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The identification of most relevant clinical criteria related to low back
pain disorders may aid the evaluation of the nature of pain suffered in a way
that usefully informs patient assessment and treatment. Data concerning low
back pain can be of categorical nature, in the form of a check-list in which
each item denotes presence or absence of a clinical condition. Latent class
analysis is a model-based clustering method for multivariate categorical re-
sponses, which can be applied to such data for a preliminary diagnosis of the
type of pain. In this work, we propose a variable selection method for latent
class analysis applied to the selection of the most useful variables in detect-
ing the group structure in the data. The method is based on the comparison
of two different models and allows the discarding of those variables with no
group information and those variables carrying the same information as the
already selected ones. We consider a swap-stepwise algorithm where at each
step the models are compared through an approximation to their Bayes factor.
The method is applied to the selection of the clinical criteria most useful for
the clustering of patients in different classes. It is shown to perform a parsi-
monious variable selection and to give a clustering performance comparable
to the expert-based classification of patients into three classes of pain.

1. Introduction. Musculoskeletal pain is the pain concerning muscles, bones
and joints that arises in different conditions. Low back pain (LBP) is the mus-
coloskeletal pain related to disorders in the lumbar spine, low back muscles and
nerves and it may radiate to the legs. Although there is a lack of homogeneity in
the studies, a considerable proportion of the population experiences LBP during
their lifetime [Hoy et al. (2012), Walker (2000)], with effects on social and psy-
chic traits and working behaviour [Froud et al. (2014)]. Several LBP classification
systems have been developed in order to group patients into classes with similar
characteristics, with the purpose of effective pain management; see Stynes, Kon-
stantinou and Dunn (2016) and references therein. Among the different systems,
mechanism-based classification of pain is based on the underlying neurophysio-
logical mechanisms responsible for its generation and maintenance. The system
has been advocated in clinical practice on the ground of better pain treatment and
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improved patient outcomes [Smart, O’Connell and Doody (2008), Woolf et al.
(1998)]. In the absence of any diagnostic gold standards for mechanisms-based
pain diagnoses, such a categorization may be identifiable on the basis of sets of
symptoms and signs characteristic to each category by means of a standard clini-
cal examination process and experienced clinical judgement [Graven-Nielsen and
Arendt-Nielsen (2010), Katz et al. (2000), Nijs et al. (2015), Smart et al. (2010)].
Furthermore, with the aim of a diagnosis of the nature of the LBP suffered by a sub-
ject, identifying a smaller collection of signs or symptoms which best relates the
manifestation of pain to its neurophysiological mechanism is a critical task. Focus-
ing the attention only on few manifest pain characteristics can guide a preliminary
patient evaluation and can constitute a valid basis for additional investigations and
immediate pain treatment.

Model-based clustering [Fraley and Raftery (2002), McNicholas (2016)] is a
well-established framework for clustering multivariate data. In this approach, the
data generating process is modelled through a finite mixture of probability dis-
tributions, where each component distribution corresponds to a group. When the
observations are measured on categorical variables (such as data arising from ques-
tionnaires), the most common model-based clustering method is the latent class
analysis model (LCA) [Lazarsfeld and Henry (1968)]. Typically, all the variables
are considered in fitting the model, but often only a subset of the variables at hand
contains the useful information about the group structure of the data. When per-
forming variable selection for clustering, the goal is to remove irrelevant variables,
which do not carry group information, and redundant variables, which convey
similar group information, retaining only with the set of relevant variables, which
contains the useful information [Dy and Brodley (2003/04)]. Therefore, consider-
ing all the variables unnecessarily increases the model complexity and can pro-
duce model identifiability problems. Moreover, using variables that do not contain
group information or that contain unneeded information frequently leads to a poor
classification performance.

In recent years, wide attention has been given to the problem of variable se-
lection in clustering multivariate data. The problem has been generally tackled
through two approaches: the wrapper approach, which combines clustering and
variable selection at the same time, and the filter approach, where the variables are
selected after or before the clustering is performed [Dy and Brodley (2003/04)].
Model-based clustering for continuous data has seen the prevalence of the wrap-
per approach; we cite the works from Law, Figueiredo and Jain (2004), Tadesse,
Sha and Vannucci (2005), Kim, Tadesse and Vannucci (2006), Raftery and Dean
(2006), Maugis, Celeux and Martin-Magniette (2009a, 2009b), Murphy, Dean and
Raftery (2010), Scrucca and Raftery (2017), Malsiner-Walli, Frühwirth-Schnatter
and Grün (2016), Marbac and Sedki (2017). Moreover, further works in the wrap-
per approach considered the introduction of a penalty term in the log-likelihood in
order to induce sparsity in the features; for example, Pan and Shen (2007), Wang
and Zhu (2008), Xie, Pan and Shen (2008), Meynet and Maugis-Rabusseau (2012)



2082 M. FOP, K. M. SMART AND T. B. MURPHY

In LCA, the variable selection problem has been assessed only recently. Under
a filter approach, Zhang and Ip (2014) propose two measures for quantifying the
discriminative power of a variable for mixed mode data, but the method is limited
only to binary variables. Under the wrapper approach, Dean and Raftery (2010)
recast the variable selection problem as a model selection problem, Bontemps and
Toussile (2013) suggest an approach designed on the minimization of a risk func-
tion, Silvestre, Cardoso and Figueiredo (2015) propose a method adapted from
Law, Figueiredo and Jain (2004) and based on feature saliency, White, Wyse and
Murphy (2016) present a full Bayesian framework with a collapsed Gibbs sam-
pler and Bartolucci, Montanari and Pandolfi (2016) present a method based on the
work of Dean and Raftery (2010) for item selection in questionnaires.

All of the above mentioned wrapper methods for LCA have a drawback: they
consider a variable to be added or removed to the already selected set of clustering
ones assuming that the former is independent of the latter. By this assumption, two
(or more) informative correlated variables are selected, even if they contain similar
group information. However, retaining only one (or a subset) of them can lead to
a clustering of comparable quality with a more parsimonious variable selection.
Thus the result is the methods are capable of discarding non-informative variables,
but not the redundant variables.

In this work, we develop a variable selection method for LCA based on the
model selection framework of Dean and Raftery (2010), which overcomes the
limitation of the above independence assumption. By adapting the variable role
modelling of Maugis, Celeux and Martin-Magniette (2009b) in the variable selec-
tion procedure, we propose a method capable of discarding variables that do not
contain group information and variables that are redundant. This variable selection
method assesses a variable usefulness for clustering by comparing models via an
approximation to their Bayes factor.

We apply the proposed method to cluster a set of patients suffering of low back
pain. Each patient was diagnosed as having a different type of pain by a group of
experienced physiotherapists using a list of several clinical indicators. The aim is
to recover in an unsupervised setting a classification of the patients comparable to
the expert-based one and at the same time selecting a reduced collection of clinical
indicators that can be used for a preliminary assessment of the characteristics of
pain.

Section 2 presents the low back pain data, which gave the motivation for the
improvement in the variable selection approach for LCA. In Section 3, we give
a brief description of model-based clustering and latent class analysis. The gen-
eral variable selection methodology for LCA is presented in Section 4. First, we
review the Dean and Raftery (2010) procedure and subsequently we present our
proposed variable selection method characterized by the relaxation of the indepen-
dence assumption between the clustering variables and the proposed one. Section 5
is dedicated to the results of the variable selection method applied to the LBP data.
Section 6 presents a simulation study on two different scenarios. The paper ends
with a brief discussion in Section 7.
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2. Low back pain data. A mechanisms-based classification of pain relates
the generation and maintenance of pain to its underlying neurophysiological mech-
anisms. To this purpose, the following categories have been suggested for a clin-
ically meaningful classification of pain [Merskey and Bogduk (2002), Woolf
(2004)]:

• Nociceptive: Pain that arises from actual or threatened damage to non-neural
tissue, occurring with a normally functioning somatosensory nervous system.

• Peripheral neuropathic: Pain initiated or caused by a primary lesion or dysfunc-
tion in the peripheral nervous system.

• Central sensitization: Pain initiated or caused by a primary lesion or dysfunction
in the central nervous system.

It is thought that classifying patients low back pain based on a clinical judge-
ment regarding the likely dominant category of neurophysiological mechanisms
responsible for its generation and/or persistence may usefully inform treatment
by inviting clinicians to select treatments either known or hypothesized to target
those mechanisms in an attempt to optimize clinical outcomes [Smart, O’Connell
and Doody (2008)]. In this regard, a list of 38 clinical criteria (signs and symp-
toms) whose presence or absence can best discriminate the three types of pain has
been generated on an expert-consensus basis. See Smart et al. (2010) and the Sup-
plementary Material, Section 4 [Fop, Smart and Murphy (2017)] for the complete
clinical criteria checklist.

Smart et al. (2011) conducted a preliminary discriminative validity study of
such mechanisms-based classification of musculoskeletal pain in clinical practice.
The aim of the study was to assess the discriminative validity of the above clas-
sification system for low back disorders. The data are a sample of 464 patients,
each one assigned to one of the three categories of pain by a group of experienced
physiotherapists. For each patient, information regarding the presence/absence of
the 38 binary clinical indicators is recorded.

In the present work, in analysing these data the aim is twofold:

1. Implement an unsupervised partition of the patients to form groups of pa-
tients with similar characteristics. Thus we can establish if the clusters found us-
ing the unsupervised method agree with the expert-based classification or not. This
allows for the discovery of a potentially novel partition of the patients into homo-
geneous groups or a further validation of the expert-based classification;

2. Select a subset of most relevant clinical criteria for partitioning the patients.
Most of the indicators (if not all) have good discriminative power and a large part
of them carry the same information about the pain categories. The interest here is
to discard redundant and non-informative indicators in order to reduce the list of
signs and symptoms to check for a preliminary assessment of a patient condition.

In collecting the data, the presence/absence of some criteria was indicated as
“don’t know” for some patients as the corresponding information was unavailable.
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In particular, Criteria 20 records if a subject condition was responsive or not to
non-steroidal anti-inflammatory drugs (NSAIDs) and for a set of patients it was
not known if they actually took or not any NSAIDs. In Smart et al. (2011), these
entries were discarded. To be consistent with the authors approach and consider the
same set of data, we discard them as well in the following analysis: Section 1 of the
Supplementary Material [Fop, Smart and Murphy (2017)] contains a discussion
and a brief analysis with these entries included as extra category. Furthermore,
Criteria 17 and 21 are not available in the data and are not considered. The final
data set is then composed of 425 patients examined on 36 binary variables.

3. Latent class analysis. Let X the N × M data matrix, where each row
Xn is the realization of a M-dimensional vector of random variables Xn =
(Xn1, . . . ,Xnm, . . . ,XnM). Model-based clustering assumes that each Xn arises
from a finite mixture of G probability distributions, each representing a different
cluster or group. The general form of a finite mixture distribution is specified as
follows:

(1) p(Xn) =
G∑

g=1

τgp
(
Xn|θg

)
,

where the τg are the mixing probabilities and θg is the parameter set corresponding
to component g. The component densities fully characterize the group structure of
the data and each observation belongs to the corresponding cluster according to
a set of unobserved cluster membership indicators zn = (zn1, zn2, . . . , znG), such
that zng = 1 if Xn arises from the gth subpopulation [Fraley and Raftery (2002),
McLachlan and Peel (2000)].

When clustering multivariate categorical data a common model-based approach
is the latent class analysis model (LCA). In this framework, within each class each
variable Xm is modelled using a multinomial distribution, therefore,

p
(
Xm|θg

) =
Cm∏
c=1

θ1{Xm=c}
gmc ,

where c = 1, . . . ,Cm are the possible categories values for variable m, θgmc is
the probability of the variable taking value c given class g, and 1{xm = c} is the
indicator function equal to 1 if the variable takes value c, 0 otherwise. In LCA
it is assumed that the variables are statistically independent given the class value
of an observation. This is a basic assumption known as the local independence
assumption [Clogg (1988)] and it allows the following factorization of the joint
component density:

p
(
Xn|θg

) =
M∏

m=1

Cm∏
c=1

θ1{Xnm=c}
gmc ;
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consequently the overall density in (1) becomes

p(Xn) =
G∑

g=1

τg

M∏
m=1

Cm∏
c=1

θ1{Xnm=c}
gmc .

For a fixed value G, the set of parameters {τg, θgmc : m = 1, . . . ,M; c =
1, . . . ,Cm;g = 1, . . . ,G} is usually estimated by the EM algorithm, but also
a Newton–Raphson algorithm or a hybrid form of the two can be considered
[McLachlan and Krishnan (2008)]. In any case, the algorithm is initialized through
a set of randomly generated starting values and there is no guarantee of reaching
the global maximum. For this reason, it is usually a good practice to run the pro-
cedure a number of times and select the best solution [Bartholomew, Knott and
Moustaki (2011)].

More details about the model and the parameter estimation are provided
in Lazarsfeld and Henry (1968), Goodman (1974), Haberman (1979), Clogg
(1995), Agresti (2002) and Bartholomew, Knott and Moustaki (2011).

Regarding parameters interpretation, in the LCA model the parameter θgmc rep-
resents the probability of occurrence of attribute c for variable Xm in class g. Thus
for the binary variables of the LBP data, θgmc will represent the probability of
having a certain symptom or clinical criteria for each patient belonging to class g.

Model selection. Different LCA models are specified by assigning different
values to G. Here, the selection of the best model and of the related number of
latent classes is carried out using an approximation to their Bayes factor. When
comparing two competing models specified to describe the data X, say MA against
MB , the extent to which the data support model MA over MB is measured by
their posterior odds. In absence of prior preference for one of the two models, this
quantity is given by

p(MA|X)

p(MB |X)
= p(X|MA)

p(X|MB)
,

where p(X|MA) = ∫
p(X|θ ,MA)p(θ |MA)dθ is the integrated likelihood. The

ratio of the integrated likelihoods of the two models is the Bayes factor, BA,B . The
quantity p(X|MA) is conveniently approximated using the Bayesian Information
Criterion (BIC), defined by

BIC
(
X|MA

) = 2 log
(
L∗

A

) − νA log(N),

where L∗
A is the maximized likelihood and νA is the number of model parameters

[Schwarz (1978)]. Then the following approximation to twice the logarithm of the
Bayes factor holds [Kass and Raftery (1995)]:

(2) 2 log(BA,B) ≈ BIC
(
X|MA

) − BIC
(
X|MB

)
,
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FIG. 1. The two competing models in Dean and Raftery (2010).

and if this difference is greater than zero the evidence is in favour of model MA,
otherwise in favour of MB . Several arguments in favour of BIC for model se-
lection in mixture models have been given in the literature; see McLachlan and
Rathnayake (2014) for a recent review.

For a given number of variables, not all the models specified by assigning dif-
ferent values to G are identifiable. In fact, a necessary (though not sufficient) con-
dition to the identifiability of a model with G latent classes is

(3)
M∏

m=1

Cm >

(
M∑

m=1

Cm − M + 1

)
G,

with Cm the number of categories taken by variable Xm [Goodman (1974)]. Thus
when selecting the number of classes, hereafter we will consider values of G for
which this identifiability condition holds.

4. Variable selection for latent class analysis. To select the variables rele-
vant for clustering in LCA, Dean and Raftery (2010) suggested a stepwise model
comparison approach. At each step of their method, the authors specify a partition
of the variables into:

• XC , the current set of relevant clustering variables, dependent on the cluster
membership variable z,

• XP , the variable proposed to be added or removed from the clustering variables,
• XO , the set of the other variables which are not relevant for clustering.

Then the decision of adding or removing the considered variable is made by com-
paring two models: model M1, in which the variable is useful for clustering, and
model M∗

2 in which it does not. Figure 1 gives a graphical sketch of the two com-
peting models.

Both models make the realistic assumption that the relevant variables are not
independent from the irrelevant ones (the edge between XO and XC), but they
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differ in the specification of the relationship with XP . In M1, there is no edge
between XC and XP because the model states that the proposed variable is useful
for clustering and we have that the joint distribution p(XC,XP |z) factorizes into
p(XC |z)p(XP |z) by the local independence assumption of LCA. In M∗

2, there is
no edge between z and XP because under this model the proposed variable is not
useful for clustering. Also, the edge between XC and XP is missing, since Dean
and Raftery (2010) assume the independence of the proposed variable from XC ,
even when it is not relevant for clustering. However, this assumption seems to be
misleading for two reasons. On one hand because if model M2 holds, actually XP

belongs to XO , contradicting the fact that the latter is not assumed independent
from XC . On the other hand, because to this assumption the model does not take
into account that the proposed variable could be redundant for clustering given
the set of already selected relevant variables. In fact, as it has already pointed out
in previous works [Law, Figueiredo and Jain (2004), Raftery and Dean (2006),
White, Wyse and Murphy (2016)], assuming the independence between the pro-
posed variable and the current set of clustering variables can wrongly lead to de-
clare as relevant a variable that could be explained by (some or all) the variables
in XC , even if actually it contains redundant group information that is no needed
or it does not contain further information at all.

4.1. Relaxing the independence assumption. Now let us consider the models
depicted in Figure 2. Model M1 is exactly the same model as before, where the
proposed variable is useful for clustering. On the other hand, M2 is the model
in which the proposed variable is not relevant for clustering, but there is an edge
between XP and XC , which defines the conditional distribution p(XP |XC). There-
fore, M2 is specified by relaxing the independence assumption between the pro-
posed variable and the set XC and taking into account the potential redundancy of
XP . Hence, if the evidence is in favour of model M2, the proposed variable is dis-
carded from XC for two reasons: because it does not contain information about the

FIG. 2. The two competing models specified relaxing the independence assumption between XP

and XC .
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latent classes at all, or because it does not add further useful information about the
groups given the information already contained in the current clustering variables.

Moreover, another assumption is considered in model M2: we let the proposed
variable to be related only to a subset XR contained in the current set of clustering
variables, since could be the case that not all the variables in XC are associated
to XP [Maugis, Celeux and Martin-Magniette (2009a, 2009b)]. In this way, we
do not induce spurious dependencies, avoiding the inclusion in the model of addi-
tional parameters without effectively increasing its likelihood. In addition, a more
realistic modelling framework for the relationship between XP and XC is outlined,
letting it to be as much flexible as possible. Clearly, it ranges between two extrema:
if XR = XC , all the current clustering variables explain XP , which could likely be
redundant for clustering; if XR = ∅, the proposed variable is not related to the
current clustering set, recalling the assumption of Dean and Raftery (2010).

Hence the two models are specified as follows:

M1 : p
(
X|z) = p

(
XC,XP ,XO |z)

= p
(
XO |XC,XP )

p
(
XC,XP |z);

M2 : p
(
X|z) = p

(
XC,XP ,XO |z)

= p
(
XO |XC,XP )

p
(
XC |z)

p
(
XP |XR ⊆ XC)

.

Following Dean and Raftery (2010), models M1 and M2 are then compared
via the Bayes factor:

B1,2 = p(X|M1)

p(X|M2)
.

Model M1 is specified by the probability distribution of the latent class model
p(XC,XP |θC

1 , θP
1 ,M1) and the distribution p(XO |XC,XP , θO

1 ,M1). We de-
noted θC

1 , θP
1 and θO

1 the parameters vectors that identify these distributions and
we assume that their prior probability distributions are independent. Hence the
integrated likelihood factors as follows:

p
(
X|M1

) = p
(
XO |XC,XP ,M1

)
p

(
XC,XP |M1

)
,

with

p
(
XO |XC,XP ,M1

) =
∫

p
(
XO |XC,XP , θO

1 ,M1
)
p

(
θO

1 |M1
)
dθO

1 ;

p
(
XC,XP |M1

) =
∫∫

p
(
XC,XP |θC

1 , θP
1 ,M1

)
p

(
θC

1 , θP
1 |M1

)
dθC

1 dθP
1 .

Similarly the integrated likelihood of model M2 factors in

p
(
X|M2

) = p
(
XO |XC,XP ,M2

)
p

(
XC |M2

)
p

(
XP |XR ⊆ XC,M2

)
,
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with

p
(
XO |XC,XP ,M2

) =
∫

p
(
XO |XC,XP , θO

2 ,M2
)
p

(
θO

2 |M2
)
dθO

2 ;

p
(
XC |M2

) =
∫

p
(
XC |θC

2 ,M2
)
p

(
θC

2 |M2
)
dθC

2 ;

p
(
XP |XR ⊆ XC,M2

) =
∫

p
(
XP |XR ⊆ XCθP

2 ,M2
)
p

(
θP

2 |M2
)
dθP

2 .

Assuming that the prior distributions for θO
1 and θO

2 are the same under both
models, we obtain that p(XO |XC,XP ,M1) = p(XO |XC,XP ,M2). Therefore,

B1,2 = p(XC,XP |M1)

p(XC |M2)p(XP |XR ⊆ XC,M2)
.

Note that in the Bayes factor the distribution of the non-clustering variables given
the rest cancels out; this represents an advantage in terms of computations because
there is no need to specify the joint distribution of all the non-clustering variables,
unlike in White, Wyse and Murphy (2016), for example. Then this Bayes factor
is estimated by the BIC approximation outlined in (2), leading to the following
criterion:

BICdiff = BIC
(
XC,XP |M1

) − BIC
(
XC,XP |M2

)
= BIC

(
XC,XP |z,M1

)
− [

BIC
(
XC |z,M2

) + BIC
(
XP |XR ⊆ XC,M2

)]
,

where BIC(XC,XP |z,M1) and BIC(XC |z,M2) are the BIC of the LCA model
on the sets XC ∪ XP and XC , respectively, while BIC(XP |XR ⊆ XC,M2) is the
BIC of the model for the conditional distribution of the proposed variable (note
that we made explicit the dependence on the latent variable z). If this difference
is greater than zero, there is evidence in favour of XP adding further information
about the clusters to the information already contained in the current set XC . On
the other hand, if the difference is less than zero there is evidence that no useful
information is added by the proposed variable.

4.2. Proposed variable conditional distribution. The conditional distribution
of the proposed variable given XC is modeled by a multinomial logistic regression
using the softmax link function:

(4) p
(
XP = c|XR ⊆ XC) = eXRβc∑CP

c=1 eXRβc

,

where βc is the vector of regression parameters for category c and c = 1, . . . ,CP

are the categories for the proposed variable; the model reduces to a standard logis-
tic regression with logit link if the proposed variable is binary. We refer to Ripley
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(1996) and Agresti (2002) for a detailed description of the model and its estima-
tion.

In the regression model (4), the subset XR contains the relevant predictors of
the proposed variable. Their selection is carried out using a standard stepwise al-
gorithm described in the Supplementary Material, Section 2 [Fop, Smart and Mur-
phy (2017)]. When selecting the variables that compose XR , we allow it to be the
empty set, thus taking into account the general variable role modelling described
in Maugis, Celeux and Martin-Magniette (2009b).

If the proposed variable is highly correlated with the predictors, the problem
of separation may occur. Separation arises when a linear combination of the pre-
dictors perfectly or quasi-perfectly separates the classes of the response variable,
leading to infinite estimates of the regression coefficients and large standard er-
rors [Albert and Anderson (1984), Lesaffre and Albert (1989)]. Different remedies
have been proposed in literature in order to perform inference on the parameters,
for example, Heinze and Schemper (2002), Zorn (2005) and Gelman et al. (2008).
In the present framework, separation does not represent a problem, as the regres-
sion coefficients are only accessory to the computation of the maximum of the
log-likelihood of the logistic regression. In fact, even in case of separation the log-
likelihood surface is concave, bounded above and has a finite maximum [Albert
and Anderson (1984)]. In practice, if separation occurs the log-likelihood surface
becomes flat, approaching a limiting value as some (or all) regression coefficients
are going to infinity. So convergence criteria are satisfied, and the log-likelihood
is numerically maximized and computation of quantities based on that maximum,
such as the BIC, are still valid [Agresti (2015), Albert and Anderson (1984)].

4.3. Swap-stepwise selection algorithm. The clustering variables are selected
using a stepwise algorithm which alternates between exclusion, inclusion and
swapping steps. In the removal step, all the variables in XC are examined in turn
to be removed from the set. In the inclusion step, all the variables in XO are exam-
ined in turn to be added to the clustering set. In the swapping step, a non-clustering
variable is swapped with a clustering variable.

In the removal and inclusion step, we compare model M1 against model M2.
Instead, in the swapping steps we actually compare two different configurations of
model M2 that differ in the fact that one clustering variable is replaced by one of
the non-clustering variables. The rationale for the swap step lies in the assumptions
of model M2. In model M2, the proposed variable is assumed independent from
z conditionally on the set of already selected variables and not marginally (which
would be a special case). Therefore, XP is actually allowed to contain some infor-
mation about the clusters, which in some situations may be the best information
available if one of the variables of the optimal set for XC has been discarded dur-
ing the search. Hence the algorithm could converge to a sub-optimum. To avoid it,
we compare two different sets of clustering variables in the swapping step. Then if
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a “true” clustering variable has been removed during the search, when compared
to a less informative one is likely to be added back to the clustering set.

The algorithm also performs the selection of the number G of latent classes,
finding at each stage the optimal combination of clustering variables and number
of classes. The procedure stops when no change has been made to the set XC after
consecutive exclusion, swapping, inclusion and swapping steps.

A detailed description of the algorithm is in the Appendix.

4.4. Comparing selected and discarded variables. By means of the outlined
variable selection procedure, we aim to remove variables that do not contain any
information about the clustering and variables that contain additional information,
which are redundant given the already selected relevant variables. Since it is likely
that related variables carry similar information about the groups, it is of interest
to analyze the association between each discarded variable and each selected one
after the selection is performed. We accomplish this task as a result of simple
considerations.

Let Xo ∈ XO be one of the discarded variables, and Xc ∈ XC be one of the se-
lected ones; let also ẑ be the estimated cluster membership allocation vector. In the
light of the described general modelling framework, we analyze the association be-
tween Xc and Xo by comparing the following two models for the joint conditional
distribution p(Xc,Xo|ẑ):

Mas : p
(
Xc,Xo|ẑ) = p

(
Xc|ẑ)

p
(
Xo|Xc

);
Mno as : p

(
Xc,Xo|ẑ) = p

(
Xc|ẑ)

p(Xo).

In a similar fashion to the models involved in the variable selection procedure,
this two models are compared via the Bayes factor Bas, no as = p(Xc,Xo|ẑ,Mas)/

p(Xc,Xo|ẑ,Mno as). Applying the same arguments of Section 4.1 and noting that
p(Xc|ẑ,Mas) = p(Xc|ẑ,Mno as), we obtain that the above Bayes factor reduces
to

Bas, no as = p(Xo|Xc,Mas)

p(Xo|Mno as)
.

Then using the BIC approximation of (2) leads to

(5) Bas, no as ≈ BICdiff as = BIC
(
Xo|Xc,Mas

) − BIC
(
Xo|Mno as

)
.

The quantity BICdiff as corresponds to the difference between the BIC of a multi-
nomial logistic regression where Xo depends on Xc and the BIC of the regression
with only the constant terms. Then if this difference is greater than zero, there is
evidence of the association between the considered selected variable and the dis-
carded one.
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TABLE 1
Clustering summary of the LCA model for different sets of variables and different number of classes

for the LBP data (note that the BIC are not comparable for differing sets of variables)

Selection method Variables N. latent classes BIC ARI

– All 5 −12,586.48 0.50
– All 3∗ −12,763.81 0.82
Dean and Raftery 35 Criteria 5 −12,116.32 0.50
Stepwise 10 Criteria 3 −3462.82 0.66
Swap-stepwise 11 Criteria 3 −3946.31 0.75

∗ We fixed the number of classes to this value in advance.

5. Latent class model and clinical criteria selection. The proposed model is
applied to the low back pain data. We measure the agreement between the model-
based partition of the data and the expert-based classification using the adjusted
Rand index (ARI), which is equal to 1 when two partitions are exactly the same;
otherwise, it is close to 0 when they do not agree [Hubert and Arabie (1985)];
compared to other indices, Milligan and Cooper (1986) recommended the ARI as
the index of choice for clustering validation.

We consider LCA models with the number of latent classes G ranging from 1
to 7. The clustering results for the different models are summarized in Table 1.
When fitting a LCA model on all of the clinical criteria, the BIC selects a model
with 5 classes, providing an ARI of 0.50. By fixing the number of classes equal
to 3 in advance, we obtain a model with an ARI of 0.82. By performing the vari-
able selection with the independence assumption of Dean and Raftery (2010), only
one variable is discarded, Criterion 36, and the BIC selects again a model with 5
classes, identifying the same clusters of the model on all the variables. Note that
also in White, Wyse and Murphy (2016) only one variable is discarded. Using the
variable selection method proposed here with swap-stepwise search, we retain 11
variables and the BIC selects a 3-class model on these. The ARI for the model on
the 11 selected clinical criteria is 0.75, thus the number of variables is reduced by
about two thirds, identifying a partition of the patients that agrees well with the
physiotherapists’ classification. For comparison, we also performed the same vari-
able selection with a standard stepwise search, selecting a model on 10 criteria,
but with a smaller ARI. Therefore, the use of the swap move in the search avoided
selection of sub-optimal informative clustering variables.

A cross-tabulation of the estimated partition on the 11 selected variables ver-
sus the expert-based classification is reported in Table 2. It seems reasonable to
match the 3 detected classes to the nociceptive, peripheral neuropathic and central
sensitization group, respectively.

Table 3 lists the 11 selected clinical criteria and the estimated probability of
occurrence given the class which a patient is assigned to; also the observed pro-
portion of occurrence is reported in brackets. Figure 3 is a heatmap of the estimated



VARIABLE SELECTION FOR LATENT CLASS ANALYSIS 2093

TABLE 2
Cross-tabulation between the estimated partition on the 11 clustering variables and the

expert-based classification of the LBP data

Estimated

Class 1 Class 2 Class 3

Expert-based Nociceptive 210 21 4
Peripheral Neuropathic 5 88 2
Central Sensitization 3 3 89

class conditional probabilities: the selected variables present good degree of sep-
aration between the three classes which are generally characterized by the almost
full presence or almost complete absence of the selected criteria.

Smart et al. (2011) fit a logistic regression of each type of pain versus the oth-
ers, ending with the selection of a set of 14 features whose presence or absence

TABLE 3
Estimated class conditional probability of occurrence and actual frequency (in brackets) for the

selected clinical criteria in the low back pain data

Crit. Description Class 1 Class 2 Class 3

2 Pain associated to trauma, 0.94 0.90 0.04
pathologic process or dysfunction (0.94) (0.92) (0.04)

6 More constant/unremitting pain 0.05 0.13 0.79
(0.04) (0.17) (0.79)

8 Pain localized to the area of 0.97 0.50 0.31
injury/dysfunction (0.97) (0.42) (0.33)

9 Pain referred in a dermatomal or 0.06 1.00 0.11
cutaneous distribution (0.12) (0.97) (0.13)

13 Disproportionate, non-mechanical, 0.01 0.00 0.91
unpredictable pattern of pain (0.01) (0.01) (0.87)

15 Pain in association with other 0.03 0.51 0.34
dysesthesias (0.06) (0.51) (0.34)

19 Night pain/disturbed sleep 0.34 0.70 0.86
(0.37) (0.68) (0.85)

26 Pain in association with high levels 0.07 0.36 0.79
of functional disability (0.09) (0.36) (0.78)

28 Clear, consistent and proportionate 0.97 0.94 0.07
pattern of pain (0.95) (0.94) (0.12)

33 Diffuse/non-anatomic areas of 0.03 0.01 0.73
pain/tenderness on palpation (0.03) (0.01) (0.73)

37 Pain/symptom provocation on 0.07 0.57 0.19
palpation of relevant neural tissues (0.09) (0.58) (0.21)
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FIG. 3. Heatmap plot of the estimated probability of occurrence of the 11 selected clinical criteria.

best describes each class of pain. They selected Criteria 3, 4, 5, 7, 8, 9, 11, 13, 15,
19, 25, 27, 29, 33. Six out of eleven of our selected criteria match those selected
in a supervised setting. Furthermore, the estimated parameters reported in Table 3
agree with the description of the factors related to each class of pain given by the
authors: Nociceptive pain (Class 1) is well described by the presence of a pain
localized to the area of injury or dysfunction, and by the absence of dysaesthesias
(unpleasant sensations, e.g., crawling) and pain at night; peripheral neuropathic
(Class 2) is characterized by the presence of a dermatomal distribution of pain
and pain on palpation of nerve tissue, and central neuropathic (Class 3) is linked
to the presence of pain that is more constant and has a disproportionate and un-
predictable pattern of provocation and is associated with diffuse areas of pain on
palpation as well as the absence of pain in proportion to trauma or pathology in
addition to consistent and proportionate pain on clinical provocation tests. Also,
fitting a LCA model on the criteria selected by Smart et al. (2011), a model with
3 latent classes is chosen, with an ARI of 0.77. By comparing the latter partition
with the classification of the LCA model on the 11 criteria of Table 3, an ARI of
0.79 is obtained. Thus the classification attained by the variable selection method
in an unsupervised setting has a satisfying rate of agreement with the classifica-
tion of patients based on the variables selected in a supervised setting, and with a
smaller set of relevant clinical criteria. These findings provide some confirmatory
discriminative validity evidence for a three-category mechanisms-based classifica-
tion system for musculoskeletal pain. Furthermore, it is shown that the proposed
method is able to reduce the number of useful clinical criteria to be checked for
elaborating a preliminary assessment of the pain characteristics.

Discarded clinical criteria. The clinical criteria in the data are specified in
advance on a expert-consensus basis [Smart et al. (2010)]. Indeed they were chosen
such that most are good in discriminating between the three types of pain. Here, we
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TABLE 4
Cross-tabulation between the estimated 3-class partition on the discarded variables and the

expert-based classification of the LBP data

Estimated

Class 1 Class 2 Class 3

Expert-based Nociceptive 208 25 2
Peripheral Neuropathic 2 91 2
Central Sensitization 8 1 86

want to point again the fact that the discarded criteria are removed from the set of
clustering ones not only because they may not contain discriminative information
about the pain classes, but also because they may carry information that is not
needed, as it is already included in the set of selected ones.

We fit a LCA model on the 25 removed clinical criteria, selecting a model with
4 latent classes with a BIC of −9355.407 and an agreement to the experts’ classi-
fication of 0.51. By setting in advance the number of classes equal to 3, we obtain
a model with a BIC of −9470.552 and an ARI of 0.73. The cross tabulation of the
fitted classification and the expert-based one for the 3-class model is presented in
Table 4.

The partition thus obtained is comparable to the partition estimated on the se-
lected clinical criteria. Therefore, by taking into consideration the discarded clin-
ical criteria, it is still possible to get an acceptable classification of patients into
clusters that sufficiently agrees with the expert-based classification. Thus it seems
reasonable to consider the fact that the removed criteria are discarded mostly be-
cause they are redundant given the set of 11 selected clustering clinical criteria.

We check the association between each discarded clinical criterion and each
selected one by calculating the BIC difference in (5). The computed differences
range from −6.05 to 366.55 and the results are reported in Figure 4. Apart from
Criterion 1 and Criterion 36, all the discarded criteria present evidence of associ-
ation with some of the selected criteria. It is also worth to notice that Criterion 36
is the only discarded criterion in the Dean and Raftery (2010) modelling frame-
work with the independence assumption between the proposed variable and the
clustering ones.

6. Simulation study. In this section, we evaluate the proposed variable se-
lection method through two different simulated data scenarios, also discussing the
robustness of our method and comparing the results with the Dean and Raftery
(2010) modelling framework. In both scenarios, we simulate 100 datasets for dif-
ferent sample sizes. The scenarios are sketched in Figures 5 and 6. The details of
the simulation methodology are exposed in the Supplementary Material, Section 3
[Fop, Smart and Murphy (2017)].
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FIG. 4. Heatmap plot of the BIC difference between the model for the association of each discarded
clinical criteria and each selected one and the model for the independence. A white coloured cell
indicates no evidence of association between the two variables.

FIG. 5. First simulated data scenario.
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FIG. 6. Second simulated data scenario.

6.1. First scenario. In the first simulation setting, we consider 12 categorical
random variables. Figure 5 presents the scenario. Variables X1,X2,X3, X4 are
the clustering variables, distributed according to a mixture of G = 3 multinomial
distributions with mixing proportions 0.3, 0.5 and 0.2. Variables X5,X6,X7,X8
are redundant variables, each one generated dependent on one of the clustering
variables. The last four variables, X9,X10,X11,X12 are irrelevant variables not
related to the previous ones. We consider three sample sizes: N = 500,750,1000.
Figure 7 shows the proportion of times each variable was declared a clustering vari-
able by our variable selection method and the variable selection with the indepen-
dence assumption of Dean and Raftery (2010). Both methods are able to discard
the noisy variables. Only the proposed method never selects almost any of the re-
dundant variables, while the Dean and Raftery (2010) method includes also the
redundant variables in the clustering set, especially as the sample size increases.
Figure 8 displays the boxplots of the ARI between the actual classification of the
data and the estimated classification from the LCA model fitted on: (i) all the vari-
ables (all), (ii) the “true” clustering variables (clus), (iii) the variables selected by
the method with the Dean and Raftery (2010) assumption (selInd), (iv) the pro-
posed method (selSwap). As expected, the inclusion of the redundant variables in
the clustering set leads to a poor performance in terms of classification. Figure 9
presents the three most frequent sets of variables declared as clustering variables
by our variable selection procedure. The most selected set is the one composed by
the “true” clustering variables, and is the only one chosen for a sample size of 750.
It is also worth noting that the other selected subsets contain mainly clustering
variables.

6.2. Second scenario. In the second simulation setting, we consider 10 bi-
nary random variables. Figure 6 shows the scenario. Variables X1,X2,X3, X4,X5
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FIG. 7. First simulation scenario: Proportions of times each variable has been declared a cluster-
ing variable by the proposed variable selection method (circle) and the variable selection method
with the independence assumption of Dean and Raftery (2010) (square). From top: sample sizes
corresponding to 500, 750, 1000.

are the clustering variables, distributed according to a mixture of G = 2 bi-
nomial distributions with mixing proportions equal to 0.3 and 0.7. Variables
X6,X7,X8,X9,X10 are redundant variables; each one of these is generated in
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FIG. 8. First simulation scenario: Boxplots of the ARI between the actual classification of the data
and the estimated classification from the LCA model fitted on: (i) all the variables (all), (ii) the “true”
clustering variables (clus), (iii) the variables selected by the method with the Dean and Raftery
(2010) assumption (selInd), (iv) the proposed method (selSwap).

order to be dependent on more than one of the clustering variables and the other
redundant variables. We consider three sample sizes: N = 750,1000,1500. Fig-
ure 10 displays the proportion of times each variable was declared a clustering
variable. The figure shows that the selection with the Dean and Raftery (2010) as-

FIG. 9. First simulation scenario: Proportions of the three most frequent sets of variables declared
as relevant for clustering by the presented variable selection method. From top: sample sizes corre-
sponding to 500, 750, 1000.
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FIG. 10. Second simulation scenario: Proportions of times each variable has been declared a clus-
tering variable by the proposed variable selection method. From top: sample sizes corresponding to
750, 1000, 1500.

sumption almost never discard any of the redundant variables. Furthermore, with
the proposed method the probability of selecting a “true” clustering variable in-
creases as N becomes larger. Figure 11 presents the boxplots of the ARI between
the actual classification of the data and the estimated classifications. The classifi-
cation of the observations based on the selected variables gives on average a better
performance in terms of ARI. However, there are some situations in which the
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FIG. 11. Second simulation scenario: Boxplots of the ARI between the actual classification of
the data and the estimated classification from the LCA model fitted on: (i) all the variables (all),
(ii) the “true” clustering variables (clus), (iii) the variables selected by the method with the Dean
and Raftery (2010) assumption (selInd), (iv) the proposed method (selSwap).

proposed method does not converge to the selection of the correct set of relevant
variables. In Figure 12, the three most frequent sets declared as clustering vari-
ables are shown. Again, the set of “true” clustering variables is the one selected
more often.

FIG. 12. Second simulation scenario: Proportions of the three most frequent sets of variables de-
clared as relevant for clustering. From top: sample sizes corresponding to 750, 1000, 1500.
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7. Discussion and further work. In this paper, we have presented an im-
proved variable selection method for LCA that overcomes the limitations of the
Dean and Raftery (2010) and White, Wyse and Murphy (2016) methods, which
lies in the independence assumption between the selected clustering variables and
the variable proposed for removal or inclusion. The proposed method performs the
selection of the most informative clustering variables, discarding those that are not
informative and those that are redundant. The ability of the method of discriminat-
ing among relevant variables and redundant or non-informative variables has been
shown in two simulated data settings.

The work was motivated by the nature of the LBP data examined. In the data,
all the variables possess good discriminative power, since the clinical criteria list
was built by experts in order to best identify the traits of the three classes of pain.
The aim was to remove those criteria that are not needed because they contain
similar group information to that already included in the selected clinical crite-
ria. This resulted in a smaller set of criteria to be considered in order to derive a
mechanisms-based classification of pain. Further, the modelling of the data in an
unsupervised manner allowed for the validation of the mechanisms-based classifi-
cation of pain because the patients clustered into groups that closely correspond to
this classification.

We built the variable selection method on the model comparison framework pi-
oneered by Law, Figueiredo and Jain (2004) and completely defined in Raftery and
Dean (2006). However, another framework for performing variable selection is the
regularization approach, although to the authors knowledge it has not been ex-
plored yet in categorical data clustering. Furthermore, for continuous data, Celeux
et al. (2014) showed that the model comparison approach is a better methodology
in terms of classification and variable selection accuracy than the recent regular-
ization method of Witten and Tibshirani (2010).

We considered a greedy swap-stepwise searching algorithm to perform the vari-
able selection. The idea of replacing a selected variable with one of the discarded
variables has already been considered. For example, Miller (2002) in subset selec-
tion for regression presents a sequential replacement heuristic where in sequence
each of the selected predictors is replaced by one of the non-selected variables.
In a model-based clustering context, Tadesse, Sha and Vannucci (2005) and Kim,
Tadesse and Vannucci (2006) use a stochastic search for Bayesian variable selec-
tion where the values of a latent variable selection indicator are randomly swapped.
Many other searching strategies and metaheuristics could be used in order to con-
duct a robust search through the solution space and avoid local optima. For exam-
ple, genetic algorithms [Goldberg (1989)] have already been applied for variable
selection in cluster analysis for market segmentation [Liu and Ong (2008)] and
subset selection for model-based clustering of continuous data [Scrucca (2016)].
In a high-dimensional problem with many variables, a forward algorithm and a
headlong search [Badsberg (1992)] can be considered, as has been done in Dean
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and Raftery (2010); although in this case, the problem of a good initialization of
the clustering variables arises.

The variable selection method is developed in application to clinical criteria se-
lection. However, it can be applied to any kind of multivariate categorical data,
although its use is limited to only unordered categorical variables. A further exten-
sion in that direction is the incorporation of the capability of dealing with ordinal
data, which often arise from likert scale questionnaires. In this context it is worth
mentioning the work of Arima (2015), where a Bayesian approach is developed to
reduce the items of a questionnaire used to evaluate patients’ quality of life, with
the goal that the reduced questionnaire will provide the same information of the
complete questionnaire. Another limitation of our methodology lies in the local
independence assumption of the LCA model. Much work has been done towards
relaxing this assumption and allowing class-conditional dependencies between the
variables. Among the most recent, Gollini and Murphy (2014) present a setting
where it is assumed that the class distribution of the categorical variables depends
on a number of continuous latent variables, which allow to model the dependences
among the observed categorical variables. Another approach is the one by Marbac,
Biernacki and Vandewalle (2015), where conditional on a class, the variables are
grouped into independent blocks, each one following a specific distribution that
takes into account the dependency between variables. Including these frameworks
in a variable selection method for clustering categorical data could be promising
and may be of interest for further developments.

R [R Core Team (2017)] functions implementing the variable selection method
for LCA are available in the Supplementary Material [Fop, Smart and Murphy
(2017)]. In the code, the LCA model is fitted using the poLCA package [Linzer
and Lewis (2011)].

APPENDIX: SWAP-STEPWISE SELECTION ALGORITHM

Here, we give a more detailed description of the swap-stepwise variable selec-
tion algorithm for the LCA model. At each stage of the algorithm, a greedy search
over the model space is conducted and all the variables are examined for being
removed, added or swapped.

Note that in fitting the LCA model we perform multiple runs with random start-
ing values. Also in this case the aim is to allow the search for the global maximum
of the log-likelihood rather than a local one; then the model with the greatest log-
likelihood is retained. In the following, in the notation we drop the conditioning
on the model M for ease of reading.

Initialization. Set Gmax, the maximum number of clusters to be considered for
the data. Then when fitting the LCA models, a maximum number G∗ ≤ Gmax of
latent classes will be considered at each stage. Here, G∗ is the maximum number of
latent classes that satisfies the identifiability condition in (3) for the set of variables
currently taken into account in fitting the LCA model.
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Initialize the set of clustering variables and the set of non-clustering variables
by assigning XC = X and XO =∅, respectively.

Removal step. Fit a LCA model on all the elements contained in the current set
of clustering variables XC , for 1 ≤ G ≤ G∗ and set

BICclus = max
G

{
BIC

(
XC |z)}

.

Then for each variable XC
j ∈ XC compute

BICno clus
(
XC

j

) = max
G

{
BIC

(
XC−j |z

)} + BIC
(
XC

j |XR
j ⊆ XC−j

)
,

where XC−j = XC \XC
j ; BIC(XC−j |z) is the BIC of the latent class model on the cur-

rent clustering variables after removing variable XC
j , maximized over 1 ≤ G ≤ G∗;

BIC(XC
j |XR

j ⊆ XC−j ) is the BIC of the multinomial logistic regression model of

variable XC
j given the set XR

j of selected predictors obtained using the algo-
rithm outlined in the Supplementary Material, Section 2 [Fop, Smart and Murphy
(2017)].

Subsequently, for each variable in XC estimate the evidence of being a relevant
clustering one versus the evidence of not being useful for clustering by computing
the difference:

BICdiff
(
XC

j

) = BICclus − BICno clus
(
XC

j

)
.

According to the values of BICdiff(X
C
j ) rank the current clustering variables in

increasing order, generating the ordered set {XC
(1),X

C
(2), . . . ,X

C
(MC)}, with MC the

number of variables in the current set XC . Then XC
(1) is such that

XC
(1) = arg min

XC
j ∈XC

BICdiff
(
XC

j

)
.

Set XP = XC
(1) and propose it for removal. Next, if BICdiff(X

P ) < 0, remove the

proposed variable from XC and set XC = XC \XP and XO = XO ∪XP ; otherwise
leave the set of clustering variables unchanged. Go to the swapping step 1.

Swapping step 1. If a variable has been removed in the removal step, set Xswap =
XC

(2), otherwise set Xswap = XC
(1).

Swap each variable XO
k ∈ XO with Xswap generating the sets XC

k = XC \
Xswap ∪ XO

k . Fit a LCA model on the set of variables XC
k for 1 ≤ G ≤ G∗ and

compute

BICclus
(
XO

k

) = max
G

{
BIC

(
XC

k |z)} + BIC
(
Xswap|XR

swap ⊆ XC
k

)
,

where BIC(XC
k |z) is the BIC of the latent class model on the current clus-

tering variables after swapping the variable Xswap with the variable XO
k , and
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BIC(Xswap|XR
swap ⊆ XC

k ) is the BIC of the multinomial logistic regression of vari-

able Xswap given the selected predictors XR
swap.

Then calculate

BICno clus
(
XO

k

) = max
G

{
BIC

(
XC |z)} + BIC

(
XO

k |XR
k ⊆ XC)

,

where BIC(XO
k |XR

k ⊆ XC) is the BIC of the multinomial logistic regression model
of variable XO

k given the set XR
k of relevant predictors in XC .

Subsequently, for each variable in XO estimate the evidence of carrying more
clustering information than Xswap versus the evidence of containing less clustering
information by computing the difference

BICdiff
(
XO

k

) = BICclus
(
XO

k

) − BICno clus
(
XO

k

)
,

and propose for swapping with Xswap the variable XP such that

XP = arg max
XO

k ∈XO
BICdiff

(
XO

k

)
.

Then if BICdiff(X
P ) > 0, replace Xswap by the proposed variable and set XC =

XC \Xswap ∪XP and XO = XO \XP ∪Xswap; otherwise, leave the set of clustering
variables unchanged. Go to the inclusion step.

Inclusion step. For each variable XO
k ∈ XO , compute

BICclus
(
XO

k

) = max
G

{
BIC

(
XC+k|z

)}
,

where XC+k = XC ∪ XO
k ; BIC(XC+k|z) is the BIC of the latent class model on the

current clustering variables after adding variable XO
k .

Then compute

BICno clus
(
XO

k

) = max
G

{
BIC

(
XC |z)} + BIC

(
XO

k |XR
k ⊆ XC)

.

Subsequently, for each variable XO
k estimate the evidence of being a clustering

variable versus the evidence of not being useful for clustering by computing the
difference:

BICdiff
(
XO

k

) = BICclus
(
XO

k

) − BICno clus
(
XO

k

)
.

According to the values of BICdiff(X
O
k ) rank the current non-clustering variables

in decreasing order, generating the ordered set {XO
(1),X

O
(2), . . . ,X

C
(MO)}, with MO

the number of variables in the current set XO . Then XO
(1) is such that

XO
(1) = arg max

XO
j ∈XO

BICdiff
(
XO

j

)
.

Set XP = XO
(1) and propose it for inclusion in the clustering set. Next, if

BICdiff(X
P ) > 0, add the proposed variable to XC and set XC = XC ∪ XP and
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XO = XO \ XP ; otherwise, leave the set of clustering variables unchanged. Go to
the swapping step 2.

Swapping step 2. If a variable has been added in the inclusion step, set Xswap =
XO

(2); otherwise, set Xswap = XO
(1).

Swap each variable XC
j ∈ XC with Xswap generating the sets XC

j = XC ∪Xswap \
XC

j . Compute

BICclus
(
XC

j

) = max
G

{
BIC

(
XC |z)} + BIC

(
Xswap|XR

swap ⊆ XC)
.

Then fit a LCA model on the set of variables XC
j for 1 ≤ G ≤ G∗ and calculate

BICno clus
(
XC

j

) = max
G

{
BIC

(
XC

j |z)} + BIC
(
XC

j |XR
j ⊆ XC

j

)
,

where BIC(XC
j |z) is the BIC of the latent class model on the current clus-

tering variables after swapping the variable Xswap with the variable XC
j , and

BIC(XC
j |XR

j ⊆ XC
j ) is the BIC of the multinomial logistic regression model of

variable XC
j given the set XR

j of relevant predictors in XC
j .

Subsequently, for each variable in XC estimate the evidence of carrying more
clustering information than Xswap versus the evidence of containing less clustering
information by computing the difference

BICdiff
(
XC

j

) = BICclus
(
XC

j

) − BICno clus
(
XC

j

)
,

and propose for swapping with Xswap the variable XP such that

XP = arg min
XC

j ∈XC
BICdiff

(
XC

j

)
.

Then if BICdiff(X
P ) < 0, replace Xswap by the proposed variable and set XC =

XC \Xswap ∪XP and XO = XO \XP ∪Xswap; otherwise, leave the set of clustering
variables unchanged.

The algorithm starts with two successive removal steps, then it iterates alternat-
ing between removal, swapping, inclusion, swapping steps. It stops when all the
moves are rejected since no further change can be produced on the set of clustering
variables. In the swapping steps, we do not look at all possible pairs of variables
because it could be too computational demanding. Instead we consider the vari-
able with the largest evidence of being removed or added, because it is the one
most likely to be swapped.
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SUPPLEMENTARY MATERIAL

Supplementary information, data and R code [Fop, Smart and Murphy
(2017)]. (DOI: 10.1214/17-AOAS1061SUPP; .zip). The .zip folder contains a doc-
ument with: further considerations regarding the “don’t know” entries, a descrip-
tion of the backward-stepwise selection algorithm for the multinomial logistic re-
gression, a detailed description of the simulated data experiments, a complete list
of clinical criteria and a notation page for reference. The folder also contains the
data used in this paper and R code implementing the variable selection method.
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