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BAYESIAN INFERENCE OF HIGH-DIMENSIONAL,
CLUSTER-STRUCTURED ORDINARY DIFFERENTIAL
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We build a new ordinary differential equation (ODE) model for the di-
rectional interaction, also called effective connectivity, among brain regions
whose activities are measured by intracranial electrocorticography (ECoG)
data. In contrast to existing ODE models that focus on effective connectiv-
ity among only a few large anatomic brain regions and that rely on strong
prior belief of the existence and strength of the connectivity, the proposed
high-dimensional ODE model, motivated by statistical considerations, can be
used to explore connectivity among multiple small brain regions. The new
model, called the modular and indicator-based dynamic directional model
(MIDDM), features a cluster structure, which consists of modules of densely
connected brain regions, and uses indicators to differentiate significant and
void directional interactions among brain regions. We develop a unified
Bayesian framework to quantify uncertainty in the assumed ODE model,
identify clusters, select strongly connected brain regions, and make statis-
tical comparison between brain networks across different experimental trials.
The prior distributions in the Bayesian model for MIDDM parameters are
carefully designed such that the ensuing joint posterior distributions for ODE
state functions and the MIDDM parameters have well-defined and easy-to-
simulate posterior conditional distributions. To further speed up the posterior
simulation, we employ parallel computing schemes in Markov chain Monte
Carlo steps. We show that the proposed Bayesian approach outperforms an
existing optimization-based ODE estimation method. We apply the proposed
method to an auditory electrocorticography dataset and evaluate brain audi-
tory network changes across trials and different auditory stimuli.

1. Introduction. This paper focuses on modeling and making inferences
about directional interactions among human brain regions. The human brain is
a continuous time dynamic system, so it is biophysically natural to use ordinary
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differential equations (ODE) to model the directional effects exerted by each sys-
tem component (i.e., regions) over others. More specifically, since studies have
shown that interactions among brain regions occur at the neuronal level [Aertsen
and Preissl (1991)], we use ODEs to model the brain’s neuronal state changes and
directional connectivity.

The dynamic causal models (DCM) for fMRI and EEG data are the most com-
monly cited ODE models in the literature [Daunizeau, David and Stephan (2011),
David and Friston (2003), David et al. (2006), Friston, Harrison and Penny (2003),
Kiebel, David and Friston (2006)] for directional interactions, also called effective
connectivity, among brain regions. Both fMRI and EEG are noninvasive meth-
ods for measuring brain activity with large noise, hence associated DCMs rely
on strong prior information of the existence and strength of connections among
the brain regions under study, and the DCMs are usually focused on connectivity
among only a few large anatomic regions. In contrast, we use electrocorticogra-
phy (ECoG) data to study directional interactions among many small brain regions
and evaluate how their interactions change across time and stimuli. As intracranial
measurements of brain activity, ECoG provides unique information for studying
the brain’s directional connectivity, as explained below.

ECoG, also called intracranial EEG, uses electrodes placed directly on the corti-
cal surface of the human brain to record its electrical activity for clinical purposes
in the treatment of patients with medically intractable seizures or tumors. Fig-
ure 1(a) shows the spatial placement of ECoG electrodes on the epileptic patient
whose ECoG data are analyzed in this paper. The special data collection tech-
nique leads to nice properties of ECoG data, including simultaneous recordings
of many small brain regions’ neuronal electrical activity, combined high temporal
(data collected every 1 ms) and spatial (10 mm) resolution, strong signal-to-noise
ratio (SNR), and highly reliable and reproducible measurements of brain activity
[Cervenka et al. (2013)], which are unavailable in noninvasive measurements of
brain activity, for example, fMRI and EEG.

We propose an ODE model for ECoG data, which is motivated by statistical
considerations and widely applicable to explore directional connectivity among

FIG. 1. (a) Spatial placement of ECoG electrodes on an epileptic patient. (b) A network in a cluster
structure.
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many different brain regions without relying on strong, specific prior knowledge
of the regions. Specifically, we use bilinear ODEs to model directional interactions
among brain regions for three reasons. First, the bilinear model, also the simplest
ODE model as a low-order Taylor expansion of nonlinear ones, provides general
applicability for approximating high-dimensional dynamic systems. This approach
is similar to using linear regression models to approximate complex association
relationships between various response and predictor variables. As such, linear or
bilinear ODEs have been used to model complex dynamic systems in many scien-
tific studies when the underlying dynamic mechanism is elusive and the ensuing
detailed model specification is difficult. These studies include gene regulation net-
work [Lu et al. (2011), Voit (2000)] and brain effective connectivity studies based
on fMRI data [Friston (2009)]. Second, the simple bilinear form provides intuitive
scientific interpretation of the model parameters, and enables fast computation for
high-dimensional data. Third, taking advantage of ECoG’s high temporal resolu-
tion, we study the brain activity in response to a simple, short auditory stimulus,
and the proposed bilinear model can effectively approximate the brain dynamics
within a short period of time.

Within the bilinear formulation, we assume that many model parameters denot-
ing directional interactions among brain regions are zeroes. This is because interac-
tions among brain regions are energy-consuming [Anderson (2005), Földiák and
Young (1995), Olshausen and Field (2004)] and sparse connections would help
the brain, a biological system, to conserve energy in order to survive and pros-
per [Bullmore and Sporns (2009), Micheloyannis (2012)]. Moreover, motivated
by many reports of brain networks in a cluster structure [Milo et al. (2002, 2004),
Newman (2006), Sporns (2011)], which consists of clusters, also called modules,
of densely connected brain regions, as shown in Figure 1(b), we build a new bi-
linear ODE model, called modular and indicator-based dynamic directional model
(MIDDM), to characterize sparse connections in the cluster structure in particular.
This new ODE model not only has a scientific basis, but also provides intuitive
interpretation of different functions of the brain regions in different modules.

Despite that an iterative optimization algorithm, called Potts-based iterated prin-
cipal differential analysis (P-iPDA), has been developed by Zhang et al. (2015) to
identify clusters within a bilinear Potts-based dynamic direction model (PDDM),
we develop a new Bayesian approach to estimate the proposed MIDDM, an exten-
sion of the PDDM, for three major reasons. First, the Bayesian method provides
a unified inference framework for evaluating the statistical significance of identi-
fied network edges, each associated with a significantly nonzero model parameter
denoting the directional effect between a pair of brain regions. With the proposed
Bayesian method, we can study the brain connectivity changes in response to repet-
itive events, an important research topic in neuroscience [Eliades et al. (2014),
Garrido et al. (2009)]. In contrast, it is difficult to evaluate the statistical signifi-
cance or compare network results of different trials by the P-iPDA (see Section 2.1
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for more details). Second, the MIDDM, assuming different properties for connec-
tions within and between modules, essentially presents a hierarchical model for
the brain network. It is natural and convenient to characterize this multilevel struc-
ture and to simultaneously address module identification and directional network
edge selection within a unified Bayesian framework, similar to Bayesian methods
[Dunson, Herring and Engel (2008), Kim, Tadesse and Vannucci (2006), Tadesse,
Sha and Vannucci (2005)] for simultaneous variable selection and clustering in
multiple regression. Third, quantification of the MIDDM model inadequacy for
characterizing the complex brain system is natural within a Bayesian framework,
an approach unique from most existing ODE estimating methods, as explained in
detail below.

The proposed new ODE model, motivated by statistical considerations, is con-
sidered an approximation rather than a principle for the underlying brain mech-
anism, in contrast to many existing low-dimensional ODE models for simple,
well-understood dynamic systems. As such, it is important to account for model
uncertainty, defined as the discrepancy between the state functions of the assumed
model and the true state functions of the complex brain system, when estimating
the MIDDM. Model uncertainty quantification, though straightforward for stan-
dard statistical models, is not self-evident for ODEs, since the latter are essentially
deterministic models for dynamic systems. Chkrebtii et al. (2016) and Conrad
et al. (2015) developed approaches within the Bayesian framework by Kennedy
and O’Hagan (2001) to quantify discretization uncertainty of ODE models, which
is the discrepancy, caused by limited computation and coarse grids, between the
state functions fitted by discretization methods and the exact state functions of the
ODE model. However, very few methods in the statistical literature have been de-
veloped to quantify ODE model uncertainty. Existing approaches [Cheung et al.
(2011), Oliver and Moser (2011)] for ODE model uncertainty quantification were
mainly developed for specific low-dimensional dynamic systems. Here, we de-
velop a new prior on high-dimensional ODE state functions to quantify the dis-
crepancy between the assumed MIDDM and the underlying brain system.

In summary, this paper proposes a new ODE model for ECoG data to character-
ize the brain network of effective connectivity in a cluster structure, and develops
a new Bayesian framework to quantify the ODE model uncertainty, identify clus-
ters, select significant network edges, and evaluate brain network changes across
time and stimulus types. Moreover, we carefully design new priors on the MIDDM
parameters to ensure fast posterior simulation of the ensuing hierarchical Bayesian
model for high-dimensional ECoG data.

The rest of the article is organized as follows. Section 2 introduces the new
ODE model, MIDDM, for cluster-structured directional brain networks, and re-
views existing methods for ODE model estimation and cluster identification. We
develop a Bayesian hierarchical method to estimate the MIDDM based on basis
representation of ODE state functions in Section 3, and develop a Markov chain
Monte Carlo (MCMC) simulation algorithm for posterior inference in Section 4.



872 T. ZHANG ET AL.

Then we apply the proposed MIDDM and Bayesian method to two simulated ex-
amples in Section 5, comparing the results by the Bayesian method with those by
the existing ODE estimation method P-iPDA, and demonstrating the advantages
of the former over the latter. In Section 6, we analyze ECoG data collected in an
auditory experiment, and evaluate brain network changes across trials and audi-
tory stimuli. The analysis results not only confirm existing results, but also bring
new insights into understanding brain connectivity changes in response to repeti-
tive events. Section 7 discusses future development of ODE models and Bayesian
methods for ECoG data analysis.

2. MIDDM for ECoG data. Let y(t) = (y1(t), . . . , yd(t))′ be the observed
ECoG measurements of d brain regions’ neuronal activity at time t . The observed
data y(t) are measured at discrete time points t = 1,2, . . . , T .

Let x(t) = (x1(t), . . . , xd(t))′ be the neuronal state functions of the d brain re-
gions at time t . For ECoG data, the observation model is given by

(2.1) y(t) = x(t) + ε(t),

where ε(t) = (ε1(t), . . . , εd(t))′ is a d-dimensional vector of errors with mean
zeroes.

The brain system consisting of the d regions under study received a stimulus
input. We let u(t) be an experimental input function taking values 1 and 0 only, for
example, a boxcar or stick stimulus function. The input function indicates whether
the stimulus is present at time t . Since brain regions interact with each other at
the neuronal level, we use the following bilinear ODEs for x(t) to characterize
directional interactions among the d regions:

(2.2)
dx(t)

dt
= Ax(t)

(
1 − u(t)

) + Bx(t) u(t) + Cu(t) + D,

where A = (Aij )d×d with entry Aij denoting the effect of region j on region i

exerted at the current state without the stimulus; B = (Bij )d×d with Bij denoting
the stimulus-dependent effect exerted by region j on region i; C = (C1, . . . ,Cd)

with Ci denoting the stimulus effect on region i; and D = (D1, . . . ,Dd) denoting
the intercepts for the d regions. As a low-order Taylor approximation of the un-
derlying system, the simple bilinear model (2.2) provides general applicability and
facilitates fast computation for a high-dimensional dynamic system.

As discussed in Introduction, it is reasonable to believe that many brain re-
gions are not directly connected and the ensuing sparse brain network with each
network edge denoting one directional effect between a pair of regions is in a
cluster structure. To characterize the cluster structure, we introduce module labels
m = {m1, . . . ,md} for d regions, which take integer values between 1 and d . In
addition, following the formulation in the Bayesian stochastic search variable se-
lection (SSVS) framework [Brown, Vannucci and Fearn (1998), George and Mc-
Culloch (1993, 1997), Yi, George and Allison (2003)] that uses the “spike and
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slab” prior [Ishwaran and Rao (2005), Miller (2002), Theo and Mike (2004)], we
use indicators γ A

ij and γ B
ij —which take values 1 and 0 only for i, j = 1, . . . , d—

to differentiate strong and void directional effects without and with the stimulus,
respectively. We modify Model (2.2) and propose the following ODE model:

dxi(t)

dt
=

d∑
j=1

δ(mi,mj ) γ A
ij Aij xj (t)

(
1 − u(t)

)
(2.3)

+
d∑

j=1

δ(mi,mj ) γ B
ij Bij xj (t) u(t) + Ci u(t) + Di,

where δ(mi,mj ) is the Kronecker delta, which equals 1 whenever mi = mj and 0
otherwise. Under Model (2.3), component j has a nonzero directional effect on i

or a directional network edge from j to i exists if and only if the two components
are in the same cluster, that is, mi = mj , and either γ A

ij or γ B
ij is nonzero.

The ODE (2.3) together with the observation model (2.1) is referred to as the
MIDDM. The ODE (2.2) and the sparse network, in which each node is sparsely
connected with the rest of nodes and all nodes are connected directly or indirectly,
are special cases of the MIDDM with only one single module and with either
mostly nonzero or mostly zero indicators. The MIDDM is also an extension of
the existing ODE model for ECoG, PDDM Zhang et al. (2015), as the latter as-
sumes all regions within clusters to be pairwise connected while the former uses
indicators to distinguish nonzero directional interactions within clusters from void
ones.

Under the MIDDM, the inference of the brain’s effective connectivity is equiv-
alent to identifying modules, selecting statistically significant directional connec-
tions, and estimating the model parameters A and B, which denote the strength of
effective connectivity among brain regions.

2.1. Existing ODE model estimation methods. In the statistical literature,
three major approaches have been developed for estimating ODE models: basis-
function-expansion approaches in which state functions x(t) are represented by
functional bases [Bhaumik and Ghosal (2015), Brunel (2008), Deuflhard and
Bornemann (2002), Poyton et al. (2006), Qi and Zhao (2010), Ramsay and Silver-
man (2005), Ramsay et al. (2007), Varah (1982)], discretization methods using nu-
merical approximation [Bard (1974), Biegler, Damiano and Blau (1986), Campbell
(2007), Cao, Huang and Wu (2012), Gelman, Bois and Jiang (1996), Girolami
(2008), Hemker (1972), Huang, Liu and Wu (2006), Huang and Wu (2006), Li,
Osborne and Prvan (2005), Mattheij and Molenaar (2002), Xue, Miao and Wu
(2010)], and Bayesian approaches using a Gaussian process prior for state func-
tions [Calderhead, Girolami and Lawrence (2008), Chkrebtii et al. (2016), Stuart
(2010)].
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The approaches mentioned above usually concern low-dimensional dynamic
systems with only a few ODEs. For high-dimensional systems, Lu et al. (2011),
Wu et al. (2014a, 2014b) proposed to use penalization-based variable selection
methods, which were originally developed for high-dimensional regression prob-
lems [Fan and Li (2001), Tibshirani (1996), Wang and Leng (2008), Yuan and
Lin (2006), Zou (2006), Zou and Hastie (2005)], to estimate sparse ODEs. These
methods are suitable for identifying sparse networks in which each component has
only a few connections with other components and all components are connected
directly or indirectly.

An optimization algorithm P-iPDA was developed by Zhang et al. (2015) to
search for the optimal modules/clusters of densely connected brain regions. How-
ever, the P-iPDA has several limitations. First, the P-iPDA, relying on a crucial
assumption that regions within the same cluster are all pairwise connected, does
not distinguish connected brain regions from disconnected ones within the same
cluster, and thus may lead to many false positives whenever the P-iPDA fails to
identify the smallest clusters and groups separate clusters together. Second, the
P-iPDA essentially minimizes a log-likelihood based criterion with an L0 penalty;
statistical inference of the ensuing parameter estimates is challenging, and thus
the P-iPDA cannot be used to compare brain networks across different trials and
stimulus types. Third, the network results by the P-iPDA are highly sensitive to the
used penalty parameters. As such, the P-iPDA needs to perform a time-consuming
cross-validation procedure on quite a few candidate values to select ideal penalty
parameters. In contrast, the proposed Bayesian method can address all the three
limitations of the P-iPDA, as explained in the following sections.

3. Hierarchical Bayesian model for MIDDM. We propose a Bayesian
method to make inferences about the MIDDM. We elaborate on building the hierar-
chical Bayesian model in the following section, and present an MCMC simulation
algorithm for posterior inference in Section 4.

3.1. Model construction. First, represent the state function xi(t) of each com-
ponent i by a vector of B-spline functions b(t) = (b1(t), . . . , bL(t))′ defined on an
equally spaced partition {t1 = 1, t2, . . . , tq = T } of the interval [1, T ]:
(3.1) xi(t) = b(t)′ηi,

where ηi is an L × 1 vector consisting of the basis coefficients of xi(t).

Nonparametric model for observed data. Let Yi = (yi(1), yi(2), . . . , yi(T ))′
and Y = (Y ′

1, Y
′
2, . . . , Y ′

d)′. With representation (3.1), we assume that the Yis are
independently distributed with multivariate normal distributions:

Yi |ηi
ind∼ MN

(
�ηi, σ

2
i IT

)
for i = 1,2 . . . , d,(3.2)
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where MN(μ,�) stands for a multivariate normal distribution with mean μ and
variance matrix �, and � is a T × L matrix with element �[t, l] = bl(t) for
t = 1,2, . . . , T and l = 1,2, . . . ,L. Though an AR(1) or AR(2) model can be as-
sumed for εi(t), t = 1,2, . . . , T , in the observation model (2.1), for simplicity we
assume them to be independently Gaussian distributed with zero mean. For data
with a strong SNR, such as ECoG [Boatman-Reich et al. (2010), Bressler and Ding
(2002), Zhang et al. (2015)], accounting for autocorrelation in the model does not
improve estimation much.

Prior specification for basis coefficients. Let γ A = {γ A
ij , i, j = 1,2, . . . , d},

γ B = {γ B
ij , i, j = 1,2, . . . , d}, θ = {A,B,C,D}, and �I denote all the MIDDM

parameters:

�I = {
A,B,C,D,m,γ A,γ B}

.

We propose a prior for vectorized basis coefficients η = (η′
1, . . . , η

′
d)′, which

depends on the MIDDM parameters �I through the MIDDM model-fitting error:

p(η|�I , τ ) ∝ exp
{
− 1

2τ
R(η,�I )

}
,(3.3)

where τ is a pre-specified positive constant and R(η,�I ) is the MIDDM model
fitting error:

R(η,�I ) =
d∑

i=1

∫ T

0

[
dxi(t)

dt
−

d∑
j=1

δ(mi,mj ) γ A
ij Aij xj (t)

(
1 − u(t)

)

−
d∑

j=1

δ(mi,mj ) γ B
ij Bij xj (t) u(t) − Ci u(t) − Di

]2

dt.

Note that xi(t), i = 1, . . . , d , in R(η,�I ) is represented by basis functions as
in (3.1), and dxi(t)

dt
= b(1)(t)′ηi .

The prior (3.3) quantifies the deviation of the state functions from the assumed
ODE model by a probability measure and suggests a preference for state functions
with a small model-fitting error given �I .

With the linear basis representation of x(t), R(η,�I ) given �I is quadratic
of η:

R(η,�I ) = η′��I
η − 2	′

�I
η + 
�I

,(3.4)

where ��I
, 	�I

, and 
�I
, respectively, are a dL × dL matrix, a dL × 1 vector,

and a scalar, whose values depend on the MIDDM parameters �I . As such, the
prior (3.3) is equivalent to a normal distribution:

η|�I , τ ∼ MN
(
�−1

�I
	�I

, τ �−1
�I

)
,
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and the prior (3.3) on basis coefficients η is equivalent to a Gaussian process prior
on the state functions x(t).

The exact formulas of ��I
, 	�I

, and 
�I
, as functions of �I , are provided in

the Appendix B.6.

Prior specification for MIDDM parameters. We specify a joint prior for
MIDDM parameters �I :

p(�I |τ) ∝ det(��I
)−1/2 exp

{
1

2τ

(
	′

�I
�−1

�I
	�I

− 	�I

)}

× exp

{
−μ

d∑
i,j=1

δ(mi,mj )

}
p

∑
i,j γ A

ij +∑
i,j γ B

ij

0

(3.5)
× (1 − p0)

2d2−∑
i,j γ A

ij −∑
i,j γ B

ij

×
d∏

i,j=1

φ

(
Aij

ξ0

) d∏
i,j=1

φ

(
Bij

ξ0

) d∏
i=1

φ

(
Ci

ξ0

) d∏
i=1

φ

(
Di

ξ0

)
,

where the prior probability p0 is pre-specified by the user to input the prior belief
of the average degree of connections within clusters, μ is a given nonnegative con-
stant, φ is the standard normal density function, and ξ0 is a large positive constant
to give an almost flat prior for θ in a wide domain. It is possible to use different p0
for γ A and γ B . For simplicity, we assume identical prior probabilities for them.
The discussion of choosing μ and p0 is deferred to Section 4.2.

The above prior essentially puts together a multivariate Bernoulli distribution
[George and McCulloch (1997)] for indicators γ A and γ B , the Potts model [Graner
and Glazier (1992), Potts (1952)] for module labels m, and almost flat prior dis-
tributions for parameters θ . We specify the prior for MIDDM parameters in the
above form, a main thrust of the proposed Bayesian framework, for two reasons.
First, using the prior (3.5), the full posterior conditional distributions of parameters
η and θ are multivariate normal, which are easy to simulate from; this is a crucial
advantage of the proposed Bayesian framework, especially for analyzing high-
dimensional ECoG data. Second, in contrast to independent priors on the MIDDM
parameters, the prior (3.5) makes use of the proposed model information by incor-
porating the model-fitting error. A similar prior has been proposed by Yuan and
Lin (2005) in an empirical Bayes approach for variable selection and estimation in
linear models.

Priors for data variances. We impose an uninformative prior on σ 2 = {σ 2
i , i =

1,2, . . . , d}:

p
(
σ 2) ∝

d∏
i=1

1/σ 2
i , for i = 1, . . . , d.(3.6)
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Joint posterior distribution. In summary, equations (3.2), (3.3), (3.5), and
(3.6) jointly define a hierarchical Bayesian model for the MIDDM, referred to as
Bayesian MIDDM (BMIDDM) in the following. The joint posterior distribution
of the BMIDDM is given by

p
(
η,�I ,σ

2|Y, τ,μ
)

∝
d∏

i=1

1

σT
i

exp
{
−(Yi − �ηi)

2

2σ 2
i

}
exp

{
− 1

2τ
R(η,�I )

}

× exp

{
−μ

d∑
i,j=1

δ(mi,mj )

}
p

∑
i,j γ A

ij +∑
i,j γ B

ij

0(3.7)

× (1 − p0)
2d2−∑

i,j γ A
ij −∑

i,j γ B
ij

×
d∏

i,j=1

φ

(
Aij

ξ0

) d∏
i,j=1

φ

(
Bij

ξ0

) d∏
i=1

φ

(
Ci

ξ0

) d∏
i=1

φ

(
Di

ξ0

) d∏
i=1

1

σ 2
i

.

It can be shown that with a fixed positive constant τ and nonnegative μ, the above
posterior is proper as long as T > L. The proof is provided in the Appendix A.

4. Posterior simulations. Let m−i = m \ {mi}, γ A−ij = γ A \ {γ A
ij }, and

γ B−ij = γ B \ {γ B
ij } for i, j = 1,2, . . . , d . We use a partially collapsed Gibbs Sam-

pler [PCGS; van Dyk and Park (2008)] to sample from (3.7) with given μ and τ

(omitted in the posterior conditional distributions below). Specifically, θ is inte-
grated out when drawing posterior samples of m and indicators γ A and γ B , and
the PCGS is performed in the following order to maintain the target stationary
distribution:

1. Sequentially update mi by a draw from p(mi |m−i ,η,σ 2,γ A,γ B,Y) for i =
1,2, . . . , d .

2. Sequentially update γ A
ij by a draw from p(γ A

ij |m,η,σ 2,γ A−ij ,γ
B,Y) for

i, j = 1,2, . . . , d .
3. Sequentially update γ B

ij by a draw from p(γ B
ij |m,η,σ 2,γ A,γ B−ij ,Y) for

i, j = 1,2, . . . , d .
4. Draw θ from p(θ |m,η,σ 2,γ A,γ B,Y), which is a multivariate normal dis-

tribution.
5. Draw σ 2

1 , . . . , σ 2
d from p(σ 2|�I ,η,Y), which is a product of independent

inverse-gamma distributions.
6. Draw η from p(η|�I ,σ

2,Y), which is a multivariate normal.

We defer technical derivations of posterior p(m,η,γ A,γ B,σ 2|Y, τ,μ) with θ
being integrated out and the posterior conditional distributions of each parameter
to the Appendix B.
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4.1. Parallel computing. To speed up MCMC posterior simulations of the
BMIDDM, we employ a parallel computing scheme similar to that developed by
Caffo et al. (2011) in three major MCMC steps: (a) simulation of basis coefficients
ηis for regions in different clusters, (b) calculation of the posterior conditional
probabilities of mi , and (c) simulation from the posterior conditional distributions
of indicators γ A and γ B . Specifically, in (a), since given m, ηis of brain regions
in different clusters are conditionally independent, we employ the same number of
process cores as the number of different clusters of m, and use each core to sim-
ulate ηis in one unique cluster. In (b), we use the same number of process cores
as the number of different values that mi can take given the rest of the parame-
ters, with each core computing one posterior conditional probability for mi taking
one unique value. In (c), since indicator variables γ̃ i = {γ A

ij , γ B
ij , j = 1,2, . . . , d},

conditional on the rest of the parameters, are independent for i = 1,2, . . . , d , we
employ d process cores, each sequentially simulating every element of one γ̃ i

from the element’s posterior conditional probability.
The reduction of computational time by using parallel computing in Steps (a)

and (b) depends mostly on the size of the largest cluster at each iteration, and
parallel computing is most efficient when all the clusters are small and of similar
sizes. The use of parallel computing in Step (c) reduces the computational time for
the posterior simulation of indicators from O(d2) to O(d).

Parallel computing can also be used in other MCMC steps in a similar manner,
including simulation of MIDDM parameters θ of regions in different clusters and
simulation of σ 2

i for i = 1,2, . . . , d .

4.2. Hyperparameter selection. The choice of hyperparameter τ is most cru-
cial, because it balances between the data and model information for inferring
directional connections among brain regions. Specifically, a small τ , compared to
the data variance, can impose an incorrect strong prior belief that the assumed
model fits the underlying dynamic system well. We found that with a small τ , only
a few regions’ temporal activity can be jointly fitted by the assumed model, and
thus only a few brain regions are identified to be connected. On the other hand, if
τ is too large, the model information in the posterior is too weak to be useful for
differentiating strong directional connections from weak or void ones. Then all the
brain regions are identified to be connected. In summary, an appropriate value of
τ depends on how well the assumed ODE model can fit the data.

Given the above consideration, we decide to choose τ based on the model-
fitting error of the observed data. Though cross-validation-based methods [Reiss
and Ogden (2007) (2007, 2009), Wahba (1990)] are straightforward for choosing
hyperparameters, they are time consuming within a Bayesian framework. Instead,
we propose an easy-to-implement approach to determine the value of hyperpa-
rameter τ . Since τ can be regarded as the variance of ODE fitting errors, we set
it to the variance of estimated ODE fitting errors. Specifically, we fit x(t) non-
parametrically with b(t) to the observed data; regress estimated dx̂i(t)/dt versus
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x̂(t) (1 − u(t)) and x̂(t) u(t); and obtain the regression mean squared error, de-
noted by τ̂i , for i = 1, . . . , d . The range of τ̂i , i = 1, . . . , d , gives the range of the
variances of model fitting errors for the observed data. Then we choose τ to be
max{τ̂i}di=1, which leads to the least informative prior for basis coefficients among
all the candidate values. Through simulation and real data analysis, we found that
this value can help us effectively identify the underlying modules, select true net-
work edges, and provide scientifically interpretable results.

We let μ = 0 to give a noninformative prior on the cluster structure m. For
choosing the prior probability p0 for nonzero network edges within modules, we
have tried different p0 values, from 0.9 to 0.7, which reflect the prior belief that
regions within the same cluster are densely connected. We evaluated the network
edge selection performance through simulation studies, and found that p0 = 0.9 is
most effective with the highest power for selecting network edges, especially for
the cluster structure where all regions within the same cluster are pairwise con-
nected. Considering that the connections within modules are usually short-range,
strong, and dense [Park and Friston (2013)], we let p0 = 0.9 to ensure a high power
for selecting within-module network edges. Though it is possible to assign a prior
to p0 or tune its value based on the data, we choose to specify its value, because
this approach directly uses the existing scientific knowledge of the brain network
and thus reduces uncertainty in the model estimation.

The choice of the number of bases L directly affects the posterior computational
time: The larger L, the more computational time needed for simulating the state
functions, which is the most computationally intensive MCMC step. Considering
this, we choose a small L without compromising the flexibility of representing the
state function x(t), as suggested in Ramsay et al. (2007). For the real data under
study, we found that data at every three consecutive points take similar values, and
thus we chose L = �T/3�.

5. Simulations. Given hyperparameters (μ, τ ) and data y(t), we conduct pos-
terior simulations of the BMIDDM. Let S be the total number of MCMC iterations
excluding the burn-in time, and θ(s) be the value of BMIDDM parameter θ sim-
ulated at the sth iteration. Based on the posterior draws of BMIDDM parame-
ters, for each pair of regions (i, j), we estimate the posterior clustering probabil-
ity of the two regions being in the same cluster and the posterior probabilities of
nonzero directional effects exerted by region j on i, also called the posterior se-
lection probabilities of directional network edges from j to i, without and with the
stimulus, by P̂ m

ij = 1
S

∑S
s=1 δ(m

(s)
i ,m

(s)
j ), P̂ A

ij = 1
S

∑S
s=1 δ(m

(s)
i ,m

(s)
j ) (γ A

ij )(s), and

P̂ B
ij = 1

S

∑S
s=1 δ(m

(s)
i ,m

(s)
j ) (γ B

ij )(s), respectively.

We use P̂ m
ij to identify clusters of components and P̂ A

ij with P̂ B
ij to select di-

rectional network edges. Specifically, for module identification, we first rank P̂ m
ij

for all i, j = 1,2, . . . , d and select a set of pairs of components S = {(i, j) :
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rank(P̂ m
ij ) > h, i, j = 1,2, . . . , d} for some predetermined threshold h, for exam-

ple, a top 5% rank. Given S , we identify modules Ck , k = 1,2, . . . ,K , also a par-
tition, of the d components, such that for any two components i and j in the same
module, there exists a set of pairs {(k0 = i, k1), (k1, k2), . . . , (kl−1, kl = j)}, which
is a subset of S . By using a high threshold h, this procedure identifies clusters of
regions that have high posterior probabilities of being connected directly or indi-
rectly.

For network edge selection, which is performed after the module identification
with a threshold h, we first set P̂ A

ij , P̂ A
ji , P̂ B

ij , and P̂ B
ji for i and j in two different

clusters to zeroes. Then we order all the P̂ A
ij and P̂ B

ij for i, j = 1,2, . . . , d and

select network edges whose P̂ A
ij and P̂ B

ij have ranks higher than the threshold h.
Similar to Bayesian variable selection for the linear regression, we use the ROC

curve to summarize the performance of the proposed network edge selection pro-
cedure, which is computed as follows: for each given threshold, the percentages
of true directional edges and null directional edges whose posterior probabilities
are greater than the threshold are calculated as true positive rate (TPR) and false
positive rate (FPR) of the selection procedure; the ROC curve summarizes pairs
of TRPs and FPRs for different thresholds. The higher the ROC curve, that is, the
larger TPR for each FPR, the better performance of the selection procedure.

In Section 5.1, we apply the proposed BMIDDM to one simulated dataset in
Zhang et al. (2015), where components within the same cluster are all pairwise
connected, and compare the results with those by the P-iPDA. We generate another
time series data of the same dimension in Section 5.2 and use the BMIDDM to
detect difference in the networks of these two simulated examples.

5.1. Example 1: Data from a bilinear model. The simulated dynamic system
has 4 clusters of size 6, 4, 6, and 4. We let T = 250 and u(t) = 1 for 100 ≤ t ≤ 150
and 0 otherwise, which are identical to those of the real data. For simplicity, param-
eter B is twice of A. We generated 20 time series x(t) by using numerical approx-
imation based on discretized bilinear model (2.3) with given parameters �I , and
generated 20 independent error time series ε(t), each following an AR(1) model
with a lag-one correlation of 0.5. The SNR—defined as var(xi(t))/var(εi(t))—of
each time series yi(t), the sum of xi(t) and εi(t), was set at 10. Before applying
the proposed Bayesian approach, we standardized the observed time series to unit
variance, such that time series of different components are in the same scale. In the
following, y(t) is referred to the standardized data.

We applied the proposed BMIDDM with μ = 0 and τ = maxd
i=1 τ̂i to one sim-

ulated dataset for which the P-iPDA failed to identify all the clusters. The network
by the P-iPDA is shown in Figure 2(a), which has only 36.5% TRP. In contrast, the
BMIDDM identified all the nonzero directional effects with zero FPR, as shown
in Figure 2(c), in which directional edges are corresponding to the posterior prob-
abilities P̂ B

ij with top 26% ranks, the exact percentage of true edges among all
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FIG. 2. (a) The network result by the P-iPDA in Example 1. (b) Shows P̂ B
ij for i, j = 1, . . . ,20.

(c) Shows network edges with top 26% (i.e., the percentage of true directional edges among all pos-
sible ones) posterior selection probabilities under the stimulus. Nodes in the same color correspond
to regions in the same cluster identified by the used method, either the P-iPDA or the Bayesian
method.

possible ones. In this example, the posterior selection probabilities of true network
edges and null ones have a sharp difference, as illustrated by Figure 2(b) of P̂ B

ij for

i, j = 1, . . . , d . The plot of P̂ A
ij is similar and not shown here.

The better performance of the Bayesian method than the P-iPDA for this ex-
ample is possibly due to three reasons. First, though components within the same
cluster are indeed pairwise connected, the average degree of nodes, however, in
the network is small. Consequently, the BMIDDM, allowing for more sparsity, has
a better selection efficiency. Second, the P-iPDA, an optimization algorithm for
an L0 penalized criterion, very likely outputs a network corresponding to a local
mode of the criterion, especially since the ODE model estimation is sensitive to
noise. In contrast, the Bayesian method, evaluating the posterior probabilities of
different cluster structures, outputs a posterior “average,” and thus is more stable.
Third, the performance of the P-iPDA is sensitive to the choice of penalty parame-
ters. It is possible that the penalty parameters used by the P-iPDA are not optimal
for the presented dataset, while the Bayesian method using τ = maxd

i=1 τ̂i is more
adaptive to the specific data being analyzed, and thus has a better performance.

We have compared the computational complexities and times of the proposed
Bayesian method with the P-iPDA. MCMC simulations of module labels m and
basis coefficients η from their posterior conditional distributions, the two most
time-consuming steps in the PCGS, have similar computational complexity as the
two optimization steps updating m and η in the P-iPDA, because they all require
matrix inversion of large matrices of similarly high dimensions. In particular, con-
ditional on the same cluster structure m in the previous step, the computational
complexity in the following iteration of the P-iPDA and PCGS is the same.

As searching for a mode is computationally much easier than exploring the
entire posterior distribution, the P-iPDA takes much fewer iterations to converge
than the PCGS. However, the P-iPDA relies on computationally extensive cross-
validation, calculating prediction errors for every left-out data point and for a large
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number of candidate penalty parameter values, to find the best combination of
penalty parameters with the smallest prediction error. Specifically, for the sim-
ulated dynamic system in Example 1, at least 6 cross-validations at 50 left-out
points were needed to find the optimal penalty parameters. One usually needs to
perform 35 iterations of the P-iPDA for each left-out point given one combination
of penalty parameters. As such, the total number of iterations needed for penalty
parameter selection is 10,500, close to the number of iterations in the PCGS. For
dynamic systems of larger dimensions and with longer time series, more iterations
of the P-iPDA and cross-validation on more candidate penalty parameters using
more left-out points are needed, because the number of potential cluster structures
is larger and the network result by the P-iPDA is more sensitive to the choice of
penalty parameters. Overall, if accounting for the penalty parameter selection time,
the PCGS and P-iPDA use similar amounts of computational time. For the simu-
lation example under study, it took 1.2 hours for the proposed Bayesian method to
finish 10,000 MCMC iterations on a personal laptop using one i7 core.

We let Eij = δ(mi,mj ) γ A
ij Aij and Gij = δ(mi,mj ) γ B

ij Bij . With S posterior
draws of BMIDDM parameters, for each pair of regions i and j , we estimated the
directional effects Eij and Gij exerted by region j over i without and with the
stimulus, respectively, by their posterior means, which are given by

Êij = 1

S

S∑
s=1

(
γ A
ij

)(s)
δ
(
m

(s)
i ,m

(s)
j

)
A

(s)
ij

and

Ĝij = 1

S

S∑
s=1

(
γ B
ij

)(s)
δ
(
m

(s)
i ,m

(s)
j

)
B

(s)
ij .

Then we evaluated the mean squared errors (MSE) of E and G: MSE(E) =∑d
i,j=1(Êij − Eij )

2/d2 and MSE(G) = ∑d
i,j=1(Ĝij − Gij )

2/d2, which are sum-
marized in Table 1. For comparison, we also present the MSEs of the estimates by
the P-iPDA. Though the underlying cluster structure exactly matches the model
assumption of the P-iPDA, that is, the regions in the same cluster are all pair-
wise connected, the Bayesian method gives much smaller errors, suggesting that
incorporating indicator variables for significant directional effects in the model
improves both selection accuracy of network edges and estimation efficiency of
model parameters.

TABLE 1
The MSEs of estimated model parameters by the P-iPDA and the Bayesian method in Example 1

Bayesian P-iPDA Bayesian P-iPDA

MSE(E) 0.09 0.11 MSE(G) 0.11 0.20
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FIG. 3. (a) Estimated P̂ A
ij by the BMIDDM in Example 2. (b) Shows Pd

ij for i, j = 1, . . . ,20.
(c) Shows identified pairs of components with significantly different clustering probabilities in net-
works 1 and 2 using a cutoff 0.5 on Pd

ij . Specifically, if Pd
ij < 0.5, the corresponding cells (a pair)

in the Figure are green; if Pd
ij > 0.5 and p1 > p2, the corresponding cells are red; and if Pd

ij > 0.5

and p1 < p2, the corresponding cells are blue. (d) Shows the ROC curve for selecting pairs of com-
ponents with different clustering probabilities in the two networks by using various cutoffs on Pd

ij .

5.2. Example 2: Network comparison. We generated a dynamic system of 20
dimension with 3 clusters of size 6, 4, and 10 from the bilinear model (2.3). The
state functions x(t) of the first two clusters were generated using exactly the same
parameters as those in Example 1. The third cluster consists of 10 densely con-
nected components. Figure 3(a) shows estimated network edge selection probabil-
ities P̂ A

ij by the BMIDDM for this example.
We develop a simple approach to compare networks of Examples 1 and 2. Let

m1i and m2i denote module labels of the ith component in networks 1 and 2,
respectively, Y1 and Y2 be the observed time series data of networks 1 and 2,
respectively, p1 = P(δ(m1i ,m1j ) = 1|Y1), and p2 = P(δ(m2i ,m2j ) = 1|Y2). We
compare the two components’ clustering probabilities in two separate networks
through evaluating the probability P d

ij = P(δ(m1i ,m1j ) 	= δ(m2i ,m2j )|Y1,Y2).
Since the time series data of two networks are analyzed independently, δ(m1i ,m1j )

and δ(m2i ,m2j ) are independent, and thus

P d
ij = P

(
δ(m1i ,m1j ) = 0 and δ(m2i ,m2j ) = 1|Y1,Y2

)
+ P

(
δ(m1i ,m1j ) = 1 and δ(m2i ,m2j ) = 0|Y1,Y2

) = p1 + p2 − 2p1p2.

In practice, we evaluate p1 and p2 by the corresponding clustering probabilities
P̂ m

ij in their respective network. Figure 3(b) shows P d
ij for comparing networks

in Examples 1 and 2. Following typical Bayesian decision procedure [Gelman
et al. (2004)], we use 0.5 as the threshold for P d

ij , and the two components i

and j are deemed to have different clustering probabilities in the two networks
if P d

ij > 0.5. The green cells in Figure 3(c) indicate a pair of components i and

j with P d
ij smaller than 0.5; the blue cells indicate components with P d

ij larger

than 0.5 and p1 < p2; and the red cells indicate components with P d
ij larger than

0.5 and p1 > p2. The proposed approach identified components 11 to 20 to have
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stronger connectivity in Example 2 than those in Example 1. Overall, using 0.5 as
the threshold for P d

ij , 70 edges (400 total edges) are identified significantly differ-
ent, among which 48 edges are true positives with 100% TPR and 6.25% FPR. If
using 0.6 as the threshold, we get 100% TPR and 0% FPR. Figure 3(d) shows the
ROC curve for selecting component pairs with different clustering probabilities in
the two simulated examples by using different thresholds on P d

ij .

6. Application to ECoG data.

6.1. Data acquisition. The auditory ECoG data acquisition and processing
methods have been described previously [Zhang et al. (2015)]. Briefly, continu-
ous ECoG signals were recorded simultaneously from a 6×8 array of electrodes
(2.3 cm diameter, 9 cm spacing) implanted over the lateral left hemisphere of an
adult epilepsy patient, as shown in Figure 1, for clinical purposes of localizing
seizures prior to resection surgery. The experimental paradigm was a 300-trial pas-
sive listening task using pure tones (50 ms duration). Since electrodes 47 and 48
are used as the reference and ground electrodes and electrode 32 contains exces-
sive noise, recordings from a total of d = 45 electrode channels were analyzed.
Auditory responses, computed using time-domain and time-frequency analyses
[Boatman-Reich et al. (2010), Durka et al. (2001), Franaszczuk and Bergey (1998),
Sinai et al. (2009)] were identified at three electrode sites (electrodes 14–16) con-
sistent with the location of auditory cortex in the posterior temporal lobe. Seven
electrode sites 1–4, 9–10, and 18 located in the inferior anterior temporal lobe were
identified as the primary seizure focus based on clinical recordings.

The recording data contain 246 trials of ECoG recordings using a frequently
presented, standard 1000 Hz tone stimulus of 50 ms duration and 54 trials using
a different, infrequently repeated, that is, deviant, 1200 Hz tone stimulus also of
50 ms duration. All tone stimuli were presented sequentially at 1400 ms inter-
stimulus interval. Following common practice in the literature, we focus on brain
activity in an early cortical auditory processing time range, which corresponds to
the first 150 ms after the stimulus onset. As such, each trial of data is of 250 ms
duration: 100 ms pre-stimulus (0–100 ms), 50 ms for stimulus presentation (100–
150 ms), and 100 ms post-stimulus (200–250 ms). We applied the BMIDDM to
each 250-ms window independently to allow for variation of brain networks across
trials and also to ensure that the assumed bilinear ODE model can approximate the
underlying nonlinear system effectively. As such, in the MIDDM for the ECoG
data, d = 45, T = 250, and u(t) = 1 for 100 ≤ t ≤ 150.

6.2. Data analysis. We compared the first five trials with the rest of trials us-
ing 1000 Hz stimulus by calculating numbers of region pairs, denoted by Rl1l2 for
the pairwise comparison of trials l1 and l2, with different clustering probabilities
(threshold 0.5 on P d

ij ), and found that the brain network in response to the first
stimulus is distinct from those in response to the rest of the stimulus sequence.
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FIG. 4. (a) and (b) Show histograms of proportions of region pairs with significantly different clus-
tering probabilities (i.e., Pd

ij > 0.5) in the network comparison of the first two trials with the rest
trials using 1000 Hz stimulus. (c) Shows the histogram of proportions of region pairs with signifi-
cantly different clustering probabilities in the network comparison of the first trial with the rest trials
using 1200 Hz stimulus. (d) Shows the proportions of region pairs with significantly different cluster-
ing probabilities in the network comparison of the first trial using 1000 Hz stimulus with the trials
using 1200 Hz stimulus. (e) and (g) Show the network edges with top 5% average ranks of P̂ A

ij across
trials using 1000 Hz and 1200 Hz stimuli, respectively. Nodes in the same colors of either light blue,
blue, or dark blue, correspond to regions in the same cluster identified by the BMIDDM, and nodes
in black correspond to regions in the clusters with only one component. (f) and (h) Show average
posterior means of E across trials using 1000 Hz and 1200 Hz stimuli, respectively.

Figure 4(a) and (b) show histograms of the percentages of region pairs (among
all possible pairs) with P d

ij larger than 0.5 in the network comparison between the
first two trials (l1 = 1,2) and the rest of trials using 1000 Hz stimulus, that is, his-
tograms of Rl1l2/d(d − 1) for l1 = 1 or 2 and l2 	= l1. Most pairs of regions in the
first trial have much larger clustering probabilities than those in the rest of trials,
in line with the discovery by [Garrido et al. (2009)] that connectivity strength be-
tween regions is the strongest in the first of several repetitive auditory events. In
addition, by exploring connectivity among many regions, we found that the brain
network of the first trial has more strong connections than the networks in the rest
of trials (with 1000 Hz tone stimulus).

We evaluated networks in response to infrequent, deviant 1200 Hz stimulus.
Figure 4(c) shows the histogram of the proportions of region pairs with P d

ij larger
than 0.5 in the network comparison between the first and the rest trials using
1200 Hz stimulus. In comparison with distinct networks of the first and the rest
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trials using 1000 Hz stimulus, the difference among networks in response to the
deviant 1200 Hz stimulus is much less pronounced. We have compared the net-
work of the first trial using 1000 Hz stimulus with those of the 54 trials using
1200 Hz stimulus, as shown in Figure 4(d): the network of the first trial is sim-
ilar to networks in most trials using infrequent, deviant stimuli. Similar results
have been reported in the literature [Eliades et al. (2014), Herrmann, Henry and
Obleser (2013), Herrmann, Schlichting and Obleser (2014)] that the observation
of decreasing responses to repetitive stimuli does not apply to different or deviant
stimuli.

To summarize analysis results of trials associated with the two different stimu-
lus types, we calculated average ranks of posterior network-edge-selection prob-
abilities P̂ A

ij of 246 trials using 1000 Hz stimulus and of 54 trials using 1200 Hz
stimulus, respectively, and presented the two average networks with top 5% av-
erage ranks in Figure 4(e) and (g). We selected directional edges with top 5%
posterior probabilities to identify most closely connected components with a small
FPR. Moreover, with this high threshold, the identified clusters are small in size,
and thus, easier to examine visually.

For trials using regular 1000 Hz stimuli, the identified network consists of two
modules of closely connected brain regions that are believed to be specialized in
different brain functions. The auditory responsive regions, electrodes 14–16, inter-
act closely with regions in the posterior temporal lobe, involved in auditory percep-
tion. Regions in the inferior frontal lobe have dense interactions, which is in line
with existing findings of short frontal lobe connections [Catani et al. (2012)] and
this brain area’s implication in predictive coding (generating expectations based on
stimulus presentation probability) [Garrido et al. (2009)]. In comparison, for trials
using 1200 Hz stimulus, regions in the frontal lobe show the strongest connections,
consistent with the role of the frontal lobe in detecting novel or different auditory
events [Näätänen et al. (2007), Schönwiesner et al. (2007)].

We estimated E and G of 300 trials, and the average Ê of trials using two dif-
ferent stimuli are shown in Figure 4(f) and (h). Estimates of parameters denoting
brain’s effective connectivity in response to deviant stimuli are much larger in
absolute values than those associated with regular, repetitive stimuli, suggesting
stronger effective connectivity among brain regions in the former scenario. This
result is in line with the finding of stronger brain responses to deviant stimuli in
the literature [Eliades et al. (2014)].

7. Discussion. The BMIDDM brings three crucial advantages over the exist-
ing optimization method P-iPDA. First, one can detect different strengths of direc-
tional interactions among brain regions by the BMIDDM, and thus identify differ-
ent levels of connectivity in the brain network. In the presented real data analysis
of trials using 1000 Hz stimulus, given different posterior selection probabilities
of network edges, the BMIDDM identified two small modules, which consist of
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spatially close brain regions and are specialized for different functions. In contrast,
the P-iPDA grouped the two modules into one cluster in almost all the trials and
treated all connections within this cluster equally. Second, by using a high thresh-
old for the posterior probabilities of network edges, the Bayesian method identifies
most closely connected regions with a small FPR. Moreover, the resulting small
clusters are much easier to understand and interpret than large clusters outputted by
the P-iPDA, especially in connectivity studies of hundreds of brain regions. Third,
given different posterior clustering probabilities of brain regions in different trials,
the BMIDDM can be used to detect network changes.

The application of the proposed method to brain connectivity studies will po-
tentially enhance our understanding of the brain’s functional organization for two
reasons. First, since brain components in the same module usually have a similar
function, the module identification can be used to determine the module’s func-
tional role in the brain network, especially if the function of some brain regions
in the module is already known. Taking the network result of the real data analy-
sis, shown in Figure 4(e), as an example, the regions (electrode sites 7, 8, 13, 24,
28–30) connected with the auditory responsive regions (electrode sites 14–16) are
mostly likely also specialized for primary auditory perception. Second, the module
identification can significantly simplify the study of the brain’s functional organi-
zation. It is much easier, both in terms of computation and interpretation of the
results, to evaluate connections between and within modules separately than to
evaluate connections between every pair of brain regions. Moreover, the proposed
cluster-structured ODE model and the associated estimation method are scalable
to a system with hundreds of components by first identifying modules locally and
treating modules as components of the large-scale system.

In the brain network, connections within modules are usually short-range,
strong, and dense, while those between modules tend to be sparse and long-range
to ensure integration among different specialized areas [Park and Friston (2013)].
It is very likely that the two modules specialized for different functions shown
in Figure 4(e) are integrated through weak, long-range connections. In the future
study, we will extend the MIDDM to accommodate interactions among clusters.
Then the ensuing ODE model uses two types of indicators for connectivity within
and between modules, and the prior on indicators (3.5) is expanded to incorporate
probabilities on between-module indicators. To distinguish between within- and
between-module connections, the prior probability for the former should be much
larger than that for the latter to reflect the prior belief that connections within mod-
ules are dense and connections between modules are sparse. The priors of the rest
of model parameters are unchanged, and a similar PCGS algorithm can be devel-
oped for ensuing posterior simulations.

Since spatially close brain regions tend to have stronger connections, one can
incorporate regions’ spatial structure into the Bayesian framework for inferring
effective connectivity between the regions. For example, the prior on module labels
exp{−μ

∑
ij δ(mi,mj )} can be modified to exp{−μ

∑
ij Wij δ(mi,mj )}, where
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the weight Wij is proportional to the distance between regions i and j . Similarly,
the prior probability for γ A

ij and γ B
ij can be changed to pij , which is proportional

to the distance between regions i and j , leading to higher prior probabilities for
short-range network edges. The choices of Wij and pij and their effect on the
ensuing posterior inference will be evaluated in the future research.

We select network edges based on the ranks rather than the exact values of their
posterior selection probabilities, the same strategy used in Bayesian variable se-
lection problems. This is because given x(t), identifying connected components is
equivalent to simultaneously solving multiple high-dimensional variable selection
problems. With limited data information and many candidate predictors, the differ-
ence between posterior selection probabilities of void and true variables is small.
As such, the ranks are more informative than the exact values of the posterior se-
lection probabilities regarding the underlying network structure.

One can select directional network edges based on original P̂ A
ij and P̂ B

ij with-
out adjusting them for identified modules. However, we found that the network
edge selection based on adjusted P̂ A

ij and P̂ B
ij —obtained through the procedure de-

scribed in Section 5—outperforms that based on unadjusted P̂ A
ij and P̂ B

ij by having
a higher ROC curve. We attribute this finding to two possible reasons. First, within
the ODE framework, the components in the same cluster tend to have similar tem-
poral behaviors, because the instantaneous change of each component directly or
indirectly depends on the states of others in the same cluster. Then this temporal
similarity among components within the same cluster causes difficulty in the direc-
tional edge selection due to multicollinearity, but facilitates module identification.
Consequently, module identification tends to be easier and more accurate than net-
work edge selection, and utilizing the information from the former can enhance
the accuracy of the latter. Second, the network edge selection based on unadjusted
P̂ A

ij and P̂ B
ij treats each directional edge separately, while the selection based on

adjusted probabilities utilizes information across different components.
If one is interested in identifying components on which the stimulus has a direct

effect, he/she can include indicators γ C
i for coefficient Ci , i = 1,2, . . . , d , in the

MIDDM. Then the prior on indicator variables in (3.5) is modified to incorporate
the prior probability pc for γ C

i for i = 1,2, . . . , d . The same PCGS algorithm can
be used to draw samples from the ensuing posterior distribution. Note that if the
goal is to identify nonzero Cis, the observed data y(t) should be standardized to
unit norm without changing the center of the time series and the signs (positive,
negative, or zero) of Cis in the ODE model for standardized data.

APPENDIX A: PROOF OF PROPER POSTERIOR DISTRIBUTION

Let N be the normalizing constant for p(η,�I ,σ
2|Y, τ,μ) in equation (3.7).
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Because exp{− 1
2τ

R(η,�I )}, exp{−μ
∑d

i,j=1 δ(mi,mj )} ≤ 1, and p0 < 1, we
have:

p
(
η,�I ,σ

2|Y, τ,μ
)

≤N

d∏
i=1

1

σT
i

exp
{
−(Yi − �ηi)

2

2σ 2
i

} d∏
i,j=1

φ

(
Aij

ξ0

)
(A.1)

×
d∏

i,j=1

φ

(
Bij

ξ0

) d∏
i=1

φ

(
Ci

ξ0

) d∏
i=1

φ

(
Di

ξ0

) d∏
i=1

1

σ 2
i

.

The above inequality gives an upper bound for the posterior joint density. In the
following, we integrate out parameters in this upper bound step by step, and show
that the upper bound is integrable.

Since m,γ A, and γ B are discrete and take a finite number of different values,
after integrating these parameters out in (A.1), the ensuing joint posterior of θ and
σ 2 follows:

p
(
η, θ,σ 2|Y, τ,μ

)

≤ Cd N

d∏
i=1

1

σT +2
i

exp
{
−(Yi − �ηi)

2

2σ 2
i

}
(A.2)

×
d∏

i,j=1

φ

(
Aij

ξ0

) d∏
i,j=1

φ

(
Bij

ξ0

) d∏
i=1

φ

(
Ci

ξ0

) d∏
i=1

φ

(
Di

ξ0

)
,

where Cd is some positive constant depending on d . After integrating out θ
in (A.2), we have

p
(
η,σ 2|Y, τ,μ

) ≤ ξ2d2+2d
0 Cd N

d∏
i=1

σ−T −2
i exp

{
−(Yi − �ηi)

2

2σ 2
i

}
.

Then as long as the number of basis coefficients L is smaller than the number of
time points T for each component, the formula on the right of the above inequality
is integrable.

APPENDIX B: TECHNICAL DETAILS OF PCGS ALGORITHM

B.1. Derive the joint posterior distribution p(m, η,σ 2, γ A,γ B |Y, τ,μ).
In the following, we use p(θ |−) to denote the full posterior conditional distri-
bution of θ . Based on the formulation of the joint distribution (3.7), given the rest
of the parameters, {Aij ,Bij ,Ci,Di}dj=1 are independent for i = 1,2, . . . , d , so we

will first derive the posterior conditional distribution of {Aij ,Bij ,Ci,Di}dj=1.

Let GA
i = {j, δ(mi,mj ) γ A

ij 	= 0 and j = 1, . . . , d} and GB
i = {j, δ(mi,mj ) γ B

ij 	=
0 and j = 1, . . . , d}. Define a d × d diagonal matrix IA

i where diagonal en-
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tries corresponding to GA
i equal 1, and the rest diagonal entries equal 0. We

define IB
i associated with GB

i in the same manner. We use M[G1,G2] to denote
the matrix consisting of elements in the rows indexed by G1 and columns in-
dexed by G2 of M, and use M[G, ] to denote the matrix consisting of rows in-
dexed by G of M. Let XA

i (t) = IA
i x(t) (1 − u(t)) and XB

i (t) = IB
i x(t) u(t),

so XA
i (t) and XB

i (t) are vectors whose elements are functions of time t . Let

i(t) = ((XA

i (t))′, (XB
i (t))′, u(t),1) and θ i = (A[i,GA

i ],B[i,GB
i ],Ci,Di)

′. We
have

p
(
A[i, ],B[i, ],Ci,Di |−) ∝ exp

{
− 1

2τ

∫ T

0

(

i(t)θ i − dxi(t)

dt

)2
dt

}

×
d∏

j=1

φ

(
Aij

ξ0

) d∏
j=1

φ

(
Bij

ξ0

)
φ

(
Ci

ξ0

)
φ

(
Di

ξ0

)
,

where dxi(t)/dt = (b(1)(t))′ηi .
After integrating out Aij and Bij corresponding to zero indicator values in the

above equation, we have

p
(
θ i |m,η,σ 2,γ A,γ B,Y, τ,μ

)
∝ exp

{
−1

2
θ ′

i

(
1

τ

∫ T

0

′

i (t)
i(t) dt + 1

ξ2
0

I
)
θ i

}
(B.1)

× exp
{

1

τ

∫
dxi(t)

dt

i(t) dtθ i

}
exp

{
− 1

2τ

∫ T

0

(
dxi(t)

dt

)2
dt

}
,

where I denotes an identity matrix.
Let Mi = 1

τ

∫ T
0 
′

i(t)
i(t) dt + 1
ξ2

0
I and Vi = 1

τ

∫ T
0

dxi(t)
dt


′
i (t) dt . Based on

equation (B.1), we have

p
(
m,η,σ 2,γ A,γ B |Y, τ,μ

) ∝
d∏

i=1

σ−T −2
i exp

{
−(Yi − �ηi)

2

2σ 2
i

}

×
d∏

i=1

det(Mi )
−1/2 exp

{
d∑

i=1

V′
iM

−1
i Vi/2

}

× exp

{
− 1

2τ

d∑
i=1

∫ T

0

(
dxi(t)

dt

)2
dt

}

× exp

{
−μ

d∑
i,j=1

δ(mi,mj )

}

× p

∑
i,j γ A

ij +∑
i,j γ B

ij

0 (1 − p0)
2d2−∑

i,j γ A
ij −∑

i,j γ B
ij .
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We have p(m,γ A,γ B |η,σ 2,Y, τ,μ) ∝ J(m,γ A,γ B,η, τ,μ), where

J
(
m,γ A,γ B,η, τ,μ

)

=
d∏

i=1

det(Mi )
−1/2 exp

{
d∑

i=1

V′
iM

−1
i Vi/2

}

× exp

{
−μ

d∑
i,j=1

δ(mi,mj )

}
p

∑
i,j γ A

ij +∑
i,j γ B

ij

0

× (1 − p0)
2d2−∑

i,j γ A
ij −∑

i,j γ B
ij .

B.2. Sequentially simulate mi from p(mi|m−i, η,σ 2, γ A,γ B,Y, τ,μ) for
i = 1,2, . . . , d . Let G−i be the set of distinct values in m−i , and g−i be any
positive integer smaller than d + 1 and not belonging to G−i . Then the posterior
conditional distribution of mi is discrete and has a support of {G−i , g−i}. In addi-
tion, for each z ∈ {G−i , g−i},

P
(
mi = z|m−i ,η,σ 2,γ A,γ B,Y

) ∝ J
(
mi = z,m−i ,γ

A,γ B,η, τ,μ
)
.

B.3. Sequentially simulate γ A
ij s and γ B

ij s from their posterior condi-

tional probabilities. Given parameter values m,γ A−ij ,γ
B , and η, γ A

ij for i, j =
1,2, . . . , d follows a Bernoulli distribution with probability:

J(m, γ A
ij = 1,γ A−ij ,γ

B,η, τ,μ)

J(m, γ A
ij = 1,γ A−ij ,γ

B,η, τ,μ) + J(m, γ A
ij = 0,γ A−ij ,γ

B,η, τ,μ)
.

Note that if mi 	= mj , the above probability equals p0. Similarly, we sequentially
simulate γ B

ij conditional on the rest of the parameters.

B.4. Simulate θ from p(θ |m, η,σ 2, γ A,γ B,Y, τ,μ). Based on the joint
posterior distribution (3.7) and posterior conditional distribution of θ i (B.1),

Aij |δ(mi,mj )γ
A
ij = 0

i.i.d.∼ N
(
0, ξ2

0
)
,

Bij |δ(mi,mj )γ
B
ij = 0

i.i.d.∼ N
(
0, ξ2

0
)
,

θ i |m,σ 2,γ A,γ B,Y, τ,μ
ind∼ MN

(
M−1

i Vi ,M−1
i

)
for i = 1,2, . . . , d.

B.5. Simulate σ 2 from p(σ 2|�I,η,Y, τ,μ). From the joint posterior dis-
tribution (3.7), we have

σ 2
i |�I ,η,Y, τ,μ

ind∼ Inv-Gamma
(

T

2
,
(Yi − �ηi)

2

2

)
for i = 1,2, . . . , d.
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B.6. Simulate η from p(η|�I,σ 2,Y, τ,μ). Define a dT -by-dL matrix

Q =
⎛
⎜⎝

� 0 0

0
. . . 0

0 0 �

⎞
⎟⎠ ,

where � is defined in (3.2). Let U be a dT -by-dT diagonal matrix with (i − 1)T

to iT diagonal entries equalling 1/σ 2
i , i = 1,2, . . . , d . Then

p
(
η|�I ,σ

2,Y, τ,μ
) ∝ exp

{
−1

2
(Y − Qη)′U(Y − Qη)

}

× exp
{
− 1

2τ

(
η′��I

η − 2	′
�I

η + 
�I

)}
(B.2)

∝ exp
{
−1

2
(η − ψ)′H(η − ψ)

}
,

where H = Q′UQ + ��I
/τ , and ψ = H−1(Q′UY + 	�I

/τ ). From (B.2),

η|�I ,σ
2,Y, τ,μ ∼ MN

(
ψ,H−1)

.

Notation ��I
,	�I

, and 
�I
are introduced in equation (3.4), and we derive

their formulas depending on �I in the following.
Define vectors with dL elements:

�i (t) = (
Ai1 δ(mi,m1) γ A

i1 b1(t)
(
1 − u(t)

)
, . . . ,

Ai1 δ(mi,m1) γ A
i1 bL(t)

(
1 − u(t)

)
,

Ai2 δ(mi,m2) γ A
i2 b1(t)

(
1 − u(t)

)
, . . . ,

Aid δ(mi,md) γ A
id bL(t)

(
1 − u(t)

))
,

ϒ i (t) = (
Bi1 δ(mi,m1) γ B

i1 b1(t) u(t), . . . ,

Bi1 δ(mi,m1) γ B
i1 bL(t) u(t),

Bi2 δ(mi,m2) γ B
i2 b1(t) u(t), . . . ,

Bid δ(mi,md) γ B
id bL(t) u(t)

)
,

Ei (t) =
(

0L, . . . ,

(
db(t)

dt

)′
, . . . ,0L

)
,

where 0L is a zero vector with L elements, and the (i − 1)L + 1th to iLth
elements of Ei (t) are nonzero. Then with basis representation, MIDDM (2.3)
can be rewritten as Ei (t)η − �i (t)η − ϒ i (t)η − Ci u(t) − Di = 0. Let Si(t) =
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Ei (t) − �i (t) − ϒ i (t). Then we have

R(η,�I ) =
d∑

i=1

[
η′

∫
S′

i(t)Si (t) dt η − 2
∫ (

Ciu(t) + Di

)
Si(t) dt η

+
∫ (

Ciu(t) + Di

) (
Ciu(t) + Di

)
dt

]
.

Comparing the above to equation (3.4), we have

��I
=

d∑
i=1

∫
S′

i (t)Si (t) dt, 	�I
=

d∑
i=1

∫ (
Ciu(t) + Di

)
S′

i(t) dt,


�I
=

d∑
i=1

∫ (
Ciu(t) + Di

) (
Ciu(t) + Di

)
dt.
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