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Combination antiretroviral therapy successfully controls viral replication
in most HIV infected patients. This is normally followed by a reconstitution
of the CD4+ T cells pool, but not for all patients. For these patients, an im-
munotherapy based on injections of Interleukin 7 (IL-7) has been recently
proposed in the hope of obtaining long-term reconstitution of the T cells pool.
Several questions arise as to the long-term efficiency of this treatment and the
best protocol to apply. Mathematical and statistical models can help answer
these questions.

We developed a model based on a system of ordinary differential equa-
tions and a statistical model of variability and measurement. We can estimate
key parameters of this model using the data from the main studies for this
treatment, the INSPIRE, INSPIRE 2, and INSPIRE 3 trials. In all three stud-
ies, cycles of three injections have been administered; in the last two studies,
for the first time, repeated cycles of IL-7 have been administered. Repeated
measures of total CD4+ T cells count in 128 patients, as well as CD4+Ki67+
T cells count (the number of cells expressing the proliferation marker Ki67) in
some of them, were available. Our aim was to estimate the possibly different
effects of successive injections in a cycle, to estimate the effect of repeated
cycles and to assess different protocols.

The use of dynamical models together with our complex statistical ap-
proach allow us to analyze major biological questions. We found a strong
effect of IL-7 injections on the proliferation rate; however, the effect of the
third injection of the cycle appears to be much weaker than the first ones.
Also, despite a slightly weaker effect of repeated cycles with respect to the
initial one, our simulations show the ability of this treatment of maintaining
adequate CD4+ T cells count for years. We also compared different proto-
cols, showing that cycles of two injections should be sufficient in most cases.

1. Introduction. Infection by the Human Immunodeficiency Virus (HIV)
leads to the decrease of the number of CD4+ T-lymphocytes, which induces a
general immune dysfunction. Combination antiretroviral therapy (cART) allows
controlling viral load in most patients and often leads to an adequate immune
restoration. However, not all patients get a satisfactory immune reconstitution de-
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spite undetectable viral load. A nonnegligible proportion of patients experience an
insufficient increase of CD4+ T-lymphocytes, and can be called “low immunolog-
ical responders”.

A treatment based on injections of Interleukin-7 (IL-7) has been recently pro-
posed to increase the population of CD4+ T-lymphocytes, and is for the moment
the only promising approach in this context [Levy et al. (2009, 2012), Sereti et al.
(2009)]. Endogenous IL-7 is a cytokine discovered in 1988 [Namen et al. (1988)];
it has been found to play an important role in the maintenance of the T cells popu-
lation [Fry and Mackall (2002), Mackall, Fry and Gress (2011)]. Different effects
of IL-7 have been uncovered and include enhancing production (thymopoiesis)
[Mackall et al. (2001), Okamoto et al. (2002)], proliferation [Sportès et al. (2008),
Vieira et al. (1998)], and survival [Kondrack et al. (2003), Seddon, Tomlinson and
Zamoyska (2003)] of CD4+ T cells.

Mathematical representations of the behavior of the immune system in the con-
text of HIV infection have been useful to describe and quantify biological pro-
cesses that are not directly observed; the interaction between HIV virions and
CD4+ T cells was first modeled by Ho et al. (1995) and Perelson et al. (1996).
For modeling the effect of IL-7 administration, it is not useful to model virus
concentration (because viral load is undetectable under cART), but it is neces-
sary to distinguish between quiescent and proliferating cells because we already
know that the main effect of IL-7 is through stimulating the proliferation of T
cells (a proliferating cell divides and yields two cells). In this context, Thiébaut
et al. (2014) have quantified the contribution of several biological mechanisms
in CD4+ T cells homeostasis. They have studied the effect of a single cycle of
IL-7 administration, where a cycle included three consecutive injections. Here,
we extend this approach with a modified statistical model for analyzing repeated
cycles, based on data from 3 clinical studies, INSPIRE, INSPIRE 2, and IN-
SPIRE 3. We focus on several major clinical questions. What is the effect of
the different injections in a cycle? What is the effect of repeated cycles? What
is the long-term efficacy of this therapy in maintaining CD4+ T cells count
at a satisfactory level (over 500 cells/μL)? What is the best protocol of injec-
tions?

Section 2 gives an overview of the INSPIRE studies and the available data.
Section 3 describes the main structure of the mathematical and statistical models.
Section 4 presents and compares different statistical models: the “basic” model
studying the effect of IL-7 over a cycle as a whole, the “3 β’s” model allow-
ing the successive injections of a cycle to have different effects and the “cy-
cle effect model” investigating the long-term effect when administering repeated
cycles. Section 5 compares four possible protocols (varying the number of in-
jections of a cycle) on their ability of maintaining CD4 counts over 500 and
the average number of injection required. Section 6 concludes with a discus-
sion.
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2. Data and materials. The data have been compiled from three studies: IN-
SPIRE [Levy et al. (2012)], INSPIRE 2, and INSPIRE 3 [Thiébaut et al. (2016)].
These studies investigated the effect of IL-7 treatment on immune restoration. All
participants were aged ≥18 years, were under stable cART for at least one year,
presenting CD4 counts between 100 and 400 cells/μL, and undetectable viral load
for at least 6 months prior to screening.

In the first study, INSPIRE, 21 patients received three weekly injections IL-7 at
different weight-dependent doses: 10, 20, and 30 μg/kg. INSPIRE 2 and INSPIRE
3 (with 23 and 84 treated patients, respectively) further studied the biological ac-
tivity of repeated cycles of IL-7 at 20 μg/kg.

The two measurements that interest us are the total CD4+ T cells count and
the number of CD4+ T cells expressing the Ki67 proliferation marker, hereafter
called “CD4 count” and “Ki67 count”, respectively. The Ki67 count measures the
number of proliferating cells. The patients had clinic visits at weeks 1, 2, and 3 (at
the moment of the injections), weeks 4, 5, 6, 9, and 12, and after, one visit every 3
months. Measurements of CD4 counts were made at each visit, while Ki67 counts
were measured only at weeks 1, 2, 3, 5, and 12.

For INSPIRE 2 and 3, repeated cycles were available. After the first cycle, if
CD4 counts were found to be below 550 cells/μL in one of the quarterly visits, a
new IL-7 cycle was administered. Within these repeated cycles, clinic visits were
scheduled at weeks 1, 2, and 3 (at the moment of the injections), weeks 5 and 12,
and once again quarterly visits were made to check the CD4 count. A maximum
of 4 cycles within 21 months and a maximum of 3 cycles within 12 months were
established, and all patients have been followed up at least 3 months after the last
cycle. CD4 counts were measured at all visits for all patients, while Ki67 counts
were measured only for the first cycles of the first 12 patients of INSPIRE 2 at
weeks 1, 2, 3, 5, and 12. The total duration of the studies was 12, 24, and 21
months for INSPIRE, INSPIRE 2, and INSPIRE 3, respectively.

In this paper, data for all patients from the three studies (N = 128) have been
included from the time of the first injection. Overall, 197 IL-7 cycles were admin-
istered (41 of them were incomplete cycles consisting of 1 or 2 injections). More
details are provided in Appendix A and in Thiébaut et al. (2016).

3. Mathematical and statistical structure.

3.1. Mathematical and statistical models. A Markov jump process could be
written for the dynamics of the quiescent and proliferating CD4 cells populations.
When the number of cells is moderately large, a linear noise approximation leads
to a stochastic differential equation [Finkenstädt et al. (2013)]. In our case, the
number of cells is very large; one can estimate the order of magnitude of the num-
bers of both types of cells to be larger than 100 million. Thus, the stochastic term
is negligible which allows us to work with ordinary differential equations (ODE)
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FIG. 1. Graphical representation of the mathematical model.

for the concentration per volume unit (here, μL). We use the same system of ODE
as proposed by Thiébaut et al. (2014). For patient i this model can be written as⎧⎪⎪⎨

⎪⎪⎩
dQi

dt
= λi + 2ρiP i − πiQi − μi

QQi,

dP i

dt
= πiQi − ρiP i − μi

P P i.

The initial condition is assumed to be the equilibrium point [specified by
dQi

dt
(0) = 0, dP i

dt
(0) = 0].

A graphical representation of the system can be found in Figure 1. This model
includes two state variables: P , the concentration of proliferating cells expressing
the Ki67 proliferation marker, and Q, the concentration of quiescent cells. We have
also investigated a model with a feedback term, obtained by multiplying the basic
proliferation rate by 1

(P i+Qi)ν
, where ν is a parameter to be estimated. We did not

retain this feedback term because it did not lead to major improvement of the fit
while requiring much more computation time (see Appendix B).

The vector of parameters of the ODE system is ξ i = [λi, ρi,πi,μi
Q,μi

P ]. These
parameters have a biological interpretation: λ is the production rate, ρ is the re-
version rate, π is the proliferation rate and μQ and μP are the mortality rates of
Q and P cells, respectively. The logarithmic transformation ensures positivity of

these biological parameters: ξ̃
i = log(ξ i ).

Modeling the variability of the parameters is a crucial ingredient in our model
because it allows to have a joint estimation of parameters across the population in-
stead of fitting the model patient-by-patient. A mixed-effect model can be assumed
for each transformed parameter l, l = 1, . . . , p (here p = 5):

ξ̃ i
l (t) = ξ̃0

l + β�
l zi

l (t) + ui
l ,

where ξ̃0
l is the baseline value, βl is a vector of regression coefficients, zi

l is a
vector of explanatory variables and ui

l are random effects assumed to be indepen-
dently and identically normally distributed. Thus, the parameters can vary between



MODELING REPEATED CYCLES OF R-HIL-7 1597

subjects but also with time through the time-dependent explanatory variables. In
practice, for parsimony, random effects and explanatory variables are included for
a subset of the parameters.

In Section 4 of this paper, we present and discuss two models for the effect of
injections in one cycle and a model for repeated cycles. The random effects have
been applied on λ and ρ: ui

λ ∼ N (0, σ 2
λ ), ui

ρ ∼ N (0, σ 2
ρ ) for all the models. The

explanatory variables used are functions of the dose and of the timing of the IL-7
injections, and they are used to model the proliferation rate (π ) and the mortal-
ity rate of quiescent cells (μQ). These choices are based on many trials and on
previous results of the literature [as in Thiébaut et al. (2014)].

We also need a model for the observations. The state variables [P i(t),Qi(t)]
are not directly observable; we only have discrete-time observations of some func-
tions of the components of this vector. Let Y i

1j and Y i
2k be the CD4 count and the

Ki67 count for patient i at time tij and tik , respectively. The following observation
scheme is assumed:⎧⎨

⎩
(
Y i

1j

)0.25 = [
P i(tij ) + Qi(tij )

]0.25 + ε1ij ,(
Y i

2k

)0.25 = P i(tik)
0.25 + ε2ik

with independently normally distributed measurement errors: εi1j ∼ N (0, σ 2
CD4),

εi2k ∼ N (0, σ 2
P ). The fourth-root transformation for achieving approximate nor-

mality and homoscedasticity for cell counts has been studied by Thiébaut et al.
(2003). Note that the times of observations may be different for the two observed
components; indeed there were fewer observations of Ki67 counts than of CD4
counts.

3.2. Inference. The vector θ to be estimated includes the intercepts of the bi-
ological parameters (λ̃0, ρ̃0, π̃0, μ̃0

Q, μ̃0
P ), the regression coefficients (βπ ,βμQ

),
the standard deviations of the random effects (σλ, σρ), and the standard deviations
of the measurement errors (σCD4, σP ). The two main approaches are the maxi-
mum likelihood and the Bayesian approaches; in both cases we have to compute
the likelihood. As in Guedj, Thiébaut and Commenges (2007a), first the individ-
ual likelihoods given the random effects can be computed. Then, the individual
likelihoods are computed by integrating over the random effects via the adaptive
Gaussian quadrature [Genz and Keister (1996), Pinheiro and Bates (2000)]; the
global log-likelihood is the sum of the individual log-likelihoods. The parameters
can then in principle be estimated by maximum likelihood. However, due to iden-
tifiability problems, it is useful to adopt a Bayesian approach. The prior distribu-
tion π(θ) allows incorporating prior knowledge taken from the literature. In such
very complex models the MCMC algorithm may fail, so we use an approximate
Bayesian inference as in Drylewicz, Commenges and Thiebaut (2012), simpler
than the INLA approach of Rue, Martino and Chopin (2009) which is also difficult
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to apply here. Bayes’ theorem gives

log
[
P(θ | Y)

] = L(θ) + log
[
π(θ)

] + C,

where P(θ | Y) is the posterior distribution, L(θ) is the log-likelihood, and C

is the normalization constant. The Bernstein–von Mises theorem [van der Vaart
(1998)] justifies a normal approximation of the posterior (NAP). The NAP can be
computed by maximizing the penalized log-likelihood LP (θ) = L(θ) + log[π(θ)]
and computing the inverse of the Hessian of −LP (θ), H−1

LP . Thus, the NAP is

N [θ̃ ,H−1
LP (θ̃)], where θ̃ maximizes LP (θ).

This computation can be achieved with the NIMROD program [Prague et al.
(2013)] which uses the so-called RVS algorithm [Commenges et al. (2006)]; paral-
lel computing is implemented to achieve acceptable computation times. Other ap-
proaches have been proposed for fitting ODE-based models: Ramsay et al. (2007)
proposed a penalized likelihood approach for the trajectories of the state vari-
ables circumventing the need of solving the ODE system; the original proposal
did not treat models with random effects but it was extended by Wang et al. (2014)
who used an approximation of the integrals; Kuhn and Lavielle (2005) have pro-
posed the stochastic approximation expectation maximisation (SAEM) algorithm
which can be used for maximising a log-likelihood or a penalized log-likelihood.
Also, a full Bayesian approach using the MCMC algorithm has been proposed in
the context of HIV modeling [Huang, Liu and Wu (2006)] and in that of chem-
ical reaction networks [Finkenstädt et al. (2013)]. In the context of HIV model-
ing, Drylewicz, Commenges and Thiebaut (2012) made a comparison of the full
Bayesian approach implemented in Winbugs and the penalized likelihood imple-
mented in NIMROD and found results in favour of the latter. One advantage of the
RVS algorithm is the possibility of computing a stopping criterion which can be
interpreted as the ratio of numerical error over statistical error. See Appendix C for
details.

3.3. Comparison of different models. Here we present more than one possi-
ble statistical model to describe the effect of IL-7 on biological parameters. We
compare the models via direct likelihood, quality of fit, and via an approximate
cross-validation criterion, LCVa, proposed by Commenges et al. (2007). LCVa is
an extension of Akaike criterion (AIC), similar to the General Information Crite-
rion (GIC) [Konishi and Kitagawa (2008)] that corrects not only for the number of
parameters but also for the penalization; LCVa is normalized on the number of ob-
servations [see Commenges et al. (2008) and Commenges et al. (2015) for further
development]. This criterion is

LCVa = −n−1[
L(θ̃) − Trace

(
H−1

LP (θ̃)HL(θ̃)
)]

,

where HL is the Hessian of minus the log-likelihood. Since LCVa estimates a
“risk” (cross-entropy or Kullback–Leibler risk equivalently), the smaller the bet-
ter. Differences in criteria values between two models can be considered as “large”
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beyond 0.1 when the response is univariate. However, when the response is mul-
tivariate, the threshold for considering a difference as “large” should be higher
because LCVa, as defined here, is normalized on the number of subjects and does
not take into account the number of observations per subject.

4. Main results.

4.1. Basic model: A cycle as a whole entity. First, we are interested in esti-
mating the global effect of the first cycle of IL-7. To begin with, only first received
cycles for each patient have been considered. As in Thiébaut et al. (2014) the ef-
fect of IL-7 is considered to be dose-dependent. In our case, we have chosen to
consider a power of the dose (as is common in pharmacology) that was fixed as
0.25 by profile likelihood.

The effect on proliferation π is taken into account during 7 days (this time
was also fixed by profile likelihood) after each injection. Besides, the effect on the
mortality rate μQ is considered to be constant from two days after the first injection
during twelve months, followed by a linear decrease during another twelve months.
As already mentioned, random effects are added on the production rate λ and the
reversion rate ρ. Let di the dose received for patient i, and let Ni

t the number of
injections that patient i has received until time t . The statistical description for this
first model is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

π̃ i(t) = π̃0 + βπd0.25
i 1{Ni

t −Ni
t−7=1},

λ̃i(t) = λ̃0 + ui
λ,

μ̃i
Q(t) = μ̃0

Q + βμQ
d0.25
i f (t),

ρ̃i(t) = ρ̃0 + ui
ρ,

μ̃i
P (t) = μ̃0

P ,

where 1{Ni
t −Ni

t−7=1} is an indicator function taking value 1 if an injection has been
administrated in the last 7 days, and

(1) f (t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 2 < t ≤ 360,

1 − (t − 360)/360 if 360 < t ≤ 720,

0 if 720 < t.

Taking the same priors as Thiébaut et al. (2014), we ran the analysis with the
NIMROD program. The results are displayed in Table 1: IL-7 injections increase
the proliferation rate (π ) from 0.041 per day at baseline to 0.135 per day during
7 days after each injection (for the dose equal to 20 μg/kg). Also the estimated
mortality rate of Q cells decreases from 0.104 per day at baseline to 0.072 during
the first year after the treatment.
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TABLE 1
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic and

natural scales) for the “basic” model when considering only the first cycle for all patients from
INSPIRE 1, 2, and 3; Penalized (P) and Non Penalized (NP) likelihoods, and LCVa criteria

Prior Posterior Posterior
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.967 0.062 19.440 1.196
ρ 0.000 0.250 0.680 0.095 1.973 0.187
π −4.000 1.000 −3.185 0.115 0.041 0.005
μQ −3.600 0.500 −2.264 0.073 0.104 0.008
μP −2.500 0.500 −1.550 0.202 0.212 0.043

βπ 0.997 0.058
βμQ −0.305 0.020

σλ 0.254 0.025
σρ 0.534 0.096

σCD4 0.254 0.003
σP 0.299 0.023

P likelihood −338.7
NP likelihood −327.4
LCVa 2.558

4.2. “3 β’s” model: A cycle as three different injections. Here we focus on a
major question: have all the three injections the same quantitative effect on pro-
liferation of CD4+ T cells? Or, more accurately, what is the role of every single
injection in the whole effect of a cycle? For this model, too, we only consider the
first received cycle for each patient. The statistical model for π was

π̃ i(t) = π̃0 +
3∑

k=1

1{Ni
t =k}βπk

d0.25
i 1{Ni

t −Ni
t−7=1}.

The results are displayed in Table 2. This model is largely better than the “basic”
model in terms of LCVa (2.136 vs 2.558). The quantitative effects of the successive
injections are not equal: the first and second one are similar but the effect of the
third one is considerably weaker.

4.3. Cycle effect model: Effect of successive cycles. Among the 128 treated
patients from all the three studies, 74 have received more than one cycle. A key
question is: have these repeated cycles the same quantitative effect with respect
to initial ones? CD4 counts are higher before starting repeated cycles. Also, anti-
bodies anti-IL-7 could appear after an initial cycle, modifying the effect of IL-7
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TABLE 2
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic and

natural scales) for the “3 β’s” model when considering only the first cycle for all patients from
INSPIRE 1, 2, and 3; Penalized (P) and Non Penalized (NP) likelihoods, and LCVa criteria

Prior Posterior Posterior
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.355 0.087 10.541 0.920
ρ 0.000 0.250 0.635 0.102 1.887 0.192
π −4.000 1.000 −3.306 0.125 0.037 0.005
μQ −3.600 0.500 −2.617 0.080 0.073 0.006
μP −2.500 0.500 −2.187 0.258 0.112 0.029

βπ1 1.155 0.079
βπ2 1.120 0.081
βπ3 0.622 0.073
βμQ −0.239 0.022

σλ 0.267 0.025
σρ 0.575 0.108

σCD4 0.241 0.003
σP 0.305 0.025

P likelihood −279.8
NP likelihood −273.3
LCVa 2.136

when cycles are repeated. The second goal of this paper is to estimate possible
quantitative differences in repeated versus initial cycles. To make this possible,
we included data from all received cycles and we estimated a new fixed effect:
the “cycle effect” βC . We keep the notation ti1 for the time when patient i re-
ceives the first injection of a cycle. If C(t) counts the number of cycles received
at time t , let 1C(t)>1 be 1 if a cycle has been received before time t , 0 otherwise.
The cycle effect is incorporated into the statistical model of proliferation rate as
follows:

π̃ i(t) = π̃0 +
[
βC1{C(t)>1} +

3∑
k=1

1{Ni
t =k}βπk

d0.25
i

]
1{Ni

t −Ni
t−7=1}.

The results are displayed in Table 3. Checks of fit of this model appear satis-
factory: see Appendix D. Appendix E shows some fits of real data from INSPIRE
2 and 3 obtained with this model. Individual predicted trajectories were computed
using the Parametric Empirical Bayes (PEB) for the parameters having a random
effect (λ and ρ).



1602 A. JARNE ET AL.

TABLE 3
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic and
natural scales) for the “cycle effect” model when considering all cycles for all patients from
INSPIRE 1, 2, and 3; Penalized (P) and Non Penalized (NP) likelihoods, and LCVa criteria

Prior Posterior Posterior
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 1.672 0.061 5.323 0.326
ρ 0.000 0.250 0.892 0.093 2.440 0.226
π −4.000 1.000 −2.853 0.074 0.058 0.004
μQ −3.600 0.500 −2.610 0.068 0.074 0.005
μP −2.500 0.500 −2.567 0.200 0.077 0.015

βπ1 0.931 0.042
βπ2 0.707 0.043
βπ3 0.229 0.042
βμQ −0.082 0.006
βC −0.163 0.015

σλ 0.243 0.026
σρ 0.515 0.084

σCD4 0.289 0.003
σP 0.281 0.019

P likelihood −618.6
NP likelihood −609.4
LCVa 4.762

The posterior distribution of the cycle effect βC has mean equal to −0.163 and
standard deviation equal to 0.015. In other words, the cycle effect is found to be
significantly negative. In natural scale, the effect on proliferation rate for succes-
sive cycles is found to be e−0.163 = 0.85 times the effect of the first cycle. The
biological interpretation of the cycle effect is not yet clearly explained. One expla-
nation may be that the first cycle has modified the reaction of the immune system
to further injections; one possibility is that antibodies against IL-7 decrease the
efficient concentration of IL-7 obtained at the target. However, we must take into
consideration differences in mean CD4 count before the initial and repeated cycles.
The mean CD4 count at baseline was 266 cells/μL whereas it was 456 cells/μL
before repeated cycles. Considering the homeostatic regulation of the population
of CD4+ cells, that prevents CD4 counts from exceeding 1200–1300 cells/μL, a
feedback mechanism may explain an apparent cycle effect. With the aim to study
this phenomenon more deeply, we have incorporated a feedback term (see Ap-
pendix B). We found that a feedback effect could indeed be detected, but this had
no major influence on the estimate of the cycle effect.
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5. Comparing different protocols. We have used the “cycle effect” model
to compare four administration protocols of IL-7, with the hope that we can find
protocols with equivalent efficiency as the protocol actually applied, but necessi-
tating less injections. Protocol A was the protocol actually applied in the INSPIRE
studies. For the three other protocols considered, CD4 counts are measured every
three months, and a new cycle is administered when CD4 count < 550 cells/μL,
as in Protocol A. While in Protocol A, all the cycles include three injections, we
examined the possibility of reducing the number of injections by cycle. In Proto-
col B, the patient receives a first three-injection cycle, followed by repeated two-
injection cycles. In Protocol C, the patient receives a first three-injection cycle fol-
lowed by repeated one-injection cycles. In Protocol D, the patient always receives
two-injection cycles (including the initial one).

The protocols were compared according to three criteria. The three quantities of
interest were: number of injections received, mean CD4 count, and time spent be-
low 500 cells/μL over a four-year period. The criteria to be compared over the four
protocols were the expectations of these quantities, over both the random effects
and the posterior distribution of the parameters. These expectations were com-
puted by simulation. Based on the results of the cycle-effect model (Section 4.3),
we drew at random 200 values of the parameters (including the variances of the
random effects) from their posterior distribution (approximated to be multivariate
normal); then 100 random effects values were drawn for each value of the fixed
parameters. We applied the inclusion criterion, that is the initial value of the CD4
counts between 100 and 400 (draws leading to values outside of this range were
eliminated) in order to generate the target population of “low immunological re-
sponders”. The trajectories were then computed which allowed to compute the
quantities of interest. The medians of these quantities were then computed. We
also computed the variance of these medians for different values of the parameters
to evaluate the uncertainty of the result due to the uncertainty about the value of
the parameters. The results for the whole target population are displayed in the first
part of Table 4, which gives the three criteria for the four protocols as well as the
standard deviation due to the uncertainty about the fixed parameters.

Protocol B leads to similar results as Protocol A in terms of mean CD4 count
with the nonnegligible advantage that it requires significantly less injections. Pro-
tocol C uses less injections but leads to an increased time spent under 500 cells/μL
and a lower mean CD4 count than Protocol A. Protocol D is very similar to Proto-
col B, showing that one can spare the third injection even in the first cycle.

As an illustration, Figure 2 shows the trajectories of an average patient (with null
random effects) for the four protocols, and we see that the trajectories for Protocols
B and D, although using less injections, are nearly the same as for Protocol A.

While the target population for IL-7 treatment are “low immunological respon-
ders” (to cART) with initial CD4 count < 400, we may distinguish the group hav-
ing initial CD4 counts lower than 200 as “very low responders” and the group with
initial CD4 counts higher (or equal) to 300 as “not too low responders”. We did
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TABLE 4
Comparison of the medians over four years of number of injections and cycles received, time under

500 CD4 count, and mean CD4 count for the four protocols: A, three-injection cycles; B,
three-injection cycle followed by repeated two-injection cycles; C, three-injection cycle followed by

repeated one-injection cycles; D, two-injection cycles (including the initial one). The standard
errors of the medians due to uncertainty of the parameters are given. Analyses done for the whole
target population (“low responders”), and the subpopulations “Very low responders” (initial CD4

count < 200) and “Not too low responders” (initial CD4 count > 300)

A B C D

“Low responders”
Number of injections received 27 (1.8) 19 (0.9) 13 (1.2) 18 (0.9)
Time under 500 CD4/μL (days) 81 (43.8) 78 (41.1) 114 (63.7) 78 (41.1)
Mean CD4 count 641 (8.2) 633 (8.4) 599 (4.5) 633 (8.4)

“Very low responders”
Number of injections received 39 (5.7) 29 (3.8) 19 (0) 28 (3.8)
Time under 500 CD4/μL (days) 396 (96.6) 409 (102.9) 998 (306.3) 409 (102.9)
Mean CD4 count 599 (27.8) 591 (28.7) 475 (53.5) 592 (28.8)

“Not too low responders”
Number of injections received 15 (2.2) 11 (1.5) 8 (1.1) 10 (1.5)
Time under 500 CD4/μL (days) 5 (0.2) 5 (0.2) 5 (0.2) 5 (0.2)
Mean CD4 count 650 (8.7) 641 (8.4) 613 (4.9) 642 (8.4)

the same analysis as above on these two groups. The results are given in Table 4.
For “very low responders”, Protocol C is clearly inadequate, while Protocols B and
D achieve similar results as Protocol A with less injections. For “not too low re-
sponders”, Protocol C is acceptable, using less injections than the other protocols,
although leading to a slightly lower mean CD4 count. Protocols B and D however,
achieve nearly the same reduction of the number of injections as Protocol C with
less cycles: protocol D uses five cycles while Protocol C uses 8 cycles.

6. Discussion. INSPIRE 2 and INSPIRE 3 are the first studies where repeated
cycles of IL-7 were administrated to test the long-term restoration of the immune
system in low immunological responders. Here we have used a simple mathemati-
cal model with complex statistical approaches to model the effect of these repeated
cycles on CD4+ T cells concentration. We worked with two CD4+ T cells popula-
tions: quiescent and proliferating (presenting the Ki67+ marker). The checks of fit
were reasonably good although the model had some difficulties capturing the peak
leading to some more extreme values of the residuals than expected.

When considering every injection separately, the first important result of this pa-
per is that there is a decreasing effect of successive injections on proliferation rate;
the third injection appears to have a weaker effect. We also found that the effect
of repeated cycles on proliferation rate was slightly weaker than the effect of the
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FIG. 2. CD4 count (cells/μL) predictions for 4 years for a patient having ui
ρ = ui

λ = 0, for the
four protocols A, B, C, D. Vertical dotted lines are CD4 count assessments (every three months) and
vertical solid lines are injections. Horizontal line marks the CD4 threshold of 550 cells/μL.

initial one. This may be due to the natural homeostatic regulation of CD4+ T cells,
since repeated cycles start at a higher CD4 count. To investigate this question, we
have introduced a feedback term; in this case the feedback term slightly improved
the fit but the estimate of the cycle effect did not change much. Thus, although
a feedback mechanism is plausible, other reasons may explain this phenomenon;
one possibility is the presence of antibodies against IL-7 after the first cycle. In
spite of this phenomenon, simulations show how these repeated cycles are able to
maintain adequate CD4 counts for a long time.

We have compared four protocols and shown that cycles of two injections (Pro-
tocols B or D) should be sufficient, sparing a certain number of injections without
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detrimental effect on CD4 count. The conclusion holds even when analysing two
different groups, “very low responders” and “not too low responders”. Our results
agree with a survival analysis presented in Thiébaut et al. (2016) who compared
the time spent over 500 cells/μL after a three-injection cycle and a two-injection
cycle.

Also, the inclusion of random effects is a key ingredient when considering dy-
namic models as assistance for treatment personalized decisions. Inter-individual
differences in parameters imply inter-individual differences in expected trajec-
tories that can be used for devising adaptive treatment strategies [Prague et al.
(2012)]. We could use this mechanistic model for guiding the treatment with the
aim of minimizing the number of administered injections within repeated cycles
ensuring the expected response. Predictions could also be made for different time
lapses between cycles or thresholds for receiving a new cycle.

APPENDIX A: DATA AND MATERIALS

A.1. Data source and subjects. The data have been compiled from three
phase I/II multicenter studies: INSPIRE [Levy et al. (2012)], INSPIRE 2, and IN-
SPIRE 3 [Thiébaut et al. (2016)]. These studies investigated the effect of a puri-
fied glycosylated recombinant human Interleukin 7 (IL-7) treatment on immune
restoration in immunological low responder patients. All participants were aged
≥18 years, were under stable cART for at least one year, presenting CD4+ T cells
count between 100–350 cells/μL (100–400 cells/μL for INSPIRE 2), and unde-
tectable viral load for at least 6 months prior to screening.

In the first study, INSPIRE, 21 patients received three weekly injections (a
“complete cycle”) of IL-7 at different weight-dependent doses: 10, 20, and 30
μg/kg and the main objective was to evaluate the safety of this treatment. IN-
SPIRE 2 and INSPIRE 3 (with 23 and 84 treated patients, respectively) further
studied the biological activity (as well as the safety) of repeated cycles of IL-
7 at 20 μg/kg. In this paper, data for all treated patients from the three studies
(N = 128) have been included from the time of the first injection. Overall, 197
IL-7 cycles were administered (41 of them were incomplete cycles consisting of
1 or 2 injections). More details are provided in a previous publication [Thiébaut
et al. (2016)].

A.2. Study design and observations. Within the first INSPIRE study, all pa-
tients received complete cycles. They had clinic visits at weeks 1, 2, and 3 (at
the moment of the injections), weeks 4, 5, 6, 9, and 12, and after, one visit every
3 months; see Levy et al. (2012) for more information. Among many measured
biomarkers, our model uses total CD4+ T cells count and the number of CD4+ T
cells expressing the Ki67 proliferation marker, the “CD4 count” and “Ki67 count”,
respectively. Measurements of CD4 counts were made at each visit, while Ki67
counts were only measured at weeks 1, 2, 3, 5, and 12.
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For the first twelve patients of INSPIRE 2, clinic visits within the initial cycles
were scheduled as for the INSPIRE study (for the rest of them, visits at week 9
were not performed). After, if CD4 counts were found to be below 550 cells/μL in
one of the quarterly visits, a new IL-7 cycle was administered (with the exception
of the first 12 patients, who wait a year before receiving a new cycle). Within these
repeated cycles, clinic visits were scheduled at weeks 1, 2 and 3 (at the moment of
the injections), weeks 5 and 12, and once again quarterly visits are made to check
the CD4 count. A maximum of 4 cycles within 21 months and a maximum of 3
cycles within 12 months were established, and all patients have been followed up
at least 3 months after the last cycle. CD4 counts were measured at all visits for all
patients, while Ki67 counts were measured only for the first cycles of the first 12
patients at weeks 1, 2, 3, 5, and 12.

For INSPIRE 3, patients were randomized into two arms: “IL-7 arm” and “Con-
trol arm” with a ratio 3:1 (3 IL-7: 1 Control). Patients of the “IL-7 arm” received
the same treatment scheme as patients from INSPIRE 2. Patients of the “Control
arm” were first followed up without receiving the IL-7 for one year, and if CD4
count was still below 500 cells/μL, IL-7 treatment was started as for the other
group [Thiébaut et al. (2016)]. CD4 counts were measured at all visits. No Ki67
counts measurements were available.

The total duration of the studies was 12, 24, and 21 months for INSPIRE, IN-
SPIRE 2, and INSPIRE 3, respectively.

APPENDIX B: MODEL WITH A FEEDBACK TERM

Trajectories satisfying an ODE system have an intrinsic tendency to return to
the equilibrium point, when it exists, which is the case for the systems proposed in
this paper. In this sense, a feedback term is not necessary to ensure homeostasis, a
key concept in physiology. We have, however, considered adding a feedback term
in the mathematical model in order to examine the cycle effect βC in depth. This
term will explicitly avoid CD4+ T cells to proliferate without control and possi-
bly ensure a faster return to an equilibrium point. The simplest feedback term is
[ 1
P+Q

]ν , and can be added in both equations to the proliferation term. The system
with feedback is as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dQi

dt
= λi + 2ρiP i − μi

QQi − πiQi 1

(P i + Qi)ν
,

dP i

dt
= πiQi 1

(P i + Qi)ν
− ρiP i − μi

P P i.

Models with feedback were fitted using the 39 patients of INSPIRE who had
Ki67 count measurements. The feedback coefficient was estimated at ν = 0.119.
In Table 5 we compare some models with and without feedback term.
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TABLE 5
Comparison of loglikelihoods and LCVa criteria of models with and without feedback for all

INSPIRE patients with CD4 and Ki67 count measurements (N = 39)

Without feedback With feedback

Basic model “3 β’s” model Basic model “3 β’s” model

NP loglike −44.643 −36.549 −41.735 −36.419
P loglike −49.393 −41.306 −46.965 −41.015
LCVa 1.146 0.940 1.073 0.963

The feedback term does not lead to a great improvement of the LCVa criterion,
especially for the “3 β’s” model.

The detection of a cycle effect raises anew the issue of a possible feedback. It
may be that the feedback could not be detected when starting with very low CD4
count, but could be more visible when starting at higher CD4 count; this feedback
might explain the apparent cycle effect. To answer this question we ran the model
for repeated cycles with feedback. With this more complicated model and larger
data set, we could not directly estimate the parameter ν, so we resort to profile
likelihood. Computing the likelihood for ν = 0.05,0.1,0.15,0.20,0.25,0.30 we
found that the best likelihood was obtained for ν = 0.1, a value close to what
was estimated in the small data set (ν = 0.119). The results are shown in Ta-
ble 6.

For the repeated cycles data set, the feedback term leads to an improvement of
the LCVa criterion. This may reflect a biological feedback mechanism. However,
this does not modify the cycle effect βC .

APPENDIX C: IDENTIFIABILITY AND CONVERGENCE

As can be easily verified, both models with and without the feedback term
present no problems regarding the “theoretical” identifiability (that depends on the
model structure) but even so, they could present “practical” identifiability prob-
lems as explained in Guedj, Thiébaut and Commenges (2007b). In fact, practical
identifiability problems are a mix of statistical and numerical problems which are
difficult to disentangle; with scarce information, the variances of the estimators are
large, but it comes also with a flat shape of the log-likelihood, making it difficult to
maximize. The difficulty is enhanced by the fact that there are several layers of nu-
merical computation needed to compute the likelihood, leading to an accumulation
of numerical errors.

A crucial point in an iterative algorithm is the stopping criteria. Besides the
displacement in the parameter space and the variation of the likelihood function,
another convergence criterion proposed by Commenges et al. (2006) has been im-
plemented in NIMROD. It is the Relative Distance to Maximum (RDM) defined
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TABLE 6
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic and

natural scales) for the “cycle effect” model when considering all cycles for each patient including a
feedback term with ν = 0.1; Penalized (P) and Non Penalized (NP) likelihood and LCVa criteria

Prior Posterior Posterior
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 0.275 0.157 1.316 0.207
ρ 0.000 0.250 1.052 0.083 2.863 0.238
π −4.000 1.000 −1.975 0.068 0.139 0.009
μQ −3.600 0.500 −2.538 0.067 0.079 0.005
μP −2.500 0.500 −2.212 0.138 0.109 0.015

βπ1 0.806 0.038
βπ2 0.626 0.037
βπ3 0.212 0.035
βμQ −0.063 0.005
βC −0.153 0.015

σλ −0.608 0.097
σρ −0.440 0.071

σCD4 0.286 0.004
σP 0.301 0.021

P likelihood −598.0
NP likelihood −584.5
LCVa 4.567

as

RDM
(
θ(k)) = UP (θ(k))T G−1(θ(k))UP (θ(k))

p
,

where UP (·) is the penalized score and G(·) is an approximation of the Hessian of
minus the penalized likelihood. This criterion can be interpreted as the ratio of the
numerical error over the statistical error, and is asymptotically invariant near the
maximum to any one-to-one transformation of the parameters. Prague et al. (2013)
propose 0.1 as a good default value.

APPENDIX D: CHECK OF FIT

We performed three graphical procedures to check the fit of of the “3 β’s” model
with cycle effect (“Cycle effect” model) presented in Section 4.3. The Q–Q plot in
Figure 3 looking at the normality of the errors shows a linear shape on [−2;+2] but
the nonlinearity outside this range suggests a distribution with heavier tails. The fit
of residuals for CD4 counts displayed in Figure 4 exhibited no trend in mean nor in



1610 A. JARNE ET AL.

FIG. 3. “Cycle effect” model: Q–Q plot for CD4 counts.

FIG. 4. “Cycle effect” model: All residuals for CD4 counts plotted against predicted values.



MODELING REPEATED CYCLES OF R-HIL-7 1611

FIG. 5. “Cycle effect” model: Visual check for CD4 counts.

dispersion. The Visual Predictive Check (VPC) is a popular tool for checking non-
linear mixed-effect models [Post et al. (2008)]. The VPC compares the percentiles
of the real data and the percentiles of the data simulated from the statistical model.
We simulated 2000 replicates of the original dataset design. For every replicate,
we took the parameters in their a-posteriori laws estimated in Table 3. For each
patient we computed the trajectory. Then we added a measurement error (with the
estimated variance) and kept only the observation times that were on the original
dataset design. We chose to keep only the data from the first cycle of injection,
as the time of the second cycle is different for most patient it would be difficult
to have a visual interpretation. The second cycle is administrated when the CD4
levels are too low, so to avoid a selection effect, we chose to keep only the obser-
vations that were before 180 days, as it is a time where only a few patients have
already had their second cycle. The black lines represent the median and 95% and
5% percentiles of the observed data, and the areas around represent the confidence
interval of the same percentiles but with the 2000 simulated datasets. We used the
vpc package on R (http://vpc.ronkeizer.com/). The graph is shown in Figure 5 and
appears rather satisfactory in that the percentiles of the observed data are most of
the time within the confidence intervals predicted by the model.

The same analyses were done for Ki67 counts and exhibited similar fea-
tures.

http://vpc.ronkeizer.com/
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APPENDIX E: SOME FITS OF TOTAL CD4 AND KI67 COUNTS

FIG. 6. “Cycle effect” model: Fits of total CD4 count for 12 patients from INSPIRE 2 and 3 chosen
randomly among those who received more than a cycle.
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FIG. 7. “Cycle effect” model: Fits of Ki67 count for 6 patients from INSPIRE and INSPIRE 2
chosen randomly among those who had measurements for this biomarker (only during the first cycle).
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