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Obesity has become one of the major public health issues during the last
three decades. A considerable number of determinants have been proposed
for body mass index (BMI) by a large range of studies from multiple disci-
plines. In addition, it is well documented that impacts of these determinants
are varying across demographic groups. However, little is known about the
relative importance of these potential determinants and the varying impacts
of all relatively important determinants. Using the shrinkage estimation tech-
nique, we propose a variable selection procedure for the categorical varying-
coefficient model. We present a simulation study to exam performance of our
method in different scenarios. We further apply the proposed method to ex-
amine the impacts of a large number of potential determinants on BMI using
data from the 2013 National Health Interview Survey in the United States.
By our method, the relevant determinants of BMI are identified through the
variable selection procedure; and their varying impacts across demographic
groups are quantified through the post-selection estimation.

1. Introduction. As a widely used measurement for body fat, body mass in-
dex (BMI) has been attracting significant attention from numerous researchers in
multiple disciplines. The interest in measuring body fat came with increasing obe-
sity in the last three decades, especially in developed countries. According to WHO
estimates, the worldwide prevalence of obesity has more than doubled between
1980 and 2014. Obesity is a major risk factor for a large range of noncommunica-
ble diseases [Fontaine et al. (2003), WHO (2015)]. It is thus crucial to identify and
quantify the correlations between potential predictors and BMI. Empirical stud-
ies, which try to link particular lifestyle behaviors and other risk factors to BMI,
may inform and guide policy makers to provide efficient incentives and interven-
tions to reduce population BMI. Numerous studies have been seen in the last two
decades and a large number of factors have been proposed as important drivers of
increasing BMI [for references see Cawley (2011)]. Though there is an impressive
amount of evidence on the individual importance of determinants, there is little
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guidance for policy makers about where cost-containment efforts [Stice, Shaw and
Marti (2006)] should be focused. The inability of interventions to produce signif-
icant prevention effects may be due to incomplete understanding of the relative
importance of predictors from various domains [Rehkopf et al. (2011)].

A lot of effort has been devoted to selecting the relatively important predictors
for BMI in the last decade. Besides the conventional, but controversial, stepwise
regression procedures [e.g., Von Kries et al. (2002)], some new statistical methods
have been proposed or adopted recently to select determinants of BMI. For exam-
ple, Huang et al. (2009) proposed a group bridge approach and applied it to deter-
mine risk factors on BMI of high school students. Rehkopf et al. (2011) adopted
random forest, a tree-based analysis procedure, to rank the relative importance of
risk factors for BMI among adolescent girls.

Despite the effort on selecting relatively important predictors for BMI, none
of these studies simultaneously took into account the fact that impacts of deter-
minants on BMI may vary across demographic groups. In fact, these varying im-
pacts have been well documented in the literature. For example, Yu (2012) found
that education attainment has different impacts on BMI in different gender, age
and race groups. In particular, compared with college graduates, less educated
whites and younger black women are more likely to be obese, and the differen-
tials are larger for women than men, but weak or nonexistent among black men
and older black women. Similar evidence has been found by a considerable num-
ber of studies, such as Colditz et al. (1991), Sobal, Rauschenbach and Frongillo
(1992), Lipowicz, Gronkiewicz and Malina (2002), Zhang and Wang (2004) and
so on. In order to capture such varying impacts, a common practice is to add inter-
action terms between selected BMI determinants and demographic variables into
a regression model. The major shortcoming of this method is that it requires large
degrees of freedom, which restrict the number of variables being allowed to have
varying impacts on BMI. The choice of determinants having varying impacts, nor-
mally, serves to answer a specific research question, and therefore it is arbitrary
and lacks statistical support. Furthermore, the method of adding interaction terms
provides no statistical evidence to justify the importance of demographic variables,
in terms of differencing the determinants’ impacts on BMI.

In this paper, we provide a solution to the modeling issues existing in the liter-
ature of BMI studies using individual health survey data, that is, (1) how to allow
for and quantify the varying impacts of determinants on BMI; (2) how to justify
the relative importance of demographic variables in differencing potential determi-
nants’ impacts on BMI; and (3) how to identify the relatively important determi-
nants of BMI. Data used in this study are from the 2013 National Health Interview
Survey (NHIS) in the United States. There are 16,593 observations, 48 potential
determinants and 32 demographic groups generated by 3 categorical variables (i.e.,
age group, gender and race).

To allow for and quantify the varying impacts of BMI determinants across de-
mographic groups, we adopt the categorical varying-coefficient model proposed by
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Li, Ouyang and Racine (2013), which specifies the impacts of BMI determinants
as unknown functions of demographic variables. Different from the conventional
practice of adding interaction terms to regression models, the categorical varying-
coefficient model does not consume degrees of freedom that quickly when the
number of demographic variables and/or BMI determinants increases.2 Moreover,
as documented in Li, Ouyang and Racine (2013), the selection of optimal band-
widths for categorical variables provides statistical justification on the relative im-
portance of demographic variables in terms of differencing BMI determinants’
impacts, and is able to serve as a filter to remove irrelevant demographic groups.
For example, in our BMI study we are able to demonstrate that all demographic
variables including age, gender and race are important in driving the BMI deter-
minants’ impacts to be different in different groups. We also find that gender and
race are stronger in differencing the determinants’ impacts on BMI than age. To
identify the relatively important determinants of BMI, we adopt the group LASSO
method proposed by Yuan and Lin (2006). In particular, we marry the categorical
varying-coefficient model and the group LASSO method to simultaneously solve
the aforementioned modeling issues in this BMI study.

The rest of the paper is organized as follows. We review the categorical varying-
coefficient model of Li, Ouyang and Racine (2013), and introduce a variable se-
lection procedure and its asymptotic results for the varying-coefficient model in
Section 2. In Section 3, we conduct a Monte Carlo study to investigate the finite
sample properties of the method. In Section 4, by using the 2013 NHIS data, we
identify the important determinants of BMI and quantify their varying impacts on
BMI across demographic groups. Section 5 concludes the paper with some dis-
cussions. The necessary assumptions required for the theoretical development are
provided in the Appendix. Additional results and mathematical proofs are provided
in the supplementary file of this paper [Gao et al. (2017)].

2. Methodology. In this study, a categorical varying-coefficient model is
adopted to capture the varying impacts of a large range of factors on BMI across
demographic groups. Varying-coefficient models have attracted considerable at-
tention and gained popularity in the past two decades from both theoretical and
practical aspects [e.g., Fan and Zhang (1999), Hastie and Tibshirani (1993), Li,
Ouyang and Racine (2013), Li and Racine (2010), Wang and Xia (2009); and so
forth]. As discussed in Wang and Xia (2009), including spurious regressors can de-
grade the estimation efficiency substantially. In order to address this issue, variable
selection for varying-coefficient models has received increasing attention [Ma et al.
(2015), Wang, Li and Huang (2008), Wang and Xia (2009)], but almost all of these
existing variable selection methods for varying-coefficient models are specifically

2A detailed example is provided in Appendix S3 of the supplementary file [Gao et al. (2017)] to
illustrate this difference.
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for the setting that only continuous predictors or indexes enter the nonparametric
specification of linear parameters. In fact, it is very common in empirical applica-
tions that categorical variables influence the regressors’ impacts on the dependent
variable, such as our BMI study in this paper.

To fill in the gap of literature and solve the modeling issues raised in BMI
studies, we propose a variable selection procedure for the categorical varying-
coefficient model below.

2.1. Brief review: A categorical varying-coefficient model. The model of Li,
Ouyang and Racine (2013) is specified as follows:

(2.1) Yi = X′
iβ0(Zi) + εi, i = 1, . . . ,N,

where Zi = (Z̄′
i , Z̃

′
i)

′ is an r-dimensional vector of discrete covariates with a sup-
port D = D̄ × D̃, Z̄i = (Zi,1, . . . ,Zi,r̄ )

′, Z̃i = (Zi,r̄+1, . . . ,Zi,r )
′ and 1 ≤ r̄ ≤ r .

Moreover, {Z̃i,1 ≤ i ≤ N} is independent of all other variables and has no impact
on β0(·), which implies that Z̃i has no impact on Yi at all. Therein, Z̄i and Z̃i are
referred to as relevant and irrelevant covariates, respectively. When r̄ = r , there is
no irrelevant covariate existing in the system, that is, Z̄i = Zi . To distinguish Xi

from Zi , they are referred to as regressors and covariates, respectively, hereafter.
Based on the above description, the true model reduces to

(2.2) Yi = X′
iβ0(Z̄i) + εi, i = 1, . . . ,N,

where εi is a random error term; Xi = (Xi,1, . . . ,Xi,p)′ is a p-dimensional vector
of regressors; β0(z) = (β01(z), . . . , β0p(z))′ is a p-dimensional unknown coeffi-
cient function; and no information is known in advance to distinguish Z̄i and Z̃i .
Moreover, both p and r are supposed to be fixed. This assumption is not that con-
troversial. For example, in our BMI application, the sample size N is normally
much larger than the number of potential predictors of X, that is, p, and the num-
ber of possible covariates Z is even smaller. In particular, N , p and r are 16,593,
48 and 3, respectively, in our BMI application. We refer to Section 4 for the details.

Applying model (2.2) to BMI data analysis allows us to capture the varying
impacts of X, that is, potential predictors such as lifestyles and socio-economic
factors, on BMI (indicated by Y ) across demographic groups including gender,
age group and race (denoted by Z). It is common practice to capture such kinds of
varying impacts by adding interactions between the discrete Z variables and the
X variables to a linear regression model, while it is straightforward to show that
model (2.2) nests the latter model specification as a special case [cf. Appendix S3
of Gao et al. (2017)].

To carry on the regression, the kernel function of Aitchison and Aitken (1976)
for an unordered covariate is adopted:

(2.3) l(Zi,s, zs, θs) =
{

1, if Zi,s = zs,

θs, otherwise,
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where the range of θs is [0,1] for s = 1, . . . , r . It can be seen that θs = 0 leads to an
indicator function and θs = 1 gives a uniform weight function. Then (2.3) allows
us to construct a product kernel function of the form

(2.4) L(Zi, z,�) =
r∏

s=1

l(Zi,s, zs, θs) =
r∏

s=1

θ
1(Zi,s �=zs)
s ,

where � = (θ1, . . . , θr)
′. Therefore, for any z ∈ D, the kernel-based OLS estimator

is denoted as

β̂(z) =
[

N∑
j=1

XjX
′
jL(Zj , z, �̂)

]−1 N∑
j=1

XjYjL(Zj , z, �̂),

where an optimal bandwidth �̂ is obtained by minimizing the following cross-
validation criterion function:

(2.5) CV(�) = 1

N

N∑
i=1

(
Yi − X′

i β̂−i

)2
,

and the leave-one-out OLS estimator β̂−i is defined as

β̂−i =
[

N∑
j=1,j �=i

XjX
′
jL(Zj ,Zi,�)

]−1 N∑
j=1,j �=i

XjYjL(Zj ,Zi,�).

It is convenient to introduce some notation here. For an r-dimensional vec-
tor z = (z1, . . . , zr)

′ ∈ D, we partition z as z = (z̄′, z̃′)′ conformably with Zi ,
where z̄ = (z1, . . . , zr̄ )

′ and z̃ = (zr̄+1, . . . , zr)
′. Correspondingly, we partition �

as � = (�̄′, �̃′)′, where �̄ = (θ1, . . . , θr̄ )
′ and �̃ = (θr̄+1, . . . , θr)

′. Due to space
limitations, all assumptions needed for the lemmas and theorems in this paper are
stated in the Appendix, and all mathematical proofs are provided in the supple-
mentary file [Gao et al. (2017)]. Given that our study is based on Li, Ouyang and
Racine (2013), we borrow two results from them and summarize them in the fol-
lowing lemma.

LEMMA 2.1. Let �̂ = (θ̂1, . . . , θ̂r )
′ = argmin�∈[0,1]p CV(�).

1. Under Assumptions 1 and 2.1, θ̂s = OP ( 1
N

) for s = 1, . . . , r .

2. Under Assumptions 1 and 2.2, θ̂s = OP ( 1√
N

) for s = 1, . . . , r̄ , and

limN→∞ Pr(θ̂r̄+1 = 1, . . . , θ̂r = 1) ≥ α for some α ∈ (0,1).

Lemma 2.1 summarizes Theorems 1 and 3 of Li, Ouyang and Racine (2013) and
provides an asymptotic theory of smoothing parameters �̂. In particular, the rate
of convergence of θ̂s depends on whether there is an irrelevant covariate or not,
rather than the identification requirements stated in Assumptions 2.1 or 2.2. For
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details, see Theorems 1 and 3 of Li, Ouyang and Racine (2013). It is worthwhile
to mention that, for nonparametric/varying-coefficient models with at least one
covariate as a continuous variable, the asymptotic theory of selected smoothing
parameters through cross-validation has also been well developed [cf. Hall, Li and
Racine (2007) and Li and Racine (2010)].

For a covariate zs , if we obtain θ̂s = 1, we can safely remove zs from the model.3

To some extent, this provides a variable selection procedure for the covariates.
Hereafter, with a slight abuse of notation, we assume that we have removed all
detected irrelevant covariates according to Lemma 2.1, that is, those zs with θ̂s = 1,
and the remaining covariates of the ith observation are still represented by Zi =
(Z̄′

i , Z̃
′
i)

′ as before. However, clearly there is a positive probability such that no Z̃i

exists. The purpose of this variable selection on covariates is to reduce the total
number of distinct realizations of z from our sample {Z1, . . . ,ZN }.

2.2. Variable selection on Xi . For model (2.2) with all detected irrelevant co-
variates removed, we propose a variable selection procedure to identify regressors
of Xi with a nonzero coefficient when both p and r are fixed. Assume that there
exists an unknown set Uc ⊆ {1, . . . , p} satisfying that E|β0j (Z̄i)|2 = 0 if and only
if j ∈ Uc, where β0j (Z̄i) denotes the j th element of β0(Z̄i). To simplify notation,
we assume that, in the true model, U = {1, . . . , p∗} and Uc = {p∗ + 1, . . . , p},
where the integer p∗ satisfies 1 ≤ p∗ ≤ p. In other words, only the first p∗ vari-
ables in Xi have nonzero coefficients and our goal is to identify U and Uc.

Let m denote the number of realizations of z by observing {Z1, . . . ,ZN }. Ob-
viously m converges to the cardinality of D in probability with nondegenerate
probability imposed on i.i.d. Zi as N diverges to ∞. Since m is finite and observ-
able, our parameters of interest can be characterized by the following m×p matrix
B with the underlying true coefficient function B0. For the sake of presentation,
denote

B
m×p

= (β1, . . . , βm)′ = (b1, . . . , bp),

βj
p×1

= (βj,1, . . . , βj,p)′ for j = 1, . . . ,m,

bs
m×1

= (β1,s , . . . , βm,s)
′ for s = 1, . . . , p,

B0
m×p

= (
β0

(
z1)

, . . . , β0
(
zm))′ = (b01, . . . , b0p∗,0, . . . ,0),

b0s
m×1

= (
β0s

(
zj )

, . . . , β0s

(
zj ))′ for s = 1, . . . , p∗,

(2.6)

where zj , j = 1, . . . ,m, denotes the j th realization of z ∈ D.

3Although one cannot always achieve θ̂s = 1 for all irrelevant covariates simultaneously, as stated
in Lemma 2.1, there is always a certain positive probability that we can recognize a covariate as
irrelevant; that is, the probability of θ̂s = 1 for the corresponding covariate is positive.
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Notice that the last p − p∗ columns of B0 are zero columns. By treating entries
in each column of B0 as a group, the selection on the regressor of Xi is, essentially,
to identify those groups (i.e., columns) of the matrix B0 with all entries as zero.
Following the spirit of Yuan and Lin (2006), we consider the following regularized
least squares estimator:

(2.7) B̂ = (β̂γ,1, . . . , β̂γ,m)′ = (b̂γ,1, . . . , b̂γ,p) = argmin
B∈Rm×p

Qγ (B),

and

(2.8) Qγ (B) =
m∑

j=1

N∑
i=1

(
Yi − X′

iβj

)2
L

(
Zi, z

j , �̂
) +

p∑
s=1

γs‖bs‖,

where �̂ is the smoothing parameter vector obtained from Lemma 2.1; bs (s =
1, . . . , p) is the sth column of B as denoted in (2.6);

∑p
s=1 γs‖bs‖ is the group-

wise regularizer and defined as the weighted sum of the �2 norms of all the column
vectors in B; and γ = (γ1, . . . , γp)′ represents the weight that controls the group-
wise regularizer.

REMARK 2.1. If we ignore the optimal bandwidth selection and use an in-
dicator function to replace all kernel functions, we essentially have an adaptive
version of a group LASSO model [cf. Yuan and Lin (2006)]. On the other hand, if
we set all γs ’s to 0, we end up with the model proposed in Li, Ouyang and Racine
(2013). Due to the features of BMI data, we combine both methods together and
try to filter out any redundant information as much as possible.

Our first theorem is stated below.

THEOREM 2.1. Suppose Assumptions 1–3 hold.

1. Let γ ∗ = (γ1, . . . , γp∗)′ and ‖γ ∗‖√
N

→ ω1, where ω1 is a constant satisfying 0 ≤
ω1 < ∞. Then ‖β̂γ,j − β0(z̄

j )‖ = OP (N−1/2) for j = 1, . . . ,m, where z̄j =
(z

j
1, . . . , z

j
r̄ )

′.
2. Let 1√

N
mins∈{p∗+1,...,p} γs ≥ ω2, where ω2 is a sufficiently large constant. Then

Pr(‖b̂γ,j‖ = 0) → 1 for j = p∗ + 1, . . . , p.

The first result of Theorem 2.1 states that if the regularizer weight is not too
large, then the estimator (2.7) always has optimal

√
N consistency. The second

result implies that when the regularizer weight is at level
√

N , estimator (2.7) can
successfully identify those regressors with a zero coefficient. To satisfy the as-
sumptions in Theorem 2.1, all elements of γ can be simply set at level

√
N . How-

ever, with such γ , Theorem 2.1 does not imply any asymptotic normality property
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of the estimator (2.7), while in Li, Ouyang and Racine (2013) the asymptotic nor-
mality property has been achieved for the oracle estimator.4 Specifically, the oracle
estimator is defined as

(2.9) β̂ora
(
z̄j ) =

(
N∑

i=1

XiUX′
iUL

(
Zi, z

j , �̂
))−1 N∑

i=1

XiUYiL
(
Zi, z

j , �̂
)
,

where j = 1, . . . ,m and XiU = (Xi,1, . . . ,Xi,p∗)′.
In fact, with a more careful data-driven choice of γ , we can further achieve the

asymptotic normality whenever there is no irrelevant covariate with the help of
following the oracle property for our estimator (2.7).

THEOREM 2.2. Under conditions of Theorem 2.1, ‖β̂γ,jU − β̂ora(z̄
j )‖ =

OP (
‖γ ∗‖
N

) for j = 1, . . . ,m, where β̂γ,jU = (β̂γ,j1, . . . , β̂γ,jp∗)′; β̂γ,js denotes the

sth element of β̂γ,j for j = 1, . . . ,m and s = 1, . . . , p∗; and γ ∗ is denoted in The-
orem 2.1.

To achieve an asymptotic normality for the estimator (2.7), the convergence
rate of β̂γ,jU to β̂ora(z̄

j ) has to be much faster than 1√
N

. The oracle property in

Theorem 2.2 implies such a result as long as ‖γ ∗‖ is much smaller than
√

N .
Therefore, the simple choice of

√
N level for γ is not sufficient.

To achieve a desired asymptotic normality property for the estimator (2.7), we
propose a data-driven choice of γ , which can yield an even faster rate of conver-
gence of an order of oP ( 1√

N
) to the oracle estimator. From now on, we assume

that whenever the true coefficient is nonzero, that is, b0s �= 0 for s = 1, . . . , p∗, its
�2 norm is much larger than root N level, that is, ‖b0s‖  1√

N
for s = 1, . . . , p∗.

This assumption is not controversial in the current fixed dimension setting in which
‖b0s‖ is some positive constant as N increases.

Similarly to Wang and Leng (2007) and Wang and Xia (2009), our data-driven
regularizer weight is as follows:

(2.10) γ = γ̃
(‖b̃1‖−1, . . . ,‖b̃p‖−1)′

,

where γ̃ is a scalar, b̃s is the sth column of the unregularized estimator B̃ , and B̃

is obtained from (2.8) by simply choosing γ1 = · · · = γp = 0 as follows:

(2.11) B̃ = (β̃1, . . . , β̃m)′ = (b̃1, . . . , b̃p) = argmin
B∈Rm×p

Q(B)

4Notice that the word “oracle” refers to those estimators provided in Li, Ouyang and Racine (2013)
by assuming we know the true set U . Here we completely ignore the inefficiency brought in the model
by the irrelevant covariates Z̃i . The asymptotically efficient estimator is obtained when we know both
the set U and the irrelevant covariates. However, this can only be done at a certain probability based
on Lemma 2.1.
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and

(2.12) Q(B) =
m∑

j=1

N∑
i=1

(
Yi − X′

iβj

)2
L

(
Zi, z

j , �̂
)
.

Under Assumption 3.1, the first result of Theorem 2.1 and the assumption of
‖b0s‖  1√

N
for s = 1, . . . , p∗, it is easy to verify that ‖b̃s‖−1 = oP (

√
N) for

s = 1, . . . , p∗ and ‖b̃s‖ = OP (1/
√

N) for s = p∗ + 1, . . . , p. Then the intuition of
choosing γ as (2.10) is straightforward. The unregularized estimator B̃ is an

√
N

consistent estimator. It provides information on how likely each column of B0 is
a zero column. In other words, smaller ‖b̃j‖ implies that the j th column is more
likely to be zero, and hence suggests a larger regularizer on ‖bj‖. In particular,
given that ‖b̃s‖−1 = oP (

√
N) for s = 1, . . . , p∗, Theorem 2.2 implies the desired

rate of oP ( 1√
N

) for β̂γ,jU to be the oracle estimator β̂ora(z̄
j ). Given the form of

γ in (2.10), the selection on the vector γ reduces to the selection on the scalar γ̃ .
Note that the properties of ‖b̃j‖−1 for j = 1, . . . , p imply that a large enough
constant γ̃ would satisfy all the conditions on γ . More specifically, we select the
constant γ̃ by the following modified BIC-type (MBIC) criterion:

MBICγ̃ = ln RSSγ̃ + dfγ̃ · lnN

N
,

where dfγ̃ is the number of nonzero coefficients identified by B̂γ̃ , and RSSγ̃ is de-
fined as RSSγ̃ = 1

N

∑m
j=1

∑N
i=1(Yi −X′

i β̂γ̃ ,j )
2L(Zi, z

j , �̂). The weight parameter
is obtained by

(2.13) ˆ̃γ = argmin
γ̃

MBICγ̃ .

Recall the true set of nonzero coefficients is denoted by U = {1, . . . , p∗}. Let
S ˆ̃γ = {j : ‖b̂ ˆ̃γ,j

‖ > 0,1 ≤ j ≤ p} indicate the set of relevant variables identified by

the regularized estimator B̂ ˆ̃γ with the weight parameter ˆ̃γ chosen by (2.13). Then
we have the following theorem.

THEOREM 2.3. Suppose that ‖b0s‖  1√
N

for s = 1, . . . , p∗. Under condi-

tions of Theorem 2.1, the weight parameter selected by the modified BIC-type cri-
terion (2.13) can do the following:

1. Identify the true model consistently, that is, Pr(S ˆ̃γ = U) → 1 as N → ∞.
2. Achieve asymptotic normality, that is,

(2.14)
√

N
(
β̂ ˆ̃γ,jU

− β0U

(
zj )) →D N

(
0,


(
zj ))
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for the relevant covariate case defined in Assumption 2, and for j = 1, . . . ,m,
where



(
zj ) = A−1(

zj )
�

(
zj )

A−1(
zj )

,

A
(
zj ) = E

[
XiUX′

iU |zj ]
Pr

(
zj )

,

�
(
zj ) = E

[
ε2
i XiUX′

iU |zj ]
Pr

(
zj )

,

β0U

(
zj ) = (

β01
(
zj )

, . . . , β0p∗
(
zj ))′

,

and XiU has been defined in (2.9).
3. For the irrelevant covariate case defined in Assumption 2,

(2.15) β̂ ˆ̃γ,jU
− β0U

(
z̄j ) = OP

(
1√
N

)

for j = 1, . . . ,m, where β0U(z̄j ) = (β01(z̄
j ), . . . , β0p∗(z̄j ))′.

When there is no irrelevant covariate (i.e., r = r̄ and Zi = Z̄i), the asymptotic
normality result of (2.14) is based on the limiting distribution of

√
N(β̂ora(z

j ) −
β0U(zj )), which is established by applying Theorem 2 of Li, Ouyang and Racine
(2013) on the oracle model. In practice, one may want to establish a consistent
estimate for 
(zj ) for j = 1, . . . ,m, which can be immediately obtained following
the procedure provided in Theorem 2 of Li, Ouyang and Racine (2013), assuming
S ˆ̃γ = U :


̂
(
zj ) = Â−1(

zj )
�̂

(
zj )

Â−1(
zj )

,

where ε̂i = Yi − X′
i β̂ ˆ̃γ,jU

, �̂−1(zj ) = 1
N

∑N
i=1 ε̂2

i XiUX′
iUL(Zi, z

j , �̂), and

Â−1(zj ) = 1
N

∑N
i=1 XiUX′

iUL(Zi, z
j , �̂).

However, when there are irrelevant covariates (i.e., r > r̄), the asymptotic distri-
bution of

√
N(β̂ora(z̄

j )−β0U(z̄j )) remains unknown even for the oracle estimator,
and hence we only obtain

√
N consistency in (2.15). In this case, the asymptotic

distribution of
√

N(β̂ora(z̄
j ) − β0U(z̄j )) can be established by using a bootstrap

method as documented in Li, Ouyang and Racine (2013).
In this section, we propose a regularized estimator for the categorical varying-

coefficient model and obtain its superior statistical properties. In particular, the
coefficients of the proposed categorical varying-coefficient model possess a nat-
ural group structure. To take advantage of the structure, we apply a group-wise
regularizer to improve accuracy of variable selection and parameter estimation.
Moreover, we apply a data-driven method, that is, a modified BIC-type criterion,
to select the weight parameter, which further boosts the performance and helps
to achieve an asymptotic normality property for the estimator, especially when no
irrelevant covariate presents.
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3. Monte Carlo evidence. In this section, we conduct a comprehensive
Monte Carlo (MC) study to show the finite-sample performance of our method
and a range of competing methods. To each generated data set {Yi,Xi,Zi}, first,
we apply model (2.2) and estimate the optimal bandwidths. Following Lemma 2.1
and its discussion in Section 2.1, we remove irrelevant covariates to reduce the
number of groups based on the realizations of Zi .5 Second, we identify the ir-
relevant regressors by estimating B̂ through (2.7). Last, we estimate the model
excluding irrelevant covariates and regressors by the unregularized estimator pro-
posed in Li, Ouyang and Racine (2013). The purpose of the last step is to further
reduce the possible bias.

To compare the finite-sample performance of our method with some competing
ones and put all the methods on equal footing, we use their adaptive versions for
all LASSO related methods. More specifically, for each data set, we conduct (a) an
adaptive version group LASSO estimation method, (b) an adaptive version of the
LASSO estimation method, and (c) a stepwise estimation method. In particular, the
group LASSO method (denoted by GroupL) is essentially a special case of (2.2),
that is, with all bandwidths equal to 0. Alternatively, without taking into account
the varying impacts of X on Y according to Z, we apply methods (b) and (c) to the
linear regression model (3.1) below (denoted by LASSO1 and SW1, respectively).
Moreover, we apply methods (b) and (c) to the linear regression model (3.2) below
(denoted by LASSO2 and SW2, respectively), where the varying impacts of X on
Y are (particularly) captured by the interaction terms between X on Z. It is a very
common practice in empirical studies [e.g., Yu (2012)]:

Yi = (
X′

i ,Zi,11, . . . ,Zi,1c1−1, . . . ,Zi,r1, . . . ,Zi,rcr−1
)′
β∗

0 + εi,(3.1)

Yi = (
X′

i , (Zi,11Xi)
′, . . . , (Zi,1c1−1Xi)

′,
(3.2)

(Zi,r1Xi)
′, . . . , (Zi,rcr−1Xi)

′)′β∗
0 + εi,

where Zi,jk = 1 if the j th element of Zi is k with k = 1, . . . , cj − 1; Zi,jk = 0,
otherwise.

Notice that when Xi does not exist in a model (3.1), that is, only categorical
variables are included, special treatment [Gertheiss and Tutz (2010)] can be con-
sidered. We avoid using more complicated ways to introduce interactions in model
(3.2) since it is almost impossible to exhaust all possibilities.

We consider three scenarios in terms of the data-generating process (DGP). In
the first two scenarios, the DGPs are based on two categorical varying-coefficient
models, that is, without and with the irrelevant covariate included in Zi , respec-
tively. And the DGP of the third scenario is a conventional linear regression model.
Details of the DGPs are as follows:

5Refer to Li, Ouyang and Racine (2013) for extensive evidence on the performance of bandwidth
selection in a finite sample.
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Scenario 1: Let p = 10, p∗ = 5, and Yi = (1,X′
i )

′β0(Zi) + εi , where Xi =
Hi +Vi and Zi = (Zi,1, . . . ,Zi,r )

′. For ∀j = 1, . . . , r , Zi,j is i.i.d. over i and takes
a value from {0,1,2} with probability {0.25,0.25,0.5}, respectively. Vi is i.i.d.
over i and follows N(Zi,1/2 · ip−1,

√
Zi,1 + 1 · Ip−1), in which Ip−1 denotes the

(p − 1)-dimensional identity matrix and ip−1 represents the (p − 1)-dimensional
vector with all entries being one; Hi is i.i.d. over i and follows N(ip−1, Ip−1); and
εi is i.i.d. over i and follows N(0,1). Let β0j (Zi) denote the j th element of the
coefficient function β0(Zi) for j = 1, . . . , p.

Two sub-scenarios are designed as without and with the irrelevant covariate
included in Zi , respectively:

• Scenario 1.1: Relevant Covariate Case (i.e., r̄ = r). For ∀j ≤ 5,

β0j (Zi) =

⎧⎪⎪⎨
⎪⎪⎩

2 + 2j, if the remainder of
r∑

k=1

Zi,k/2 is 0,

1 + 2j, otherwise;
for ∀j > 5, β0j = 0.

• Scenario 1.2: Irrelevant Covariate Case (i.e., r̄ = 1). For ∀j ≤ 5,

β0j (Zi) =
{

2 + 2j, if the remainder of Zi,1/2 is 0,

1 + 2j, otherwise;
for j > 5, β0j = 0.

Scenario 2: Let Yi = (1,X′
i )

′β0 + εi , where β0 = (β01, . . . , β0p)′, and β0j = 5
with j ≤ 5 and β0j = 0 with j > 5. All the other variables are generated in exactly
the same way as for Scenario 1.

Under Scenario 1, model (2.2) is correctly specified, while models (3.1) and
(3.2) are misspecified. Therefore, we expect our estimator performs better than
the other methods. Under Scenario 2, all models [i.e., (2.2), (3.1) and (3.2)] are
correctly specified, and so we expect reasonable performance from all the estima-
tors.

To evaluate model performance, we examine three measures. They are (1) the
percentage of missed true regressors (FNR); (2) the percentage of falsely selected
noise regressors (FPR);6 and (3) the mean squared prediction error (MSPE). We
calculate MSPE, in the spirit of Chu, Li and Reimherr (2016), as follows:

(3.3) MSPE = 1

N

N∑
i=1

(ŷ−i − yi)
2,

6To be clear, all binary variables and interaction terms in (3.1) and (3.2) are considered as redun-
dant information. For example, if we identify some interaction terms as relevant regressors by the
LASSO method for model (3.2), these variables are counted as falsely selected.
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where ŷ−i denotes the leave-one-out prediction for the ith individual (i.e., we im-
plement estimation without the observation of the ith individual, and then use the
estimated parameters to predict yi for the ith individual). For each method under
each scenario, we report averaged, over 1000 replications, FNR and FPR, and the
root of averaged MSPE, denoted as RME. Note that the estimated RME should
ideally converge to the standard deviation of εi (i.e., 1 in our MC design). There-
fore, an estimated RME closing to 1 is an indicator for good model performance
of the corresponding method.

In this MC study, we also consider a range of different settings for (N, r). In
particular, we consider N of 2000, 4000 and 8000, which are reasonable, if not
much smaller, sample sizes in empirical applications. With regard to the size of r ,
we set it as 2, 3 and 4. It is noteworthy that as r = 4, we already have 81 demo-
graphic groups based on our DGP, and so it is more than enough to demonstrate
that the current setting covers our case study perfectly. For example, in our BMI
study, 3 covariates (and 32 groups) are reasonably considered, which is supported
by the BMI literature [cf. Yu (2012)].

We summarize the simulation results in Table 1. As expected, under Scenar-
ios 1.1 and 1.2, our estimator (denoted as Varying-Coef) and group LASSO esti-
mator (denoted as GroupL) outperform all other methods in general. As models
(3.1) and (3.2) are misspecified, it is not surprising that LASSO1, LASSO2, SW1
and SW2 do not perform well. The RME’s estimated by our estimator and group
LASSO method, under different settings, are all close to 1, that is, the true standard
deviation of εi . However, those estimated by LASSO and stepwise methods are far
away from 1, which is an indication for less accurate estimates. Note that the true
regressor can almost be identified by our estimator and group LASSO method, that
is, FNR’s are zero; in contrast, FNR’s from SW1, SW2 and LASSO2 are consider-
ably large. FPR’s from Varying-Coef and GroupL are very low compared to those
from all other methods. Not surprisingly, under Scenario 2, all methods perform
relatively well except SW1 and SW2.

We now take a close look at these results from Varying-Coef and GroupL, as
both of them can address two questions raised in the Introduction, that is, (1) al-
lowing for and quantifying the varying impacts, and (2) identifying the relatively
important determinants. However, only our method is able to address the question
of “how to justify the relative importance of demographic variables” by looking
at the estimates of the optimal bandwidths based on Lemma 2.1. Compared to the
group LASSO method, the better performance of the varying-coefficient setting is
due to the following two reasons: (1) The varying-coefficient setting uses optimal
bandwidths throughout Scenarios 1.1, 1.2 and 2, and so the RMEs of Varying-Coef
are closer to 1 as expected; and (2) For Scenario 1.2, the varying-coefficient setting
can potentially throw away more possible irrelevant variables, and so that reduces
the number of groups based on the realizations of Zi . In other words, each group
can potentially include more samples after we remove extra covariates from the
system. For the sake of space, we report the histograms of the estimates on the
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TABLE 1
Monte Carlo Simulation Results

Varying-Coef GroupL LASSO1 SW1 LASSO2 SW2

r N RME FNR FPR RME FNR FPR RME FNR FPR RME FNR FPR RME FNR FPR RME FNR FPR

Scenario 1.1 2 2000 0.9871 0.0000 0.0357 0.9869 0.0000 0.0381 4.1390 0.0000 0.2497 4.2554 0.0833 0.1843 3.4135 0.0158 0.6561 3.4344 0.0143 0.1852
4000 0.9942 0.0000 0.0076 0.9941 0.0000 0.0078 4.1424 0.0000 0.2168 4.2504 0.0833 0.1888 3.3459 0.0166 0.6567 3.4270 0.0143 0.2081
8000 0.9970 0.0000 0.0031 0.9966 0.0000 0.0036 4.1458 0.0000 0.1878 4.2528 0.0833 0.1889 3.2587 0.0170 0.6567 3.3922 0.0143 0.2406

3 2000 0.9354 0.0000 0.0404 0.9321 0.0000 0.0445 4.2912 0.0000 0.2682 4.4940 0.0769 0.1192 4.1787 0.0160 0.6589 4.4234 0.0121 0.1145
4000 0.9801 0.0000 0.0118 0.9794 0.0000 0.0149 4.2993 0.0000 0.2160 4.4440 0.0769 0.1827 4.1822 0.0164 0.6574 4.3875 0.0121 0.1459
8000 0.9909 0.0000 0.0068 0.9907 0.0000 0.0075 4.3031 0.0000 0.2401 4.4092 0.0769 0.2376 5.9979 0.0165 0.6577 4.3494 0.0121 0.1729

4 2000 0.8038 0.0000 0.0921 0.7565 0.0000 0.0934 4.3319 0.0000 0.2264 4.6127 0.0714 0.0583 4.5710 0.0163 0.6583 4.6233 0.0105 0.0684
4000 0.9585 0.0000 0.0758 0.8932 0.0000 0.0802 4.3393 0.0000 0.1693 4.5909 0.0714 0.0812 4.5658 0.0158 0.6565 4.6252 0.0105 0.0854
8000 0.9986 0.0000 0.0660 0.9477 0.0000 0.0690 4.3433 0.0000 0.1602 4.5340 0.0714 0.1375 4.2906 0.0162 0.6561 4.6150 0.0105 0.1123

Scenario 1.2 2 2000 0.9929 0.0000 0.0379 0.9868 0.0000 0.1639 3.4909 0.0000 0.1383 3.6608 0.0833 0.1074 1.2706 0.0160 0.6348 2.0078 0.0143 0.0984
4000 0.9970 0.0000 0.0130 0.9942 0.0000 0.1161 3.4944 0.0000 0.1068 3.6639 0.0833 0.1055 1.2326 0.0170 0.6298 2.0124 0.0143 0.0980
8000 0.9985 0.0000 0.0043 0.9972 0.0000 0.0748 3.4940 0.0000 0.0918 3.6637 0.0833 0.1059 1.0383 0.0159 0.6176 2.0115 0.0143 0.0969

3 2000 0.9898 0.0000 0.1423 0.9323 0.0000 0.2575 3.4904 0.0000 0.1321 3.6599 0.0769 0.1008 1.0752 0.0150 0.6311 2.0089 0.0121 0.0979
4000 0.9954 0.0000 0.0759 0.9797 0.0000 0.2367 3.4897 0.0000 0.0998 3.6568 0.0769 0.1025 1.2851 0.0158 0.6266 2.0082 0.0121 0.0979
8000 0.9977 0.0000 0.0196 0.9909 0.0000 0.0912 3.4932 0.0000 0.0828 3.6611 0.0769 0.0998 1.4331 0.0171 0.6202 2.0120 0.0121 0.0977

4 2000 0.9881 0.0000 0.3168 0.7860 0.0000 0.3586 3.4892 0.0000 0.1111 3.6572 0.0714 0.0935 1.2057 0.0162 0.6304 2.0064 0.0105 0.0972
4000 0.9942 0.0000 0.2656 0.8854 0.0000 0.3034 3.4904 0.0000 0.0884 3.6560 0.0714 0.0965 1.3948 0.0163 0.6264 2.0134 0.0105 0.0971
8000 0.9972 0.0000 0.1584 0.9356 0.0000 0.2104 3.4941 0.0000 0.0784 3.6585 0.0714 0.0966 1.1489 0.0157 0.6171 2.0088 0.0105 0.0977
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TABLE 1
(Continued)

Varying-Coef GroupL LASSO1 SW1 LASSO2 SW2

r N RME FNR FPR RME FNR FPR RME FNR FPR RME FNR FPR RME FNR FPR RME FNR FPR

Scenario 2 2 2000 0.9972 0.0000 0.0002 0.9883 0.0000 0.0000 0.9985 0.0000 0.0000 2.7182 0.0833 0.0291 1.0647 0.0156 0.0820 2.6802 0.0143 0.0290
4000 0.9988 0.0000 0.0000 0.9945 0.0000 0.0000 0.9994 0.0000 0.0000 2.7172 0.0833 0.0286 0.9938 0.0156 0.0813 2.6815 0.0143 0.0289
8000 0.9992 0.0000 0.0000 0.9971 0.0000 0.0000 0.9995 0.0000 0.0000 2.7210 0.0833 0.0277 0.9967 0.0165 0.0802 2.6863 0.0143 0.0285

3 2000 0.9953 0.0000 0.0008 0.9320 0.0000 0.0000 0.9980 0.0000 0.0000 2.6872 0.0769 0.0303 1.0855 0.0154 0.0814 2.6761 0.0121 0.0297
4000 0.9980 0.0000 0.0000 0.9811 0.0000 0.0000 0.9992 0.0000 0.0000 2.6869 0.0769 0.0308 0.9935 0.0156 0.0811 2.6818 0.0121 0.0285
8000 0.9989 0.0000 0.0000 0.9913 0.0000 0.0000 0.9995 0.0000 0.0000 2.7014 0.0769 0.0277 0.9967 0.0167 0.0803 2.6826 0.0121 0.0291

4 2000 0.9939 0.0000 0.0012 0.7858 0.0000 0.0000 0.9990 0.0000 0.0000 2.6670 0.0714 0.0325 0.9879 0.0156 0.0810 2.6789 0.0105 0.0289
4000 0.9971 0.0000 0.0000 0.8932 0.0000 0.0000 0.9995 0.0000 0.0000 2.6764 0.0714 0.0301 0.9939 0.0158 0.0811 2.6823 0.0105 0.0286
8000 0.9986 0.0000 0.0000 0.9478 0.0000 0.0000 0.9996 0.0000 0.0000 2.6661 0.0714 0.0327 0.9968 0.0167 0.0803 2.6777 0.0105 0.0295

1. Varying-Coef represents our variable selection method; GroupL represents the group LASSO method; LASSO1 represents applying the LASSO method to model (3.1);
LASSO2 represents applying the LASSO method to model (3.2); SW1 represents applying the stepwise method to model (3.1); SW2 represents applying the stepwise
method to model (3.2).
2. Note that the estimated RME should converge to the standard deviation of εi (i.e., 1 in our MC design). Therefore, an estimated RME closing to 1 is an indicator for good
model performance of the corresponding method.
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bandwidth of irrelevant covariates with corresponding discussions in the supple-
mentary file of this paper [Gao et al. (2017)].

4. An application to BMI.

4.1. Data. Data used in this empirical study are from the 2013 National Health
Interview Survey (NHIS) in the United States. The NHIS is conducted annually
through face-to-face interviews. Our analysis focuses on adults aged 18 and over.
BMI is calculated based on self-reported height and weight. We exclude under-
weight individuals (BMI less than 18.5) from our analysis, and focus on such in-
dividuals with normal weight and overweight. There are three reasons for us to do
so. First, underweight is a much less prevalent health problem in developed coun-
tries like the U.S. In particular, in the NHIS data underweight accounts for a very
small proportion, that is, 1.8 percent of the whole sample. Second, factors causing
(or relating to) underweight are very much different from those for overweight or
obesity. For example, eating disorders, such as anorexia nervosa and bulimia, lack
of nutrition, and a hypermetabolism state, are considered as causes of underweight
[Ali and Lindström (2006)], while unhealthy lifestyles and poor socio-economic
factors are the major determinants of overweight and obesity (as discussed below
in detail). However, information on these potential determinants of underweight
is not available in the NHIS. Last but not least, for common factors causing both
underweight and overweight, their impacts on BMI might have different signs.
For example, mental health problems, such as depression, can cause both BMI in-
crease from normal weight to overweight level (positive impact on BMI) [Faith et
al. (2011)] and BMI decrease from normal weight to underweight level (negative
impact) [Carey et al. (2014)]. This kind of “U” shape impact of determinants on
BMI is hardly captured by our method.7 In the end we use the natural logarithm
transformed BMI in our analysis because BMI scores are skewed toward higher
values in our sample [Zeng et al. (2013)].

Through a systematic review of the literature on overweight and obesity, we test
impacts of 48 factors8 [i.e., regressors X in the model (2.2)] on BMI, including
lifestyle factors such as physical activity [Galani and Schneider (2007)], alcohol
consumption [Colditz et al. (1991)], smoking habits [Cawley and Scholder (2013)]
and so on; socio-economic factors [Cohen et al. (2013)] such as education, income,
working arrangement, etc.; and some other factors such as marital status [Sobal,
Rauschenbach and Frongillo (1992)], duration of US residence [Oza-Frank and

7We thank one referee for pointing out that quantile regression can serve as an alternative mod-
eling method for BMI [Koenker (2005), Zhao, Zhang and Liu (2014)]; see Section 5 for a detailed
discussion.

8The number of factors tested is restricted by information available in the data set. For example,
energy intake and dietary habit are important factors for BMI and obesity [see, for example, Hill and
Peters (1998)], but information about food consumption is not available in the NHIS.
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Cunningham (2010)] and depression [Faith et al. (2011)]. As discussed, a range of
previous studies shows that the impacts of regressors X on BMI are varying across
demographic groups [Colditz et al. (1991), Sobal, Rauschenbach and Frongillo
(1992), Zhang and Wang (2004)]. Therefore, we choose categorical variables of
age, gender and ethnicity as covariates, that is, Z in our model. By excluding such
individuals with underweight and those having missing values of any variable in-
volved in the model, we end up with a data set having 16593 observations. Defini-
tions and summary statistics for all variables are presented in Table 2. Furthermore,
Table 3 lists all 32 (i.e., m = 32) possible realizations of the covariates.

4.2. Summary of the main findings.

4.2.1. Variable selection. First of all, we implement (2.5) to estimate the op-
timal bandwidth parameters. Results are reported in Table 4. It can be seen that all
three covariates are relevant; however, their influences on the impacts of regres-
sors on BMI are quite different. In particular, ethnicity and gender have relatively
stronger influences than age group because the smoothing parameters associated
with ethnicity and sex are much smaller than that of age.

Based on these smoothing parameters, we then apply our method to identify the
relevant and irrelevant regressors to BMI. The optimal weight parameter selected
by the modified BIC-type criterion through (2.13) is ˆ̃γ = 3.2. Table 5 presents the
result of variable selection through equation (2.7). 24 regressors, out of 48 in total,
are identified as relevant, and the others are irrelevant to BMI.

In particular, while our estimate suggests that exercise is correlated with BMI,
the level of intensity and frequency does matter. For example, compared to never
doing vigorous (or strength) activity, doing such a level of exercise less than once
per week has almost no effect on BMI, while doing it more than once per week
starts to change BMI. In terms of light/moderate activity, however, people have to
do it more than three times per week to see some effect on BMI. Results from our
study may provide guidance for policy makers to adopt more efficient incentives
to avoid overweight or obesity, that is, encouraging people to do more intensive
exercise or to do moderate exercise more frequently rather than simply promoting
exercise at any intensive level with any frequency.

Both the status of drinking and smoking and their consumption level are rel-
evant to BMI. No impact from computer use can be seen. For socio-economic
factors, education, income, and the two highest levels of occupational social class
(OSC) (occup1 and occup2 compared to lowest OSC, i.e., occup5), and health pro-
fessional visit in the last 12 months are identified as relevant regressors for BMI,
but the two lower levels of OSC (occup3 and occup4 compared to occup5), work-
ing arrangement, working hours, house ownership, health insurance coverage and
medical care expenditure are irrelevant to BMI. Among all other factors, indicators
on duration of living in the U.S. (i.e., born in the U.S. and living in the U.S. more
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TABLE 2
Data description and summary statistics

Variable Definition Mean St.D.

Y
BMI body mass index 27.96 6.01

Z
sex 0 for female and 1 for male 0.49 0.50
age 0 for age < 25, 1 for 25 ≤ age ≤ 44, 2 for 45 ≤ age ≤ 64, and 3 for age ≥ 65 1.39 0.75
race 0 for white, 1 for black, 2 for asian, 3 for all the other races 0.33 0.67

X
Lifestyle factors

vig_l0 1 if never do vigorous activities, 0 otherwise (reference group) 0.45 0.50
vig_l1 1 if do vigorous activities less than once per week, 0 otherwise 0.04 0.19
vig_l2 1 if do vigorous activities more than one time and less than three times per week, 0 otherwise 0.28 0.45
vig_l3 1 if do vigorous activities more than three times per week, 0 otherwise 0.23 0.42
mod_l0 1 if never do light/moderate activities, 0 otherwise (reference group) 0.35 0.48
mod_l1 1 if do light/moderate activities less than once per week, 0 otherwise 0.02 0.15
mod_l2 1 if do light/moderate activities more than one time and less than three times per week, 0 otherwise 0.29 0.46
mod_l3 1 if do light/moderate activities more than three times per week, 0 otherwise 0.33 0.47
str_l0 1 if never do strength activities, 0 otherwise (reference group) 0.66 0.47
str_l1 1 if do strength activities less than once per week, 0 otherwise 0.02 0.14
str_l2 1 if do strength activities more than one time and less than three times per week, 0 otherwise 0.20 0.40
str_l3 1 if do strength activities more than three times per week, 0 otherwise 0.12 0.32
smk_ed 1 if current every day smoker, 0 otherwise 0.13 0.34
smk_sd 1 if current some day smoker, 0 otherwise 0.04 0.20
smk_f 1 if former smoker, 0 otherwise 0.20 0.40
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TABLE 2
(Continued)

Variable Definition Mean St.D.

smk_n 1 if never smoke, 0 otherwise (reference group) 0.62 0.48
cigsday number of cigarettes per day 1.98 5.52
alc1yr 1 if Ever had 12+ drinks in any one year, 0 otherwise 0.72 0.45
alc_life 1 if Had 12+ drinks in entire life, 0 otherwise 0.13 0.33
alc_c0 1 if do not drink at all currently, 0 otherwise (reference group) 0.26 0.44
alc_c1 1 if current infrequent drinker, 0 otherwise 0.12 0.33
alc_c2 1 if current light drinker, 0 otherwise 0.36 0.48
alc_c3 1 if current moderate drinker, 0 otherwise 0.19 0.39
alc_c4 1 if current heavier drinker, 0 otherwise 0.06 0.25
cpuse_0 1 if never or almost never use computer, 0 otherwise (reference group) 0.15 0.35
cpuse_1 1 if use computer for some/most days, 0 otherwise 0.18 0.38
cpuse_2 1 if use computer on every day, 0 otherwise 0.67 0.47

Socio-economic factors
educ1 number of years of school completed 15.54 3.08
occup1 1 if management, business, science, and arts occupations, 0 otherwise 0.38 0.49
occup2 1 if service occupations, 0 otherwise 0.18 0.38
occup3 1 if sales and office occupations, 0 otherwise 0.23 0.42
occup4 1 if natural resources, construction, and maintenance occupations, 0 otherwise 0.09 0.29
occup5 1 if production, transportation, and material moving occupations, 0 otherwise (reference group) 0.12 0.33
working 1 if working or with job last week, 0 otherwise 0.88 0.32
unemp 1 if looking for job last week, 0 otherwise 0.05 0.21
nowork 1 if not working at a job last week, 0 otherwise 0.05 0.22
retired 1 if retired, 0 otherwise (reference group) 0.02 0.15
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TABLE 2
(Continued)

Variable Definition Mean St.D.

wrkhrs hours worked last week 35.46 17.28
lnincome nature logrithm of total earnings last year 10.20 0.94
houseown 1 if own or being bought the house, 0 otherwise 0.56 0.50
notcov 1 if not have health insurance coverage, 0 otherwise 0.20 0.40
hp 1 if ever seen/talked to health professional in the last 12 months, 0 otherwise 0.79 0.40
hce_l1 1 if amount family spent for medical care is 0, 0 otherwise (reference group) 0.13 0.33
hce_l2 1 if amount family spent for medical care is less than $500 but more than 0, 0 otherwise 0.37 0.48
hce_l3 1 if amount family spent for medical care is less than $1999 but more than $500, 0 otherwise 0.30 0.46
hce_l4 1 if amount family spent for medical care is less than $2999 but more than $2000, 0 otherwise 0.09 0.29
hce_l5 1 if amount family spent for medical care is less than $4999 but more than $3000, 0 otherwise 0.06 0.24
hce_l6 1 if amount family spent for medical care is $5000 or more, 0 otherwise 0.06 0.23

Other factors
married 1 if married or de facto, 0 otherwise 0.51 0.50
us_born 1 if born in the US, 0 otherwise 0.81 0.39
us_m15 1 if stay in the US for more than 15 years, 0 otherwise 0.12 0.32
us_m5l15 1 if stay in the US for more than 5 years but less than 15 years, 0 otherwise 0.06 0.24
us_l5 1 if stay in the US for less than 5 years, 0 otherwise (reference group) 0.02 0.12
citizenp 1 if U.S. citizen, 0 otherwise 0.90 0.30
mental 1 if have depression/anxiety/emotional problem, 0 otherwise 0.01 0.12
rg_ne 1 if live in north east, 0 otherwise 0.16 0.37
rg_mw 1 if live in midwest, 0 otherwise 0.21 0.41
rg_sth 1 if live in south, 0 otherwise 0.36 0.48
rg_west 1 if live in west, 0 otherwise (reference group) 0.27 0.44
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TABLE 3
List of realizations of covariates in the data and the percentage of observations for each group

Male Female

Age Ethnicity Age Ethnicity

GI <25 [25,45) [45,65) ≥65 W B A O Perc GI <25 [25,45) [45,65) ≥65 W B A O Perc

1 x x 3.9% 17 x x 4.1%
2 x x 1.0% 18 x x 0.7%
3 x x 0.3% 19 x x 0.3%
4 x x 0.1% 20 x x 0.1%

5 x x 17.0% 21 x x 17.9%
6 x x 4.3% 22 x x 2.9%
7 x x 1.6% 23 x x 1.9%
8 x x 0.4% 24 x x 0.4%

9 x x 14.6% 25 x x 14.4%
10 x x 3.1% 26 x x 2.3%
11 x x 1.0% 27 x x 1.1%
12 x x 0.2% 28 x x 0.3%

13 x x 2.6% 29 x x 2.5%
14 x x 0.4% 30 x x 0.2%
15 x x 0.1% 31 x x 0.1%
16 x x 0.1% 32 x x 0.1%

GI = Group Index
Perc = Percentage of the whole sample
M = Male, F = Female
W = White, B = Black, A = Asian, O = Other
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TABLE 4
Estimated bandwidths for covariates

Sex 0.1158 Age group 0.1979 Ethnicity 0.0703

than 15 years compared to living in the U.S. less than 5 years), living in the south
(compared to living in the west), marital status and mental health problems are
robust factors for BMI; however, living in the US more than 5 years but less than
15 years (compared to less than 5 years), citizenship, living in either the northeast
or the middle west (compared to living in the west) have no impact on BMI.

For comparison purposes, in this BMI study we also estimate the other five
models applied in Section 3, that is, the group LASSO method, the LASSO
method applied to models (3.1) and (3.2), respectively, and the stepwise method

TABLE 5
List of relevant and irrelevant variables to BMI

Relevant variable Irrelevant variable

Lifestyle factors Lifestyle factors
vig_l2 vig_l1
vig_l3 mod_l1
mod_l3 mod_l2
str_l2 str_l1
str_l3 smk_sd
smk_ed cpuse_1
smk_f cpuse_2
cigsday Socio-economic factors
alc1yr occup3
alc_life occup4
alc_c1 working
alc_c2 unemp
alc_c3 nowork
alc_c4 wrkhrs
Socio-economic factors houseown
educ1 notcov
occup1 hce_l2
occup2 hce_l3
lnincome hce_l4
hp hce_l5
Other factors hce_l6
us_born Other factors
us_m15 us_m5l15
rg_sth citizenp
married rg_ne
mental rg_mw
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TABLE 6
Model Comparison on RME

Vary-Coeff GroupL LASSO1 SW1 LASSO2 SW2

RME 0.1562 0.1609 0.1657 0.2714 0.1646 0.2846

applied to models (3.1) and (3.2), respectively. X and Z in models (3.1) and
(3.2) have the same specification as what has been discussed in Section 4.1. It
is worthwhile to mention that such variables selected by our method are exactly
the same as those selected by the group LASSO method. To compare model per-
formance, we calculate root leave-one-out mean squared prediction errors (RME)
RME = (

∑N
i=1(ŷ−i − yi)

2/N)1/2 for each model in Table 6,9 where ŷ−i denotes
the leave-one-out prediction for the ith individual. It can be seen that our method
outperforms all the other five models with the lowest RME. It is also interesting
to see that the group LASSO method performs as the second best, followed by
LASSO methods applied to model (3.2) (the one taking account of varying im-
pacts of X on BMI through interaction terms between X and Z). The LASSO
method applied to model (3.1) (i.e., no varying impact is accounted for) performs
worse than its counterpart. Performance of the stepwise method is the worst among
all options. Besides the superior performance of our method, these results also
demonstrate, to some extent, that the varying impacts of potential factors on BMI
are widely presented.

4.2.2. Varying impacts. To quantify the effects of relevant regressors on BMI,
we conduct a post-selection estimation using the unregularized estimation method
for the varying-coefficient model only including the relevant regressors [i.e., equa-
tion (2.9)]. For the sake of space limitation, in the supplementary file [Gao et al.
(2017)] we provide the full estimation results, including point and confidence in-
terval estimates for the relevant determinants’ impacts on BMI across demographic
groups. Generally speaking, these estimated coefficients confirm that the selected
variables are truly relevant to BMI. Because none of these regressors have their ef-
fects over all 32 groups to be constant zero, given zero is not consistently covered
by the, at least 95%, CIs10 of the 32 varying-effects of each regressor.

9We also calculate RME for each of the 32 demographic groups from each method. Because of
space limitations, these results are provided in the supplementary file [Gao et al. (2017)].

10We cannot obtain CI’s for the estimates provided in (2.7). After using the procedure of variable
selection, following Wang and Xia (2009), we are able to calculate the 95% CIs through bootstrap
for the post-selection estimates. See Theorem 2 and the discussions under Theorem 4 of Li, Ouyang
and Racine (2013) for details. We point out that these CI’s should be interpreted with caution. In-
deed, these CI estimates might not be reliable without further justifying the variable selection bias
issue. One sufficient condition for the validity of post-selection CIs is that all true relevant regressors
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FIG. 1. The post-selection estimates for a relevant regressor of us_born.

Taking the regressor of us_born as an example, its varying effects on BMI across
32 demographic groups are shown in Figure 1. The demographic groups are indi-
cated in the horizontal axis (for details, see Table 3). “×” represents the point esti-
mate from the post-selection estimation, and the vertical line represents the 95% CI
estimate. Two results emerge from this figure. First, the post-selection results show
that the estimated effects of us_born on BMI are positive for all groups, which con-
firms that the regressor of us_born is truly relevant to BMI. Second, the effects of
us_born on BMI are apparently varying across the 32 demographic groups. In par-
ticular, the effects are higher for males (groups 1–16) than females (groups 17–32)
when age and race are the same, that is, group 1 vs group 17, 2 vs 18, and so forth.
Furthermore, the differences are more significant for Asian groups. As shown in
Figure 1, there is almost no overlap between the two corresponding CI estimates,
that is, group 3 vs group 19, 7 vs 23, 11 vs 27, and 15 vs 31. Comparing across
groups having the same gender and age range, us_born normally has higher im-
pacts for Asian people. Taking the four youngest male groups as an example, being
born in US increases BMI by 12.78% for Asians, which is higher than the increases
of 6.11%, 11.24% and 8.69% for white, black and all other races, respectively.

5. Conclusions with discussions. In order to solve some challenging mod-
eling and statistical issues existing in the literature of BMI studies, we propose
a variable selection procedure for the categorical varying-coefficient model. We
examine the impacts of a wide range of potential factors proposed in the huge
literature on BMI and obesity by using data from the 2013 NHIS in the United
States. Specifically, (1) we allow for and quantify the varying impacts of determi-
nants on BMI by using a varying-coefficient setting; (2) we systematically justify
the relative importance of demographic variables in differencing potential deter-
minants’ impacts on BMI by looking at the optimal bandwidths of demographic
group variables; (3) we identify the relatively important determinants of BMI by
using a group LASSO technique.

are successfully identified by (2.7). We refer readers to Dezeure et al. (2015) and Bühlmann and
Mandozzi (2014) for other sufficient conditions with further theoretical justification.



VARIABLE SELECTION FOR DETERMINANTS OF BODY MASS INDEX 1141

Correspondingly, we also derive some asymptotic properties for the data-driven
procedure documented in this paper. Our theoretical results show that the true
model can be successfully detected with probability going to 1 under certain mild
conditions. In addition, the proposed estimator also achieves asymptotic normality
on the true (oracle) model whenever there is no irrelevant covariate.

In this study, we have not investigated any asymptotic behavior for the case
where both p and r diverge to infinity. If we ignore the optimal bandwidth selection
by using the indicator function to replace all kernel functions and let p and r

diverge to infinity (let alone the fact that the number of demographic groups grows
exponentially with r), the theoretical study reduces to that investigated by Lounici
et al. (2011). However, to the best of our knowledge, how to achieve the optimal
bandwidths for model (2.2) remains unknown for the high-dimensional case. We
will pursue this in a future study.

In the end, as suggested by one referee, it is worthwhile to mention that the
quantile regression model [Koenker (2005)] is an alternative approach if the inter-
est is in some specific range (e.g., low or high) of BMI observations. In fact, a sim-
ilar variable selection problem under the quantile categorical varying-coefficient
model is considered by Zhao, Zhang and Liu (2014). Through using a penalized
approach with both LASSO and fused LASSO [Tibshirani et al. (2005)] penal-
ties, their method particularly advocates the fusion of categories of determinants
for each regressor, hence less emphasizing varying impacts among different cat-
egories, which is the focus of our approach via a group LASSO penalty. The
major difference between the proposed quantile regression procedure in Zhao,
Zhang and Liu (2014) and our method is that the former cannot justify the rel-
ative importance of demographic variables while our method achieves this goal
by adopting a kernel function to select optimal bandwidth in (2.5). For stud-
ies particularly interested in specific ranges of BMI, it would be more interest-
ing to enable the corresponding quantile categorical varying-coefficient model to
retrieve the information of demographic variables by properly marrying a band-
width selection procedure and group LASSO-type penalty. We leave it as a future
project.

APPENDIX: ASSUMPTIONS

ASSUMPTION 1. 1. {Xi,Zi, Yi}Ni=1 are i.i.d. In addition, maxz̄∈D̄ ‖β0(z̄)‖ <

∞.
2. E[Y 2

i |Xi = x, Z̄i = z̄] is bounded on (x, z̄) ∈ R
p × D̄.

3. Let σ 2
ε (x, z̄) = E[ε2

i |Xi = x, Z̄i = z̄] and σ 2
ε (z̄) = E[σ 2

ε (Xi, z̄)|Z̄i = z̄].
Then E[σ 2

ε (Xi, z̄)XiX
′
i |Z̄i = z̄] is positive definite for all z̄ ∈ D̄.

4. For s = 1, . . . , r , the sth component of z = (z1, . . . , zr)
′ takes cs different

values in {0,1, . . . , cs − 1}. Moreover, 2 ≤ min1≤s≤r cs ≤ max1≤s≤r cs < ∞.
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ASSUMPTION 2. 1. Relevant Covariate Case: that is, r̄ = r .
Define Lij,� = L(Zi,Zj ,�), m(Zi) = E[XiX

′
i |Zi] and

ηβ(Zj ) = (
E

[
XiX

′
iLij,�|Zj

])−1
E

[
XiX

′
iβ(Zi)Lij,�|Zj

]
.

Then � = 0r×1 are the only values of � = (θ1, . . . , θr)
′ that make∑

z∈D
Pr(z)

[
ηβ(z) − β0(z)

]′
m(z)

[
ηβ(z) − β0(z)

] = 0.

2. Irrelevant Covariate Case: that is, r̄ < r .
For Z̃i = (Zi,r̄+1, . . . ,Zi,r )

′, {Z̃i,1 ≤ i ≤ N} is independent of all other vari-
ables and has no impact on β0(·). Define L̄ij,�̄, η̄β(Z̄j ) = (E[XiX

′
i L̄ij,�̄|Z̄j ])−1 ×

E[XiX
′
iβ(Z̄i)L̄ij,�̄|Z̄j ] and m̄(Z̄i) = E[XiX

′
i |Z̄i]. Then the only values of � =

(θ1, . . . , θr̄ )
′ that make∑

z̄∈D̄
Pr(z̄)

[
η̄β(z̄) − β0(z̄)

]′
m(z̄)

[
η̄β(z̄) − β0(z̄)

] = 0

are �̄ = 0r̄×1. θs ∈ [0,1] for s = r̄ + 1, . . . , r .

ASSUMPTION 3. 1. For a random variable Z̄i ∈ D̄ and β0(Z̄i) = (β01(Z̄i),

. . . , β0p(Z̄i))
′, suppose there exists an integer 0 < p∗ ≤ p such that 0 <

E|β0j (Z̄i)|2 < ∞ for j = 1, . . . , p∗ and E|β0j (Z̄i)|2 = 0 for j = p∗ + 1, . . . , p.
2. For any z̄ ∈ D̄, 0 < α1 ≤ ρmin ≤ ρmax ≤ α2 < ∞, where ρmin and ρmax denote

the minimum and maximum eigenvalues of E[XiX
′
i |z̄], respectively, and α1, α2

are two universal positive constants.

Assumptions 1 and 2 are identical to those in Li, Ouyang and Racine (2013).
Note that since the support D is finite, we automatically have Pr(z) = Pr(Zi = z) >

α3 > 0 with some universal constant α3 for any z ∈D. Assumption 3.2 ensures all
eigenvalues of E[XiX

′
i |z̄] are bounded uniformly.

SUPPLEMENTARY MATERIAL

Supplement to “Variable selection for a categorical varying-coefficient
model with identifications for determinants of body mass index” (DOI:
10.1214/17-AOAS1039SUPP; .pdf). In this supplementary file, we provide a de-
tailed presentation and discussion on (1) mathematical proofs of the main results,
(2) estimation procedure of our method, (3) extra simulation results, and (4) other
estimation results from the BMI study.

REFERENCES

AITCHISON, J. and AITKEN, C. G. G. (1976). Multivariate binary discrimination by the kernel
method. Biometrika 63 413–420. MR0443222

http://dx.doi.org/10.1214/17-AOAS1039SUPP
http://www.ams.org/mathscinet-getitem?mr=0443222


VARIABLE SELECTION FOR DETERMINANTS OF BODY MASS INDEX 1143

ALI, S. M. and LINDSTRÖM, M. (2006). Socioeconomic, psychosocial, behavioural, and psycho-
logical determinants of BMI among young women: Differing patterns for underweight and over-
weight/obesity. Eur. J. Public Health 16 324–330.

BÜHLMANN, P. and MANDOZZI, J. (2014). High-dimensional variable screening and bias in subse-
quent inference, with an empirical comparison. Comput. Statist. 29 407–430. MR3261821

CAREY, M., SMALL, H., YOONG, S. L., BOYES, A., BISQUERA, A. and SANSON-FISHER, R.
(2014). Prevalence of comorbid depression and obesity in general practice: A cross-sectional
survey. Br. J. Gen. Pract. 64 e122–e127.

CAWLEY, J. (2011). The Oxford Handbook of the Social Science of Obesity. Oxford Univ. Press,
Oxford.

CAWLEY, J. and SCHOLDER, S. V. H. K. (2013). The demand for cigarettes as derived from the
demand for weight control. Technical Report, National Bureau of Economic Research.

CHU, W., LI, R. and REIMHERR, M. (2016). Feature screening for time-varying coefficient models
with ultrahigh-dimensional longitudinal data. Ann. Appl. Stat. 10 596–617. MR3528353

COHEN, A. K., RAI, M., REHKOPF, D. H. and ABRAMS, B. (2013). Educational attainment and
obesity: A systematic review. Obes. Rev. 14 989–1005.

COLDITZ, G. A., GIOVANNUCCI, E., RIMM, E. B., STAMPFER, M. J., ROSNER, B., SPEIZER, F.
E., GORDIS, E. and WILLETT, W. C. (1991). Alcohol intake in relation to diet and obesity in
women and men. Am. J. Clin. Nutr. 54 49–55.

DEZEURE, R., BÜHLMANN, P., MEIER, L. and MEINSHAUSEN, N. (2015). High-dimensional
inference: Confidence intervals, p-values and R-software hdi. Statist. Sci. 30 533–558.
MR3432840

FAITH, M. S., BUTRYN, M., WADDEN, T. A., FABRICATORE, A., NGUYEN, A. M. and HEYMS-
FIELD, S. B. (2011). Evidence for prospective associations among depression and obesity in
population-based studies. Obes. Rev. 12 e438–e453.

FAN, J. and ZHANG, W. (1999). Statistical estimation in varying coefficient models. Ann. Statist. 27
1491–1518. MR1742497

FONTAINE, K. R., REDDEN, D. T., WANG, C., WESTFALL, A. O. and ALLISON, D. B. (2003).
Years of life lost due to obesity. J. Amer. Medical Assoc. 289 187–193.

GALANI, C. and SCHNEIDER, H. (2007). Prevention and treatment of obesity with lifestyle inter-
ventions: Review and meta-analysis. Int. J. Public Health 52 348–359.

GAO, J., PENG, B., REN, Z. and ZHANG, X. (2017). Supplement to “Variable selection for a cat-
egorical varying-coefficient model with identifications for determinants of body mass index.”
DOI:10.1214/17-AOAS1039SUPP.

GERTHEISS, J. and TUTZ, G. (2010). Sparse modeling of categorial explanatory variables. Ann.
Appl. Stat. 4 2150–2180. MR2829951

HALL, P., LI, Q. and RACINE, J. S. (2007). Nonparametric estimation of regression functions in the
presence of irrelevant regressors. Rev. Econ. Stat. 89 784–789.

HASTIE, T. and TIBSHIRANI, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55
757–796. MR1229881

HILL, J. O. and PETERS, J. C. (1998). Environmental contributions to the obesity epidemic. Science
280 1371–1374.

HUANG, J., MA, S., XIE, H. and ZHANG, C.-H. (2009). A group bridge approach for variable
selection. Biometrika 96 339–355. MR2507147

KOENKER, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge Univ.
Press, Cambridge. MR2268657

LI, Q., OUYANG, D. and RACINE, J. S. (2013). Categorical semiparametric varying-coefficient
models. J. Appl. Econometrics 28 551–579. MR3064528

LI, Q. and RACINE, J. S. (2010). Smooth varying-coefficient estimation and inference for qualitative
and quantitative data. Econometric Theory 26 1607–1637. MR2738011

http://www.ams.org/mathscinet-getitem?mr=3261821
http://www.ams.org/mathscinet-getitem?mr=3528353
http://www.ams.org/mathscinet-getitem?mr=3432840
http://www.ams.org/mathscinet-getitem?mr=1742497
http://dx.doi.org/10.1214/17-AOAS1039SUPP
http://www.ams.org/mathscinet-getitem?mr=2829951
http://www.ams.org/mathscinet-getitem?mr=1229881
http://www.ams.org/mathscinet-getitem?mr=2507147
http://www.ams.org/mathscinet-getitem?mr=2268657
http://www.ams.org/mathscinet-getitem?mr=3064528
http://www.ams.org/mathscinet-getitem?mr=2738011


1144 GAO, PENG, REN AND ZHANG

LIPOWICZ, A., GRONKIEWICZ, S. and MALINA, R. M. (2002). Body mass index, overweight and
obesity in married and never married men and women in Poland. Am. J. Human Biol. 14 468–475.

LOUNICI, K., PONTIL, M., VAN DE GEER, S. and TSYBAKOV, A. B. (2011). Oracle inequalities
and optimal inference under group sparsity. Ann. Statist. 39 2164–2204. MR2893865

MA, S., CARROLL, R. J., LIANG, H. and XU, S. (2015). Estimation and inference in general-
ized additive coefficient models for nonlinear interactions with high-dimensional covariates. Ann.
Statist. 43 2102–2131. MR3375878

OZA-FRANK, R. and CUNNINGHAM, S. A. (2010). The weight of US residence among immigrants:
A systematic review. Obesity Reviews 11 271–280.

REHKOPF, D. H., LARAIA, B. A., SEGAL, M., BRAITHWAITE, D. and EPEL, L. (2011). The rel-
ative importance of predictors of body mass index change, overweight and obesity in adolescent
girls. Int. J. Pediatr. Obes. 6 233–242.

SOBAL, J., RAUSCHENBACH, B. S. and FRONGILLO, E. A. (1992). Marital status, fatness and
obesity. Soc. Sci. Med. 35 915–923.

STICE, E., SHAW, H. and MARTI, C. N. (2006). A meta-analytic review of obesity prevention
programs for children and adolescents: The skinny on interventions that work. Psychol. Bull. 132
667–691.

TIBSHIRANI, R., SAUNDERS, M., ROSSET, S., ZHU, J. and KNIGHT, K. (2005). Sparsity and
smoothness via the fused lasso. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 91–108. MR2136641

VON KRIES, R., TOSCHKE, A. M., KOLETZKO, B. and SLIKKER, W. (2002). Maternal smoking
during pregnancy and childhood obesity. Am. J. Epidemiol. 156 954–961.

WANG, H. and LENG, C. (2007). Unified LASSO estimation by least squares approximation.
J. Amer. Statist. Assoc. 102 1039–1048. MR2411663

WANG, L., LI, H. and HUANG, J. Z. (2008). Variable selection in nonparametric varying-
coefficient models for analysis of repeated measurements. J. Amer. Statist. Assoc. 103 1556–1569.
MR2504204

WANG, H. and XIA, Y. (2009). Shrinkage estimation of the varying coefficient model. J. Amer.
Statist. Assoc. 104 747–757. MR2541592

WHO (2015). Obesity and overweight Fact Sheet No. 311, Working paper. Available at http://www.
who.int/mediacentre/factsheets/fs311/en/.

YU, Y. (2012). Educational differences in obesity in the United States: A closer look at the trends.
Obes. 20 904–908.

YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables.
J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 49–67. MR2212574

ZENG, W., EISENBERG, D. T., JOVEL, K. R., UNDURRAGA, E. A., NYBERG, C., TANNER, S.,
REYES-GARCÍA, V., LEONARD, W. R., CASTANO, J., HUANCA, T. et al. (2013). Adult obesity:
Panel study from native Amazonians. Econ. Hum. Biol. 11 227–235.

ZHANG, Q. and WANG, Y. (2004). Socioeconomic inequality of obesity in the United States: Do
gender, age, and ethnicity matter? Soc. Sci. Med. 58 1171–1180.

ZHAO, W., ZHANG, R. and LIU, J. (2014). Regularization and model selection for quantile vary-
ing coefficient model with categorical effect modifiers. Comput. Statist. Data Anal. 79 44–62.
MR3227986

J. GAO

DEPARTMENT OF ECONOMETRICS

AND BUSINESS STATISTICS

MONASH UNIVERSITY

VIC 3145
AUSTRALIA

E-MAIL: Jiti.Gao@monash.edu

B. PENG

DEPARTMENT OF ECONOMICS

UNIVERSITY OF BATH

BATH BA2 7JP
UNITED KINGDOM

E-MAIL: bp495@bath.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2893865
http://www.ams.org/mathscinet-getitem?mr=3375878
http://www.ams.org/mathscinet-getitem?mr=2136641
http://www.ams.org/mathscinet-getitem?mr=2411663
http://www.ams.org/mathscinet-getitem?mr=2504204
http://www.ams.org/mathscinet-getitem?mr=2541592
http://www.who.int/mediacentre/factsheets/fs311/en/
http://www.ams.org/mathscinet-getitem?mr=2212574
http://www.ams.org/mathscinet-getitem?mr=3227986
mailto:Jiti.Gao@monash.edu
mailto:bp495@bath.ac.uk
http://www.who.int/mediacentre/factsheets/fs311/en/


VARIABLE SELECTION FOR DETERMINANTS OF BODY MASS INDEX 1145

Z. REN

DEPARTMENT OF STATISTICS

UNIVERSITY OF PITTSBURGH

PITTSBURGH, PENNSYLVANIA 15260
USA
E-MAIL: zren@pitt.edu

X. ZHANG

DEPARTMENT OF ECONOMICS

UNIVERSITY OF EXETER

EXETER EX4 4PU
UNITED KINGDOM

E-MAIL: x.zhang1@exeter.ac.uk

mailto:zren@pitt.edu
mailto:x.zhang1@exeter.ac.uk

	Introduction
	Methodology
	Brief review: A categorical varying-coefﬁcient model
	Variable selection on Xi

	Monte Carlo evidence
	An application to BMI
	Data
	Summary of the main ﬁndings
	Variable selection
	Varying impacts


	Conclusions with discussions
	Appendix: Assumptions
	Supplementary Material
	References
	Author's Addresses

