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1. Introduction. Nolde and Ziegel (2017) (NZ throughout) aim at evaluating
the performance of risk forecasts. First, NZ focused on the traditional backtest,
that is, backtesting whether a series of reported risk forecasts, usually obtained
from one risk model, are valid. Second, NZ proposed the comparative test, that
is, to compare the performance of two series of risk forecasts obtained from two
different models. The main ideas behind constructing the traditional backtest and
the comparative test are the concepts identifiability and elicitability, respectively.

The general perception that elicitability is equivalent to backtestability gener-
ated a serious concern for the regulators in practice. I have personally been con-
sulted by regulatory policymakers about whether the nonelicitable expected short-
fall (ES) would cause a problem for backtesting. Fortunately, Acerbi and Szekely
(2014) calmed down such a concern by demonstrating that ES can be backtested.
They claimed that elicitability is almost irrelevant for backtesting or, more pre-
cisely, model validation. Instead, elicitability is only relevant for model selection.
NZ followed exactly this line of argument to construct the comparative test based
on elicitability.

This discussion will, however, focus on the first issue: traditional backtest and
identifiability. As stated in Section 2 in NZ, “In fact, for k = 1, identifiability
implies elicitability under some additional assumptions.” This means, for a single
risk measure, if one intends to establish a traditional backtest as in NZ, the risk
measure must be identifiable and consequently elicitable. Ironically, this brings
back the elicitability concern, which somehow contradicts the statement in Acerbi
and Szekely (2014).

This discussion aims to reconcile such a debate and fairly evaluate the role of
identifiability in the traditional backtest. In Section 2, I will start from a regu-
lator’s perspective and discuss how to define “traditional backtestability.” Then I
will argue that identifiability is, to a certain extent, necessary for backtestability
if no common property across the conditional distributions of future losses is as-
sumed. However, with assuming some common properties across the conditional
distributions of future losses, identifiability is not a necessary condition for a risk
measure to be backtested. This will be discussed in Section 3. Section 4 concludes
this discussion.
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2. Identifiability is necessary for backtestability. Let us start with consid-
ering only one risk measure � = �(F) for distribution functions F in a proper
class. At each time t − 1, the bank must report a risk forecast for the next period,
denoted as Rt . At time t , the loss is realized as Xt . With collecting the obser-
vations (Rt ,Xt) at t = 1,2, . . . , n, the regulator intends to backtest whether the
banks’ reported risk forecasts are valid. The null hypothesis that the risk forecasts
are conditionally valid can be written as

H0 : Rt = �(Ft) for all t = 1,2, . . . , n,

where Ft is the “conditional” distribution of Xt , conditioning on the information
set Ft−1.

A traditional backtest is to establish a test statistic T (R1, . . . ,Rn;X1, . . . ,Xn)

such that the (asymptotic) distribution of T can be derived under the null hypoth-
esis. Hence “backtestability” refers to the possibility of finding such a test statistic
and the corresponding asymptotic result.

Next, we recall the definition of identifiability. Under the null hypothesis, an
identification function satisfies E(V (Rt ,Xt)|Ft−1) = 0 for all t . Consequently, a
traditional backtest based on identifiability is defined via the test statistic T1 in
(2.11) in NZ. In essence, T1 = T ′(V1,V2, . . . , Vn), where Vt = V (Rt ,Xt).

At this point, we already observe the difference between identifiability and
backtestability. The definition of backtestability is broader: the regulator can make
use of the information set {(Rt ,Xt)}nt=1 in any form possible. By contrast, the
backtest based on identifiability requires using the information set {(Rt ,Xt)}nt=1
in a specific way; that is, Rt is only “compared” to Xt via the identification func-
tion V , not to any other observations at other time periods.

I would further argue that identifiability is, to a certain extent, necessary for
backtestability if we assume no common knowledge across the conditional dis-
tributions at a different time point t . If all conditional distributions {Ft }nt=1 are
different and there is no common property across them, it is not possible to use
all observed losses {Xt }nt=1 to infer any information regarding a specific Ft . The
only possible way to check the risk forecast Rt , is to compare it with Xt . Such a
comparison is conducted by using an error (or utility) function V . In addition, it is
not possible to adjust the error function V in each time period t to accommodate
each specific Ft because no information regarding Ft is known. Consequently, the
only sensible way to backtest all risk forecasts {Rt }nt=1 is to use a unified error
function V and the observations {V (Rt ,Xt)}nt=1. Testing the mean of this series is
the most straightforward choice. Therefore, assuming identifiability is necessary
for performing any traditional backtest in this case.

Here are a few practical examples that justify this argument. Example 1 in NZ
shows the traditional backtest for Value at Risk (VaR). The test assumes no addi-
tional knowledge regarding the conditional distributions across time periods. Simi-
larly, the backtesting procedures proposed in Acerbi and Szekely (2014) for jointly
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backtesting the VaR and ES do not make such an assumption either. In all these ex-
amples, the backtested risk measure(s) are in fact identifiable. Even for the Acerbi
and Szekely (2014) result, VaR and ES are jointly backtested and they are also
jointly identifiable.

In the next section, I will discuss that identifiability is not necessary if some
common properties across the conditional distributions in different time periods
are assumed.

3. Identifiability is not necessary for backtestability. There are backtesting
frameworks that assume common properties across the conditional distributions in
different time periods, for example, example 2 in NZ [similar to the ES backtest in
McNeil and Frey (2000)]. To jointly test the reported VaR and ES at the probability
level ν, the test statistic in (2.14) is approximately given as

T4 = 1

n

n∑
t=1

Vt(Rt ,Xt),

where Rt = (r1,t , r2,t ), Vt(r1,t , r2,t ,Xt) = 1
σt

1
1−ν

(Xt − r2,t )1{Xt>r1,t }. Notice that
Vt is varying over time. Therefore, this is not a test motivated by an identification
function. By rewriting T4 as

T4 = 1

n

n∑
t=1

V

(
r1,t − μt

σt

,
r2,t − μt

σt

,
Xt − μt

σt

)
,

where V (r1, r2, z) = 1
1−ν

(z − r2)1{z>r1}, the test can be regarded as jointly testing
the VaR and ES of {Zt := (Xt −μt)/σt }nt=1, where the VaR and ES are correspond-
ingly standardized using the predicted shift and scale μt and σt at each time point
t . Here, the identification function V is the same across all time periods. The test
is therefore based on the joint identification property of VaR and ES. Example 3 in
NZ, though designed for expectiles, can be interpreted in a similar way.

In these examples, common properties regarding the standardized observations
{Zt }nt=1 are assumed. In the most convenient form, they are assumed to be i.i.d.,
though NZ commented that some weaker models might be considered. Such as-
sumptions are essentially assuming common properties across the conditional dis-
tributions {Ft }nt=1. Since μt and σt are regarded as Ft−1-measurable functions,
with assuming stationarity in {Zt }nt=1, all conditional distributions {Ft }nt=1 are only
subject to a scale and shift difference.

Assuming that {Zt }nt=1 are i.i.d., there is no need to require identifiability of a
risk measure for the traditional backtest. The general intuition is that one can use
all observations to infer the common distribution, and consequently test any risk
measure defined as a functional of the distribution.

As an example, consider the nonidentifiable risk measure, ES. The ES at prob-
ability level ν is backtestable solely when assuming that the underlying data-
generating process follows a time series model such as the AR(1)– GARCH(1,1)

model.
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Suppose the true data-generating process is given as Xt = μt + σtZt , where
{Zt }nt=1 are i.i.d. random variables with a common distribution function G. As-
sume that the conditional shift and scale μt and σt can be predicted by μ̂t and σ̂t ,
respectively, where the two predictors are Ft−1-measurable. In addition, assume
that, as n → ∞,

(3.1)
√

n sup
1≤t≤n

(μ̂t − μt) = oP (1) and
√

n sup
1≤t≤n

(
σ̂t

σt

− 1
)

= oP (1).

Define Ẑt = Xt−μ̂t

σ̂t
for 1 ≤ t ≤ n. By ranking all Ẑt , we obtain Ẑ1,n ≤ · · · ≤ Ẑn,n.

Denote q̂ = Ẑ�νn�,n as an estimator of the ν−quantile of Ẑt . Finally, define

T = 1

ŝ

1√
n

n∑
t=1

(
Rt − μ̂t

σ̂t

− 1

1 − ν
Ẑt1Ẑt>q̂

)
,

where

ŝ = 1

1 − ν

√√√√√1

n

n∑
t=1

(
Ẑt − 1

n(1 − ν)

n∑
s=1

Ẑs1
Ẑs>q̂

)2

1Zt>q̂ .

Then under standard regularity conditions regarding the distribution function G

and the null hypothesis H0, the statistic T is asymptotically standard normal.
The regularity conditions and the proof for this result are similar to those for the
asymptotic normality of the nonparametric estimator of the ES; see, for example,
Zwingmann and Holzmann (2016).1

I have two remarks on this test. First, notice that T is a function of (R1, . . . ,Rn)

and (X1, . . . ,Xn), therefore, it is a traditional backtest. Although a nonparametric
estimator of the VaR, q̂ , was used in the construction of the statistic T , it should
be regarded as a VaR estimate produced by the regulator after obtaining the real-
izations of X1, . . . ,Xn. It is not a VaR forecast produced by the bank at the time
of reporting. In other words, the regulator did not backtest the VaR forecasts of the
bank. Hence the test is a backtest for the ES solely, not a joint test for the VaR and
ES.

Second, the assumptions regarding the model and the estimators are not very
restrictive. Regarding the model assumption, it essentially assumes that all condi-
tional distributions are only subject to a scale and shift difference. Most time series
models satisfy this assumption, such as the AR(1)– GARCH(1,1) model used in
NZ. In addition, the essence of this assumption is that there are some common

1The essential construction of the test statistic is based on the nonparametric estimator of the ES

using the observations {Ẑt }nt=1. Nevertheless, {Ẑt }nt=1 might not be i.i.d. observations drawn from
the distribution G. Consequently, the proof relies on establishing the asymptotic property of the
empirical process based on {Ẑt }nt=1. Details are available upon request.
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properties across the conditional distributions of the future losses. Practically, this
assumes that the regulator knows the essential commonality in the data-generating
process. This assumption is subject to critiques regarding model uncertainty.

Regarding the condition (3.1), it assumes that the speed of convergence for the
predictors are faster than 1/

√
n uniformly. This is not unrealistic in practice. No-

tice that here n is the time horizon used for the backtest, while the predictors are
usually estimated using historical data with a longer horizon, say m observations.
Typical estimators such as the maximum likelihood approach will guarantee that
the speed of convergence for the predictors is 1/

√
m. By assuming that n/m → 0

as n → ∞, the condition (3.1) is valid. In practice, for example, in the Basel traffic
light system, n is set to the number of daily observations in one year, 250. In con-
trast, the estimation of time series models typically uses daily observations from
at least a five-year horizon, that is, n/m is less than 1/5. For example, the esti-
mation horizon in Engle (2001) is set to ten years, while the estimation horizon in
McNeil and Frey (2000) goes even beyond 12 years. In addition, Angelidis, Benos
and Degiannakis (2004) show that the performance of the GARCH model in risk
analysis is unsatisfactory with less than 1000 observations, that is, four years of
daily observations.

To summarize, this example shows that, when assuming some common proper-
ties across the conditional distributions {Ft }nt=1, it is possible to backtest some risk
measures that are not identifiable. In other words, identifiability is not necessary
for backtestability.

4. Conclusion. The work by NZ associates identifiability and elicitability to
the traditional backtest and the comparative test, respectively. While the latter asso-
ciation reflects the discussion in Acerbi and Szekely (2014), the former association
may be subject to different model assumptions. Without making any further model
assumption, the association is valid in the sense that identifiability is to a certain
extent necessary for backtestability. If the regulator is willing to make model as-
sumptions for the underlying data-generating process, the necessity breaks down.

Alternatively, this discussion can be viewed as a discussion on the robustness of
backtesting methods. Recall that we assumed all conditional distributions {Ft }nt=1
are from a proper class. If the class is broad, that is, assuming no common knowl-
edge, to establish a robust backtest, it is necessary that the risk measure being
tested is identifiable. However, if the class is restrictive, that is, assuming some
common knowledge regarding {Ft }nt=1, identifiability can be waived. In all, this
is a trade-off between making assumptions on the data-generating process versus
assumptions on the risk measure.

In practice, making assumptions on the data-generating process might be dif-
ficult due to model uncertainty. In contrast, assumptions on the risk measure can
be studied ex ante in a theoretical way. This is exactly where risk theorists such
as Natalia Nolde and Johanna Ziegel can help. It is important to get practitioners
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such as regulators to understand the conclusions drawn by risk theorists. For ex-
ample, the work by NZ should not be read as “nonidentifiable risk measures are
not backtestable.” Instead, it should be read as “identifiable risk measures can be
backtested robustly.”
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