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MODEL-BASED CLUSTERING WITH DATA CORRECTION FOR
REMOVING ARTIFACTS IN GENE EXPRESSION DATA1

BY WILLIAM CHAD YOUNG, ADRIAN E. RAFTERY AND KA YEE YEUNG

University of Washington

The NIH Library of Integrated Network-based Cellular Signatures
(LINCS) contains gene expression data from over a million experiments,
using Luminex Bead technology. Only 500 colors are used to measure the
expression levels of the 1000 landmark genes measured, and the data for the
resulting pairs of genes are deconvolved. The raw data are sometimes inad-
equate for reliable deconvolution, leading to artifacts in the final processed
data. These include the expression levels of paired genes being flipped or
given the same value and clusters of values that are not at the true expression
level. We propose a new method called model-based clustering with data
correction (MCDC) that is able to identify and correct these three kinds of
artifacts simultaneously. We show that MCDC improves the resulting gene
expression data in terms of agreement with external baselines, as well as
improving results from subsequent analysis.

1. Introduction. Recent improvements in gene expression measurement
technologies, including microarrays [Lockhart et al. (1996), Schena et al. (1995),
Ball et al. (2002)] and RNAseq [Wang, Gerstein and Snyder (2009)], have greatly
increased the amount of data available for analysis. These data offer many oppor-
tunities to further biologists’ understanding of how cells act in different settings.
However, the ability to learn from any method is limited by the quality of the
data being used. The quality of data from gene expression experiments is limited
by a number of factors, from variability in environmental conditions to uncer-
tainties inherent in the measurement technologies themselves [Liu and Rattray
(2010)]. Additionally, by the time statistical inference methods are applied, the
data have already gone through a preprocessing pipeline, adjusting the data to be
more amenable to analysis [Sebastiani et al. (2003)]. Examples of preprocessing
steps include logarithmic transformation of raw fluorescence values and quantile
normalization. Additional steps may also be taken to adjust for batch effects or
other unique aspects of the particular experiment being done [Gomez-Alvarez,
Teal and Schmidt (2009), Leek et al. (2010)]. Although these techniques are often
helpful, they can sometimes introduce artifacts into the data [Blocker and Meng
(2013), Lehmann et al. (2013)]. It is important to identify these additional sources
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of variation and correct them if possible, or if not, to account for them in the
assessment of variability and uncertainty.

Our work is motivated by a gene expression dataset from the NIH Library of
Integrated Network-based Cellular Signatures (LINCS) program. One of the aims
of the LINCS project is to measure gene expression changes in response to drug
and genetic perturbations. In these experiments, cell lines (or cell cultures that can
be manipulated in the laboratory) were subjected to different perturbation exper-
iments, in which drugs were applied or genetic makeup was changed. Over 1.4
million experiments have been performed and the expression levels of approxi-
mately 1000 genes were measured. Genes were paired in the experimental setup
and this led to multiple issues in the processed data, including clustering, switched
expression values of the two genes, and assignment of the same expression value
to the two genes. We develop a new method to address these issues. The method is
an extension of model-based clustering that explicitly incorporates the expression
level swaps, while simultaneously addressing the other problems in the data. We
call it model-based clustering with data correction, or MCDC. We show that our
method works well on simulated datasets, and that it improves the gene expres-
sion data, both in terms of agreement with an external baseline and in subsequent
inference.

Although MCDC is developed to address a problem specific to the dataset at
hand, we present a more general formulation that can be applied outside of this
limited setting. This includes the ability to specify transformations to the data other
than the switching found in the LINCS data, as well as the potential to compare
results from multiple different transformations to choose the best one for a dataset.

Section 2 describes the motivating data for our method. Section 3 outlines our
method, MCDC, as well as a practical EM algorithm for implementation. In Sec-
tion 4 we present a simulation study, showing that our method is able to identify
and correct points which have been altered. Section 5 shows how MCDC can be
applied to our motivating data to improve the data overall as well as improve sub-
sequent analyses. Section 6 concludes with a discussion.

2. Data. The Library of Integrated Network-based Cellular Signatures
(LINCS) program, http://lincsproject.org, is funded by the Big Data to Knowl-
edge (BD2K) Initiative at the National Institutes of Health (NIH) whose aim is to
generate genetic and molecular signatures off human cells in response to various
perturbations. This program includes gene expression, protein-protein interaction,
and cellular imaging data [Vempati et al. (2014)]. Vidović, Koleti and Schürer
(2013) used the LINCS data to understand drug action at the systems level, while
Shao et al. (2013) used them to study kinase inhibitor induced pathway signatures,
and Chen et al. (2015) and Liu et al. (2015) examined the association of chemical
compounds with the gene expression profile. The LINCS L1000 data has also been
combined with chemical structure data to predict adverse drug reactions [Wang,
Clark and Ma’ayan (2016)].

http://lincsproject.org
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The LINCS L1000 data is a vast library of gene expression profiles that in-
clude over one million experiments covering more than seventy human cell lines.
These cell lines are populations of cells descended from an original source cell
and having the same genetic makeup, kept alive by growing them in a culture
separate from their original source. The L1000 data include experiments using
over 20,000 chemical perturbagens, namely drugs added to the cell culture to in-
duce changes in the gene expression profile. In addition, there are genetic per-
turbation experiments targeting a single gene to control its expression level, ei-
ther suppressing it (knockdown) or enhancing it (overexpression). The LINCS
L1000 data is publicly available for download from the Gene Expression Om-
nibus (GEO) database with accession number GSE70138 http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE70138. Duan et al. (2014) provide a web ap-
plication to allow researchers to explore the LINCS L1000 data interactively at
http://www.maayanlab.net/LINCS/LCB/.

2.1. Experimental design of the L1000 data. Each individual L1000 experi-
ment measures the expression levels of approximately 1000 landmark genes in the
human genome. The goal of the LINCS project is to capture the cells’ response to
perturbations. Therefore, the project was designed to include a very large number
of experiments, but this came at the cost of measuring only a limited number of
selected landmark genes. These landmark genes were selected to cover as much
of the variation in cellular gene expression as possible. In each experiment, the se-
lected perturbation was applied and the cells were allowed to culture for a specified
period of time before the gene expression levels were measured.

The L1000 experiments were carried out using the Luminex Bead technology
[Peck et al. (2006), Dunbar (2006)], in which color-coded microspheres are pro-
duced to attach to specific RNA sequences corresponding to a landmark gene and
to fluoresce according to the amount of RNA produced as that gene is expressed.
To perform a single experiment, a perturbing agent such as a chemical compound
is added to the solution. Additionally, around 100 beads are added for each gene
to be measured. The beads for measuring a particular gene share a color that can
be uniquely identified using lasers. To process an experiment, the beads in the
solution are sampled and analyzed to determine which gene they are measuring.
Additionally, their fluorescence level is measured to determine the expression level
of the gene. With many beads per gene, a good estimate of the overall expression
level is obtained.

The L1000 experiments used only 500 bead colors to measure the expression
levels of the 1000 landmark genes. This means that each bead color had to do dou-
ble duty, accounting for a pair of genes. Thus, when an experiment is processed,
a given bead color will have some observations from one gene and the rest from
another gene. These gene pairs were selected to have different levels of expres-
sion, and the beads for a pair were mixed in approximately a two to one ratio. This

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138
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means that, ideally, when the beads are sampled, a histogram of fluorescence lev-
els corresponding to gene expression is created with two peaks, one of which has
twice the number of observations as the second peak.

2.2. L1000 data preprocessing. In order to facilitate statistical analysis of the
L1000 data, the raw bead fluorescence measurements were combined and trans-
formed. First, the measurements from many beads of the same color were decon-
volved to assign expression values to the appropriate pair of genes. The data then
went through multiple normalization steps [Bolstad et al. (2003), Liu et al. (2015)].
First, a set of genes were identified as being stable across cell lines and perturba-
tions, and these were used to inform a power law transformation of all gene values.
The expression values were then quantile normalized across sets of experiments to
make the distribution of expression levels the same for all experiments. These steps
are illustrated in Figure 1.

Although these data processing steps result in data that are more amenable to
statistical analysis, we have found that the deconvolution step in particular intro-
duces artifacts in the data. This can be seen when we look at multiple experiments
on the same cell line with the same experimental conditions. If we look at a pair
of genes that share a bead color and form a scatterplot of their values across many
experiments, we see that these artifacts can take several forms.

First of all, two genes that are paired on the same bead color may not be ex-
pressed at levels such that they are easily distinguished. This can lead to both
genes being assigned the same value, resulting in a clustering of data directly on
the x = y diagonal. Second, the deconvolution step, which uses a simple k-means
algorithm, can be misled if there are many beads sampled with very low fluores-
cence values. This, combined with the quantile normalization step, can lead to

FIG. 1. The L1000 data preprocessing pipeline. The raw data are first measured from the beads
in the experiments. Next, the data from each color of bead are deconvolved to assign expression
values to the two genes which share that bead color. Finally, the data are normalized to yield directly
comparable data across experiments. Figure adapted from an image on the Broad Institute LINCS
cloud website (http:// lincscloud.org/ l1000, accessed February, 2016).

http://lincscloud.org/l1000
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FIG. 2. Histograms of raw bead fluorescence values for single bead colors. The left panel shows an
example where the two peaks corresponding to the genes sharing the bead color are relatively easy
to distinguish. The right panel shows an example where the deconvolution is more difficult. Dotted
lines show possible inferred densities for two clusters.

additional clusters that are not at the true expression value. Finally, the deconvo-
lution step can result in assigning the expression levels of the genes incorrectly.
That is, the expression level of gene A of the pair on the same bead color is some-
times assigned to gene B instead, and vice versa. Figure 2 shows examples of the
raw bead data of two gene pairs and illustrates the difficulty of the deconvolution
step.

Figure 3 shows examples of these three types of artifact in the L1000 data. The
figure shows the expression values for two paired genes, CTLC and IKZF1. Each
point shows the values measured in a single experiment. All 630 experiments in
this dataset are on the same cell line, A375, and are untreated, used as controls.
As such, we would expect a single cloud of observations centered around the point
defined by the true expression values of the two genes. Instead, we see several
clusters of observations, as well as points lying on or very near the diagonal. Note
in particular the two circled sets of points. These appear to be a single cluster in
which some of the points were flipped, with the expression values assigned to the
wrong genes. If we flip one set of points across the diagonal, it falls directly on the
other set.

Looking more broadly at the untreated A375 experiments, we find that artifacts
such as those in Figure 3 occur across gene pairs. Every pair of genes has at least
a few points lying on or near the diagonal, with an average of about 30 per pair. If
we compare the number of points on either side of the diagonal, excluding those
close to it, we find that half of the gene pairs have at least 10% of the points on the
wrong side of the diagonal (the side with fewer points), and a quarter of the pairs
have at least 25% on the wrong side. This may be partially explained by gene pairs
that have similar expression values, but the gene pairs were initially selected so as
to avoid that problem.
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FIG. 3. Expression levels on a log-base-2 scale for two paired genes, CLTC and IKZF1, measured
on the same bead, in the L1000 data. Each point represents one experiment; there are 630 experi-
ments in all. Data artifacts include points directly on or very near to the diagonal, multiple clusters
rather than a single one as may be expected, and flipping between the two circled clusters of points,
with the CLTC value incorrectly assigned to IKZF1, and vice versa. The blue arrow shows the effect
of data correction using MCDC.

3. Method. We propose a method to detect and correct all three kinds of ar-
tifact present in the LINCS L1000 data: the multiple clusters introduced by the
preprocessing pipeline, the erroneous assignment of the same expression value to
paired genes, and the flipping of the expression levels of paired genes. This im-
proves the quality of the data and leads to better downstream analysis. We do this
by addressing issues present in the preprocessed data rather than by reprocessing
the raw data, as was done by Liu et al. (2015). We adopt this approach because
some of the artifacts are likely to persist even if the deconvolution method is im-
proved for individual gene pairs.

Our method is an extension of model-based clustering [Banfield and Raftery
(1993), Fraley and Raftery (2002), McLachlan and Peel (2000), Wolfe (1970)],
which is a model-based method for finding clusters by fitting a multivariate Gaus-
sian mixture model to the data. It has been found useful in many different con-
texts, including geochemical analysis [Templ, Filzmoser and Reimann (2008)],
chemometrics [Fraley and Raftery (2007)], and health studies [Flynt and Daepp
(2015)]. It is well adapted to estimating the expression levels because sometimes
there are small groups of points not in the main cloud around the true value, such as
the points on the diagonal in Figure 3. Model-based clustering can identify these
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groups as clusters and remove or downweight them, thus preventing them from
contaminating the estimation of the gene expression levels.

However, while model-based clustering is able to identify the clusters as well
as identifying outliers, it does not have a mechanism for identifying particular
points as flipped. Here we extend the model-based clustering method to detect and
take into account the flipping in the data. More generally, it can be used for data
with any invertible transformation applied to a subset of the data. This extension
allows us to use an Expectation-Maximization (EM) algorithm commonly used
to estimate finite mixture models [Dempster, Laird and Rubin (1977), McLachlan
and Krishnan (1997)].

3.1. Model. Suppose we have multivariate data, {xi : i = 1, . . . ,N}, gener-
ated by a finite mixture of G distributions fk , k = 1, . . . ,G with probabilities
τ1, . . . , τG:

f (x) =
G∑

k=1

τkfk(x | θk).

Suppose further that we do not observe xi , but rather yi , a possibly transformed
version of xi , where the probability of a data point having been transformed can
depend on the mixture component k that xi is drawn from

yi =
{

xi with probability πk,

Txi with probability (1 − πk).

Here, T is any invertible transformation that preserves the domain of x. Often, this
may be represented as a matrix, but it may also be a functional transformation (i.e.,
a componentwise monotonic transformation). In the case of the L1000 data, this
is just the 2 × 2 matrix with zeros on the diagonals and ones on the off-diagonals,
switching the two values.

Given the transformation T, the distribution of yi can be written as follows:

f (yi | τ ,π, θ) =
G∑

k=1

τk

[
πkfk(yi | θk) + (1 − πk)fk

(
T−1yi | θk

)]
.

To simplify the notation, define fik ≡ fk(yi |θk) and f −
ik ≡ fk(T−1yi |θk). Then,

the distribution of yi can be written as

f (y | τ ,π, θ) =
n∏

i=1

G∑
k=1

τk

[
πkfik + (1 − πk)f

−
ik

]
.
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3.2. EM algorithm. We estimate this model by maximum likelihood using the
EM algorithm. We formulate this as a missing data problem, where the complete
data are {yi , zi , ξi}. Here, zi = (zi1, . . . , ziG) and ξi are unobserved labels, with

zik =
{

1 if yi belongs to group k,

0 otherwise,

and

ξi =
{

0 if yi has been transformed,

1 otherwise.

Then, the complete-data log-likelihood is

�(θ ,τ , z,π, ξ |y) =
n∑

i=1

G∑
k=1

zik

[
ξi log(πkτkfik) + (1 − ξi) log

(
(1 − πk)τkf

−
ik

)]
.

We can also write down the joint distribution of zi and ξ i given yi and θ :

(1) f (zi , ξ i | yi , θ) = 1

f (yi |τ ,π, θ)

G∏
k=1

[
(τkπkfik)

ξi · (
τk(1 − πk)f

−
ik

)(1−ξi )
]zik .

For the E-step of the algorithm, we need to calculate the expected complete-data
log likelihood, namely

Q
(
θ | θ∗) = E

[
�(θ ,τ , z,π, ξ |y) | y,τ ∗,π∗θ∗]

=
n∑

i=1

G∑
k=1

E
[
zikξi | y,τ ∗,π∗, θ∗]

log(πkτkfik)

+ E
[
zik(1 − ξi) | y,τ ∗,π∗, θ∗]

log
(
(1 − πk)τkf

−
ik

)
.

From Equation (1), we have

E
[
zikξi | y,τ ∗,π∗, θ∗] = τ ∗

k π∗
k fik

f (yi | τ ∗,π∗, θ∗)
,

E
[
zik(1 − ξi) | y,τ ∗,π∗, θ∗] = τ ∗

k (1 − π∗
k )f −

ik

f (yi | τ ∗,π∗, θ∗)
.

We have zikξi + zik(1 − ξi) = zik and
∑G

k=1 zik = 1. This leads to the following
updates of the estimates of zik and ξi , which make up the E-step:

ẑik = τ ∗
k [π∗

k fik + (1 − π∗
k f −

ik )]
f (yi | τ ∗,π∗, θ∗)

,

ξ̂i =
∑G

k=1 τ ∗
k π∗

k fik

f (yi |τ ∗,π∗, θ∗)
.
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The M-step is then as follows:

τ̂k ← nk

n
,

π̂k ←
∑n

i=1 ẑikξ̂i

nk

,

μ̂k ←
∑n

i=1 ẑik(ξ̂iyi + (1 − ξ̂i )T−1yi )

nk

,

nk ≡
n∑

i=1

ẑik.

To get the variance of the clusters, we follow the steps from Celeux and Govaert
(1995), modifying the scattering matrix Wk of cluster k as well as the within-
cluster scattering matrix W to be

Wk =
n∑

i=1

ẑik

[
ξ̂i (yi − μ̂k)(yi − μ̂k)

′ + (1 − ξ̂i )
(
T−1yi − μ̂k

)(
T−1yi − μ̂k

)′]
,

W =
G∑

k=1

Wk.

These can then be used to calculate �k under different variance models.
We iterate the EM steps until convergence, which leads to a local maximum of

the log-likelihood [Wu (1983)]. Although this is not guaranteed to be the global
maximum, choosing starting values using hierarchical model-based clustering, or
doing multiple restarts, have both been shown to lead to good solutions [Biernacki,
Celeux and Govaert (2003), Fraley and Raftery (1998)].

Our model allows the cluster-specific variance matrices to differ between clus-
ters. We select the best number of clusters by running MCDC with the number
of clusters ranging from 1 to some maximum number of clusters (9 in our case)
and then compare the BIC values for the resulting estimated models [Fraley and
Raftery (2002)].

For our gene expression data, we estimate the expression levels of a pair of
genes as the mean of the largest cluster (the cluster with the most points assigned
to it) found using the chosen model. This gives a reasonable estimate; we expect
the data points to be distributed about a single true value since the experiments
were done under the same conditions and the observations come from a culture of
a large number of cells.

4. Simulation study. We now describe a simulation study in which data with
some of the key characteristics of the LINCS L1000 data were simulated. We sim-
ulated datasets with no clustering (i.e., one cluster), but where some of the ob-
servations were flipped. We also simulated datasets with clustering (two clusters),
where some of the observations were also flipped.
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FIG. 4. One Dataset from Simulation 1: One Cluster with Flipping. The fraction of data flipped,
1 − π , is chosen to be 0.05. Left panel: Original data with flipped data points. Right panel: Data
after correction by MCDC. MCDC identified and corrected all the flipped points. The gray triangle
is the mean of all the data, and the yellow triangle is the mean of the data after correction by MCDC.

Finally, we simulated a dataset where no observations were flipped, but instead
some observations were rotated and scaled. This is to show that the method can be
effective when some of the data are perturbed in ways other than flipping.

4.1. Simulation 1: One cluster with flipping. Figure 4 is an example dataset
from our first simulation. This simulation represents what we see in the LINCS
L1000 data in the best case, with no clustering or diagonal values (i.e., a single
cluster), but with some flipping. For the simulation, we generated 100 datasets with
300 points each from the single cluster model with flipping probabilities (1 − π)

of 0.05 to 0.45 in increments of 0.05, resulting in 900 simulated datasets in total.
We applied MCDC to each simulated dataset and counted the number of times the
correct number of clusters (one) was selected as well as the percentage of the points
correctly identified as flipped or not. Finally, we looked at the inferred gene means
compared to taking the mean of all the observations without applying MCDC. We
refer to this as the unaltered mean.

The correct number of clusters (i.e., one) was selected for all but one of the 900
datasets, and in the one erroneous dataset out of 900 only a few points were in a
second cluster. In 858 of the 900 datasets no errors were made; all the points were
correctly identified as being flipped or not flipped. In three datasets, all with the
highest probability of flipping, namely 0.45, all the points were misidentified by
being flipped to the wrong side, while in one dataset (again with 1 − π = 0.45),
a single large cluster with no flipping was identified. In the remaining 38 datasets,
one to three points out of 300 were misidentified. All these misidentifications make
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FIG. 5. Simulation 1: Mean Absolute Error in Inferred Mean. The blue line is based on using
unaltered data, while the red line is based on using the mean of the largest cluster found by MCDC.

sense, since we expect rare cases where a point crosses the x = y line as well as
cases where more points are flipped when using a flipping probability near 0.5.

Figure 5 and Table 1 show the mean absolute error in inferred mean using
MCDC versus the unaltered data. For each flipping probability, we calculated the
mean absolute error of the inferred mean from the true mean. MCDC did much
better than taking the unaltered mean in all cases, improving on the unaltered data
by a factor of 5 to 36, depending on the probability of flipping.

4.2. Simulation 2: Two clusters with flipping. For the second simulation, we
added a second cluster on the diagonal, as demonstrated in Figure 6. This reflects
a common issue we see in the L1000 data. When the data processing pipeline
has trouble differentiating between the two gene expression levels, it can end up
assigning them both the same value. For these data, we wanted to see how well
MCDC identified the “good” points (not the diagonal cluster). Again, we used the
mean of the largest cluster as the inferred mean. For the simulation, we generated
100 datasets with 400 points each for the two-cluster model with flipping proba-
bilities (1 − π) from 0.05 to 0.45, and probability τ of a point being in the true
cluster from 0.55 to 0.95, in increments of 0.05.

Figure 7 shows the comparison of mean absolute error in the inferred mean. The
MCDC results are better across the board, although we see that as τ decreases, it
is more likely to identify the diagonal cluster as the largest one. Figure 8 shows
that MCDC does well in identifying which points are flipped. In Figure 9, we see
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TABLE 1
Simulation 1: Mean Absolute Error (MAE) in Inferred Mean

for Unaltered data and MCDC-corrected data, as the
probability of flipping increases. The MAE ratio is the ratio
of mean absolute error using the unaltered data divided by
the MAE using the MCDC-corrected data. Values greater

than 1 indicate improvement by using MCDC

Probability of Unaltered MCDC MAE
flipping MAE MAE ratio

0.05 0.22 0.04 5
0.10 0.42 0.05 9
0.15 0.63 0.05 13
0.20 0.85 0.05 17
0.25 1.07 0.05 24
0.30 1.27 0.05 25
0.35 1.50 0.05 32
0.40 1.73 0.05 36
0.45 1.90 0.19 10

that the correct number of clusters is not generally identified as well as we might
like. This may be due to poor initialization of the algorithm and may be corrected
with multiple random initializations.

4.3. Simulation 3: Three clusters with rotation and scaling. To show that
MCDC can be applied to other kinds of data errors than flipping, we also gen-
erated a dataset with three clusters where the error process rotates and scales the
data points affected. This transformation is not motivated by the L1000 data, but
rather serves to demonstrate the potential for MCDC to be used in other situations.
In this more complex situation, we used n = 1000 points split among the three
clusters with varying probabilities of transformation. MCDC selected the correct
number of clusters and correctly classified all the points. Figure 10 shows the orig-
inal and MCDC-corrected data. One caveat is that here, as in the flipping situation,
the data error process was known to the MCDC algorithm.

5. Application to LINCS L1000 data. We applied MCDC to a portion of
the LINCS L1000, namely the data from cell line A375, a human skin malignant
melanoma cell line. We chose this cell line because it had good coverage in the
L1000 data in terms of the number of different perturbations applied. We consid-
ered only the transformation T that switches the expression levels of the paired
genes. We looked at improvement of the data in aggregate as well as improvement
in a specific inferential setting. For each pair of genes, we ran MCDC with 1 to 9
clusters on 2044 untreated experiments and chose the optimal number of clusters
by BIC. Running this on a laptop with a 2.6 GHz Intel i7-6700HQ processor took
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FIG. 6. Simulated dataset 2: two clusters after flipping. For this example, 90% of the data fall in
the main cluster, and the fraction of points in the main cluster that were flipped, 1 − π , is chosen to
be 0.05. MCDC correctly identified the two clusters and the flipped points, as seen in the plot on the
left. The gray triangle is the mean of all the data, which is moved from its true position due to the
second cluster. The yellow triangle is the mean of the largest cluster found by MCDC and is much
closer to the true value.

FIG. 7. Mean absolute error in inferred mean comparison for simulation 2 when varying τ , the
probability that a point comes from the primary cluster. The blue line is using unaltered data, while
the red line is using the mean of the largest cluster found by MCDC.
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FIG. 8. Proportion of points correctly identified as flipped or not flipped for simulation 2 when
varying τ , the probability that a point comes from the primary cluster. When there is a high probabil-
ity of flipping (near 0.5), there may be more points in the flipped cluster, leading to MCDC identifying
it as the main cluster and thus misidentifying all points for a particular dataset.

approximately 47 minutes on a single core for all gene pairs, or under 6 seconds
for running MCDC with each of 1 to 9 clusters on a single gene pair. The running
time could be improved by running MCDC on the gene pairs in parallel.

Three gene pairs were selected to illustrate the results of applying MCDC to
the L1000 data. Figure 11 shows the results of applying MCDC to one gene pair
in the untreated experiments in cell line A375. Each point corresponds to a single
experiment, and most of the points fall in the same region. However, there is a
single point in the top-left corner that appears to be mirrored across the x = y

line, and we suspect that this point has had the expression levels of the two genes
switched. MCDC corrects this point and we see that it does indeed fall within the
main body of points.

Note that here that the best solution by BIC involves three clusters. This means
that the distribution of the points may not be strictly normal, but here the compo-
nents overlap such that they form one contiguous cluster.

Figures 12 and 13 show MCDC applied to additional gene pairs in the same
dataset. In each case MCDC succeeded in removing the artifacts in the data.
MCDC selects 3 clusters in Figure 12 and 5 clusters in Figure 13. Note in Fig-
ure 13 that the inferred mean after MCDC is substantially different than the mean
of the full dataset, moving it from a location not near any data to one within the
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FIG. 9. Number of datasets (out of 100) in which 2 clusters was identified as the best result for
simulation 2 when varying τ , the probability that a point comes from the primary cluster. When τ

was high, MCDC did not always correctly identify the cluster on the diagonal due to the low number
of points in that cluster.

FIG. 10. Simulation dataset 3: three clusters with rotation and scaling. A data point was trans-
formed by rotating it 120◦ counterclockwise around the origin and then scaling out from the origin
by a factor of 2, as seen in the plot on the left. MCDC was able to identify the correct clusters and
assign the transformed points back into the appropriate clusters, as on the right.
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FIG. 11. Example 1 showing the results of applying MCDC to L1000 control data. MCDC chooses
3 clusters by BIC. On the left are the data before correction, and on the right are the same data after
correction. Triangles indicate inferred mean; gray is the mean of all the data while yellow is the
mean of the largest cluster found by MCDC.

FIG. 12. Example 2 showing the results of applying MCDC to L1000 control data. MCDC chooses
3 clusters by BIC. On the left is the data before correction, and on the right is the same data after
correction. Triangles indicate inferred mean—gray is the mean of all the data while yellow is the
mean of the largest cluster found by MCDC.
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FIG. 13. Example 3 showing the results of applying MCDC to L1000 control data. MCDC chooses
5 clusters by BIC. On the left is the data before correction, and on the right is the same data after
correction. Triangles indicate inferred mean; gray is the mean of all the data while yellow is the
mean of the largest cluster found by MCDC.

largest cluster. Figure 14 shows the distribution of the number of clusters chosen
by BIC across all the gene pairs.

5.1. Agreement with external baseline data. We wanted to see if MCDC im-
proves the data relative to an external baseline. There are 2044 untreated experi-
ments in the A375 cell line. These experiments should all yield similar expression
levels since they are all done under the same experimental conditions. We can get
an estimate of the gene expression level of a particular gene by taking the mean
across all the experiments. We refer to this as the unaltered data.

There are two expression level baseline datasets included in the LINCS L1000
metadata for cell line A375, one using RNAseq technology and the other using
Affymetrix microarray technology. Each of these datasets was generated using an
independent technology and can be compared to the values in the L1000 data.
Since the baseline datasets were produced using different technologies, the scales
of the expression levels are different from that of the L1000 data. In order to take
this difference into account, we looked at the mean squared error (MSE) from a
simple linear regression of the baseline data on the inferred gene expression levels
from the L1000 data.

We then applied MCDC to see if this improved the estimates of gene expression.
To do this, we applied MCDC separately to each pair of genes that were measured
using the same bead color. For a gene pair, we ran MCDC on the data from the
2044 experiments. Doing this for all 500 gene pairs, we ended up with an estimated
gene expression level for all of the 1000 landmark genes. These estimates were also
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FIG. 14. Histogram of the numbers of clusters chosen by BIC for the gene pairs.

compared to the baseline estimates and we were able to compare the MSEs of the
unaltered data with those from the corrected data.

Liu et al. (2015) introduced a new processing pipeline for the LINCS L1000
data in order to address some of the issues they found with the data. They started
with the raw data and performed the deconvolution step with a Gaussian mixture
model approach rather than the k-means approach used in the original pipeline.
This yielded what they refer to as Level 2 data, which they then further normalized
and performed quality control on to produce Level 3 data. The Liu Level 2 data can
be compared with the Level 3 data from the L1000 pipeline, while the Liu Level 3
data is similar to the Level 4 L1000 data.

As a comparison with MCDC, we looked at the same regression against the
Affymetrix and RNAseq baselines using the mean values from the Liu Level 2
data for each gene, again for the A375 untreated experiments. We used the Liu
Level 2 data because part of the process of creating the Level 3 data removes
the means from the gene data, which is not useful for our purpose. The Liu data
included observations from 532 experiments.

Table 2 shows the results of this analysis. Using the corrected data improved the
MSE by 8% when using the Affymetrix data and by 7% when using the RNAseq
data. The Liu data also improved the MSEs, though not as much as MCDC in the
case of the Affymetrix baseline.
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TABLE 2
MSE of regressing external baseline data
on imputed gene means. Comparison of

unaltered means, means from the Liu
data, and MCDC data. Affymetrix and

RNAseq baselines are both from external
sources independent of the LINCS

L1000 data

Affymetrix RNAseq
Method baseline baseline

Unaltered 1.91 1.66
Liu 1.87 1.58
MCDC 1.76 1.55

It is also of interest to note that the performance of MCDC in improving gene
expression estimates does not depend on the number of clusters inferred. This
is shown in Figure 15, where we look at the improvement in the residual for
each gene from the regression using the unaltered means versus the regression
using the MCDC-corrected estimates. Figure 15 shows the results when using the
Affymetrix baseline; the results were similar with the RNAseq baseline. There is
not a substantial change in the improvement based on whether a small or large
number of clusters is chosen.

5.2. Gene regulatory network inference. As well as improving the overall es-
timates of gene expression levels, MCDC identifies particular experiments where
the gene pairs are flipped. This improvement in the data leads to improvements
in methods that use the data in a more granular way. One common use for gene
expression datasets is to infer gene regulatory networks.

Gene regulatory networks describe the connectedness of genes within the cell.
Understanding these genetic interactions leads to understanding of how organisms
function and develop at a cellular level. Many methods have been developed for
inferring these relationships. These include stochastic methods such as mutual in-
formation [Basso et al. (2005), Faith et al. (2007), Margolin et al. (2006), Meyer
et al. (2007)], linear models [Gustafsson et al. (2009), Lo et al. (2012), Menéndez
et al. (2010), Young, Raftery and Yeung (2014)], and Bayesian networks [Kim,
Imoto and Miyano (2003), Murphy and Mian (1999), Zou and Conzen (2005)], as
well as deterministic methods involving systems of differential equations [Bansal,
Della Gatta and Di Bernardo (2006), D’haeseleer et al. (1999)].

To assess the improvement from MCDC, we looked at inferring gene regulatory
networks from the LINCS L1000 data knockdown experiments, which target a
specific gene to suppress its expression level. This target gene is the regulator in
these experiments, and the remaining genes are potential targets, giving us a causal
pathway by which to infer networks.
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FIG. 15. Boxplots showing the improvement in gene expression estimation for each gene versus
the Affymetrix baseline, by the number of clusters chosen. Improvement is calculated as the absolute
residual from regression using the original data minus the absolute residual from regression using
the MCDC estimates. Positive values indicate improvement from using MCDC.

We previously developed a simple posterior probability approach using knock-
down data to infer edges [Young, Raftery and Yeung (2016)]. To do this, we first
standardized the knockdown data using the untreated experiments on the same
plate to obtain z-values. We then used a simple linear regression model, regressing
each potential target on the knocked down gene. Using Zellner’s g-prior [Zellner
(1986)], the posterior probability pht of there being an edge from the knocked-
down gene h to the target gene t is

pht = Tht

1 + Tht

,

where

(2)
Tht = πht

1 − πht

× exp
[
(nh − 2) log(1 + g)/2 − (nh − 1) log

(
1 + g

(
1 − R2))

/2
]
.

In (2), R2 is the coefficient of determination for the simple linear regression model,
g is from Zellner’s g-prior, πht is the prior probability of an edge between h and
t , and nh is the number of knockdown experiments. For our data, we used πht =
0.0005, reflecting the average expected number of regulators, and chose g = √

n,
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a value we have previously found to be reasonable [Young, Raftery and Yeung
(2014)]. This approach is fast and allows us to incorporate prior probabilities as
well. The final result is a ranked edgelist.

The LINCS L1000 data include multiple knockdown experiments for most of
the landmark genes. Most genes have between 9 and 15 replicates, with some
having as few as 4 or as many as 100. This limits the effectiveness of MCDC for
this data, but we were still able to apply it to many of the knockdown datasets.

We used the posterior probability method on the knockdown experiments for
cell line A375 to generate a ranked list of potential edges. In order to assess
the results, we used a gene-set library compiled from TRANSFAC and JASPAR
[Wingender et al. (2000), Sandelin et al. (2004)] and accessed from Enrichr at
http://amp.pharm.mssm.edu/Enrichr/ [Chen et al. (2013a)]. This is a list of tran-
scription factors, namely genes that are known to control the expression levels of
other genes. Each transcription factor has a list of target genes, yielding an assess-
ment edgelist.

The TRANSFAC and JASPAR (T&J) edgelist is not a complete list since not all
gene relationships are captured in the T&J library. This is in part because the T&J
data focus on transcription factors, but also because the true regulatory networks
are not fully known. The T&J edgelist includes edges for 37 transcription factors
also found among the LINCS landmark genes. This includes 4193 regulator-target
pairs out of 43,290 potential edges for which we computed posterior probabilities.

To see the benefit from using MCDC, we applied the posterior probability
method using the unaltered data and compared the results with using the same
posterior probability method on the data after it had been corrected using MCDC.
This results in two ranked lists of gene pairs with associated posterior probabilities.
We compare these with the T&J assessment dataset by taking all edges with a pos-
terior probability over a specified cutoff and creating two-by-two tables showing
how well the truncated edgelists overlap with the T&J edgelist.

Table 3 shows the two-by-two tables generated at posterior probability cutoffs
of 0.5 and 0.95. We also report approximate p-values by using the probability of
getting at least the number of true positives found using a binomial (n, p) distri-
bution, where n is the number of pairs in the inferred list and p is the probability
of selecting a true edge from the total number of possible edges. From the table,
we can see that the p-value is better for the corrected data at both probability cut-
offs. The corrected data include more edges at both cutoffs but maintain a similar
precision, defined as the proportion of edges which are true edges.

Another way of looking at the results is via the precision-recall curve [Ragha-
van, Bollman and Jung (1989)]. Precision and recall are both calculated by truncat-
ing our ranked list of edges and looking only at the edges in the truncated list. The
precision is the proportion of the edges in the truncated list which are true edges.
Recall is defined as the proportion of all true edges which are in the truncated list.
The precision-recall curve takes a ranked list of edges from a procedure and shows
how the precision varies as more edges are included from the list. High precision

http://amp.pharm.mssm.edu/Enrichr/
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TABLE 3
Two by two tables for cell line A375 using knockdown

experiments for finding edges, compared to TRANSFAC and
JASPAR from Enrichr. When using the unaltered data and

looking at edges with posterior probability of 0.5 or greater,
41 of the 302 candidate edges are found in TRANSFAC and

JASPAR, and 14 of the 81 candidate edges at a cutoff of 0.95
are true edges. Similarly, when using the MCDC-corrected

data, 63 of the 463 candidate edges at a cutoff of 0.5 are true
edges and 20 of the 119 at a cutoff of 0.95 are true edges.

Approximate binomial p-values are included

T&J

cutoff: 0.5 cutoff: 0.95

Yes No Yes No

p-value: 0.02 p-value: 0.02

Unaltered Yes 41 261 14 67
No 4152 38,836 4179 39,030

p-value: 0.004 p-value: 0.01

MCDC Yes 63 400 20 99
No 4130 38,697 4173 38,998

at low recall indicates that the procedure is good at identifying true edges at the
highest probability. This is important in many cases, particularly genetic studies,
because it gives researchers good information on where to focus their efforts in
subsequent studies.

Figure 16 compares the precision-recall curves for the unaltered and corrected
data at the very top of the edgelist. The dashed line shows what would be expected
by randomly ordering the edges; anything above that line is an improvement. Both
methods give improved results, but the corrected data yield much better results for
the very top edges returned. This is of particular importance for further research
because having high confidence in the top edges allows the biologist to develop fur-
ther experiments to focus on these edges in additional, more targeted experiments.
In this respect, data correction with MCDC provides substantial improvement.

We can see this by looking at the inferred edges, ranked so that the first edge
has the highest posterior probability, the second has the second highest, and so
one. Table 4 is constructed by ranking the edgelist from the posterior probability
method on a particular dataset. Thus the first edge in the list is the one with the
highest posterior probability, the second edge has the next highest posterior prob-
ability, and so on. We then look at each edge and see if it is also found in the T&J
assessment edgelist. The rank in the table indicates the position at which the nth
edge in T&J was found in the ranked edgelist. It can be seen that the edge with the
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FIG. 16. Precision-recall curve comparing edgelists from unaltered (blue line) and MCDC-cor-
rected (red line) data on knock down data.

highest posterior probability using the MCDC-corrected data is in T&J, as are the
edges with the 5th, 6th, 7th, and 10th highest posterior probabilities. Only one of
the top 10 edges from the unaltered data is a true edge, namely the one with the
7th highest posterior probability, while, in contrast, five of the top ten edges from
the MCDC-corrected data are true edges.

TABLE 4
Comparison of the rank of the first 5 edges found
that match the TRANSFAC and JASPAR edgelist.

Edges ranked by posterior probability.
MCDC-corrected data produces found edges at
higher ranks than the uncorrected data. See text
for explanation of how the table was constructed

Found edge Unaltered rank MCDC rank

1 7 1
2 11 5
3 14 6
4 19 7
5 26 10
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We also applied the posterior probability method to the Liu Level 3 data. In this
case, the Level 3 data is appropriate since it is more comparable to our z-value
transformation, and quality control has been performed to improve the data. We
used the same prior and choice of g as for the other datasets. Due to the quality
control step employed by Liu, there were fewer experiments available and only
24,377 testable edges had posterior probabilities. Of these, 2746 were in the T&J
assessment dataset. None of the edges had a posterior probability over 0.95, and
only two had a posterior probability of at least 0.5. Neither of these edges was in
the T&J dataset. When we looked at the edges as ranked by posterior probability,
we found that the edge with the 12th-highest posterior probability, at 0.04, was the
first which was also found in T&J. The lack of high posterior probability edges
and positive results using the Liu Leve 3 data is due in part to the quality control
step used, which resulted in fewer observations for each knockdown dataset.

6. Discussion. When working with any data, understanding the unique as-
pects of how it was generated and processed can be helpful in developing models
and methods, leading to improved inference. This is particularly true with genomic
data. There are often many steps of data transformation and normalization between
the raw measured data and what is used by the researcher in drawing conclusions
[Binder and Preibisch (2008)]. When these steps are not known or understood,
assumptions about sources of error can be misinformed and lead to degraded per-
formance of inference in specific studies. Price et al. (2006) identified population
stratification of allele frequency in disease studies, while Gomez-Alvarez, Teal
and Schmidt (2009) found that a particular sequencing technique resulted in many
artificial replicates. Lehmann et al. (2013) showed that quantile normalization of
microarray data introduced a phase shift into time series in strains of cyanobac-
teria, changing night-expressed genes into day-expressed genes and vice versa.
Stokes et al. (2007) developed a tool to identify and remove artifacts in genomic
data. Batch effects have been identified as a significant source of systematic error
that can be corrected [Chen et al. (2011), Leek et al. (2010), Sun et al. (2011)].
Identifying these sources of error is crucial, and in some cases can lead to much
improved results.

We have shown how understanding the data-processing pipeline of the LINCS
L1000 data allowed us to identify the introduction of a particular error, namely the
flipping of expression values for gene pairs. This led to the development of MCDC,
which is able to identify and correct these flipping errors. We were able to apply
MCDC to improve the L1000 data in aggregate, as measured against external stan-
dards. This improvement of the data also led to improved inference of regulatory
relationships between the genes, in particular for the edges ranked highest. More-
over, the use of the EM algorithm for optimization makes MCDC fast and useful
for large datasets.

We showed that MCDC compared favorably to the data from Liu et al. (2015)
in our assessments, but it is important to note that our approach is orthogonal to
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FIG. 17. Expression levels for two paired genes in the untreated experiments for cell line A375
from the Liu Level 2 data (532 experiments), demonstrating that MCDC could potentially be useful
in this processing pipeline as well as the original L1000 pipeline.

theirs. As an example of this, Figure 17 shows the Liu Level 2 data for a gene
pair in the untreated A375 data. We see that there is evidence that this data could
benefit from MCDC as well, prior to the processing that creates the Level 3 data.

MCDC is an extension of model-based clustering, which has been used ex-
tensively in other analyses of genetic data, including image analysis of microar-
rays [Li et al. (2005)] and sequence analysis [Verbist et al. (2015)]. One of the
most common uses of model-based clustering in genetics is in finding meaningful
groups among gene expression profiles across multiple experiments under differ-
ent experimental conditions (cell sources, phases, applied drugs, etc.) [Jiang, Tang
and Zhang (2004), Siegmund, Laird and Laird-Offringa (2004)]. This includes
methods using Gaussian mixture models [Yeung et al. (2001)], infinite mixture
models [Medvedovic and Sivaganesan (2002)] and Bayesian hierarchical cluster-
ing [Cooke et al. (2011)]. Our use of MCDC as a step in improving data quality is
complementary to these analysis methods. An implementation of our method will
be made available as an R package, mcdc, on CRAN.

We showed in our simulation experiments that MCDC is able to accurately iden-
tify the data points which have been altered and thus improve the quality of the
data. It is not limited to flipping, as seen in the LINCS data, but is able to handle
any dataset where a subset of the data points have been altered in a known way.
For the L1000 data, the transformation is informed by understanding the way the
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data is generated and pre-processed. In cases where there are multiple possibilities
for T, it may be possible to run MCDC with each candidate transformation and
compare the results to identify the one most compatible with the data, for example
by comparing the BIC from the different transformations.
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