conclusions based on the EvoFinder system. The NRC report also found that
results from 2D images can be improved when matches are based on 3D images.
This is consistent with the importance of features found here: out of the top five
features (see Figure 20), only the total number of matches and mismatches are
available for a match based on 2D features.

By suggesting an automated algorithm that first removes class characteristics,
such as the groove impressions, shoulders, and the curvature of the bullet to reveal
the region of the land impression, then identifies peaks and valleys on this land im-
pression, we reduce subjectivity and with it possible sources of bias. In particular,
“the concept of counting striations is subjective and based on experience” [Miller
(1998)]. The steps outlined in this paper could also help explore other important
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forensic science problems. In particular, more general toolmark examination can
benefit from the approach we discuss.

For a fair assessment of the performance of an algorithm, we need transparency.
Our matching algorithm is open: the code is readily available in form of the R pack-
age bulletr [Hofmann and Hare (2016)], and the code to produce this paper is avail-
able at http://www.github.com/erichare/imaging-paper. To understand whether an
automated approach along the lines of the one, we propose can accurately identify
sets of bullets with undistinguishable markings, it will be necessary to assemble a
much larger database that includes a wide range of ammunition types, degrees of
damage, gun makes, etc. We are unaware of the existence of any such database.
In addition to serving as a realistic testbed for the performance of the automated
matching algorithm, such a database would also permit testing the underlying, as
of yet untested, assumptions of uniqueness and reproducibility of the markings left
by a gun on bullets.
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