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COMPARING HEALTHCARE UTILIZATION PATTERNS VIA
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The linkage of electronic medical records (EMR) across clinics, hospi-
tals, and healthcare systems is opening new opportunities to evaluate factors
associated with both individual treatment benefit and potential harm. For ex-
ample, the FDA Sentinel initiative seeks to create a surveillance network with
over 100 million patient lives (Behrman et al. [N. Engl. J. Med. 364 (2011)
498–499]), while PCORnet has created multiple networks that include linked
electronic medical records from geographic regions such as entire cities or
states, with the ultimate goal of facilitating comparative effectiveness re-
search (Collins et al. [Journal of the American Medical Informatics Asso-
ciation 4 (2014) 576–577]). However, one key challenge to the use of elec-
tronically assembled cohorts is the potential for variation in both the choice of
specific healthcare procedures and coding practices due to differences in pa-
tient populations and/or financial incentives within care delivery networks. In
order to explore variation in patient care or procedure coding, we review and
develop statistical methods that can permit testing and estimation of subgroup
differences in code assignments. We focus on Current Procedural Terminol-
ogy (CPT) codes which are used in a standardized fashion to capture patient
treatment details and to record medical histories, but the methods we develop
can be used for any structured EMR data. We specifically study testing pro-
cedures that can be valid for comparing both rare and common counts as
routinely encountered with medical procedure codes, and we transfer meth-
ods from studies of genetic association. Hierarchical structure in terms of
both thematically grouped medical codes and provider-level clustering adds
unique complexity to the analysis of EMR data. We detail penalized regres-
sion methods unifying estimation and inference to leverage the hierarchical
structure and stabilize rate ratio estimates for rare procedures. We also ex-
pand inference methods to account for potential within provider correlation
of patient utilization. We illustrate methods comparing the endorsement of
CPT codes for subjects enrolled in a back pain cohort study where interest is
in the differences across recruitment centers in the use of CPT codes (Jarvik
[BMC Musculoskelet Disord. 13 (2012)]).

1. Introduction. In the United States, the use of electronic medical records
(EMR) is now incentivized due to the 2009 enactment of the Health Information
Technology for Economic and Clinical Health (HITECH) Act. Large scale EMR
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data will open new opportunities for research to improve patient care and the health
of the public. Current national research efforts include linking EMR to conduct
pharmacosurveillance (e.g., FDA Sentinel) and assembling large clinical popula-
tions for comparative effectiveness research (e.g., PCORnet). One key element of
EMR data is the recording of patient treatment history via the Current Procedural
Terminology (CPT) coding system. CPT codes are five-character codes describ-
ing medical services and procedures, and are used for patient management and
billing. CPT codes provide a standardized description that allows communication
across providers and systems, and facilitate identification of clinical information
for comparative effectiveness research.

A natural research question is whether different subgroups of patients have dif-
ferent healthcare utilization patterns, and interest may lie in the entire spectrum
of all potential services. A motivating example is the Back pain Outcomes using
Longitudinal Data (BOLD) project, which enrolled 5239 patients who are 65 years
of age or older with back pain from multiple healthcare systems with a primary in-
terest in early imaging [Jarvik (2012)]. In this study, we combine electronic health
records across sites, and there is need to assess potential data quality concerns by
comparing codes between healthcare systems. Ultimately, the BOLD study com-
pared healthcare utilization for propensity score matched patients with and without
early radiologic imaging. We were interested in effect of early imaging on down
stream healthcare utilization in terms of a summary measure of total spine-related
procedures, but we also wanted to examine the full set of individual CPT codes
and overall utilization. There is an emerging need to develop inference methods
that are tailored for the electronic medical records context. Recent federal health-
care and research initiatives are incentivizing the routine collection of population
scale data, and statistical methods are needed for evaluation of data quality and for
high-throughput comparison of utilization for select patient subsets.

However, the use of EMR data for research comes with several challenges.
First, a unique aspect of EMR data is the organizational structure where indi-
vidual patients are typically nested within providers who may have unexplained
variation in their treatment patterns that induce correlation in utilization indica-
tors for their patient panel. Second, an important characteristic of CPT codes is
the hierarchical structure in coding taxonomy: multiple CPT codes may represent
similar or related procedures. According to the Clinical Classifications Software
(CCS) for Services and Procedures, CPT codes are naturally collapsible into 244
clinically meaningful groups, which define major categories of procedures. The
CCS-Services and Procedures taxonomy is a part of the Healthcare Cost and Uti-
lization Project (HCUP), a Federal-State-Industry partnership sponsored by the
Agency for Healthcare Research and Quality. See https://www.hcup-us.ahrq.gov/
toolssoftware/ccs_svcsproc/ccssvcproc.jsp for details on the CCS classification.
Inference can be made at either the code or the group of codes level, and shrinkage
methods may be desired to borrow strength from similar codes. Third, in practice,
both investigation of data quality and evaluation of overall utilization imply the
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need to perform inference for thousands of codes, and robust methods that can
be applied to both common codes and rare procedures are needed. In this paper,
we consider testing and estimation methods for quantifying the significance and
magnitude of differences in the delivery of all possible procedures and services
between two cohorts of patients. Our proposed methods are tailored to the unique
and increasingly important context of healthcare delivery system generated obser-
vational data with the above mentioned challenges: patient clustering, CPT code
grouping, and coexistence of common and rare procedures.

The paper is organized as follows. Section 2 details testing for differences in
healthcare utilization. Section 2.1 focuses on code-wise testing procedures for both
common and rare codes. Section 2.2 considers testing of procedures defined by a
group of codes. Section 2.3 discusses methods that account for provider-level clus-
tering. In Section 3, we propose rate ratio estimation and inference methods. Sec-
tion 3.1 details a ridge regression model which takes advantage of the hierarchical
structure of CPT codes and stabilizes estimates of rare procedures. In Section 3.2,
we provide inference method accounting for shrinkage bias. Section 3.4 considers
inference with provider-level clustering. Both methods in Sections 2 and 3 allow
for confounding adjustment. In Section 4, we conduct simulation studies to eval-
uate the performance of the code-wise and group-wise tests, as well as the infer-
ence for ridge regression. We also study the influence of provider-level clustering
on testing procedures and the performance of methods that accounts for within-
provider correlation. In Section 5, we illustrate the methods by analyzing EMR
data from the BOLD study. We evaluate differences in CPT codes assigned among
patients from two healthcare systems: Kaiser Permanente in Northern California
and Henry Ford Health System in Detroit. For healthcare systems or clinics within
systems, the benchmarking of one site against a reference site is an important part
of revealing variation that may require attention in order to align delivery deci-
sions with clinical guidelines or to potentially reduce cost. Therefore, differences
in healthcare utilization across the entire set of codes are generally important to
evaluate for both delivery assessment and research purposes. We develop and il-
lustrate graphical tools that compare patient subgroups across the full spectrum of
procedures and services for exploratory research using large scale healthcare data.
We close with a discussion in Section 6.

2. Testing for utilization of procedures defined by a CPT code or a block of
codes. For simplicity, we consider patients’ visits over a fixed time period such as
one year, although methods that characterize rates of code endorsement can easily
handle variable follow-up time at the patient level by weighting the outcome with
the inverse of patient-specific length of follow-up. Let ns , s = 0,1, denote the total
subjects in cohort s, and without loss of generality, we assume one year of follow-
up for each subject. For a specific procedure described by CPT code c, we take
two approaches to comparing utilization rates across cohorts. First, we consider
an outcome based on a count of how many times the procedure was delivered to
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TABLE 1
Summary of two-sample testing options for CPT count and binary Data. The notation � denotes the

likelihood ratio test statistic

Distribution Likelihood ratio test Conditional exact test

Poisson Yc
si ∼ Poisson(λc

s ) Y c
1 |Yc

0 + Yc
1

−2 log(�)
H0→ χ2 H0∼ Binomial(n = Yc

0 + Yc
1 ,p = n1

n0+n1
)

Negative Binomial Yc
si ∼ Neg-Bin(p = λc

s

λc
s+ 1

φc

, r = 1
φc ) Pr(Y c

0 = yc
0, Y c

1 = yc
1|Yc

0 + Yc
1 )

−2 log(�)
H0→ χ2 H0=

(
yc
0+ n0

φc −1

yc
0

)·(yc
1+ n1

φc −1

yc
1

)

(
yc
0+yc

1+ n0+n0
φc −1

yc
0+yc

1
)

Binomial Zc
si ∼ Bernoulli(pc

s ) Zc
1|Zc

0 + Zc
1

−2 log(�)
H0→ χ2 H0∼ Hypergeometric(N = n0 + n1,

n = Zc
0 + Zc

1,K = Zc
1)

Semiparametric t-test

patient i in cohort s over the year, denoted as Y c
si , where s = 0,1, i = 1, . . . , ns ,

c = 1, . . . ,C. Second, for certain scientific questions we may only be interested
in whether the procedure was ever endorsed for a subject, and we may choose
to dichotomize the count data into any/none outcomes Zc

si = 1(Y c
si > 0), as an

indicator of whether patient i was assigned code c in any visits over the year.

2.1. Testing for code-specific patient utilization. Our interest in CPT code-
wise inference requires selection of a testing strategy that can be valid for both
common and rare codes, and under potential overdispersion. However, in practice,
there is little guidance on how to choose appropriate tests. In this section, we dis-
cuss various two-sample testing strategies that are candidates for the evaluation of
variation in code endorsement rates across cohorts for count and binary data with
a goal of characterizing the applied options, summarized in Table 1. In Section 4,
we perform numerical studies to illustrate the performance of testing options for
a range of rate parameters that may be expected from CPT data. Although we
focus on a crude comparison, adjustment for covariates can be achieved through
stratification or matching on the propensity score, which is the probability that a
patient belongs to a cohort given the observed confounders [Rosenbaum and Rubin
(1983, 1984)].

2.1.1. Count outcome. For count data, a natural model is the Poisson distribu-
tion characterized by a rate parameter, λc

s , with Y c
si ∼ Poisson(λc

s), i = 1, . . . , ns .
In cohorts where there are both relatively healthy and extremely ill patients, there
will be overdispersion, and the simple Poisson mean–variance relationship will not
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hold. In this situation, use of negative binomial distribution provides one model-
based generalization of the Poisson assumption. The negative binomial model con-
tains a rate parameter and an additional parameter that characterizes overdisper-
sion: Y c

si ∼ negative binomial(p = pc
s = λc

s

λc
s+ 1

φc
, r = 1/φc), i = 1, . . . , ns , where

φc is the code-specific overdispersion parameter which is shared by patients
across cohorts. The mean and variance are parameterized as E[Y c

si] = λc
s and

Var[Y c
si] = λc

s(1 + λc
sφ

c). We wish to test whether code endorsement varies by
cohort, that is, H0: λc

0 = λc
1.

In the EMR setting, the number of patients is usually quite large (thousands or
greater) and large sample approximations should be valid. Therefore, if the model
assumption was valid, then a likelihood ratio test (LRT) using observations from
each patient could provide inference regarding coding rates across cohorts. How-
ever, rare codes can lead to low expected cell counts, which can lead to a poor χ2

approximation for the null distribution of the LRT. In this case, as an exact alterna-
tive, we can collapse patient-level information within a cohort by computing the to-
tal counts Y c

s = ∑ns

i=1 Y c
si and apply a conditional exact test (ET) which calculates

a conditional probability that does not depend on large sample approximations
[Przyborowski and Wilenski (1940), Robinson, McCarthy and Smyth (2010)].

While use of the negative binomial model allows a partial decoupling of the
mean and the variance, it may not provide valid inference when the true data gen-
erating mechanism is not adequately characterized by a simple overdispersed count
model. Alternatively, with large sample sizes and any underlying distribution, we
can use the two-sample t-test as a semiparametric method for testing.

2.1.2. Any/none outcome. Use of endorsement rates will often be the appro-
priate strategy for answering scientific questions about variation in utilization.
However, for certain codes such as recommended annual screening measures or
vaccinations, it may be desirable to simply analyze the count data as a derived bi-
nary outcome since the clinical significance is indicated by any endorsement of the
code. An any/none outcome indicates whether a patient was ever assigned a code
during his or her visits over the year. It can be modeled as Zc

si ∼ Bernoulli(pc
s )

for a patient, and Zc
s = ∑ns

i=1 Zc
si ∼ Binomial(ns,p

c
s ) for a cohort. Our goal is to

test whether the probability of assigning a CPT code varies by cohort, that is, H0:
pc

0 = pc
1. When the requirements of the χ2 approximation are met for the LRT, we

use the Binomial LRT. When the expected cell counts are too small, we can use
the conditional ET assuming Binomial model, which is the well-known Fisher’s
ET for a two-by-two table constructed using cohort level data.

We summarize standard asymptotic LRTs and ETs for count and binary data
in Table 1, and provide detailed reviews in Supplement A of the supplementary
materials [Shi, Pashova and Heagerty (2017)]. In summary, key practical issues
include: whether to adopt asymptotic or exact tests; whether to consider a count
or indicator outcome; and whether or how to account for overdispersion in CPT
counts.
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2.2. Testing for block-specific patient utilization. It has been shown that for
a specific procedure, the level of agreement among coders and agencies in as-
signing CPT codes can be poor [Bentley et al. (2002), Holt, Warsy and Wright
(2010), King, Lipsky and Sharp (2002), King, Sharp and Lipsky (2001)]. That is,
physicians might use different codes to describe the same procedure since multi-
ple codes can be appropriate for a certain general procedure. For example, bilat-
eral screening mammography, according to the imaging technology, can be coded
using CPT code 77057 which is labelled “Screening mammography, bilateral (2-
view film study of each breast)”, or can be recorded using CPT code G0202 la-
belled as “Screening mammography, producing direct digital image, bilateral, all
views”. Therefore, code-level analysis may detect variation that is not reflective of
meaningful practice variation, and analysis at a “code group” level may be more
appropriate. According to the CCS, CPT codes can be collapsed into groups. We
call such a group of codes a “block”. Procedures can be compared at CCS block-
level where finer scale differences in procedure coding may not indicate an overall
difference, so that the comparison is not sensitive to physicians’ choice of codes
within a block.

Suppose that there are C total codes that can be categorized into B blocks. Let
S(b) be the set of codes that belong to block b, and let Cb denote the number of
codes in S(b), such that

∑B
b=1 Cb = C. Given the hierarchical structure of medical

codes, we use Ybc
si = Y c

si to emphasize that each code c belongs to a certain block b.
Therefore, the count vector Ybc

si for b = 1, . . . ,B and c = 1, . . . ,Cb corresponds
to one observation or row of data associated with patient i in cohort s. In the
following sections we detail testing methods that can be used to make inference at
the block level.

2.2.1. Burden test. A simple testing procedure parallels methods used for ge-
nomic data that have been termed “burden tests”, since the total number of en-
dorsements within a block (i.e., total burden) is used as the basis for testing
[Madsen and Browning (2009), Morgenthaler and Thilly (2007), Morris and Zeg-
gini (2010)]. Using this approach we apply the code-wise testing methods in Sec-
tion 2.1 to block-level summaries. Specifically, for a procedure defined by block
b, Yb

si = ∑
c∈S(b) Y

bc
si summarizes the assignment of the block-specific procedure

to patient i in cohort s over the year, and Zb
si = 1(Y b

si > 0) describes whether the
procedure was assigned to patient i at any visits over the year. Within genomic
research, the burden test is a group-wise association test that potentially increases
power by combining genetic counts within regions or genes [Wu et al. (2011), Lee
et al. (2012)]. In our context, when codes within a given block are consistently used
more frequently in one cohort, the burden test accumulates individual code effects
to increase power. Such a strategy is especially important when dealing with rare
codes. However, for codes that have inconsistent distributions, combining their ef-
fects when they may be in opposite directions across the comparison groups can



COMPARING HEALTHCARE UTILIZATION PATTERNS 1355

lead to cancellation of potentially meaningful variation and null test results. Thus,
the burden test might diminish code-level effects when they are aggregated. On
one hand, such aggregation ensures that the burden test is insensitive to code sub-
stitution, but on the other hand, it may decrease power to detect a meaningful
code-level variation.

2.2.2. Sequence kernel association test. We use the sequence kernel associa-
tion test (SKAT) as a complement to the burden test [Wu et al. (2011)]. This test is
based on a mixed model framework that was developed to collectively test for the
association between a set of genetic variants and a phenotype. We treat CPT codes
within a block as analogues to genetic variants within a region, and the cohort of
a patient as the dichotomous phenotype to allow testing for groups of procedure
codes.

For each block b, we consider the logistic regression model for the phenotype,
that is, for cohort s

logit
(
Pr(s = 1)

) = α0 + ∑

c∈S(b)

βcY
bc
si ,

with β = (β1, . . . , βCb
) ∼ N(0, σ 2W ), where W = diag(w1, . . . ,wCb

) is a weight
matrix. Testing for the null hypothesis H0 : β = 0 is equivalent to the variance
component test for H0 : σ = 0. Let μ̂0 denote the expectation of outcome Pr(s = 1)

under the null. The score test statistic is Q = (s − μ̂0)
T K(s − μ̂0), where K =

YWYT is a weighted kernel, and Y is an (n0 + n1) × Cb matrix whose elements
are Ybc

si . It is important to note that SKAT can be applied to either a matrix of
binary data 1(Y bc

si > 0) similar to single nucleotide polymorphism (SNP) data, or
count data Ybc

si similar to RNA-seq data. In addition, adjustment for confounders
can be achieved through fitting the model:

logit
(
Pr(s = 1)

) = α0 + αZi + ∑

c∈S(b)

βcY
bc
si ,

where Zi denotes the set of covariates for patient i [Wu et al. (2011)].
SKAT collectively tests for the association between the endorsement of codes

within a block and the cohort. It can increase power by summarizing over multiple
codes but does not require that associations are all in the same direction. However,
when the code effects are truly in the same direction, simulation studies showed
that burden tests may have higher power [Wu et al. (2011)]. Thus, we recommend
that both the burden test and the SKAT are used with awareness of the types of
departures that would likely be detected.

2.3. Provider-level clustering. In addition to patient-level variation, there may
be provider-level variation in use of CPT codes. Specifically, providers may have
individual preferences in their typical choice of treatment paths, which ultimately
introduces correlation between patients treated by the same provider.
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The impact of ignoring correlation for clusters of patients generally lies in es-
timation of the standard errors or test statistic variances. For two-sample testing
procedures employed in code-wise comparisons and block-wise burden test, we
consider using a generalized estimating equation (GEE)-type sandwich variance
estimator with working independence covariance matrix in a z-statistic to replace
the t-test [Diggle et al. (2002)]. For SKAT, Qi et al. (2015) considered expanding
SKAT for longitudinal data and developed the longitudinal kernel machine regres-
sion (L-KM) method. In our context, the L-KM essentially adds a provider-level
random intercept to introduce correlation between patients within provider. Com-
pared to SKAT, the variance-covariance matrix in the test statistic is estimated from
a mixed model which takes into account correlation within provider.

When the primary care provider is taken to define the cluster, patients are nested
within providers and our proposed testing procedure with a GEE-type sandwich
estimator can correct the type I error to validly account for any provider level clus-
tering. However, when patients are treated by potentially different providers, there
could be multilevel clustering that is not necessarily nested. In this case, variance
estimation accounting for such multilevel clustering requires extra attention and
additional complexity. One strategy would be a likelihood-based random effects
approach with implementation using Bayesian computational techniques to pro-
vide valid inference. Alternatively, the GEE-type variance estimator with working
independence covariance matrix proposed in our testing procedures can be gen-
eralized to account for nonnested clustering, which was introduced in Miglioretti
and Heagerty (2004) and Miglioretti and Heagerty (2007). The nonnested sand-
wich variance calculation is surprisingly simple and easy to generalize to more
than two nonnested levels of clustering.

In Section 4.1.2, we conduct simulation studies to investigate the sensitiv-
ity/robustness to provider-level clustering of the two-sample tests. We also study
the performance of the above tests with appropriate correction for within-provider
clustering.

3. Rate ratio estimation and inference using ridge regression. In Sec-
tions 2.1 and 2.2, we detailed testing methods that assess the statistical signifi-
cance associated with the observed difference in healthcare utilization across two
cohorts. However, testing provides only a partial characterization of utilization
differences, and two further questions are of interest: Which cohort is the frequent
user, and how large is the magnitude of difference? Recall that CPT codes may be
rarely used (e.g., zero counts can be common) and are nested within blocks. We
take advantage of such a hierarchical structure and stabilize estimates of rare codes
by using a Poisson regression model [equation (1)] with Ridge penalty [Hoerl and
Kennard (1970)] that estimates code-specific cohort effects for all codes simulta-
neously, and exploits potential similarity of endorsement trends within blocks.
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3.1. Rate ratio estimation using hierarchical shrinkage. Let Yb′c′
s′i′ denote the

number of assignments of code c′ within block b′ to patient i′ in cohort s′. Recall
that in Section 2.2 we let Ybc· = Y c· to emphasize that code c belongs to a certain
block b. For each patient i ′ and for each code c′ assigned to this patient, define in-
dicators that denote (s ′, b′, c′)i′ using cohort1,i′ = 1{s′ = 1}, blockb,i′ = 1{b′ = b},
and codec,i′ = 1{c′ = c}, where b = 2, . . . ,B and c ∈ {S(b) \ cb

ref}, with reference
levels s = 0 for cohorts, b = 1 for blocks, and c = cb

ref for codes in block b. Take
ti′ as the offset to account for potentially different lengths of follow-up across pa-
tients, which also defines the rate of code endorsement for patient i ′ as E[Y b′c′

s′i′ ]/ti′ .
In addition, we consider confounding adjustment and denote the vector of observed
covariates for patient i′ as Zi′ . The model is

log
[
E

(
Yb′c′

s′
)]

= log(t) + α0 + α1cohort1 + ZT θ

+
B∑

b=2

αbblockb +
B∑

b=2

γb1blockb · cohort1

(1)

+
B∑

b=2

∑

c∈{S(b)\cb
ref}

ηccodec +
B∑

b=2

∑

c∈{S(b)\cb
ref}

ζc1codec · cohort1,

where we suppress the notation i′ for simplicity.
In this model, the rate ratio comparing cohorts 1 and 0 is determined by three

components: the main effect of cohort, α1; the block-cohort interaction that adds
an increment to the overall cohort level, γb1; and the code-cohort interaction that
adds an increment to the overall block level, ζc1. In other words, the rate ratio on
the log scale is defined as

log(RR) = α1 + γb1 + ζc1.

The rationale for building a multi-level structure that includes all blocks and codes
is to leverage hierarchical shrinkage to control the extent of information sharing
and to stabilize rate ratio estimates for rare procedures, with a primary goal of
visualization of the effect sizes. A ridge penalty governs the shrinkage of code-
specific rate ratio estimates toward the block-level rate ratio, which essentially
represents an average over all codes within the same block. In this way, we al-
low rare codes to borrow information from similar codes within the blocks. We
also penalize across blocks to provide a second level of shrinkage for any set of
codes that may also be rarely used. Therefore, we exploit the hierarchical taxon-
omy of procedure codes and employ two stages of penalization. Note that such
hierarchical increment can be generalized to introduce nested blocks by including
one indicator for each (sub-)block level, for example, CPT codes 10000–69990
belong to a block denoting surgery. Within this block, there are several sub-blocks
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denoting general surgery (10000–10022), integumentary system (10040–19499),
and etc. Information for estimating coefficient of a certain block level comes from
utilization of all codes and sub-blocks within this level.

The estimation of ridge regression is to minimize the negative log-likelihood
plus a penalty function:

P(λridge,ω0,ω1,ω2)

= λridge
[
ω0

(‖α0‖2
2 + ‖α1‖2

2 + ‖θ‖2
2
) + ω1

(‖αb‖2
2 + ‖γb1‖2

2
)

+ ω2
(‖ηc‖2

2 + ‖ζc1‖2
2
)]

.

The form of the penalties on the coefficients guides the properties of the model.
The tuning parameter λridge controls the strength of the penalty, and ω0,ω1,ω2 ∈
[0,1] allow varying penalties to different coefficients. In particular, λridgeω1 con-
trols variation in the block effects, and λridgeω2 controls shrinkage of code effects
toward their overall block effect. The shrinkage is particularly important for rare
codes, which could yield extreme crude estimates.

A caveat is that we need to choose the value of λridge and ω. Throughout this
work, we introduce hierarchical shrinkage by fixing ω0 = 0, ω1 = 0.5, and ω2 = 1,
which puts no penalty on the cohort, and restricts the penalization of block such
that it is half as strong as the penalization of code. For λridge, a sequence of 100
values is calculated corresponding to the regularization path. Because our primary
goal with penalization is to simply stabilize rate ratios for codes with sparse data
and/or zero counts, we choose the 95th λridge along the sequence which gives a
model with small to moderate penalization.

3.2. Inference for ridge estimation in Poisson model. Applying the ridge
penalty has the effect of shrinking the estimates toward zero, which introduces bias
but reduces the variance and stabilizes the estimates [Hoerl and Kennard (1970)].
Testing for potentially sparse and over-dispersed CPT code utilization data can
benefit from this property as long as we could de-bias the estimate in order to per-
form valid inference. Here, we introduce a testing procedure for ridge regression
in the Poisson family with log-link, referred to as the ridge test hereafter. We note
that the proposed method can be adapted to any generalized linear model with a
canonical link.

We simplify the notation and rewrite the model as

(2) log
[
E(Y |X)

] = log(t) + Xβ,

where Y is the number of assignments for all patients and all codes, t is
the offset denoting lengths of follow-up, X is the design matrix containing
the intercept, indicator cohort1, covariates Z, indicators for all blocks: blockb,
blockb · cohort1, and indicators for all codes: codec, codec · cohort1, and coeffi-
cient β = [α0, α1, θ

T ,αb
T ,γb1

T ,ηc
T , ζc1

T ]T . The penalty function can be writ-
ten as P(·) = βT �β , where � = λridge · W , with penalty weight matrix W =
diag{ω0 · 10,ω1 · 11,ω2 · 12}.
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LEMMA 3.1. We assume that we are in the common EMR situation where n >

p since the population sizes under study are commonly large and the number of
observations in the Poisson regression is driven by both the number of patients and
the dimension of the multivariate outcome. Let β̂λ be the ridge shrinkage estimator
with regularization parameter λridge > 0. Then the de-biased estimator correcting
for shrinkage bias is

β̂debias = {[
H n(β̂λ) + �

]−1
H n(β̂λ)

}−1
β̂λ,

where H n(β̂λ) = XT diag(elog(t)+Xβ̂λ)X/n. Let β∗ be the population coefficient
satisfying model (2), and let β∗

� be the population ridge coefficient from model (2)
with penalty function P(·) = βT �β and � = λridge · W . Then we have

√
n
(
β̂debias − β∗) d→ N

(
0,

[
H

(
β∗

�

)]−1
	

(
β∗)[

H
(
β∗

�

)]−1)
,

where H (β∗
�) = E[X diag(elog(t)+XT β∗

�)XT ] and 	(β∗) = Var[X(Y −
elog(t)+XT β∗

)].

A proof is detailed in Supplement B of the supplementary materials [Shi,
Pashova and Heagerty (2017)]. Based on Lemma 3.1, a z-statistic for construct-
ing p-value is

(
diag

{[
H n(β̂λ)

]−1
	̂n(β̂debias)

[
H n(β̂λ)

]−1})− 1
2
√

nβ̂debias,

where 	̂n(β̂debias) = XT {diag[(Y − elog(t)+Xβ̂debias)2]}X is a sandwich estimator of
the variance 	(β∗). The confidence interval is

β̂debias ± Z1−α/2
(
diag

{[
H n(β̂λ)

]−1
	̂n(β̂debias)

[
H n(β̂λ)

]−1}) 1
2 /

√
n.

Significance testing for regularized regression is a contemporary topic in the sta-
tistical literature, and there are very few publications addressing testing with ridge
regression. Bühlmann (2013) developed a testing procedure for ridge regression in
the high-dimensional setting in which the number of regression parameters p is
larger than the sample size n, and assuming a deterministic design matrix. Similar
to their work, we now account for shrinkage bias that results from penalization
and derive the distribution of a de-biased estimate. However, we took a slightly
different path: we de-biased by appropriately rescaling the penalized estimator in-
stead of subtracting an estimated bias term. The later approach requires an initial
consistent estimate of the true coefficient. In addition, our testing method tack-
les a problem that is different from the setting in Bühlmann (2013). Although the
number of CPT codes is large, our problem remains essentially a low-dimensional
problem because the number of observations in the Poisson regression is driven
by both the number of patients and the dimension of the multivariate outcome for
each patient, which is typically much larger than the number of procedure codes.
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Therefore, information matrices such as H n(β̂λ) presented in Lemma 3.1 are not
singular and can be inverted, and our estimator is not subject to the projection bias
in high dimensions discussed in Bühlmann (2013). Our choice of ridge regression
is purely for stabilizing estimates and not for solving the more common over-
specification or singularity issue. Therefore, we can directly rescale the shrinkage
estimator without the need to separately estimate a bias term.

3.3. Patient-level clustering due to simultaneous analysis of multivariate out-
comes. With the use of ridge regression, we provide inference regarding the sys-
tematic associations with covariates such as healthcare system (site) for multiple
CPT codes. Therefore, a vector of multivariate outcomes represents the data that
is analyzed for each patient and characterizes the full set of CPT outcomes for
that individual. Simultaneous regression with blocks of codes would then need to
appropriately account for the multiple outcomes per patient. Standard GEE-type
sandwich variance estimates are a simple way to account for the potential within-
subject correlation for this situation [Bull (1998)].

3.4. Provider-level clustering. In Section 2.3, we discussed testing options
when patients treated by the same provider are potentially correlated. In the same
spirit, a sandwich variance estimator can be used to replace 	̂n discussed in Sec-
tion 3.2 to generate a ridge test that accounts for provider-level clustering, which
can be viewed as variations of a Generalized Estimating Equations (GEE) strat-
egy [Diggle et al. (2002)]. Performance of the ridge test with and without a robust
variance-covariance matrix is studied via simulation in Section 4.1.2.

4. Simulations. Previous research has compared group-wise association tests
in the context of genome-wide association studies [see, for instance, Wu et al.
(2011), Chapman and Whittaker (2008), Pan (2009), Basu and Pan (2011), Qi et al.
(2015)], and relevant results are detailed in Supplement C of the supplementary
materials [Shi, Pashova and Heagerty (2017)]. Generalizing these results to our
context implies that burden tests may have increased power to detect association at
the block level when the direction of code-specific effects are similar. In contrast,
when code-specific effects may differ in direction, SKAT has been shown to be
an effective testing strategy [Wu et al. (2011)]. When provider-level clustering is
present, the L-KM method controls the type I error and increases power compared
to competing methods [Qi et al. (2015)].

We focus our simulation studies on characterizing the finite sample operat-
ing characteristics of code-wise testing strategies where both common and rare
codes are of interest. Sparse codes are likely to require exact methods to preserve
the nominal type I error rate, while common codes are likely to require meth-
ods/models for overdispersed count data. We are not aware of any literature that
provides a comprehensive characterization of test option performance in the CPT
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code context, and such evaluation is necessary to provide recommendations for
routine comparison of healthcare utilization.

For all of our simulation studies, we consider four classes of testing options:

• Analysis of the CPT count data using a LRT and a ET based on either the simple
Poisson model or the more general negative binomial model.

• Analysis of the derived any/none binary indicator using Binomial methods:
Fisher’s ET and Binomial LRT.

• Simple two-sample t-test with unequal variances, or with a sandwich variance
estimator (z-statistic) for correlated data, as a potential semiparametric method
relying solely on moment assumptions.

• Ridge test that constructs p-value and confidence interval using de-biased esti-
mator assuming either independent or correlated data.

We evaluate the performance in terms of type I error rate and power across a full
range of rate parameters as might be encountered in healthcare utilization data. We
also evaluate inference of the ridge regression in terms of type I error and coverage.

We consider three types of underlying data for our simulation studies:

• Y c
si ∼ Poisson(rate = λc

s) with E[Y c
si] = Var[Y c

si] = λc
s . Note that Pr(Y c

si = 0) =
e−λc

s .
• Y c

si ∼ negative binomial(μ = λc
s, r = 2) with E[Y c

si] = λc
s and Var[Y c

si] = λc
s(1+

1
2λc

s). Note that Pr(Y c
si = 0) = ( r

λc
s+r

)r = ( r
λc

s+2)2.

• Y c
si ∼ zero-inflated Poisson(πc = r

1+r
= 2

3 , λc
s) with E[Y c

si] = λc
s and Var[Y c

si] =
λc

s(1 + 1
2λc

s). There are two components: Y c
si = 0 with probability πc = 2

3 , and

Y c
si ∼ Poisson(rate = λc

s

1−πc ) with probability 1 −πc. Both generate zero-counts,

so Pr(Y c
si = 0) = πc + (1 − πc)e

− λc
s

1−πc = 2
3 + 1

3e−3λc
s .

We dichotomize the individual count data to create indicators, Zc
si , analyzed

using a Binomial LRT. Note that Pr(Y c
si = 0) → 0 as λs → ∞ in the negative bi-

nomial and Poisson model implying that for count data with a large mean, the
dichotomized data would be all ones and, therefore, be uninformative for evalua-
tion of rate differences. Finally, for ETs we aggregate individual data, Y c

si and Zc
si ,

into cohort-level totals Y c
s and Zc

s .
Our choice of generating models is to allow both standard Poisson models as

well as alternative distributions that generate over-dispersed data. The primary role
of the zero-inflated Poisson model is to allow evaluation of the flexibility or ro-
bustness of the negative binomial model for over-dispersed data that are outside
the assumed class of models used for analysis. We parameterize the three data
generating models such that they all have the same mean λs , which represents the
average number of times a procedure was delivered to a patient during a fixed
(one unit) follow-up time period. In addition, the negative binomial model and the
zero-inflated Poisson model are chosen to have the same variance.
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In addition to concerns of sparsity, over-dispersion, and model misspecification,
we are also interested in the influence of provider-level clustering on validity of the
tests, and the performance of testing strategies that account for correlated data. To
this end, we assign each patient to a provider randomly with an average cluster size
of three patients per provider, and introduce correlation between patients within
provider by including a provider-level random variable. We consider two types of
mean-preserving random variables that fluctuate the mean λs by provider p:

• λ
β
s,p = λs ·γ β

p , where γ
β
p ∼ Gamma(shape = 1

β
, scale = β) is shared by patients

within the same provider p, with E[γ ] = 1, Var[γ ] = β , and E[λβ
s,p] = λs .

• λσ
s,p = exp[log(λs) + bσ

p ], where bσ
p ∼ Normal(0, σ 2) is shared by patients

within the same provider p, with E[λβ
s,p] = λs · e σ2

2 but E[log(λ
β
s,p)] = log(λs).

4.1. Code-wise test: Type I error rate. In the following sections, we assess
size of the testing options under imbalance sample sizes, sparsity, over-dispersion,
model misspecification, and potentially correlated data introduced by provider be-
havior.

4.1.1. Independent data. In this section, we generate independent outcomes to
estimate the type I error rate as the proportion of p-values less than the nominal α

level of 0.05. We set log10 λ0 = log10 λ1 to range from −6 to 2, so that λ (≡ λ0 =
λ1) increases from 10−6 to 102 multiplicatively. Under this null, the rate ratio
is one and both cohorts have equal variances. For each scenario considered, we
conduct 5000 simulations with unequal samples sizes of n0 = 1000 and n1 = 3000
since this reflects the motivating example data.

The performance of each test varies by the average number of times a procedure
was delivered in the sample, (n0 + n1)λ, which we refer to as the frequency. We
will discuss selected results presented in Figure 1 by four regions of log10 λ. They
are region I: [−6,−4), region II: [−4,−2), region III: [−2,−0.5) and region IV:
[−0.5,2], which correspond to a frequency of less than 0.4, less than 40, between
40 and 1265, and over 1265, respectively, for the sample size of 4000. The compre-
hensive results with equal and unequal sample sizes are shown in Supplement D
Figures 1 and 2 of the supplementary materials. We also evaluated coverage of the
ridge test shown in Supplement D Figure 5 of the supplementary materials [Shi,
Pashova and Heagerty (2017)].

For extremely low rates (region I), all methods have a type I error of nearly
zero for any of the three types of simulated data. This is not surprising since a
rare procedure that gets assigned to only one out of every 10,000 patients should
provide little information unless sample sizes are extremely large.

When outcome rates are rare (region II), with an expected rate λ of 0.1 to 10
per 1000, or equivalently, a frequency of 0.4 to 40, we find that LRTs, t-test, and
the ridge test have inflated type I error rates. Conversely, the three ETs still hold
the type I error below the nominal level.
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FIG. 1. Type I error rates of CPT code-specific tests with unequal sample sizes (n0 = 1000,
n1 = 3000) using Poisson data, negative binomial data, or zero-inflated Poisson data, each with
a group mean of λ ranging from 10−6 to 102, plotted on log10 scale. Colored lines correspond to
negative binomial LRT ( ); negative binomial ET ( ); Poisson LRT ( ); Fisher’s ET ( );
t-test ( ); ridge test ( ).

In region III when λ is approximately 100 per 1000, all of the tests perform well
and have a type I error rate of around 0.05.

Finally, in region IV, the t-test and ridge test are the only two tests with a type
I error rate near the nominal level for all three data-generating mechanisms. All of
the model-based LRTs are subject to inflated type I error when the assumed model
is incorrect. Specifically, the negative binomial LRT and ET break down when the
true distribution is zero-inflated Poisson, although they are valid for both the dis-
tributions within their assumed class (negative binomial and Poisson). Also, when
λ is large, the induced dichotomized data in the negative binomial and Poisson
model are all ones and, therefore, the Binomial LRT and Fisher’s ET will have a
type I error rate of zero.

Our simulation results suggest that a valid and simple testing strategy for rate
differences can be obtained from a dynamic test that uses the negative binomial
ET if the total number of delivery in the sample (i.e., the frequency) is less than
40, and otherwise uses the semiparametric t-test. In order to evaluate the perfor-
mance of such a procedure, we have calculated test size in additional simulations
(in Supplement D Figure 6 of the supplementary materials [Shi, Pashova and Hea-
gerty (2017)]), and find that the dynamic test tracks the conservative type I error of
exact methods for low rates, but then enjoys robustness to model assumption for
moderate and large rates. In additional simulations, we evaluated the threshold of
40 and find this appropriate with varying total sample size.

In summary, we find that no method can be reliably used across the entire spec-
trum of candidate rates that are encountered with CPT data. For rare rates exact
testing methods are preferred, while for common rates robust methods such as the
t-test and the ridge test perform well. Model-based count data LRT do not exhibit
sufficient robustness to rare counts or model violation to be recommended for rou-
tine surveillance use.
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FIG. 2. Type I error rates of t-test, dynamic test, and ridge test using negative binomial
data with provider-level clustering. To introduce association, a mean-preserving random variable

γ
β
p ∼ Gamma(shape = 1

β , scale = β) with E[γ β
p ] = 1 and Var[γ β

p ] = β is shared by patients treated
by provider p. The cohorts have unequal sample sizes (n0 = 1000, n1 = 3000), each with a group
mean of λ ranging from 10−6 to 102, plotted on log10 scale.

4.1.2. Correlated data. In this section, we investigate influence of provider-
level clustering, and evaluate performance of the proposed corrections in t-test,
dynamic test, and ridge test that allow for correlation between patients within
provider. Recall that we introduce correlation using two types of mean-preserving
random variables (simulation settings in Section 4). First, for a fixed λ, we study
how strength of correlation influences the type I error by setting variances of the
random variables, defined by β and σ 2, to increase from 1

16 to 4 multiplicatively.
Second, we fix β and σ 2, and set λ to range from 10−6 to 102 to study sensitivity
and robustness to correlated data under both rare and common code scenarios.

Figure 2 shows selected results which are type I error rates of t-test, dynamic
test, and ridge test using negative binomial data with provider-level clustering. For
tests that ignores the correlation between patients within provider, we observe two
patterns: when CPT codes are rare, the testing procedures are not very sensitive to
correlation among patients, and the type I error is not substantially inflated; when
CPT codes are common, type I error exceeds the nominal value. In addition, the
type I error increases when either the utilization rate λ increases or the correlation
controlled by β and σ 2 gets stronger. We also see that when the covariance ma-
trix is estimated accounting for correlation within provider clusters in each of the
tests, the type I error is corrected to the nominal α level. Comprehensive results for
Gamma and Normal random variables, and across different data generating distri-
butions including negative binomial, Poisson, and zero-inflated Poisson are quite
similar and are shown in Supplement D Figures 3 and 4 of the supplementary
materials [Shi, Pashova and Heagerty (2017)].

4.2. Code-wise test: Power. To explore power, we focus on select event rates,
λ0 = 1 or 0.01, and empirically evaluate power as a function of various rate ratios,
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FIG. 3. Power of CPT code-specific tests with unequal sample sizes (n0 = 1000, n1 = 3000) using
negative binomial data, Poisson data, or zero-inflated Poisson data, each with a mean of λ0 = 1
or 0.01 in cohort 0, and a rate ratio on log 2 scale (log2

λ1
λ0

) ranging from 0 to 1.5. Colored lines
correspond to negative binomial LRT ( ); negative binomial ET ( ); Poisson LRT ( );
Fisher’s ET ( ); T-test ( ).

λ1 = RR · λ0. We let log2 RR range from 0 to 3, so that the RR increases from 1 to
8 multiplicatively, and we conduct 2000 simulation replications for each situation.
Figure 3 shows selected results for unequal sample sizes similar to our motivating
data, and show a monotone increase in power with increasing RR, and a small loss
of power for exact and robust methods relative to the correctly specified LRTs.
Comprehensive results for equal and unequal sample sizes are quite similar and
are shown in Supplement D Figures 7 and 8 of the supplementary materials [Shi,
Pashova and Heagerty (2017)]. A few observations are notable, with the first be-
ing that application of Fisher’s ET when the event rates are large may result in a
substantial loss of power. When λ0 = 1, we see that most test procedures achieve
power greater than 80% for log2 RR > 0.25 for all three data-generating mecha-
nisms, while Fisher’s ET has power < 50% for all RR values under a zero-inflated
Poisson model. However, with lower event rates (e.g., λ0 = 0.01) we see a small
reduction in power with use of ETs. Therefore, the power plots reinforce recom-
mendations based on preservation of test size: ETs appear valid and reasonably
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powered for low event rates; while robust methods are valid and retain power for
common event rates.

5. Application: Comparing healthcare utilization between Henry ford
health system and kaiser permanente. The development and evaluation of sta-
tistical methods for comparing rates of medical procedure utilization is motivated
by the Back pain Outcomes using Longitudinal Data (BOLD) project, which en-
rolled 5239 patients aged 65 years and older with a new episode of back pain
[Jarvik (2012)]. In order to enroll more than 5000 patients, recruitment was con-
ducted from three healthcare systems. Primary scientific questions focus on medi-
cal interventions such as early radiologic imaging and subsequent patient reported
pain and function outcomes. In order to combine EMR data across the three sys-
tems, we need to understand any differences in procedure endorsement across the
sites. Therefore, we focus on CPT coding data across all domains including imag-
ing, laboratory, and diagnostic procedures. Specific sub-cohorts can be defined us-
ing the demographic or clinical information. Here, we focus on the cohorts defined
by the enrollment site for a patient since both geographic and healthcare system
differences may be associated with different CPT coding patterns. We compare
healthcare utilization between two largest sites: Henry Ford Health System in De-
troit and Kaiser Permanente in Northern California, which include 4040 patients.

5.1. Hypothesis testing. First, we investigate the significance of the difference
in code utilization for individual codes and blocks of codes defined by the CCS-
Services and Procedures. We use the dynamic test for both code-specific compar-
ison and the burden test; for block-based inference, we use both the burden test
and SKAT. We present code-wise p-values on the − log10 scale for all CPT codes
in a “Manhattan plot” (Figure 4), for which the codes in a block are contiguous
and plotted with the same color. We truncate any p-value at 10−17. We also add
the group-wise p-values to the Manhattan plot, one for each block. We include
two horizontal lines which are the Bonferroni corrected significance thresholds for
code-level and block-level comparisons. There are a total of C = 2424 CPT codes
with nonzero counts, and based on the CCS classification we have B = 192 blocks.

Figure 4(a) shows that there are many codes with utilization differences that
are statistically significant, and that these codes tend to cluster in select domains.
We detected significant difference among 31 out of 192 blocks using the burden
test, and only 5 using the SKAT. Specifically, in 27 blocks, the burden test rejects
the null hypothesis while SKAT does not, and there is only 1 block for which the
SKAT has a significant result in contrast to the result from the burden test.

We zoom in on select blocks to investigate detailed patterns as shown in Fig-
ure 4(b). The burden test for “Laboratory—Chemistry and Hematology” rejected
the null hypothesis, while the SKAT p-value did not reach the block-wise signifi-
cance level. We find that this is driven by the abundance of codes whose utilizations
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FIG. 4. A full Manhattan plot for code-wise comparison of Henry Ford Health System and Kaiser
Permanente plotted by block, overlaid with results from the group-wise comparison using the Burden
test and SKAT for each block. The y-axis is truncated at a p-value of 10−17. Bonferroni corrected
significance levels for code-wise and group-wise tests are shown. Panel (b) is a zoom in version of
the Manhattan plot for select blocks.

are consistently higher at one site, a situation in which the burden test has higher
power.

In the block called “Mammography”, although both the burden test and SKAT
give a significant result, SKAT gives a much smaller p-value than the burden test.
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Looking into the data, we see that Henry Ford Health System uses exclusively
so-called G-codes for recording of mammography, while Kaiser Permanente uses
the common numeric codes for mammography. We learned that G-codes refer to
digital mammography for screening or diagnosis, whereas numeric codes refer to
nondigital (film) mammography. Therefore, if the cost of breast cancer screening
was the focus of analysis, then minor differences in codes may be important to cap-
ture. On the other hand, if overall interest is in the rate of patient screening regard-
less of imaging technology, then G-codes and numeric codes may be combined to
define a general mammography procedure and the detailed differences will not be
important. Such distinctions relate to the choice of code-specific or block-specific
inference procedures that we present, as well as the trade-off between sensitivity
and power as illustrated by comparing the results from the burden test and from
SKAT.

Our methods are intended to identify specific codes, or groups of codes, that
appear to have different recorded utilization. Additional investigation is required
to separate whether the finding corresponds to actual differences in patient care, or
whether coding variation through use of alternative codes may explain differences
in observed endorsement rates. In our use of these methods with our healthcare
delivery system studies, we have used the signals from our testing procedure to
engage in discussion with the individual systems to ultimately attribute observed
differences to practice or coding variation.

5.2. Rate ratio estimation and inference. A key aspect of understanding dif-
ferences in CPT endorsement is the direction and magnitude of rate differences.
Therefore, we also estimate rate ratios for all codes simultaneously to compare the
utilization pattern in Henry Ford Health System to Kaiser Permanente, adjusting
for age category, sex, and race. Due to potential sparse codes, we use penalized
Poisson regression as detailed in Section 3, and we provide inference for ridge
regression using methods detailed in Section 3.2. In the BOLD study, patients
were recruited through primary care clinics, and information on their primary care
provider is available. To illustrate the practical use of our proposed methods that
account for provider-level clustering discussed in Section 3.4, we adopt the pri-
mary care provider as our level of clustering which is appropriate for the study
design. In the BOLD study, we have 4040 patients and 1819 providers.

To display the point estimation results, we use dynamic graphical methods that
plot the estimated code-specific rate ratios on a log2 scale versus the block to
which each code belongs to (Figure 5). We color-code each point according to
the significance of the code from the hypothesis test using the ridge test detailed in
Section 3.2. The p-values are split into four regions, each corresponding to a color.
They are: (0, α], (α, 0.01], (0.01, 0.05], and (0.05, 1], where α is the Bonferroni
corrected significance level. The summary plot displays the healthcare utilization
pattern over the entire spectrum of all possible procedures, but detail on individual
codes can be revealed using dynamic graphical methods, and as shown in Figure 5,
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FIG. 5. Rate ratio estimates comparing Henry Ford and Kaiser Permanente for each CPT code
based on a penalized Poisson regression with ridge penalty. Code-specific rate ratios (log2 scale)
are plotted against the block that the each code belongs to, color-coded according to four levels of
p-values: (0, α], (α, 0.01], (0.01, 0.05], and (0.05, 1], where α is the Bonferroni corrected signifi-
cance level. The plot function can dynamically provide additional information for each point showing
the block, the code, the rate ratio, the 95% confidence interval, the p-value, and the raw data, as il-
lustrated with one point in panel (b).
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we display both statistical information and medical details for any given CPT code.
For blocks that are not present in the data, we plot place holders at the bottom using
a unique color. We note that individual CPT code rate ratios are shrunk to a block
level rate ratio due to our choice of penalization that incorporates the block-code
hierarchical structure.

There are a variety of factors that may drive measured utilization differences,
including healthcare practices, coding regulations, data quality issues, and differ-
ences in patient characteristics. Our methods can reveal differences that should be
followed up with additional investigation into the underlying drivers for the ob-
served differences. To this exploratory end, we make the plot interactive which
displays the tool-tip detailing the information of the block, the code, the rate ratio,
the 95% confidence interval, the p-value, as well as the raw data. One can also fil-
ter on select results based on p-value categories. Pointing to a specific point in the
plot, for example, the G0202 in the “Mammography” block, we can see from the
raw data that Henry Ford uses the G codes exclusively, while Kaiser Permanente
uses the five-digits codes, as is discussed in Section 5.1. Such pattern drives the
estimated rate ratio to be high and the p-value to be low.

The summary rate ratio plot serves as an interpretable tool for clinical re-
searchers and data managers to explore healthcare utilization patterns among sub-
cohorts. We have used this tool as part of our data quality control, and for providing
potential alternative explanations that need to be considered in comparative utiliza-
tion analyses across observed patient subgroups. We implement the interactive plot
in both an R package and a shiny application. The shiny app is available online at
https://xu-rita-shi.shinyapps.io/CPT_visualization/.

6. Discussion. Contemporary biomedical research is now leveraging the elec-
tronic medical records for both comparison of alternative treatment options and to
generate individual predictions. Increasingly, there are large networks of hospitals
or healthcare systems that are assembled to provide sizable cohorts. With these
efforts comes the need to compare patterns of utilization across sub-groups within
modern cohorts, either to understand systematic issues with respect to data quality
or coding variation, or to compare utilization across patient subgroups defined by
treatment or medical indication. Therefore, we have developed multilevel hypoth-
esis testing and rate ratio estimation methods that can be used either for evaluation
of potential data issues or for comparative inference.

First, we detailed statistical testing methods for evaluating differences in pro-
cedure assignments between two groups, and provide inference at both the code
and block levels. To compare utilization at the code level, we discussed the po-
tential likelihood ratio test and conditional exact tests. We focused on three can-
didate distributions: the Poisson, negative binomial, and Binomial distribution if
data are dichotomized. When comparing rare procedure codes which might lead
to low power and violation of assumptions for the asymptotic χ2 approximation,

https://xu-rita-shi.shinyapps.io/CPT_visualization/
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the conditional exact test provides a viable option. We also considered semipara-
metric testing using the two-sample t-test. We learned from our simulation study
that different tests work well in different scenarios, and the dynamic test tracks the
conservative type I error of exact methods for low rates, but then enjoys robustness
to model assumption for moderate and large rates. To compare utilization on block
level, we transferred methods from genome-wide association studies to the EMR
context, including the burden test and the sequence kernel association test. Both
the burden test and SKAT evaluate utilization patterns by combining a block of
similar codes, which may substantially increase power for rare codes in particular.

Second, we detail estimation and inference of utilization rate ratios via penal-
ized Poisson regression with a tailored form of penalty that takes advantage of the
hierarchical structure of the CPT codes. Our proposed method shrinks the code-
specific estimates to the block level, effectively borrowing information from all
other codes within the same block. Such shrinkage is especially important for rare
codes for which individual rate ratio estimates may be highly unstable. We also
develop inference methods that account for shrinkage bias and construct statisti-
cal tests (p-values) and confidence intervals using the distribution of a de-biased
estimate.

Third, we consider provider behavior as an important driver of patterns in
healthcare utilization and expanded the inference method to account for potential
correlation within provider. We learned from simulation that for rare CPT codes,
testing is not sensitive to provider clustering, because there is not much informa-
tion to be influenced by within-provider correlation. In contrast, correlation does
inflate the type I error among common outcomes, and the amount of inflation in-
creases with the strength of the correlation and the mean of the outcome. We are
also able to control the inflated type I error under correlated data back to its nomi-
nal value by correcting the variance-covariance estimate.

Finally, we ultimately provide interpretable dynamic graphical tools that can
help researchers to explore and interpret the healthcare utilization patterns. We use
a CPT code version of the genomic Manhattan plot to display testing results, and
we use an interactive plot to present both the significance and the magnitude of rate
differences. The interactive plot enables us to see useful global information and
select detailed information that facilitates discovery of key utilization differences.
Although we focus on CPT coding differences, the general testing and estimation
framework is also applicable to other forms of structured EMR data such as diag-
nostic coding data (ICD-9 or ICD-10) and is particularly useful when any coding
system can be hierarchically organized.

A potential limitation of our work is the need to further investigate whether any
statistical finding corresponds to actual differences in patient care, or whether cod-
ing variation through use of alternative codes may explain differences in observed
endorsement rates. Another limitation is that in our data application, we only had
primary care provider IDs and did not have detailed specialty care provider in-
formation to illustrate how one could use an extension of the GEE-type variance
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estimator to accommodate nonnested clustering. In addition, although we consider
accounting for patient-specific follow-up time to partially account for missing data,
tailored methods targeting missing data is an important future direction in the use
of EMR data. Last, the longitudinal nature of EHR data has great potential for re-
search to understand the temporal changes in patient treatment history and patient
health status, which requires future work.

SUPPLEMENTARY MATERIAL

Supplement A: Comprehensive discussion on code-wise two-sample testing
options (DOI: 10.1214/17-AOAS1028SUPPA; .pdf). We provide detailed review
of testing strategies that are candidates for the evaluation of variation in code en-
dorsement rates across cohorts.

Supplement B: Proof of Lemma 3.1 (DOI: 10.1214/17-AOAS1028SUPPB;
.pdf). We provide a proof of Lemma 3.1.

Supplement C: Comprehensive review of simulation results comparing
group-wise association tests (DOI: 10.1214/17-AOAS1028SUPPC; .pdf). We
provide a review of relevant results in previous research comparing group-wise
association tests.

Supplement D: Comprehensive plots of type I error and power (DOI:
10.1214/17-AOAS1028SUPPD; .pdf). We provide additional supporting plots that
show the type I error and power of all tests with equal/unequal sample sizes using
generated data of independent observations or under provider-level clustering.
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