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BAYESIAN SENSITIVITY ANALYSIS FOR CAUSAL EFFECTS
FROM 2 × 2 TABLES IN THE PRESENCE OF UNMEASURED

CONFOUNDING WITH APPLICATION TO PRESIDENTIAL
CAMPAIGN VISITS

BY LUKE KEELE AND KEVIN M. QUINN1

Georgetown University and University of Michigan

Presidents often campaign on behalf of candidates during elections. Do
these campaign visits increase the probability that the candidate will win?
While one might attempt to answer this question by adjusting for observed
covariates, such an approach is plagued by serious data limitations. In this pa-
per we pursue a different approach. Namely, we ask: what, if anything, should
one infer about the causal effect of a presidential campaign visit using a sim-
ple cross-tabulation of the data? We take a Bayesian approach to this problem
and show that if one is willing to use substantive information to make some
(possibly weak) assumptions about the nature of the unmeasured confound-
ing, sharp posterior estimates of causal effects are easy to calculate. Using
data from the 2002 midterm elections, we find that, under a reasonable set
of assumptions, a presidential campaign visit on the behalf of congressional
candidates helped those candidates win elections.

1. Introduction. In many social science settings, randomized experiments are
simply not possible, while the assumptions required for other causal identification
strategies are often implausible. Moreover, many questions of scientific and policy
relevance fall prey to this problem. Nonetheless, this does not mean that one can
learn nothing about causal effects of interest. To provide a better sense of this, in
the next subsection, we describe a particular substantive question from political
science that we will focus on throughout this paper.

1.1. Presidential campaigning for co-partisans. The powers of U.S. presi-
dents are largely informal. The veto and power of appointment are rare instances
of formal powers given to the president in the Constitution. Presidential power
arises from the more informal power of persuading Congress [Neustadt (1960)].
One powerful means of persuasion is to make Members of Congress indebted to
the president. One method that presidents have at their disposal to develop such
indebtedness is the Congressional campaign visit. Here, the president makes a per-
sonal visit on behalf of someone running for the House or the Senate. Campaign
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visits by presidents are likely to be more effective for candidates to the House,
since these elections are often low information affairs [Jacobson (2003)].

Political scientists have long attempted to estimate the causal effect of a pres-
idential campaign visit on the probability that a candidate wins [Cohen, Krassa
and Hamman (1991), Herrnson and Morris (2007), Keele, Fogarty and Stimson
(2004), Sellers and Denton (2006)]. Particular attention has been paid to the 2002
midterm election, when George W. Bush campaigned extensively for Republican
candidates. A number of media reports inferred that a campaign visit that year was
highly effective in helping candidates win [Keele, Fogarty and Stimson (2004)].
Of course, these analyses must rely on observational data, and the resulting esti-
mates of causal effects are surely subject to bias from confounding. To increase
the credibility of estimated statistical associations as causal effects, analysts adjust
for observed covariates thought to be confounders. As we outline below, there is
little reason to think this assumption is plausible in this setting.

1.2. Overview. Many researchers might say that little about causal effects can
be inferred from such data. While there are certainly aspects of truth to the po-
sition that unmeasured confounding simply cannot be overcome in many cases,
it is generally possible to learn some things about the size of the causal effects
of interest, regardless of the nature and degree of the unmeasured confounding.
For instance, Manski (1990) derived bounds for the average treatment effect under
very general assumptions and showed that, in the case of binary treatment and out-
come, the width of these bounds is 1. Since the average treatment effect can take
values between −1 and 1, Manski’s bounding interval always includes an estimate
of zero for the treatment effect. However, auxiliary assumptions can narrow this
bounding interval [Manski (2003)]. See Robins (2006), Manski (1993, 2003), Imai
and Yamamoto (2008) and Balke and Pearl (1997) for related work on the partial
identification of treatment effects.

In a similar spirit, this paper further explores what can be learned about treat-
ment effects under arbitrary forms of unmeasured confounding. More specifically,
we ask what can one infer about the causal effect of a binary treatment on a binary
outcome from a 2 × 2 cross-tabulation of non-experimental data? We reduce the
case of arbitrary unmeasured confounding with binary treatment and binary out-
come to its most basic, yet still general, form that retains a readily interpretable
parameterization of the key quantities. We then show how a Bayesian prior dis-
tribution can be placed over the four free parameters that govern the type and ex-
tent of the unmeasured confounding. If one is willing and able to use background
knowledge to make some (possibly weak) assumptions about the nature of the
unmeasured confounding, sharp posterior estimates of partially identified causal
effects are easy to calculate. As such, in the spirit of Manski we focus on estimates
of bounds for causal effects using Bayesian priors. Since these assumptions are
formalized within the Bayesian framework, subjective uncertainty about causal ef-
fects is calculated in a logically coherent manner. The result is a procedure that
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allows researchers to make probability statements about the likely size of causal
effects based on the evidence in a 2 × 2 (or 2 × 2 × K) table, regardless of the
sample size and the amount of unmeasured confounding.

Manski-type large sample bounds are a special case of the more general sen-
sitivity analysis that we develop. Ichino, Mealli and Nannicini (2008), page 320,
explicitly demonstrate the link between Manski bounds and sensitivity analysis of
the type we propose. While large sample bounds generally consider worst-case
scenarios, we allow for investigating the sensitivity of conclusions over a range
of priors deemed reasonable by the analyst. Our work is also similar to other
forms of sensitivity analysis that place bounds on causal quantities. For exam-
ple, one early method of sensitivity analysis outlined by Cornfield et al. (1959)
developed bounds for causal quantities with binary responses but abstracted away
from issues of sampling variability. Rosenbaum and Rubin (1983) and Rosenbaum
(1987, 2002) developed sharp bounds on causal quantities for any type of response
using randomization distributions. See Imbens (2003) and Ding and VanderWeele
(2016a, 2016b) for more recent studies that further extend the Cornfield frame-
work. One primary distinction between our work and the extant literature is our
use of the Bayesian inferential framework.

1.3. Notation and causal model. Next, we present our notation and place our
analysis in the formal statistical framework of causal inference based on potential
outcomes [Holland (1986)]. For each Congressional district i = 1,2, . . . ,435, we
define two potential outcomes Yi(1) and Yi(0) ∈ {0,1}. Yi(1) denotes a potential
electoral victory by the candidate in district i when the president campaigns for
that candidate through a personal visit to that district. In contrast, Yi(0) represents
a potential victory by the candidate in district i when the president does not cam-
paign on the candidate’s behalf. We use the indicator variable Di ∈ {0,1} to denote
the treatment status in district i. In our application, Di is equal to 1 if the president
campaigned for candidate in district i through a personal visit and 0 otherwise.
Under this causal model, the observed outcome Yi is a function of the treatment
variable and the potential outcomes: Yi = Yi(1)Di + (1 − Di)Yi(0). In our nota-
tion, we use uppercase letters to distinguish a random variable from its realization.
The fundamental problem of causal inference is that, for a single unit, at most only
one of the potential outcomes can be revealed [Holland (1986)].

This framework implicitly assumes that there is no interference among units;
the potential outcomes of one unit do not depend on the treatment status of other
units [Cox (1958), Rubin (2005)]. In our application, this assumption implies that
the potential electoral victory status of a candidate in one district does not depend
on whether the president campaigned for a candidate in another district. This as-
sumption is reasonable given that presidents campaign for specific candidates and
a visit is unlikely to help other candidates that did not specifically receive a pres-
idential campaign visit. Under this framework, the individual level causal effect
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is defined as a contrast in potential outcomes: Yi(1) − Yi(0). Rather than focus-
ing on unit-level causal effects, we will concern ourselves with aggregate effects
within some collection of units. The causal quantity that we focus on is the average
treatment effect (ATE):

ATE ≡ E
[
Y(1) − Y(0)

] = E
[
Y(1)

] −E
[
Y(0)

]
,

where the expectation is taken over all units in the study (congressional districts in
our running example). Note that with a binary outcome ATE can also be written as

(1) ATE = Pr
[
Y(1) = 1

] − Pr
[
Y(0) = 1

]
.

To give the observed ATE a causal interpretation depends on counterfactual
quantities. While we can easily calculate estimates of E[Y = y|D = d] and/or
Pr(Y = y|D = d) from the observed joint distribution of Y and D and use those
in place of counterfactual quantities in the equations above, these counterfac-
tual quantities can only be estimated consistently from the joint distribution of
the data if untestable causal assumptions are maintained [Holland (1986), Pearl
(1995, 2000), Robins (1986), Rubin (1978)].

If one is willing to assume that treatment assignment is ignorable, that is
Y(1)⊥⊥D and Y(0)⊥⊥D and that the potential outcomes are well-defined as writ-
ten,2 then it is possible to consistently estimate the counterfactual quantities in
equation (1) with simple sample averages. In a well-run randomized controlled
experiment, ignorability of treatment assignment and SUTVA are likely to hold
because of the design of the experiment.

However, with observational data, ignorability of treatment assignment is un-
likely to hold. Consequently, analysts of observational data often invoke the as-
sumption of conditionally ignorable treatment assignment. Under conditional ig-
norability of treatment assignment, the claim is that there exists a collection of
pretreatment variables U, such that treatment assignment is conditionally ignor-
able given U. Formally, conditional ignorability of treatment assignment assumes
that Y(1)⊥⊥D|U and Y(0)⊥⊥D|U. Conditional ignorability of treatment assign-
ment is generally considered to be a strong assumption, since the analyst must
assume that simple ignorability of treatment assignment holds within each level
of U. Moreover, this assumption is not testable. Next, we review the data from our
empirical application and these assumptions within the context of our application.

1.4. Data and elementary analyses. Our data is from the 2002 midterm elec-
tion in the United States. These data were first reported in Keele, Fogarty and
Stimson (2004). The outcome is measured as a binary indicator for whether the
Republican candidate won the election or not and was constructed from Congres-
sional Quarterly’s Politics in America (2001). The treatment indicator is whether

2This latter assumption is sometimes referred to as the stable unit treatment value assumption or
SUTVA.
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TABLE 1
Observed Data For Presidential Visits in 2002. The units of analysis are the 348 Republican

candidates running in two-party races for the U.S. House of Representatives in 2002

Yi = 0 Yi = 1

Republican Loses Republican Wins

No visit Di = 0 164 163
Visit Di = 1 3 18

George W. Bush campaigned on behalf of U.S. House candidate through a per-
sonal appearance in that members district. Keele, Fogarty and Stimson (2004)
used Lexis-Nexus state level AP reports from the 2002 election cycle to deter-
mine whether President George W. Bush personally campaigned for the Repub-
lican candidate between Labor Day and the election in November. The observed
data are summarized as a 2 × 2 cross-tabulation in Table 1. The cross-tabulation
excludes races where one candidate ran unopposed, leaving us with 348 races with
two candidates.

We see that the president campaigned on behalf of 21 different Republican can-
didates. Of the 348 races with two candidates, the president only selected approx-
imately 6% for a campaign visit. A naive analysis that assumes there is no con-
founding would clearly conclude that presidential visits are effective in helping
Republican candidates win elections. The proportion of candidates that won when
the president visited was 0.86 while the proportion of candidates that won without
a presidential visit was 0.50. Using these observed data quantities, we can cal-
culate the average treatment effect at 0.36 with a large sample 95% confidence
interval [0.17,0.54]. Of course, confounding is likely as a president may strategi-
cally select candidates for visits based on their ability to win an election. Given
the likelihood of confounding, one strategy is to use a set of covariates to model
the treatment assignment mechanism [Rubin (2008)]. In this context, however,
there are a limited number of observable covariates that we can credibly use to
model the assignment mechanism. Moreover, much of the data available to model
the assignment mechanism are simply descriptive characteristics of the Congres-
sional district, such as the level of education or income in the district. The actual
decision-making process of presidents is unobserved; there is little reason to think
much progress can be made by modeling the assignment mechanism. Thus, while
modeling the assignment mechanism is often a reasonable strategy for estimating
causal effects, in this context we cannot credibly model for the assignment mech-
anism well enough to make conditional ignorability a reasonable assumption. The
remainder of this paper is devoted to the question of what can be inferred about the
ATE from the data in Table 1 by making reasonable assumptions about the patterns
of confounding that are present.
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The paper proceeds as follows. In Section 2, we introduce the necessary ter-
minology and notation and demonstrate how inferences can be constructed from
a 2 × 2 table with general unmeasured confounding. Section 3 shows how causal
quantities of interest, such as the average treatment effect, can be written in terms
of the model parameters from Section 2. Large sample nonparametric bounds on
these causal quantities are also derived in this section. These bounds coincide with
those of Manski (1990) although the derivation is slightly different. Section 4 dis-
cusses the choice of prior distribution for the model parameters and then describes
a simple posterior sampling algorithm that does not require Markov chain Monte
Carlo. In Section 5, we revisit the example data in Table 1. Here we see how de-
fensible prior beliefs can be operationalized in a prior distribution over the model
parameters and what this implies for inferences about a possible presidential visit
treatment effect. The final section concludes the discussion.

2. The probability model under unobserved confounding. Here we assume
that some U exists such that Y(1)⊥⊥D|U and Y(0)⊥⊥D|U, that is, that a presiden-
tial visit is conditionally ignorable given U. Importantly, we do not assume that we
can measure U or that we even know what variables it includes. While U may be
extremely complicated, the binary nature of both treatment and outcome implies
that the domain of U can be partitioned into four equivalence classes depending
on the pattern of potential outcomes associated with each point in the domain of U
[Angrist, Imbens and Rubin (1996), Balke and Pearl (1997), Chickering and Pearl
(1997)]. We introduce a new categorical variable Zi that labels these equivalence
classes. The values of Zi along with the associated patterns of potential outcomes
are presented in Table 2.

TABLE 2
Possible Patterns of Potential Outcomes and the Coarsest General Confounding Variable. Yi(0) is

the potential outcome for unit i when Di is set to 0 (no visit). Yi(1) is the potential outcome for unit
i when Di is set to 1 (presidential visit). A unit i for which Zi = 0 has a value of Ui that causes it to

always have Yi = 0, regardless of the (counterfactual) value of Di . We say these units are “never
succeeders.” If Zi = 1, we say that unit i is “helped” by treatment because its potential outcome

under Di = 1 is equal to 1 (success), while its potential outcome under Di = 0 is 0 (failure). If unit
i has Zi = 2, we say that i is “hurt” by treatment because its potential outcome under D − i = 1 is

equal to 0 (failure), while its potential outcome under Di = 0 is 1 (success). Finally, if Zi = 3,
we say that i is an “always succeeder” because its value of Ui is such that Yi will always

equal 1 regardless of the (counterfactual) value of Di

Yi(0) Yi(1) Zi

0 0 0 Never Succeed
0 1 1 Helped
1 0 2 Hurt
1 1 3 Always Succeed
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If the joint distribution of Z, D, and Y (PDYZ) were observed, one could write
the probabilities of the various potential outcomes as

Pr
(
Y(d) = y

) =
3∑

z=0

Pr(Y = y|D = d,Z = z)Pr(Z = z).

The probabilities on the right-hand side of the equation above can be calculated
directly from PDYZ . If PDYZ is not directly observed but can be consistently esti-
mated, then one can construct consistent estimates of the potential outcome prob-
abilities via the plug-in principle.

In our application, as is common in the social sciences, PDYZ is unknown and
Zi is not observable for any i. Without data on Zi , it is impossible to consistently
estimate PDYZ . Nevertheless, there is some information about Zi in the observed
(D,Y ) data sampled from PDYZ . The goal of this paper is to show how this in-
formation can be combined with subjective background knowledge to yield causal
inferences from 2 × 2 tables even when the confounding variables in U are not
measured.

2.1. Likelihood. We adopt a Bayesian approach to make inferences about the
form of PDYZ without information on Zi . The main reason for taking a Bayesian
approach in this paper is that it allows us to incorporate background knowledge
about the (potentially unobserved) confounder Zi in a principled fashion [Gill and
Walker (2005), Kadane and Wolfson (1998), Western and Jackman (1994)]. Our
work is not the first Bayesian approach to partial identification. See Gustafson
(2010), Gustafson et al. (2010), McCandless, Gustafson and Levy (2007), Moon
and Schorfheide (2012), Richardson, Evans and Robins (2011) for other exam-
ples of partial identification within a Bayesian framework. Among prior work,
our approach is most similar to Ding and Dasgupta (2016) and Jin and Rubin
(2008) in that we separate identifiable parameters from unidentifiable parame-
ters and introduce prior information on the unidentifiable parameters to study how
conclusions are altered. We begin by discussing the likelihood function and then
discuss our choice of prior distribution along with the resulting posterior distribu-
tion.

Let Zi denote the set of possible values Zi could take given the observed data
on unit i. More formally,

Zi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0,1} if di = 0, yi = 0,

{2,3} if di = 0, yi = 1,

{0,2} if di = 1, yi = 0,

{1,3} if di = 1, yi = 1.



CAUSAL 2 × 2 1981

We can then write the likelihood as

p(d,y|θ ,ψ) =
n∏

i=1

∑
zi∈Zi

p(di, yi, zi |θ,ψ)

=
n∏

i=1

p(di, yi |θ)

{ ∑
zi∈Zi

p(zi |di, yi,ψ)

}

=
n∏

i=1

θ
I(di=0,yi=0)
00 θ

I(di=0,yi=1)
01 θ

I(di=1,yi=0)
10 θ

I(di=1,yi=1)
11

×
{ ∑

zi∈Zi

ψ
I(di=0,yi=0,zi=1)
00 (1 − ψ00)

I(di=0,yi=0,zi=0)

(2)
× ψ

I(di=0,yi=1,zi=3)
01 (1 − ψ01)

I(di=0,yi=1,zi=2)

×ψ
I(di=1,yi=0,zi=2)
10 (1 − ψ10)

I(di=1,yi=0,zi=0)

× ψ
I(di=1,yi=1,zi=3)
11 (1 − ψ11)

I(di=1,yi=1,zi=1)

}

= θ
C00+
00 θ

C00+
01 θ

C10+
10 θ

C11+
11 ,

where I(·) is the indicator function, Cdy+ = ∑n
i=1 I(di = d, yi = y), θ00, θ01, θ10,

θ11 ≥ 0, θ00 + θ01 + θ10 + θ11 = 1, and ψ00,ψ01,ψ10,ψ11 ∈ [0,1].
While this model for (D,Y,Z) might seem to contain a large number of param-

eters, there are two key sets of parameters θdy and ψdy for d = 0,1 and y = 0,1.
The θ parameters govern a multinomial distribution for the distribution of (D,Y )

after Z has been marginalized out of PDYZ . The ψ parameters govern the con-
ditional distribution of Z given D and Y . Note that because of the definition of
Z (see Table 2) only 2 values of Z are logically possible given any admissible
(Di, Yi) pair. The distribution of Z given D = d and Y = y is thus Bernoulli with
parameter ψdy . Here, ψ01 gives the probability that Z = 3 given D = 0 and Yi = 1
while (1 − ψ01) gives the probability that Z = 2 given D = 0 and Y = 1. The
other conditional distributions for Z given D = d and Y = y are similarly param-
eterized. Table 6 in Appendix A provides a complete summary of the parameters
and their intuitive meanings.

2.2. Prior and posterior. Bayesian inference centers on the posterior distribu-
tion of θ and ψ given the observed data. The posterior distribution is given (up to
proportionality) by

p(θ ,ψ |y,d, z) ∝ p(y,d, z|θ,ψ)p(θ ,ψ).

We defined the likelihood, p(y,d, z|θ,ψ), in the previous section, and we
now discuss specification of the prior distribution p(θ ,ψ). A natural choice for
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the joint prior distribution of θ and ψ is to assume that θ , ψ00,ψ01,ψ10, and
ψ11 are mutually independent a priori and that θ ∼ Dirichlet(a00, a01, a10, a11),
ψdy ∼ Beta(bdy, cdy), for d = 0,1 and y = 0,1. This is the conjugate prior dis-
tribution for this model. This prior specification will allow us to think of the
hyper-parameters ady, bdy , and cdy for d = 0,1 and y = 0,1 as additional “pseudo-
observations.” This makes the prior distributions more easily interpretable, which
is important for the current application where inferences are dependent on the
prior.

Combining this prior with the likelihood in equation (2) gives us the following
posterior density (up to proportionality):

p(θ ,ψ |d,y) ∝ θ
C00++a00−1
00 θ

C01++a01−1
01 θ

C10++a10−1
10 θ

C11++a11−1
11

× ψ
b00−1
00 (1 − ψ00)

c00−1(3)

× ψ
b10−1
10 (1 − ψ10)

c10−1.

Note that the only information about ψ is coming from the prior distribution. This
implies that inferences that depend on ψ will be dependent on one’s choice of prior
for ψ .

3. Causal quantities of interest. Next we discuss how causal quantities such
as the ATE can be partially identified based on beliefs about ψ . Typically causal
quantities are calculated directly from the data based on an assumption of con-
ditional unconfoundedness. In our analysis of whether presidential campaign vis-
its help candidates, unconfoundness, conditional or otherwise, is unrealistic. In
our approach, based on the probability model specified in Section 2, we calculate
causal quantities that depend on the parameter ψ . We denote these as sensitivity
analysis quantities since the inference is based on prior beliefs about the unob-
served distribution of Zi . Sensitivity analysis quantities depend on the distribution
of Zi through the following set of equations:

Prs
(
Y(0) = 0

) =
3∑

z=0

Pr(Y = 0|D = 0,Z = z)Pr(Z = z)

= Pr(Z = 0) + Pr(Z = 1)

= θ10(1 − ψ10) + θ11(1 − ψ11) + θ00,

Prs
(
Y(0) = 1

) =
3∑

z=0

Pr(Y = 1|D = 0,Z = z)Pr(Z = z)

= Pr(Z = 2) + Pr(Z = 3)

= θ10ψ10 + θ11ψ11 + θ01,
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Prs
(
Y(1) = 0

) =
3∑

z=0

Pr(Y = 0|D = 1,Z = z)Pr(Z = z)

= Pr(Z = 0) + Pr(Z = 2)

= θ00(1 − ψ00) + θ01(1 − ψ01) + θ10,

Prs
(
Y(1) = 1

) =
3∑

z=0

Pr(Y = 1|D = 1,Z = z)Pr(Z = z)

= Pr(Z = 1) + Pr(Z = 3)

= θ00ψ00 + θ01ψ01 + θ11.

If θ and ψ were known, the probabilities above would be the true probabilities of
the potential outcomes. This would hold regardless of the forms of confounding
present in the data. Of course, ψ is never known (and typically not identified), so
the sensitivity analysis quantities will depend on one’s prior beliefs about ψ . We
denote sensitivity analysis quantities using subscript s. For example, ATEs denotes
the average treatment effect calculated using prior beliefs about ψ .

3.1. Average treatment effects. Next, we describe how causal quantities can be
calculated based on values of ψ . Here, we focus on the ATE. While we focus on
the ATE, it is also possible to define average treatment effects on the treated (ATT)
or just the control group (ATC) and calculate bounds and sensitivity analysis dis-
tributions for these estimands as well. Moreover, we can also calculate sensitivity
analysis quantities based on the relative risk as well. The sensitivity analysis ATE
for a binary outcome is defined as

ATEs = Prs
(
Y(1) = 1

) − Prs
(
Y(0) = 1

)
(4)

= (θ00ψ00 + θ01ψ01 + θ11) − (θ10ψ10 + θ11ψ11 + θ01).

Manski (1990) derived nonparametric bounds for the average treatment effect
that will contain the true average treatment effect with probability 1 as sample size
goes to infinity. Here, we show how these bounds can be calculated as a function ψ .
Inspection of equation (4) reveals that the minimum value of ATEs will occur when
ψ00 = 0,ψ01 = 0,ψ10 = 1, and ψ11 = 1. Similarly, the maximum value of ATEs

will occur when ψ00 = 1,ψ01 = 1,ψ10 = 0, and ψ11 = 0. Substituting these values
into the expression for ATEs and recognizing that ATEs = ATE we see that

(5) ATE ∈ [−(θ10 + θ01), (θ00 + θ11)
]
.

Note that this interval will always include 0. Further, since
∑

d

∑
y θdy = 1, the

width of this interval will always be 1 [see also Manski (1990)].
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4. Bayesian inference for causal effects. We next describe a Bayesian
method for obtaining sensitivity analysis quantities. Here we focus on obtaining
sensitivity analysis quantities for the ATE, but sensitivity analysis quantities are
easily obtained for estimands, such as the average treatment effect of the treated as
well. A Bayesian approach requires one to specify a prior distribution for (θ ,ψ).
In Section 2, we argued that independent Dirichlet and Beta distributions made
sense in terms of interpretability. In the remainder of this section, we discuss how
the parameters governing these prior distributions can be chosen and how one
can summarize the resulting posterior distribution to make inferences about causal
quantities of interest, such as the ATE under general but unobservable patterns of
confounding.

4.1. Choosing a prior distribution. It is worth emphasizing that, unlike
Bayesian inference for parameters which are point identified, the impact of the
choice of the prior for ψ on the posterior distribution for ψ and functionals of
that posterior distribution will not diminish as n becomes larger if Z is completely
unobserved. In fact, since no new information about ψ is arriving as n becomes
larger, the marginal posterior for ψ will always be equal to the prior for ψ . Con-
sequently, the choice of a particular prior should be justified using substantive
background knowledge. As a result, the analyst should report numerous sensitivity
analysis quantities, in which multiple reasonable priors are used.

Each ψdy represents the conditional probability of one of the two possible con-
figurations of potential outcomes among units, in which we observe D = d and
Y = y.3 Thus, the Beta(bdy, cdy) prior for ψdy can be thought of as a state-
ment of belief that bdy − 1 of the Cdy+ units have one potential outcome pro-
file, while cdy − 1 of the Cdy+ units have the other possible potential outcome
profile. If bdy + cdy = Cdy+ + 2, then the information in the prior is equivalent
to the information that would be in the sample data in the ideal case, in which
the potential outcome patterns are observed for units with D = d and Y = y. If
bdy + cdy < Cdy+ + 2, then there is less information in the prior than this ideal
situation. If bdy + cdy > Cdy+ + 2, then the prior is adding more information than
one could ever get directly from the sample data. In Appendix A we provide a full
elaboration of the relationship between the bdy and cdy parameters and potential
outcomes. Here we provide two useful heuristics for prior selection based on two
models of treatment response and selection that should be widely applicable in
many social science settings. We use both of these heuristics in the analysis of the
presidential visit data from 2002. The first heuristic we consider is the possibility
of a monotonic treatment effect [Manski (1997)]. Under such a complete version
of monotonicity, we would assume

Yi(1) ≥ Yi(0) or Yi(1) ≤ Yi(0) ∀i = 1, . . . , n.

3See Appendix A for a full elaboration of how each ψdy parameter relates to a particular set of
potential outcomes.
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In words, we would assume that treatment either has no effect or moves outcomes
in the same direction for all units. In the context here, a positive monotone treat-
ment response assumption implies that a presidential campaign visit does not hurt
the election chances of any candidates. Our approach weakens this assumption by
assuming that treatment has a monotonic effect for most, but not all, units. Put
another way, our assumption is that very few candidates are hurt by a presidential
visit. If one believes that such a generally positive monotonic treatment effect is
reasonable, then one could set b01 
 c01 and b10 � c10. Conversely, one could set
b00 � c00 and b11 
 c11 to operationalize a generally negative monotonic treat-
ment effect (very few units are helped by the active treatment).

Setting the parameters on the prior distributions as follows b01 → ∞, c01 = 0
and b10 = 0, c10 → ∞ operationalizes Manski’s version of the positive monotone
treatment response assumption, where no units are hurt by the treatment. Manski’s
version of monotone treatment response is, in fact, a limiting case of monotonic
treatment effects. We need not assume that treatment is uniformly positive for all
units. We can vary the fraction of units helped or hurt to assess sensitivity of the
resulting estimates to the monotonicity assumption. Monotone treatment response
is a fairly weak assumption in this context. In general, it seems unlikely that a
campaign visit would hurt a candidate’s vote share even if the visit did not help the
candidate’s election chances.

The next heuristic we consider is that of treatment selection [Manski (1995)].
Under positive selection, we assume that treated units are more likely to be helped
than control units. This implies that the president selects candidates for a visit
based on whether the visit is likely to increase the chances of winning that election.
Formally, we write a positive selection assumption in the following way:

Pr(Z = 1|D = 1) > Pr(Z = 1|D = 0).

In words, the treatment selection assumption expresses the belief that the probabil-
ity of randomly selecting a helped unit among the treated units is greater than the
probability of randomly selecting a helped unit among the control units. Next, we
write this assumption in terms of the model parameters that govern the distribution
of Z given D and Y . Some elementary calculations allow us to write

Pr(Z = 1|D = 1) = (1 − ψ11)Pr(Y = 1|D = 1)

and

Pr(Z = 1|D = 0) = ψ00 Pr(Y = 0|D = 0).

Next we substitute in the MLEs for Pr(Y = 1|D = 1) and Pr(Y = 0|D = 0), which
allows us to express the positive treatment selection assumption for the data in
Table 1 as

(6) (1 − ψ11)

(
18

21

)
> ψ00

(
164

327

)
.
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To operationalize positive selection effects through the prior, one could set val-
ues of b00, c00, b11, and c11, such that inequality (6) is likely to be satisfied. The
limiting case is that in which inequality (6) is always satisfied a priori, while
weaker versions of positive selection are obtained by setting the priors so the prior
probability that inequality (6) holds is between 0.5 and 1. Is selection a reasonable
assumption in this context? The president is unlikely to waste time campaigning
for candidates that have little chance of winning nor is the president likely to cam-
paign much for candidates that will win easily. Thus, the president is likely to avoid
never-succeed and always-succeed types and instead attempt to identify candidates
that will benefit from his presence. This is consistent with our positive selection
assumption.

We can also combine the monotonicity and selection assumptions and esti-
mates effects under the assumption of monotone treatment selection (MTS), which
should further sharpen the inference. While we cannot verify that either assump-
tion holds individually or in combination, there is no reason to think that the pres-
ence of one assumption decreases the likelihood of the other assumption. While
researchers may choose different prior values, we think these two heuristics are
widely applicable to many empirical settings. It is important to note that any par-
ticular choice or prior over ψ will have implications for the fractions of helped,
hurt, never succeed and always succeed units in the sample. Alternative prior as-
sumptions will yield alternative inferences. Researchers need to consider the im-
plications of any priors that are used.

4.2. Posterior inference. The posterior distributions for θ and ψ discussed
in Section 2 can all be sampled using simple independent Monte Carlo sam-
pling. Unlike many Bayesian methods for partial identification [Gustafson (2010),
Gustafson et al. (2010)], Markov chain Monte Carlo methods are unnecessary here.
To produce a Monte Carlo sample of size m from the distribution with density
given (up to proportionality) by equation (3) we can use Algorithm 4.1.

Here rdirichlet(d, e, f, g) is a function that returns a pseudo-random draw
from a Dirichlet(d, e, f, g) distribution and rbeta(d, e) is a function that returns a
pseudo-random draw from a Beta(d, e) distribution.

Once a sample {θ (j),ψ (j)}mj=1 from the posterior distribution of (θ ,ψ) has been
drawn, these draws are plugged into the formulas for the causal quantity of inter-
est. A sample from the posterior distribution of the sensitivity analysis average
treatment effect ({ATE(j)

s }mj=1) can be constructed by taking the j th sample to be

ATE(j)
s = (

θ
(j)
00 ψ

(j)
00 + θ

(j)
01 ψ

(j)
01 + θ

(j)
11

) − (
θ

(j)
10 ψ

(j)
10 + θ

(j)
11 ψ

(j)
11 + θ

(j)
01

)

for j = 1, . . . ,m. Samples from the posterior distributions of other causal quan-
tities of interest follow analogously. Once we obtain a sample from the posterior
distribution of interest, we can summarize the distribution by calculating density
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Algorithm 4.1: POSTERIOR SAMPLING UNOBSERVED Z (C,a,b, c,m)

for j ← 1 to m

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ (j) ← rdirichlet(C00+ + a00,C01+ + a01,C10+ + a10,

C11+ + a11)

ψ
(j)
00 ← rbeta(b00, c00)

ψ
(j)
01 ← rbeta(b01, c01)

ψ
(j)
10 ← rbeta(b10, c10)

ψ
(j)
11 ← rbeta(b11, c11)

return ({θ (j)}mj=1, {ψ(j)
00 }mj=1, {ψ(j)

01 }mj=1, {ψ(j)
10 }mj=1, {ψ(j)

11 }mj=1)

estimates, highest posterior density regions (the smallest region that contains a pre-
specified amount of the posterior mass), the probability that a quantity of interest
is greater than 0, etc. using the sampled parameter values. See Gelman et al. (2004)
and Gill (2007) for discussions of how posterior samples can be summarized.

4.3. Extensions to cases with observed confounders. We can also adjust for
measured confounders in our approach. Next we outline the simplest case where
there is a single measured discrete confounder. We also briefly discuss continuous
confounders and multiple confounders. First, we assume there is a single measured
confounder, X, which is discrete with K categories. In this case, it is appropriate
to perform the simple 2×2 analyses described above separately within each of the
k = 0, . . . ,K − 1 levels of X and then weight by φk ≡ Pr(X = k). More formally,
we can write the likelihood for the observed data marginalized over the unobserved
Z variables as

p(x,d,y|φ, θ,ψ) =
n∏

i=1

∑
zi∈Zi

p(xi, di, yi, zi |φ, θ,ψ)

=
n∏

i=1

p(xi, di, yi |φ, θ)

{ ∑
zi∈Zi

p(zi |xi, di, yi,ψ)

}

=
n∏

i=1

p(xi |φ)p(di, yi |xi, θ)

{ ∑
zi∈Zi

p(zi |xi, di, yi,ψ)

}
,

where the p(xi |φ) term is a multinomial mass function with probability vector
φ and multinomial sample size 1, p(di, yi |xi, θ) is a multinomial mass function
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that depends on the value of xi with probabilities θ00|xi
, θ01|xi

, θ10|xi
, θ11|xi

and
multinomial sample size 1, and the term involving the sum over Z consists of 4K

Bernoulli mass functions with parameters ψ00|xi
,ψ01|xi

,ψ10|xi
and ψ11|xi

. Note
that everything is analogous to the 2 × 2 analysis except for the conditioning on xi

throughout.
Adjustment for X also requires that the formulas for the sensitivity analysis

probabilities of the various potential outcomes be rewritten to account for this
adjustment:

Prs
(
Y(0) = 0

) =
K−1∑
x=0

3∑
z=0

Pr(Y = 0|D = 0,X = x,Z = z)

× Pr(Z = z|X = x)Pr(X = x)

=
K−1∑
x=0

[
θ10|x(1 − ψ10|x) + θ11|x(1 − ψ11|x) + θ00|x

]
φx,

Prs
(
Y(0) = 1

) =
K−1∑
x=0

3∑
z=0

Pr(Y = 1|D = 0,X = x,Z = z)

× Pr(Z = z|X = x)Pr(X = x)

=
K−1∑
x=0

[θ10|xψ10|x + θ11|xψ11|x + θ01|x]φx,

Prs
(
Y(1) = 0

) =
K−1∑
x=0

3∑
z=0

Pr(Y = 0|D = 1,X = x,Z = z)

× Pr(Z = z|X = x)Pr(X = x)

=
K−1∑
x=0

[
θ00|x(1 − ψ00|x) + θ01|x(1 − ψ01|x) + θ10|x

]
φx,

Prs
(
Y(1) = 1

) =
K−1∑
x=0

3∑
z=0

Pr(Y = 1|D = 1,X = x,Z = z)

× Pr(Z = z|X = x)Pr(X = x)

=
K−1∑
x=0

[θ00|xψ00|x + θ01|xψ01|x + θ11|x]φx.

It is straightforward to show that conditioning on an observed, pre-treatment
covariate X as above does not change the large sample bounds on the ATE, ATT,
or ATC. For example, consider the case of the ATE as before: ATEs = Prs(Y (1) =
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1) − Prs(Y (0) = 1). Substituting, we get

ATEs =
K−1∑
x=0

[θ00|xψ00|x + θ01|xψ01|x + θ11|x]φx

−
K−1∑
x=0

[θ10|xψ10|x + θ11|xψ11|x + θ01|x]φx.

Assuming that θ and φ are fixed, this quantity takes its maximum value when
ψ00|x = ψ01|x = 1 and ψ10|x = ψ11|x = 0 for all x. Once substituting these
values into the expression for ATEs and simplifying, we get max[ATEs] =∑K−1

x=0 θ00|xφx +∑K−1
x=0 θ11|xφx = θ00 +θ11, which is equivalent to the upper bound

in expression (5). Similar logic can be used to get the lower bound as well as the
bounds on the ATT and ATC. Thus, like the bounds in Mealli and Pacini (2013),
conditioning on a pre-treatment covariate does not narrow our proposed bounds.
Note that in scenarios where one is willing to make additional causal assumptions,
conditioning on additional variables (oftentimes post-treatment variables) can nar-
row the bounds on causal effects of interest. For instance, see Grilli and Mealli
(2008) and Glynn and Quinn (2011).

As such, the primary utility of conditioning on a pre-treatment covariate is that
it may be easier to specify substantively plausible prior distributions for ψ con-
ditional on X. Extensions to the case with multiple or continuous X are straight-
forward, when using a model for the conditional probability of treatment given X.
While the use of covariates is possible, we see one key advantage of our approach
is that credible inferences are possible in the absence of credible observed con-
founders.

5. Sensitivity analysis quantities for presidential campaigning. We be-
gin the analysis with the estimation of the naive treatment effect on a presi-
dential campaign visit in 2002. For this estimate to be a valid causal effect, we
must assume that presidential visits were randomly assigned across Congressional
Districts. This is an assumption that is clearly implausible. As we noted ear-
lier, the naive estimate of the average treatment effect estimate is approximately
0.36 with a 95% confidence interval of 0.17 and 0.54. In contrast, Manski’s no-
assumption bounds on the treatment effect, also reported in Table 3, are −0.477
and 0.523. Next we report results from an analysis that assumes independent, uni-
form priors on ψ00,ψ01,ψ10, and ψ11. We also assume, as we do throughout,
that θ ∼ Dirichlet(0.25,0.25,0.25,0.25). The resulting estimates and 95% credi-
ble intervals are in Table 3. Under this prior assumption, the endpoints of the 95%
highest posterior density region are now −0.342 and 0.387 with a posterior mean
of 0.023. Unlike in many applications of Bayesian inference, the use of uniform
priors make little sense, since the goal is to use substantive information to reason
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TABLE 3
Estimated Treatment Effects for Presidential Visits. Point estimates (posterior means) are on the

first row. Interval estimates are on the second row. The intervals in columns 1 and 3 are 95%
highest posterior density intervals

Naive estimate No-assumption bounds Uniform prior

0.36 0.023
[0.189,0.492] [−0.477,0.523] [−0.342,0.387]

about the nature of confounding. The uniform priors on ψ used here are not mo-
tivated by substantive knowledge, and we do not attempt to defend them as such.
Nonetheless, we report the results in Table 3 as a reference point for our other anal-
yses. Our goal is to produce an inference under assumptions that are more realistic
than the naive estimate of the causal effect but also to sharpen the inference over
the no assumption bounds using credible but weak assumptions.

Next we use a set of priors that assume varying levels of a monotonic treatment
effect. Here we make assumptions about the fraction of units helped by the treat-
ment. The monotonicity assumption seems reasonable, given that we expect that
a visit from George W. Bush is unlikely to hurt the vote shares of few, if any, Re-
publican candidates in 2002. Please see the Appendix for a full discussion of the
prior distributions used in this analysis. The first row of Table 4 contains estimates
for the effect of a presidential visit under three different levels of monotonicity.
The strongest monotonicity assumption used here assumes that about 1% (with
95% prior interval of [0%, 2%]) of the units that could have been hurt by a visit
from President Bush were hurt units (Z = 2). This is nearly equivalent to Man-
ski’s (1997) definition of monotone treatment response (no unit is hurt by a visit
from President Bush). The weakest monotonicity assumption used here assumes
that about 10% (with 95% prior interval of [2%, 23%]) of the units that could have
been hurt by a visit from President Bush were hurt units (Z = 2). Our intermediate

TABLE 4
Estimated Treatment Effects for Presidential Visits Under Monotonicity and Selection Assumptions.

Point estimates are posterior means and interval estimates are 95%
highest posterior density intervals

Weak Medium Strong

Monotonicity
0.213 0.238 0.257
[−0.024,0.455] [0.005,0.472] [0.025,0.489]

Selection
0.163 −0.025 −0.165
[−0.107,0.436] [−0.304,0.248] [−0.426,0.082]
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monotonicity assumptions assumes that about 5% (with 95% prior interval of [1%,
12%]) of the units that could have been hurt by a visit from President Bush were
hurt units (Z = 2).

Under the weakest monotonicity assumption, the estimated treatment effect is
0.213; however, the 95% highest posterior density (HPD) interval includes zero.
Thus, we cannot conclude that visits were effective. Strengthening the monotonic-
ity assumption to the intermediate level increases the point estimate to nearly 0.24,
and the associated 95% HPD interval no longer includes 0. Under the strongest
monotonicity assumption, the ATE estimate is 0.257 with a 95% HPD interval of
[0.025,0.489]. This is a sizable effect but still more than 25% smaller than the
naive treatment effect estimate. It appears that so long as we are willing to assume
that the effect of the treatment was moderately or strongly monotonic, presidential
visits were an effective campaign strategy.

Next we use a set of priors that assume that candidates in the treatment group
where chosen to maximize the outcome: wins by Republican candidates. Thus, we
assume that Bush chose to campaign for candidates that he thought would be most
helped by a visit. Given that presidents have many constraints on their time, the se-
lection assumption is quite plausible. We vary the strength of this assumption and
estimate the treatment effect under weak, medium, and strong selection assump-
tions. Under each of these three versions of the selection assumption, we assume
that ψ11 has a uniform prior (b11 = c11 = 1), and we vary the prior on ψ00.4 Un-
der weak selection, we assume that the prior mean of ψ00 is 0.8 with a 95% prior
interval of [0.52,0.97]. This corresponds to

Pr
[
(1 − ψ11)

(
18

21

)
> ψ00

(
164

327

)]
≈ 0.53.

Under this configuration of the prior for the treatment selection assumption, this
inequality holds approximately 53% of the time, which implies that selection only
weakly holds in the population of candidates. Alternatively under this assumption,
we are expressing the belief that the probability of randomly selecting a helped
candidate among the treated units is greater than the probability of randomly se-
lecting a helped candidate among the control units. However, that probability just
barely holds at approximately 0.53. Under medium selection, we assume that the
prior mean of ψ00 is 0.4 with a 95% prior interval of [0.14,0.70]. This corresponds
to

Pr
[
(1 − ψ11)

(
18

21

)
> ψ00

(
164

327

)]
≈ 0.76.

In this second version of the prior, the inequality holds approximately 75% of the
time, which implies that selection is more likely in the population of candidates.

4Note that with two free parameters in inequality (6) there is no single way to operationalize
positive selection via the prior. For instance, one could also fix the prior for ψ00 and vary the prior
for ψ11 (or vary both simultaneously).
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Finally, under strong selection we assume that the prior mean of ψ00 is 0.1 with a
95% prior interval of [0.003,0.34]. This corresponds to

Pr
[
(1 − ψ11)

(
18

21

)
> ψ00

(
164

327

)]
≈ 0.94.

Now the inequality holds approximately 95% of the time in the population of can-
didates.

The estimates under selection are in the second row of Table 4. Here we see that
positive selection pushes the naive estimate toward its lower bound with stronger
forms of positive selection moving the estimate closer to the lower Manski bound.
The reason the selection assumption moves the estimates toward zero is that a
fraction of the treated candidates is quite small. Under all three levels of posi-
tive selection, the 95% HPD interval includes zero. Thus under various degrees of
positive selection (but no explicit assumption of monotonic treatment response),
we cannot rule out the possibility that a campaign visit by President Bush had no
average effect on the election chances of Republican candidates.

To this point we have seen that two seemingly plausible types of assumptions
(monotonic treatment response and positive selection) push the naive inference in
opposite directions. What should one conclude if one believes that both monotonic
treatment response and positive selection are plausible? To answer that question,
we use priors that assume both selection and monotonicity of varying levels. If we
again vary each assumption at three levels, that creates nine different prior combi-
nations. Table 5 contains the nine different estimates of the treatment effect along
with the associated 95% HPD intervals. The combination of the monotonicity and
selection assumptions is sufficient to result in informative inferences in six out of
the nine combinations. Only when positive selection is strong does the 95% cred-
ible interval contain zero. Under the other six combinations the treatment effect
varies from 0.166 to 0.398.

TABLE 5
Estimated Treatment Effects for Presidential Visits Under Combinations of Monotonicity and
Selection Assumptions. Point estimates are posterior means and interval estimates are 95%

highest posterior density intervals

Monotonicity

Weak Medium Strong

Weak 0.355 0.379 0.398
[0.219,0.479] [0.254,0.494] [0.270,0.511]

Selection Medium 0.166 0.190 0.209
[0.022,0.318] [0.052,0.335] [0.074,0.351]

Strong 0.026 0.049 0.068
[−0.073,0.143] [−0.030,0.150] [−0.001,0.163]
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What conclusion should we draw about the effectiveness of presidential cam-
paign visits? Our conclusions here must be evaluated against the plausibility of the
assumptions. The selection assumption is the most likely of the two assumptions
to hold. There is every reason to believe that presidents select which candidates
to campaign for based some hope of being effective. It is unlikely that presidents
would spend much time campaigning for candidates that have little chance of win-
ning. With only the selection assumption in place, we cannot rule out the possi-
bility that the average effect of a presidential visit is 0. However, if we believe
that treatment response is also monotone for most candidates, there does appear
to be a positive treatment effect. Consider the effect under strong selection and
strong monotonicity. While the 95% HPD intervals just barely contain zero, the
point estimate is 0.068. If we take that as the most credible set of assumptions,
presidential campaigning would appear to be effective, but the estimate is much
reduced compared to the naive estimate of 0.36.

As we noted above, identification via a conditional ignorability assumption is
possible, but we argued that this assumption is unrealistic in this context given that
we think there are unobservable factors related to treatment. However, we esti-
mated treatment effects under the conditional ignorability assumption to compare
to the estimates from our Bayesian partial identification approach. To estimate the
treatment effect of a presidential campaign visit under a conditional ignorability
assumption, we use a marginal structural model [Robins, Hernan and Brumback
(2000)]. In the model, we use stabilized weights [Cole and Hernán (2008)]. We
use the same set of covariates used in the original analysis in Keele, Fogarty and
Stimson (2004). These covariates include the vote share received by George Bush
in the 2000 election, an indicator for whether there was a Senate race in the state
in 2002, an indicator for whether the race did not have an incumbents running,
an indicator for whether Congressional Quarterly designated the race as compet-
itive in the Spring of 2002, the percentage of residents that live in urban areas,
the percentage of residents that are African American, the percentage of Hispanic
residents, the percentage of residents with a high school degree, the percentage of
residents with a college degree, and median income.

Under the conditional ignorability assumption, the estimated treatment effect is
0.24, with a 95% confidence interval of −0.18 and 0.67. While the magnitude of
this effect is reduced compared to the naive estimate, this estimate is notably larger
than most of the estimates under the assumptions in Table 5. Moreover, inspection
of the data revealed clear violations of the positivity assumption, which implies
that there must be a nonzero probability of treatment for every level and combina-
tion of confounders [Cole and Hernán (2008)]. Thus, we have multiple reasons to
doubt an approach based on modeling the assignment mechanism with covariates.

6. Conclusion. In this article, we have illustrated how to conduct a form of
sensitivity analysis under general patterns of unobserved confounding. In many
social science applications interventions cannot be randomized, and the assump-
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tion of that all confounders are observed is implausible. For example, in our ap-
plication, there is little reason to think we observe all the necessary covariates
that would make congressional districts visited by the president comparable to the
congressional districts that do not receive a presidential campaign visit. The de-
velopment of methods of sensitivity analyses for situations in which unmeasured
confounding is present, as is done in this paper, serves to shift empirical social
science research away from the all too typical enterprise of defending indefensi-
ble causal assumptions to the practice of honestly stating the range of assumptions
that are consistent with a size of causal effect. Using Bayesian methods, analysts
can present a range of estimates under different patterns of confounding. In the
analysis presented here, we find some evidence for a positive effect of presidential
visits on election success under some ranges of plausible assumptions. However,
under other plausible assumptions the null of no average effect cannot be rejected.
Generally, we find that estimate form our Bayesian partial identification approach
are much reduced compared to both the naive estimate and an estimate based on a
conditional ignorability assumption.

APPENDIX A: PRIOR SELECTION AND PATTERNS OF CONFOUNDING

Table 6 provides an overview of the various parameters in the model. It is by
placing prior distributions on the ψ parameters that we use subjective knowledge
of possible patterns of confounding into the model.

TABLE 6
Interpretation of parameters in the model for (D,Y,Z). The i indices denote a randomly

selected unit

Parameter Probability Interpretation
θdy Pr(Di = d,Yi = y) Probability Di is equal to d and Yi is equal to y

ψ00 Pr(Zi = 1|Di = 0, Yi = 0) Probability i would be helped by treatment
given i not treated and i failed

1 − ψ00 Pr(Zi = 0|Di = 0, Yi = 0) Probability i would never succeed
given i not treated and i failed

ψ01 Pr(Zi = 3|Di = 0, Yi = 1) Probability i would always succeed
given i not treated and i succeeded

1 − ψ01 Pr(Zi = 2|Di = 0, Yi = 1) Probability i would be hurt by treatment
given i not treated and i succeeded

ψ10 Pr(Zi = 2|Di = 1, Yi = 0) Probability i was hurt by treatment
given i treated and i failed

1 − ψ10 Pr(Zi = 0|Di = 1, Yi = 0) Probability i would never succeed
given i treated and i failed

ψ11 Pr(Zi = 3|Di = 1, Yi = 1) Probability i would always succeed
given i treated and i succeeded

1 − ψ11 Pr(Zi = 1|Di = 1, Yi = 1) Probability i was helped by treatment
given i treated and i succeeded
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APPENDIX B: PRIOR SELECTION IN THE APPLICATION

Table 7 contains the numerical values used for the various set of bounds re-
ported in the main text. These values give readers a sense of the values used for
the different asumptions.

TABLE 7
Prior parameter values used in analysis

b00 c00 b01 c01 b10 c10 b11 c11

Weak mono. 1 1 27 3 3 27 1 1
Med. mono. 1 1 57 3 3 57 1 1
Strong mono. 1 1 396 4 4 396 1 1

Weak select. 8 2 1 1 1 1 1 1
Med. select. 4 6 1 1 1 1 1 1
Strong select. 1 9 1 1 1 1 1 1

Weak mono. & weak select. 8 2 27 3 3 27 1 1
Med. mono. & weak select. 8 2 57 3 3 57 1 1
Strong mono. & weak select. 8 2 396 4 4 396 1 1
Weak mono. & med. select. 4 6 27 3 3 27 1 1
Med. mono. & med. select. 4 6 57 3 3 57 1 1
Strong mono. & med. select. 4 6 396 4 4 396 1 1
Weak mono. & strong select. 1 9 27 3 3 27 1 1
Med. mono. & strong select. 1 9 57 3 3 57 1 1
Strong mono. & strong select. 1 9 396 4 4 396 1 1
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