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Abstract. We are dealing with the validity of a large deviation principle for the two-dimensional Navier–Stokes equation, with
periodic boundary conditions, perturbed by a Gaussian random forcing. We are here interested in the regime where both the strength
of the noise and its correlation are vanishing, on a length scale ε and δ(ε), respectively, with 0 < ε, δ(ε) � 1. Depending on the
relationship between ε and δ(ε) we will prove the validity of the large deviation principle in different functional spaces.

Résumé. Nous considérons les équations de Navier–Stokes avec conditions aux limites périodiques et perturbées par une force
aléatoire gaussienne et démontrons un principe de grande déviation. Le régime étudié est celui-ci où l’amplitude du bruit et sa
corrélation tendent vers zéro aux vitesses ε et δ(ε), avec 0 < ε, δ(ε) � 1. Le principe de grande déviation est démontré dans
différent espaces fonctionnels selon le comportement δ(ε) en fonction de ε.
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1. Introduction

We are dealing here with the following randomly forced two-dimensional incompressible Navier–Stokes equation
with periodic boundary conditions, defined on the domain D = [0,2π ]2,{

∂tu(t, x) = �u(t, x) − (u(t, x) · ∇)u(t, x) + ∇p(t, x) + √
ε∂t ξ

δ(t, x), x ∈ D, t ≥ 0,

divu(t, x) = 0, x ∈ D, t ≥ 0, u(0, x) = u0(x), x ∈ D.
(1.1)

Here u denotes the velocity and p denotes the pressure of the fluid. Moreover, ξδ(t, x) denotes a Gaussian random
forcing. We are interested in the regime where the noise is weak, that is its typical strength is of order

√
ε � 1, and

almost white in space, that is its correlation decays on a length-scale δ � 1.
As well known, in order to have well posedness in C([0, T ]; [L2(D)]2) for equation (1.1), the Gaussian noise ξδ

cannot be white in space. In fact, white noise in space and time has been considered in [8], where the well-posedness
of equation (1.1) has been studied in suitable Besov spaces of negative exponent, for με -almost every initial condition,
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where με is a suitable centered Gaussian measure, depending on ε > 0. It turns out that, for different values of ε > 0,
the measures με are all singular, so that the result proved in [8] does not imply the well posedness of equation (1.1)
for any initial datum in some subset of the Besov space that remains independent of ε > 0.

In the present paper, we assume that for any fixed δ > 0 the noise ξδ(t, x) is sufficiently smooth in the space
variable x ∈ D to guarantee that for any initial condition u0 ∈ [L2(D)]2 there exists a unique generalized solution
in C([0, T ]; [L2(D)]2) (see Section 2 for all details). As a consequence of the contraction principle and of some
continuity properties of the solution of equation (1.1), for any δ > 0 fixed, the family {L(uε,δ)}ε>0, given by the
solutions of equation (1.1), satisfies a large deviation principle in C([0, T ]; [L2(D)]2), for any T > 0 fixed, with rate
ε and action functional

I δ
T (f ) = 1

2

∫ T

0

∣∣Q−1
δ

(
f ′(t) − Af (t) − b

(
f (t)

))∣∣2
[L2(D)]2 dt,

where A is the Stokes operator, b is the Navier–Stokes nonlinearity and Qδ is the square root of the covariance of the
noise ξδ (see Section 2 for all definitions and notations and also [3]).

In [4], the limiting behaviors, as δ ↓ 0, for the large deviation action functional I δ
T , as well as for the corresponding

quasipotential V δ have been studied. Namely it has been proven that if the operator Qδ converges strongly to the
identity operator, and a few other conditions are satisfied, then the operators I δ

T and V δ converge pointwise, as δ ↓ 0,
to the operator

IT (f ) = 1

2

∫ T

0

∣∣f ′(t) − Af (t) − b
(
f (t)

)∣∣2
[L2(D)]2 dt, (1.2)

and the operator

V (x) = |x|2[H 1(D)]2,

respectively. Notice that IT and V would be the natural candidates for the large deviation action functional in
C([0, T ]; [L2(D)]2) and the quasi-potential in [L2(D)]2, in case equation (1.1), perturbed by space-time white noise,
were well-posed in [L2(D)]2.

In [4] we have first taken the limit in ε and then in δ. In the present paper we describe what happens in the relevant
case the parameter δ is a function of the parameter ε that describes the intensity of the noise, and

lim
ε→0

δ(ε) = 0. (1.3)

Namely, we show that in this case the family {uε,δ(ε)}ε>0 satisfies a large deviation principle in the space
C([0, T ];Bσ

p(D)), where Bσ
p(D) is a suitable Besov space of functions, with σ < 0 and p ≥ 2. Moreover, in the

case condition (1.3) is supplemented with the condition

lim
ε→0

εδ(ε)−η = 0, (1.4)

for some η > 0, we prove that the family {uε,δ(ε)}ε>0 satisfies a large deviation principle in the space C([0, T ];
[L2(D)]2), where equation (1.1), corresponding to δ = 0, is ill-posed. In both cases, the action functional that describes
the large deviation principle is the operator IT defined in (1.2).

We would like to mention the fact that in [12] Hairer and Weber have studied a similar problem for the stochastic
reaction-diffusion equation{

∂tu(t, x) = �u(t, x) + cu(t, ξ) − u3(t, ξ) + √
ε∂t ξ

δ(ε)(t, x), x ∈ D, t ≥ 0,

u(0, x) = u0(x), x ∈ D,
(1.5)

where D is a bounded smooth domain, either in R
2 or in R

3. By using the recently developed theory of regularity
structures, they study the validity of a large deviation principle for the solutions {uε,δ(ε)}ε>0 of equation (1.5), in the
case condition (1.3) is satisfied. Actually, they prove that if, in addition to (1.3), the following conditions hold

lim
ε→0

ε log δ(ε)−1 = λ ∈ [0,∞), for d = 2, lim
ε→0

εδ(ε)−1 = λ ∈ [0,∞), for d = 3,
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then the family {uε,δ(ε)}ε>0 satisfies a large deviation principle in C([0, T ],Cη(D)), where Cη(D) is some space of
functions of negative regularity in space, with respect to the action functional

Iλ
T (f ) = 1

2

∫ T

0

∣∣∂tf − �f + cλf + f 3
∣∣2
[L2(D)]2 dt,

for some explicitly given constant cλ, depending on λ and d and such that c0 = −c.
Moreover, they also consider the renormalized equation{

∂tu(t, x) = �u(t, x) + (c + 3εc
(1)
δ(ε)

− 9ε2c
(2)
δ(ε)

)u(t, ξ) − u3(t, ξ) + √
ε∂t ξ

δ(ε)(t, x),

u(0, x) = u0(x), x ∈ D,

where c
(1)
δ(ε) and c

(2)
δ(ε) are the constants, depending on the dimension of the underlying space, arising from the renor-

malization procedure. They prove that, in this case, if (1.3) holds, then the family of solutions {uε,δ(ε)}ε>0 satisfies a
large deviation principle in C([0, T ],Cη(D)), with action functional I 0

T .
Unlike Hairer and Weber, that use techniques from the theory of regularity structures to prove the validity of the

large deviation principle, in this paper we use the weak convergence approach to large deviations, as developed in [5]
for SPDEs (see also [7,13] and [1] for some relevant applications of this method). The argument is simpler and gives
a stronger result. In particular, we are able to prove that, when condition (1.4) is satisfied, then the family {uε,δ(ε)}ε>0
satisfies a large deviation principle in the space of continuous trajectories with values in the space H itself and not in
a functional space of negative regularity. Notice that in [6] we have studied an analogous problem for the �2n

d -model
To this purpose, let {ϕε}ε>0 be any sequence of {Ft }t≥0-predictable processes, taking values in a ball of

L2(0, T ; [L2(D)]2), P-almost surely, such that

lim
ε→0

ϕε = ϕ weakly in L2(0, T ; [L2(D)
]2)

,P-a.s.

for some {Ft }t≥0-predictable process ϕ taking values in the same ball of L2(0, T ; [L2(D)]2). As we will explain
in Section 3, in order to use the weak convergence approach to large deviations, we have to show that if u

ϕε
ε is the

solution of the equation

du(t) = [
Au(t) + b

(
u(t)

) + Qεϕε(t)
]
dt + √

ε dwδ(ε)(t), t ≥ 0, u(0) = u0,

then we have

lim
ε→0

∣∣uϕε
ε − uϕ

∣∣
E = 0, P-a.s., (1.6)

where uϕ the solution of the random problem

du

dt
(t) = Au(t) + b

(
u(t)

) + ϕ(t), t ≥ 0, u(0) = u0,

and E coincides with the space C([0, T ]; [L2(D)]2) or C([0, T ];Bσ
p(D)), depending on whether condition (1.4) is

satisfied or not. We would like to stress the fact that the proof of (1.6) is quite different, in the two different cases.
If (1.4) is satisfied, then we can work in a Hilbertian framework. For every α > 0 and ε > 0, we use the splitting

uϕε
ε = vα,ϕε

ε + zα
ε + �ϕε

ε ,

where

�ϕε
ε (t) =

∫ t

0
e(t−s)AQδ(ε)ϕε(s) ds, t ≥ 0,

and

zα
ε (t) = √

ε

∫ t

−∞
e(t−s)(A−α) dw̄δ(ε)(s), t ≥ 0, (1.7)
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so that

uϕε
ε (t) − uϕ(t) = [

vα,ϕε
ε (t) − v

α,ϕ
0 (t)

] + zα
ε (t) + [

�ϕε
ε (t) − �

ϕ
0 (t)

]
.

Our aim is to show that there exists a random family {αε}ε>0 such that the three terms on the right hand side above,
corresponding to α = αε , converge to zero in Lp(�;C([0, T ]; [L2(D)]2)). In order to prove that we proceed with
suitable energy estimates. Here, the key point is the fact that for every p ≥ 1 there exist θ > 0 and a random variable
Kε(p) such that∣∣zα

ε

∣∣
C([0,T ];Lp(O))

≤ (α ∨ 1)−θ cp(T )Kε(p), P-a.s.

and for any η small enough and any p,q ≥ 1 there exist c1,η(p, q) and c2,η(p, q) such that

E
∣∣Kε(p)

∣∣q ≤ c1,η(p, q)
(
εδ(ε)−η

)c2,η(p,q)
.

If (1.4) is not satisfied, we have to work with the mild formulation of the equation in the space ET :=
C([0, T ];Bσ

p(D)) ∩ Lβ(0, T ;Bα
p(D)), where Bσ

p(D) and Bα
p(D) are suitable Besov spaces, with σ < 0 < α, β ≥ 1

and p ≥ 2 satisfying suitable conditions. Also in this case we proceed with a suitable splitting of the solution u
ϕε
ε , but

we cannot proceed with energy estimates. We consider the decomposition

uϕε
ε − uϕ = [

vε(t) − uϕ(t)
] + zε(t),

where zε(t) is the process defined in (1.7), corresponding to α = 0. In this case, one of the key points in order to prove
(1.6) is showing that∣∣∣∣

∫ ·

0
e(·−s)Ab

(
zε(s)

)
ds

∣∣∣∣
ET

≤ c2(t)|zε ⊗ zε − εϑδ(ε)I |Lρ(0,T ;[H−ρ(D)]4),

for a suitable ρ > 1 and a suitable constant ϑδ(ε) such that

lim
ε→0

E|zε ⊗ zε − εϑδ(ε)I |κ
Lp(0,T ;[Hσ (D)]4)

= 0,

for any κ,p ≥ 1 and σ < 0. This follows from arguments analogous to those used in [8].

2. Notations and preliminaries

We consider here the following incompressible Navier–Stokes equation with periodic boundary conditions on the
two-dimensional domain D = [0,2π ]2,⎧⎪⎨

⎪⎩
∂tu(t, x) = �u(t, x) − (u(t, x) · ∇)u(t, x) + ∇p(t, x) + √

ε∂t ξ
δ(t, x), x ∈ D, t ≥ 0,

divu(t, x) = 0, x ∈ D, t ≥ 0, u(0, x) = u0(x), x ∈ D,

u(t, x1,0) = u(t, x1,2π), u(t,0, x2) = u(t,2π,x2), (x1, x2) ∈ [0,2π ]2, t ≥ 0,

(2.1)

where 0 < ε, δ � 1 are some small positive constants. Here ξδ(t, x) is a Wiener process on [L2(D)]2, with covariance
Qδ to be defined below.

We assume that the initial condition u0 and the noise ξδ have zero average in space, so that u(t) remains with zero
average for all time. It is not difficult to get rid of this assumption.

In what follows, we will denote by H the subspace of [L2(D)]2 consisting of periodic, divergence free and zero
average functions, that is

H =
{
u ∈ [

L2(D)
]2 :

∫
D

u(x)dx = 0,divu = 0, u is periodic in D

}
.
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H turns out to be a Hilbert space, endowed with the standard scalar product 〈·, ·〉H inherited from [L2(D)]2. Moreover,
we will denote by P the Leray–Helmholtz projection of [L2(D)]2 onto H .

Now, for any k = (k1, k2) ∈ Z
2
0 = Z

2 \ {(0,0)} we define

ek(x) = 1

2π

k⊥

|k| e
ix·k = 1

2π

k⊥

|k| e
i(x1k1+x2k2), x = (x1, x2) ∈ D,k ∈ Z0,

where

k⊥ = (k2,−k1), |k| =
√

k2
1 + k2

2 .

It turns out that the family {ek}k∈Z2
0

is a complete orthonormal system in HC, the complexification of the space H .
For every s ∈R, we define

Hs(D) :=
{
u : D →R : |u|2Hs(D) :=

∑
k∈Z2

0

∣∣〈u, ek〉
∣∣2|k|2s < ∞

}
.

Next, for q ∈ N, we set δq := �2q −�2q−1 , where �n denote the projection of H into Hn := span{ek}|k|≤n. Namely

δqu =
∑

2q−1<|k|≤2q

〈u, ek〉H ek, u ∈
⋃
s∈R

Hs(D).

For any σ ∈R and p ≥ 1, we define

Bσ
p(D) :=

{
u ∈

⋃
s∈R

Hs(D) :
∑
q∈N

2pqσ |δqu|pLp(D) < ∞
}
.

Bσ
p(D) turns out to be a Banach space, endowed with the norm

|u|Bσ
p (D) :=

(∑
q∈N

2pqσ |δqu|pLp(D)

) 1
p

.

Now, we define the Stokes operator

Au = P�u, u ∈ D(A) = H ∩ [
H 2(D)

]2
,

where P is the Helmodtz projection. It is immediate to check that for any k ∈ Z
2
0

Aek = −|k|2ek, k ∈ Z
2
0.

For any r ∈ R, we denote by (−A)r the r-th fractional power of −A, defined on its domain D((−A)r). It is well
known that D((−A)r) is the closure of the space spanned by {ek}k∈Z2

0
with respect to the norm in [H 2r (D)]2 and the

mapping

u ∈ D
(
(−A)r

) �→ ∣∣(−A)ru
∣∣
H

∈ [0,+∞),

defines a norm on D((−A)r), equivalent to the usual norm in [H 2r (D)]2. Moreover, we have that the Leray–
Helmholtz projection P maps [H 2r (D)]2 into D((−A)r), for every r ∈ R.

Due to the incompressibility condition, the nonlinearity in equation (2.1) can be rewritten as

(u · ∇)v = div(u ⊗ v),



216 S. Cerrai and A. Debussche

where

u ⊗ v =
(

u1v1 u1v2
u2v1 u2v2

)
.

In what follows, we shall set

b(u, v) = −P div(u ⊗ v), b(u) = −P div(u ⊗ u). (2.2)

We recall here that, whenever the quantities on the left-hand sides make sense, it holds〈
b(u),u

〉
H

= 0,
〈
b(u),Au

〉
H

= 0 (2.3)

(for a proof see e.g. [14]).
Finally, concerning the noisy perturbation ξδ(t, x) in equation (2.1), it is a Wiener process on [L2(D)]2 and has

zero average. In what follows, we shall set

wδ(t) := Pξδ(t), t ≥ 0.

wδ(t) is now a Wiener process on H , and we assume it can be written as

wδ(t, x) =
∑
k∈Z2

0

λk(δ)ek(x)βk(t), t ≥ 0, x ∈ D,

where {ek}k∈Z2
0

is the orthonormal basis that diagonalizes the operator A, {βk(t)}k∈Z2
0

is a sequence of independent
Brownian motions defined on the stochastic basic (�,F, {Ft }t≥0,P), and for any δ > 0

λk(δ) = (
1 + δ|k|2γ

)− 1
2 , k ∈ Z

2
0,

for some fixed γ > 0. In other words, wδ is a Wiener process on H with covariance Qδ = (I + δ(−A)γ )−1. We would
like to stress that our result easily generalizes to more general covariance operators.

As we mentioned above, in the present paper we are interested in the asymptotic behavior of equation (2.1), as both
ε and δ go to zero. In particular, we shall assume that δ is a function of ε, such that

lim
ε→0

δ(ε) = 0.

In what follows we shall denote by Qε the bounded linear operator in H defined by

Qεek = λk

(
δ(ε)

)
ek, k ∈ N.

Now, if we project equation (2.1) on H , with the notations we have just introduced, it can be rewritten as

du(t) = [
Au(t) + b

(
u(t)

)]
dt + √

ε dwδ(ε)(t), t ≥ 0, u(0) = u0. (2.4)

As proven e.g. in [11], equation (2.4) admits a unique generalized solution uε ∈ C([0, T ];H). This means that uε is
a progressively measurable process taking values in C([0, T ];H), such that P-a.s. equation (2.4) is satisfied in the
integral form

〈
uε(t), ϕ

〉
H

= 〈u0, ϕ〉H +
∫ t

0

〈
uε(s),Aϕ

〉
H

ds +
∫ t

0

〈
b
(
uε(s), ϕ

)
, uε(s)

〉
H

ds + √
ε
〈
wδ(ε)(t), ϕ

〉
H

,

for every t ∈ [0, T ] and ϕ ∈ D(A).
In what follows, for every α ≥ 0 and ε > 0, we consider the auxiliary Ornstein–Uhlenbeck problem

dz(t) = (A − α)z(t) dt + √
ε dwδ(ε)(t), t ≥ 0, (2.5)
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whose unique stationary solution is given by

zα
ε (t) = √

ε

∫ t

−∞
e(t−s)(A−α) dw̄δ(ε)(s), t ∈ R. (2.6)

Notice that here w̄δ(ε)(t) is a two sided cylindrical Wiener process, defined by

w̄δ(ε)(t, x) =
∑
k∈Z2

0

λk

(
δ(ε)

)
ek(x)β̄k(t), (t, x) ∈ R× D,

where

β̄k(t) =
{

βk(t), if t ≥ 0,

β̃k(−t), if t < 0,

for some sequence of independent Brownian motions {β̃k(t)}k∈Z2
0
, defined on the stochastic basis (�,F, {Ft }t≥0,P)

and independent of the sequence {βk(t)}k∈Z2
0
.

It is well known that for any fixed ε > 0 the process zα
ε belongs to Lp(�;C([0, T ];D((−A)β))), for any T > 0,

p ≥ 1 and β < γ/2. In the case α = 0, we shall set

zε(t) := z0
ε (t). (2.7)

3. The problem and the method

We are here interested in the study of the validity of a large deviation principle, as ε ↓ 0, for the family {L(uε)}ε∈(0,1),
where uε is the solution of the equation

du(t) = [
Au(t) + b

(
u(t)

)]
dt + √

ε dwδ(ε)(t), t ≥ 0, u(0) = u0. (3.1)

Here and in what follows, T > 0 is fixed and ε > 0 �→ δ(ε) > 0 is a function such that

lim
ε→0

δ(ε) = 0. (3.2)

We will prove that depending on the scaling we assume between ε and δ(ε), the family {L(uε)}ε∈(0,1) satisfies a large
deviation principle in E , where E is a suitable space of trajectories on [0, T ], taking values in some space of functions
defined on the domain D and containing H .

Theorem 3.1. Let ε �→ δ(ε) be a function satisfying (3.2). Moreover, assume that there exists η > 0 such that

lim
ε→0

εδ(ε)−η = 0. (3.3)

Then, for any u0 ∈ H , the family {L(uε)}ε>0 satisfies a large deviation principle in C([0, T ];H), with action func-
tional

IT (f ) = 1

2

∫ T

0

∣∣f ′(t) − Af (t) − b
(
f (t)

)∣∣2
H

dt. (3.4)

Theorem 3.2. Let ε �→ δ(ε) be a function satisfying (3.2). Moreover, let σ < 0 and p ≥ 2 be such that

σ > − 2

p
∨

(
2

p
− 1

)
.

Then, for any u0 ∈ Hθ(D), with θ ≥ σ + 1 − 2/p, the family {L(uε)}ε>0 satisfies a large deviation principle in
C([0, T ];Bσ

p(D)), with the same action function IT introduced in (3.4).
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In order to prove Theorems 3.1 and 3.2, we follow the weak convergence approach, as developed in [5]. To this
purpose, we need to introduce some notations. For any T > 0, we denote by PT the set of predictable processes in
L2(� × [0, T ];H), and for any γ > 0, we define the sets

Sγ

T =
{
f ∈ L2(0, T ;H) :

∫ T

0

∣∣f (t)
∣∣2
H

dt ≤ γ

}
,

and

Aγ

T = {
u ∈ PT : u ∈ Sγ

T ,P-a.s.
}
.

Next, for any predictable process ϕ(t) taking values in L2([0, T ];H), we denote by uϕ the solution of the problem

du

dt
(t) = Au(t) + b

(
u(t)

) + ϕ(t), t ≥ 0, u(0) = u0. (3.5)

Moreover, for every ε > 0 we denote by u
ϕ
ε (t) the generalized solution of the problem

du(t) = [
Au(t) + b

(
u(t)

) + Qεϕ(t)
]
dt + √

ε dwδ(ε)(t), t ≥ 0, u(0) = u0. (3.6)

Notice that wδ(ε)(t) = Qδ(ε)w(t), where

w(t, x) =
∞∑

k=1

ek(x)βk(t).

Then, by using the notations introduced in [5], we have

uϕ
ε = Gε

(√
εw +

∫ ·

0
ϕ(t) dt

)
,

where Gε(ψ) denotes the solution f of the problem

df (t) = [
Af (t) + b

(
f (t)

)]
dt + Qδ(ε)dψ(t), f (0) = u0.

As for equation (2.4), for any fixed ε ≥ 0 and for any T > 0 and κ ≥ 1, equation (3.6) admits a unique generalized
solution u

ϕ
ε in Lκ(�;C([0, T ];H)). As a particular case (ε = 0), we have also well-posedness for equation (3.5).

By proceeding as in [5], the following result can be proven.

Theorem 3.3. Let E be a Polish space of trajectories defined on [0, T ] with values in a space of functions defined on
the domain D and containing the space H , and let IT be the functional defined in (3.4). Assume that

1. the level sets {IT (f ) ≤ r} are compact in E , for every r ≥ 0;
2. for every family {ϕε}ε>0 ⊂Aγ

T that converges in distribution, as ε ↓ 0, to some ϕ ∈ Aγ

T , in the space L2(0, T ;H),
endowed with the weak topology, the family {uϕε

ε }ε>0 converges in distribution to uϕ , as ε ↓ 0, in E .

Then the family {L(uε)}ε>0 satisfies a large deviation principle in E , with action functional IT .

Actually, as shown in [5], the convergence of u
ϕε
ε to uϕ implies the validity of the Laplace principle in E with rate

functional IT . This means that, for any continuous mapping � : E →R it holds

lim
ε→0

−ε logE exp

(
−1

ε
�(uε)

)
= inf

f ∈E
(
�(f ) + IT (f )

)
. (3.7)

And, once one has shown that the level sets of IT are compact in E , the validity of the Laplace principle as in (3.7) is
equivalent to say that the family {L(uε)}ε>0 satisfies a large deviation principle in E , with action functional IT .
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The proof of condition 1 in Theorem 3.3 is obtained once we show that, when the space L2(0, T ;H) is endowed
with the topology of weak convergence, the mapping

ϕ ∈ L2(0, T ;H) �→ uϕ ∈ E,

is continuous. More precisely, condition 1 will follow if we can prove that for any sequence {ϕn}n∈N in L2(0, T ;H),
weakly convergent to some ϕ ∈ L2(0, T ;H), it holds

lim
n→∞

∣∣uϕn − uϕ
∣∣
E = 0.

As for condition 2, we will use Skorohod theorem and rephrase such a condition in the following way. Let (�̄, F̄, P̄)

be a probability space and let {w̄δ(ε)(t)}t≥0 be a Wiener process, with covariance Qδ , defined on such a probabil-
ity space and corresponding to the filtration {F̄t }t≥0. Moreover, let {ϕ̄ε}ε>0 and ϕ̄ be {F̄t }t≥0-predictable processes
taking values in Sγ

T , P̄ almost surely, such that the distribution of (ϕ̄ε, ϕ̄, w̄δ(ε)) coincides with the distribution of
(ϕε,ϕ,wδ(ε)) and

lim
ε→0

ϕ̄ε = ϕ̄ weakly in L2(0, T ;H), P̄-a.s.

Then, if ū
ϕ̄ε
ε is the solution of an equation analogous to (3.6), with ϕε and wδ(ε) replaced respectively by ϕ̄ε and w̄δ(ε),

we have that

lim
ε→0

ūϕ̄ε
ε = ūϕ̄ in E,P-a.s. (3.8)

We would like to stress that condition 1 in Theorem 3.3 follows from condition 2. Actually, if we take in equation
(3.6)

√
ε = 0 and {ϕε}ε>0 = {ϕn}n∈N and ϕ deterministic, then condition 1 is a particular case of condition 2.

4. Proof of Theorem 3.1

In what follows, {ϕε}ε∈(0,1) and ϕ are predictable processes in Aγ

T , for some γ > 0 fixed, such that ϕε converges to ϕ,
P almost surely, in the weak topology of L2(0, T ;H).

For any α ≥ 0 and ε > 0, we introduce the random equation

dv

dt
(t) = Av(t) + b

(
v(t) + zα

ε (t) + �ε(t)
) + αzα

ε (t), v(0) = u0 − zα
ε (0), (4.1)

where zα
ε is the process introduced in (2.6), solution of the linear equation (2.5), and

�ε(t) =
∫ t

0
e(t−s)AQεϕε(s) ds, t ≥ 0,

is the solution of the problem

d�ε

dt
(t) = A�ε(t) + Qεϕε(t), �ε(0) = 0.

Notice that if ϕε ∈Aγ

T , for some γ > 0, then

∣∣�ε(t)
∣∣
Lp(D)

≤ c

∫ t

0
(t − s)

− p−2
2p

∣∣ϕε(s)
∣∣
H

ds,

so that

|�ε |pLp(0,T ;Lp(D))
≤ c

∫ T

0

(∫ t

0
(t − s)

− p−2
2p

∣∣ϕε(s)
∣∣
H

ds

)p

dt

≤ cT |ϕε |pL2(0,T ;H)

(∫ T

0
s
− p−2

2p ds

) p+2
2

.
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This implies that

|�ε |Lp(0,T ;Lp(D)) ≤ cT ,p
√

γ , P-a.s. (4.2)

As shown e.g. in [11], equation (4.1) admits a unique solution

vα
ε ∈ C

([0, T ];H ) ∩ L2(0, T ;V ), (4.3)

and the unique generalized solution uα
ε of equation

du(t) = [
Au(t) + b

(
u(t)

) + Qεϕε(t)
]
dt + √

ε dwδ(ε)(t), t ≥ 0, u(0) = u0, (4.4)

can be decomposed as

uα
ε (t) = vα

ε (t) + zα
ε (t) + �ε(t), t ∈ [0, T ].

Lemma 4.1. Assume that {ϕε}ε>0 ⊂ Aγ

T , for some fixed γ > 0. Then, there exists cT ,γ > 0 such that for every ε > 0
and t ∈ [0, T ]

∣∣vα
ε (t)

∣∣2
H

+
∫ t

0

∣∣vα
ε (s)

∣∣2
V

ds

≤ cT ,γ exp
(
c
∣∣zα

ε

∣∣4
L4(0,t;L4(D))

)(|u0|2H + ∣∣zα
ε (0)

∣∣2
H

+ (
α2 + 1

)∣∣zα
ε

∣∣4
L4(0,t;L4(D))

+ 1
)
. (4.5)

Moreover, we have∣∣vα
ε

∣∣4
L4(0,T ;L4(D))

≤ cT ,γ exp
(
c
∣∣zα

ε

∣∣4
L4(0,t;L4(D))

)(|u0|2H + ∣∣zα
ε (0)

∣∣2
H

+ (
α2 + 1

)∣∣zα
ε

∣∣4
L4(0,t;L4(D))

+ 1
)2

. (4.6)

Proof. Let vα
ε be the solution of problem (4.1), having the regularity specified in (4.3). Due to the first identity in

(2.3), we have

1

2

d

dt

∣∣vα
ε (t)

∣∣2
H

+ ∣∣vα
ε (t)

∣∣2
V

= 〈
b
(
zα
ε (t) + �ε(t)

)
, vα

ε (t)
〉
H

+ 〈
b
(
vα
ε (t), zα

ε (t) + �ε(t)
)
, vα

ε (t)
〉
H

+ α
〈
zα
ε (t), vα

ε (t)
〉
H

.

For every η > 0, we have∣∣〈b(
zα
ε (t) + �ε(t)

)
, vα

ε (t)
〉
H

∣∣
= ∣∣〈b(

zα
ε (t) + �ε(t), v

α
ε (t)

)
, zα

ε (t) + �ε(t)
〉
H

∣∣
≤ ∣∣vα

ε (t)
∣∣
V

∣∣zα
ε (t) + �ε(t)

∣∣2
L4(D)

≤ η
∣∣vα

ε (t)
∣∣2
V

+ cη

(∣∣zα
ε (t)

∣∣4
L4(D)

+ ∣∣�ε(t)
∣∣4
L4(D)

)
.

As H 1/2(D) ↪→ L4(D), by interpolation, we have∣∣〈b(
vα
ε (t), zα

ε (t) + �ε(t)
)
, vα

ε (t)
〉
H

∣∣
= ∣∣〈b(

vα
ε (t)

)
, zα

ε (t) + �ε(t)
〉
H

∣∣
≤ c

∣∣vα
ε (t)

∣∣
V

∣∣vα
ε (t)

∣∣
H 1/2

∣∣zα
ε (t) + �ε(t)

∣∣
L4(D)

≤ c
∣∣vα

ε (t)
∣∣3/2
V

∣∣vα
ε (t)

∣∣1/2
H

∣∣zα
ε (t) + �ε(t)

∣∣
L4(D)

≤ η
∣∣vα

ε (t)
∣∣2
V

+ cη

∣∣vα
ε (t)

∣∣2
H

(∣∣zα
ε (t)

∣∣4
L4(D)

+ ∣∣�ε(t)
∣∣4
L4(D)

)
.
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Moreover, we have

α
∣∣〈zα

ε (t), vα
ε (t)

〉
H

∣∣ ≤ η
∣∣vα

ε (t)
∣∣2
V

+ cηα
2
∣∣zα

ε (t)
∣∣2
H−1 .

Therefore, if we pick η = 1/6, we get

d

dt

∣∣vα
ε (t)

∣∣2
H

+ ∣∣vα
ε (t)

∣∣2
V

≤ c
∣∣vα

ε (t)
∣∣2
H

(∣∣zα
ε (t)

∣∣4
L4(D)

+ ∣∣�ε(t)
∣∣4
L4(D)

) + c
(
α2 + 1

)∣∣zα
ε (t)

∣∣4
L4(D)

+ c
∣∣�ε(t)

∣∣4
L4(D)

.

Due to (4.2), by using the Gronwall lemma this yields (4.5).
In order to prove (4.6), we notice that, as H 1/2(D) ↪→ L4(D), by interpolation we have

∣∣vα
ε

∣∣4
L4(0,T ;L4(D))

≤ c

∫ T

0

∣∣vα
ε (s)

∣∣2
V

∣∣vα
ε (s)

∣∣2
H

ds ≤ ∣∣vα
ε

∣∣2
L∞(0,T ;H)

∣∣vα
ε

∣∣2
L2(0,T ;V )

.

Therefore, (4.6) follows immediately from (4.5). �

Remark 4.2.

1. Due to (A.8), there exist κ̄ ≥ 1 and c(T ) > 0 such that for any ε > 0

αε := c(T )
∣∣Kε(4, βη)

∣∣κ̄ ∨ 1 =⇒ ∣∣zαε
ε

∣∣
L4(0,T ;L4(D))

≤ 1 and
∣∣zαε

ε (0)
∣∣
H

≤ 1. (4.7)

Thanks to (4.6), this implies that∣∣vαε
ε

∣∣
L4(0,T ;L4(D))

≤ cT ,γ

(|u0|H + α2
ε + 1

)
, P-a.s. (4.8)

and in view of (A.9), we can conclude that if (3.3) holds, then

E
∣∣vαε

ε

∣∣κ
L4(0,T ;L4(D))

≤ cγ (T , κ)
(|u0|κH + 1

)
, κ ≥ 1. (4.9)

2. As a consequence of (4.5), if ϕ ∈ Aγ

T and vϕ is a solution to the problem

dv

dt
(t) = Av(t) + b

(
v(t) + �(ϕ)(t)

)
, v(0) = u0,

where

�(ϕ)(t) :=
∫ t

0
e(t−s)Aϕ(s) ds,

we have

∣∣vϕ(t)
∣∣2
H

+
∫ t

0

∣∣vϕ(s)
∣∣2
H

ds ≤ cT ,γ

(
1 + |u0|2H

)
. (4.10)

Moreover, by interpolation,∣∣vϕ
∣∣
L4(0,T ;L4(D))

≤ cT ,γ

(
1 + |u0|H

)
. (4.11)

In the next lemma we investigate the continuity properties of the operator � and we prove the convergence of �ε

to �(ϕ) in case the sequence {ϕε}ε>0 is weakly convergent to ϕ.
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Lemma 4.3. For every ρ < 1, there exist θρ > 0 and cθ > 0 such that∣∣�(ϕ)
∣∣
Cθρ ([0,T ];Hρ(D))

≤ cρ |ϕ|L2(0,T ;H), P-a.s. (4.12)

for every ϕ ∈ L2(0, T ;H). In particular, if {ϕε}ε>0 is a family in Aγ

T , weakly convergent in L2(0, T ;H) to some
ϕ ∈ Aγ

T , for every ρ < 1 we have

lim
ε→0

∣∣�ε − �(ϕ)
∣∣
C([0,T ];Hρ(D))

= 0, P-a.s. (4.13)

Proof. For every β ∈ (0,1), we have

�(ϕ)(t) = cβ

∫ t

0
(t − s)−β+1e(t−s)AYβ(ϕ)(s) ds,

where

Yβ(ϕ)(s) =
∫ s

0
(s − σ)−βe(s−σ)Aϕ(σ )dσ.

Due to the Young inequality, we get

∣∣Yβ(ϕ)
∣∣p
Lp(0,T ;H)

=
∫ T

0

(∫ s

0
(s − σ)−β

∣∣ϕ(σ)
∣∣
H

dσ

)p

ds ≤ |ϕ|p
L2(0,T ;H)

(∫ T

0
s
− 2βp

p+2 ds

) p+2
2

,

and hence, if β < 1/2 + 1/p, we have∣∣Yβ(ϕ)
∣∣
Lp(0,T ;H)

≤ cp(T )|ϕ|L2(0,T ;H).

Now, as shown e.g. in [10], if β > ρ/2 + 1/p we have that the mapping

Y ∈ Lp(0, T ;H) �→
∫ t

0
(t − s)−β+1e(t−s)AY (s) ds ∈ C

β− ρ
2 − 1

p
([0, T ];Hρ(D)

)
,

is continuous. Therefore, we can conclude that∣∣�(ϕ)
∣∣
C

β− ρ
2 − 1

p ([0,T ];Hρ(D))
≤ cρ,β(T )|ϕ|L2(0,T ;H), P-a.s.

if ρ/2 + 1/p < β < 1/2 + 1/p, and this implies (4.12).
Now, in order to prove (4.13), we notice that

�ε − �(ϕ) = �
(
Qε(ϕε − ϕ)

) + �(Qεϕ − ϕ).

Since Qε(ϕε − ϕ) ∈ Aγ

T and Qε(ϕε − ϕ) ⇀ 0, as ε ↓ 0, weakly in L2(0, T ;H), due to the compactness of the
immersion of Cθρ1 ([0, T ];Hρ1(D)) into C([0, T ];Hρ2(D)), for every ρ1 > ρ2, from (4.12) we conclude that

lim
ε→0

∣∣�(
Qε(ϕε − ϕ)

)∣∣
C([0,T ];Hρ(D))

= 0, P-a.s. (4.14)

for every ρ < 1. Moreover, thanks again to (4.12),∣∣�(Qεϕ − ϕ)
∣∣p
C([0,T ];Hρ(D))

≤ cρ |Qεϕ − ϕ|L2(0,T ;H) → 0, P-a.s.

as ε → 0, and together with (4.14), this implies (4.13). �

Remark 4.4. Notice that, as the sequence {ϕε}ε>0 and the process ϕ are in Aγ

T , we can conclude that the convergence
in (4.13) is in Lp(�), for any p ≥ 1.



LDP for the 2D-Navier–Stokes equation with vanishing noise correlation 223

In what follows, we shall denote

ρα
ε (t) := vα

ε (t) − vϕ(t), t ≥ 0.

It is immediate to check that ρα
ε is a solution to the problem

dρα
ε

dt
(t) = Aρα

ε (t) + b
(
vα
ε (t) + zα

ε (t) + �ε(t)
) − b

(
vϕ(t) + �(ϕ)(t)

) + αzα
ε (t), ρα

ε (0) = −zα
ε (0). (4.15)

Lemma 4.5. If {ϕε}ε>0 ⊂Aγ

T and ϕ ∈Aγ

T , for every α ≥ 0 we have

sup
t∈[0,T ]

∣∣ρα
ε (t)

∣∣2
H

+
∫ T

0

∣∣ρα
ε (t)

∣∣2
V

dt

≤ cγ (T ) exp
(|u0|4H + 1

)(∣∣zα
ε (0)

∣∣2
H

+ ∣∣zα
ε

∣∣2
L4(0,T ;L4(D))

(∣∣vα
ε

∣∣2
L4(0,T ;L4(D))

+ 1 + α2)
+ ∣∣zα

ε

∣∣4
L4(0,T ;L4(D))

+ ∣∣�ε − �(ϕ)
∣∣2
L4(0,T ;L4(D))

(
1 + |u0|2H + ∣∣vα

ε

∣∣2
L4(0,T ;L4(D))

))
. (4.16)

Proof. Taking into account of the first identity in (2.3), we have

1

2

d

dt

∣∣ρα
ε (t)

∣∣2
H

+ ∣∣ρα
ε (t)

∣∣2
V

= 〈
b
(
vα
ε (t)

) − b
(
vϕ(t)

)
, ρα

ε (t)
〉
H

+ 〈
b
(
�ε(t)

) − b
(
�(ϕ)(t)

)
, ρα

ε (t)
〉
H

+ 〈
b
(
zα
ε (t)

)
, ρα

ε (t)
〉
H

+ 〈
b
(
vα
ε (t), zα

ε (t)
) + b

(
zα
ε (t), vα

ε (t)
)
, ρα

ε (t)
〉
H

+ 〈
b
(
zα
ε (t),�ε(t)

) + b
(
�ε(t), z

α
ε (t)

)
, ρα

ε (t)
〉
H

+ 〈
b
(
ρα

ε (t),�ε(t)
)
, ρα

ε (t)
〉
H

+ 〈
b
(
vϕ(t),�ε(t) − �(ϕ)(t)

) + b
(
�ε(t) − �(ϕ)(t), vα

ε (t)
)
, ρα

ε (t)
〉
H

+ α
〈
zα
ε (t), ρα

ε (t)
〉
H

:=
8∑

j=1

Iα
ε,j (t).

Now, we are going to estimate each one of the terms Iα
ε,j (t), for j = 1, . . . ,8. We have

Iα
ε,1(t) = 〈

b
(
ρα

ε (t), vϕ(t)
)
, ρα

ε (t)
〉
H

= −〈
b
(
ρα

ε (t)
)
, vϕ(t)

〉
H

,

so that, by interpolation, for any η > 0,

∣∣Iα
ε,1(t)

∣∣ ≤ ∣∣ρα
ε (t)

∣∣
V

∣∣ρα
ε (t)

∣∣
L4(D)

∣∣vϕ(t)
∣∣
L4(D)

≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cη

∣∣ρα
ε (t)

∣∣2
H

∣∣vϕ(t)
∣∣4
L4(D)

. (4.17)

For Iα
ε,2(t) we have

Iα
ε,2(t) = 〈

b
(
�ε(t),�ε(t) − �(ϕ)(t)

) + b
(
�ε(t) − �(ϕ)(t),�(ϕ)(t)

)
, ρα

ε (t)
〉
H

,

and, by proceeding as for Iα
ε,1(t), we have

∣∣Iα
ε,2(t)

∣∣ ≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cη

(∣∣�ε(t)
∣∣2
L4(D)

+ ∣∣�(ϕ)(t)
∣∣2
L4(D)

)∣∣�ε(t) − �(ϕ)(t)
∣∣2
L4(D)

. (4.18)

For Iα
ε,3(t), we have

∣∣Iα
ε,3(t)

∣∣ = ∣∣〈b(
zα
ε (t)

)
, ρα

ε (t)
〉
H

∣∣ ≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cη

∣∣zα
ε (t)

∣∣4
L4(D)

, (4.19)
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and, in an analogous way,

∣∣Iα
ε,4(t)

∣∣ + ∣∣Iα
ε,5(t)

∣∣ ≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cη

∣∣zα
ε (t)

∣∣2
L4(D)

(∣∣vα
ε (t)

∣∣2
L4(D)

+ ∣∣�ε(t)
∣∣2
L4(D)

)
. (4.20)

Concerning Iα
ε,6(t), by interpolation we get

∣∣Iα
ε,6(t)

∣∣ ≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cη

∣∣�ε(t)
∣∣4
L4(D)

∣∣ρα
ε (t)

∣∣2
H

. (4.21)

Finally, with the same arguments used for Iα
ε,3, and also for Iα

ε,4 and Iα
ε,5, we get

∣∣Iα
ε,7(t)

∣∣ ≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cη

(∣∣vϕ
∣∣2
L4(D)

+ ∣∣vα
ε (t)

∣∣2
L4(D)

)∣∣�ε(t) − �(ϕ)
∣∣2
L4(D)

. (4.22)

For the last term, we have

∣∣Iα
ε,8(t)

∣∣ ≤ η
∣∣ρα

ε (t)
∣∣2
V

+ cηα
2
∣∣zα

ε (t)
∣∣2
H−1 . (4.23)

Therefore, if we take η = 1/14, we obtain

d

dt

∣∣ρα
ε (t)

∣∣2
H

+ ∣∣ρα
ε (t)

∣∣2
V

≤ c
∣∣ρα

ε (t)
∣∣2
H

(∣∣vϕ(t)
∣∣4
L4(D)

+ ∣∣�ε(t)
∣∣4
L4(D)

)
+ (∣∣�ε(t)

∣∣2
L4(D)

+ ∣∣�(ϕ)(t)
∣∣2
L4(D)

+ ∣∣vϕ(t)
∣∣2
L4(D)

+ ∣∣vα
ε (t)

∣∣2
L4(D)

)∣∣�ε(t) − �(ϕ)(t)
∣∣2
L4(D)

+ c
∣∣zα

ε (t)
∣∣2
L4(D)

(∣∣vα
ε (t)

∣∣2
L4(D)

+ ∣∣�ε(t)
∣∣2
L4(D)

+ α2) + c
∣∣zα

ε (t)
∣∣4
L4(D)

.

Recalling that

ϕ ∈Aγ

T =⇒ ∣∣�(ϕ)
∣∣
Lp(0,T ;Lp(D))

≤ cp(T )γ, P-a.s.

as a consequence of the Gronwall lemma, this implies that

sup
t∈[0,T ]

∣∣ρα
ε (t)

∣∣2
H

+
∫ T

0

∣∣ρα
ε (t)

∣∣2
V

dt

≤ cγ (T ) exp
(∣∣vϕ

∣∣4
L4(0,T ;L4(D))

)(∣∣zα
ε (0)

∣∣2
H

+ ∣∣zα
ε

∣∣2
L4(0,T ;L4(D))

(∣∣vα
ε

∣∣2
L4(0,T ;L4(D))

+ 1 + α2)
+ ∣∣zα

ε

∣∣4
L4(0,T ;L4(D))

+ ∣∣�ε − �(ϕ)
∣∣2
L4(0,T ;L4(D))

(
1 + ∣∣vϕ

∣∣2
L4(0,T ;L4(D))

+ ∣∣vα
ε

∣∣2
L4(0,T ;L4(D))

))
.

Thanks to (4.11), we conclude that (4.16) holds. �

4.1. Conclusion of the proof of Theorem 3.1

We have already seen that, if α is any given non-negative constant and vα
ε (t) is the solution to problem (4.1), then it

holds

uϕε
ε (t) = vα

ε (t) + zα
ε (t) + �ε(t), t ≥ 0.

Since uϕ(t) = vϕ(t) + �(ϕ)(t), this implies that we can write

uϕε
ε (t) − uϕ(t) = [

vαε
ε (t) − vϕ(t)

] + zαε
ε (t) + [

�ε(t) − �(ϕ)(t)
]
, t ≥ 0,

where αε is the random constant defined in (4.7).
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Due to (4.8) and (4.16), it is immediate to check that

∣∣vαε
ε (t) − vϕ(t)

∣∣2
H

≤ cγ

(
T , |u0|H

)[∣∣zαε
ε (0)

∣∣2
H

+ ∣∣zαε
ε

∣∣4
L4(0,T ;L4(D))

+ (∣∣zαε
ε

∣∣2
L4(0,T ;L4(D))

+ ∣∣�ε − �(ϕ)
∣∣
L4(0,T ;L4(D))

)(
1 + α2

ε

)]
.

Now, in view of (A.8), for any β ∈ (0,1/4) there exists cβ(T ) such that for every α > 0∣∣zα
ε

∣∣
C([0,T ];L4(D))

≤ cβ(T )Kε(4, β), P-a.s.

This implies that, if we fix any η ∈ (0,1/2γ ) satisfying (3.3) and βη ∈ (0,1/4) so that (A.9) holds, we get

∣∣vαε
ε (t) − vϕ(t)

∣∣2
H

≤ cγ,η

(
T , |u0|H

)(
K4

ε (4, βη) + K2
ε (2, β) + ∣∣�ε − �(ϕ)

∣∣
L4(0,T ;L4(D))

)(
1 + α2

ε

)
. (4.24)

As a consequence of (A.9) and assumption (3.3), we have

sup
ε∈(0,1)

Eακ
ε < ∞, κ ≥ 1.

Then, thanks again to (A.9), from (4.24) we can conclude that for any κ ≥ 1

E
∣∣vαε

ε − vϕ
∣∣κ
C([0,T ];H)

≤ cγ,η,κ

(
T , |u0|H

)[(
εδ(ε)−η

)cκ + (
E

∣∣�ε − �(ϕ)
∣∣κ
L4(0,T ;L4(D))

) 1
2
]
.

Because of (3.3), (4.12) and (4.13), this implies that

lim
ε→0

εδ(ε)−η = 0 =⇒ lim
ε→0

E
∣∣vαε

ε − vϕ
∣∣κ
C([0,T ];H)

= 0, κ ≥ 1. (4.25)

Since∣∣uϕε
ε − uϕ

∣∣
C([0,T ];H)

≤ ∣∣vαε
ε − vϕ

∣∣
C([0,T ];H)

+ ∣∣zαε
ε

∣∣
C([0,T ];H)

+ ∣∣�ε − �(ϕ)
∣∣
C([0,T ];H)

,

(4.25), together once more with (4.12) and (4.13), implies that

lim
ε→0

εδ(ε)−η = 0 =⇒ lim
ε→0

E
∣∣uϕε

ε − uϕ
∣∣κ
C([0,T ];H)

= 0, κ ≥ 1. (4.26)

In view of Theorem 3.3 and all comments in Section 3 after Theorem 3.3, we can conclude that Theorem 3.1 is
proved.

5. Proof of Theorem 3.2

In what follows, we fix any σ < 0 and p ≥ 2 such that

σ > − 2

p
∨

(
2

p
− 1

)
.

Because of such a condition, we can fix two real constants α and β such that

2

p
> α > −σ > 0, p ≥ 2, β ≥ 2, −1

2
+ 1

p
<

α

2
− 1

β
<

σ

2
. (5.1)

Once fixed α, σ , p and β , for any 0 ≤ s < t we denote

Es,t := C
([s, t];Bσ

p(D)
) ∩ Lβ

(
s, t;Bα

p(D)
)
.
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Es,t turns out to be a Banach space, endowed with the norm

|v|Es,t
:= sup

r∈[s,t]
∣∣v(r)

∣∣
Bσ

p (D)
+ |v|Lp(s,t;Bα

p(D)).

In the case s = 0, we shall set E0,t = Et .
Our purpose here is to show that under condition (3.2) the family {uε}ε∈(0,1) satisfies a large deviation principle

in C([0, T ];Bσ
p(D)), with action functional IT , as defined in (3.4). In view of Theorem 3.3 and the arguments in

Section 3, this follows once we prove that for any sequence {ϕε}ε>0 ⊂ Aγ

T , P-almost surely convergent to some
ϕ ∈ Aγ

T , with respect to the topology of weak covergence in L2(0, T ;H), the sequence {uϕε
ε }ε>0 converges P-almost

surely to uϕ in C([0, T ];Bσ
p(D)).

For any ε > 0, we introduce the random equation

dvε

dt
(t) = Avε(t) + b

(
vε(t) + zε(t)

) + Qεϕε, vε(0) = u0 − zε(0), (5.2)

where zε(t) = z0
ε (t) is the process introduced in (2.7). In particular, we have

uϕε
ε (t) − uϕ(t) = [

vε(t) − uϕ(t)
] + zε(t) =: ρε(t) + zε(t), t ≥ 0.

Since

dρε

dt
(t) = Aρε(t) + b

(
vε(t) + zε(t)

) − b
(
uϕ(t)

) + Qεϕε(t) − ϕ(t), ρε(0) = −zε(0),

we have that ρε(t) solves the following integral equation

ρε(t) = −etAzε(0) +
∫ t

0
e(t−s)A

(
b
(
vε(s)

) − b
(
uϕ(s)

))
ds +

∫ t

0
e(t−s)Ab

(
zε(s)

)
ds

+
∫ t

0
e(t−s)A

(
b
(
ρε(s), zε(s)

) + b
(
zε(s), ρε(s)

))
ds

+
∫ t

0
e(t−s)A

(
b
(
uϕ(s), zε(s)

) + b
(
zε(s), u

ϕ(s)
))

ds + [
�ε(t) − �(ϕ)(t)

]

=:
6∑

i=1

Iε,i(t).

Our first goal here is to estimate the norm of each term Iε,i in the space Et , for every t ≤ T , and prove a uniform
bound for ρε in ET . To this purpose, we first prove a suitable bound for uϕ in Hθ(D), with θ ∈ (0,1).

Lemma 5.1. Assume that u0 ∈ Hθ(D), for some θ ∈ [0,1). Then, for any ϕ ∈ L2(0, T ;H) we have

sup
t∈[0,T ]

∣∣uϕ(t)
∣∣2
Hθ (D)

+
∫ T

0

∣∣uϕ(s)
∣∣2
Hθ+1(D)

ds ≤ c
(|u0|Hθ (D), |ϕ|L2(0,T ;H)

)
. (5.3)

Proof. Since

1

2

d

dt

∣∣uϕ(t)
∣∣2
H

+ ∣∣uϕ(t)
∣∣2
V

= 〈
ϕ(t), uϕ(t)

〉
H

,

we immediately have

∣∣uϕ(t)
∣∣2
H

+
∫ t

0

∣∣uϕ(s)
∣∣2
V

ds ≤ |u0|2H + λ1

2

∫ t

0

∣∣ϕ(s)
∣∣2
H

ds. (5.4)
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For every θ ≥ 0, we have

1

2

d

dt

∣∣uϕ(t)
∣∣2
Hθ (D)

+ ∣∣uϕ(t)
∣∣2
Hθ+1(D)

= 〈
b
(
uϕ(t)

)
, (−A)θuϕ(t)

〉
H

+ 〈
ϕ(t), (−A)θuϕ(t)

〉
H

.

Now, if we assume θ < 1 and set q1 = 2/(1 − θ) and q2 = 2/θ , we have∣∣〈b(
uϕ(t)

)
, (−A)θuϕ(t)

〉
H

∣∣ ≤ ∣∣uϕ(t)
∣∣
Lq1 (D)

∣∣(−A)θuϕ(t)
∣∣
Lq2 (D)

∣∣uϕ(t)
∣∣
V
.

As

Wθ,2(D) ↪→ Lq1(D), W 1−θ,2(D) ↪→ Lq2(D),

this implies that∣∣〈b(
uϕ(t)

)
, (−A)θuϕ(t)

〉
H

∣∣ ≤ ∣∣uϕ(t)
∣∣
Hθ (D)

∣∣uϕ(t)
∣∣
H 1+θ (D)

∣∣uϕ(t)
∣∣
V

≤ 1

4

∣∣uϕ(t)
∣∣2
H 1+θ (D)

+ c
∣∣uϕ(t)

∣∣2
Hθ (D)

∣∣uϕ(t)
∣∣2
V
.

Therefore, as

∣∣〈ϕ(t), (−A)θuϕ(t)
〉
H

∣∣ ≤ ∣∣ϕ(t)
∣∣
H

∣∣uϕ(t)
∣∣
H 2θ (D)

≤ 1

4

∣∣uϕ(t)
∣∣2
H 1+θ (D)

+ c|ϕ|2H ,

we conclude that

d

dt

∣∣uϕ(t)
∣∣2
Hθ (D)

+ ∣∣uϕ(t)
∣∣2
Hθ+1(D)

≤ c
∣∣uϕ(t)

∣∣2
Hθ (D)

∣∣uϕ(t)
∣∣2
V

+ c|ϕ|2H .

Thanks to (5.4), this implies

∣∣uϕ(t)
∣∣2
Hθ (D)

≤ exp

(
c

∫ T

0

∣∣uϕ(s)
∣∣2
V

ds

)(|u0|2Hθ (D)
+ c|ϕ|2

L2(0,T ;H)

)
≤ exp

(
c|u0|2H + c|ϕ|2

L2(0,T ;H)

)(|u0|2Hθ (D)
+ c|ϕ|2

L2(0,T ;H)

)
,

and (5.3) easily follows. �

Now, let us estimate each term Iε,i , for i = 1, . . . ,6. Since

∣∣Iε,1(t)
∣∣
Et

= sup
s∈[0,t]

∣∣esAzε(0)
∣∣
Bσ

p (D)
+

(∫ t

0

∣∣esAzε(0)
∣∣β
Bα

p(D)
ds

) 1
β

,

according to (5.1), for any t ≤ T we have

∣∣Iε,1(t)
∣∣
Et

≤ c
∣∣zε(0)

∣∣
Bσ

p (D)
+ c

(∫ t

0
s− 1

2 (α−σ)β ds

) 1
β ∣∣zε(0)

∣∣
Bσ

p (D)
≤ cT

∣∣zε(0)
∣∣
Bσ

p (D)
. (5.5)

Now, for any two processes u(t) and v(t), we define

�(u,v)(t) :=
∫ t

0
e(t−s)Ab

(
u(s), v(s)

)
ds, t ≥ 0.

By proceeding as in [8, proof of Lemma 6.3], it is possible to show that if v1 and v2 are measurable mappings defined
on [0, T ], with values in Bα

p(D) and Bσ
p(D), respectively, then

∣∣�(vi, vj )(t)
∣∣
Bσ

p (D)
≤ c

∫ t

0
(t − s)

− 1
2 (1+ 2

p
−α)

∣∣v1(s)
∣∣
Bα

p(D)

∣∣v2(s)
∣∣
Bσ

p (D)
ds, t ≤ T , (5.6)
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and

∣∣�(vi, vj )(t)
∣∣
Bα

p(D)
≤ c

∫ t

0
(t − s)

− 1
2 (1+ 2

p
−σ)

∣∣v1(s)
∣∣
Bα

p(D)

∣∣v2(s)
∣∣
Bσ

p (D)
ds, t ≤ T , (5.7)

both for (i, j) = (1,2) and for (i, j) = (2,1).
It is immediate to check that

b
(
vε(t)

) − b
(
uϕ(t)

) = b
(
ρε(t)

) + b
(
ρε(t), u

ϕ(t)
) + b

(
uϕ(t), ρε(t)

)
, t ≥ 0,

so that, thanks to (5.1), from (5.6) and (5.7) we get

|Iε,2|Et
≤ c1(t)|ρε |Lβ(0,t;Bα

p(D))

(|ρε |C([0,t];Bσ
p (D)) + ∣∣uϕ

∣∣
C([0,t];Bσ

p (D))

)
, t ≥ 0,

for some continuous increasing function c1(t), such that c1(0) = 0. Since we are assuming that θ ≥ σ + 1 − 2/p, we
have that Hθ(D) ↪→ Bσ

p(D), so that from (5.3) we obtain

|Iε,2|Et
≤ c1(t)cγ

(|u0|Hθ (D)

)|ρε |Et

(|ρε |C([0,t];Bσ
p (D)) + 1

)
. (5.8)

Concerning Iε,3(t), we first notice that

b
(
zε(t)

) = div
(
zε(t) ⊗ zε(t)

) = div
(
zε(t) ⊗ zε(t) − εϑδ(ε)I

)
, t ≥ 0,

where ϑδ(ε) is the constant defined in (A.11), for δ = δ(ε). Then, since for every ρ ≥ −1, η ≥ 0 and p ≥ 2 we have

∣∣etAx
∣∣
Bρ

p(D)
≤ ct

−(1+ ρ
2 − 1

p
+ η

2 )|x|H−(1+η)(D), t > 0,

from (2.2) we get

∣∣Iε,3(t)
∣∣
Bσ

p (D)
≤ c

∫ t

0
(t − s)

−(1+ σ
2 − 1

p
+ η

2 )
∣∣div

(
zε(s) ⊗ zε(s) − εϑδ(ε)I

)∣∣[H−(1+η)(D)]4 ds

≤ c

∫ t

0
(t − s)

−(1+ σ
2 − 1

p
+ η

2 )
∣∣zε(s) ⊗ zε(s) − εϑδ(ε)I

∣∣[H−η(D)]4 ds.

In the same way, we have

∣∣Iε,3(t)
∣∣
Bα

p(D)
≤ c

∫ t

0
(t − s)

−(1+ α
2 − 1

p
+ η

2 )
∣∣zε(s) ⊗ zε(s) − εϑδ(ε)I

∣∣[H−η(D)]4 ds.

Due to (5.1), this implies that we can find η > 0 and ρ ≥ 1 such that

|Iε,3|Et
≤ c2(t)|zε ⊗ zε − εϑδ(ε)I |Lρ(0,T ;[H−(1+γ )(D)]4). (5.9)

For Iε,4(t), by using again (5.6) and (5.7), we have

∣∣Iε,4(t)
∣∣
Bσ

p (D)
≤ c

∫ t

0
(t − s)

− 1
2 (1+ 2

p
−α)

∣∣ρε(s)
∣∣
Bα

p(D)

∣∣zε(s)
∣∣
Bσ

p (D)
ds,

and

∣∣Iε,4(t)
∣∣
Bα

p(D)
≤ c

∫ t

0
(t − s)

− 1
2 (1+ 2

p
−σ)

∣∣ρε(s)
∣∣
Bα

p(D)

∣∣zε(s)
∣∣
Bσ

p (D)
ds,

and then, according to (5.1), we can find ρ ≥ 1 such that

|Iε,4|Et
≤ c3(t)|ρε |Lβ(0,t;Bα

p(D))|zε |Lρ(0,T ;Bσ
p (D)) ≤ c3(t)|ρε |Et

|zε |Lρ(0,T ;Bσ
p (D)). (5.10)
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As for Iε,4(t), for Iε,5(t) we have

∣∣Iε,5(t)
∣∣
Bσ

p (D)
≤ c

∫ t

0
(t − s)

− 1
2 (1+ 2

p
−α)

∣∣uϕ(s)
∣∣
Bα

p(D)

∣∣zε(s)
∣∣
Bσ

p (D)
ds,

and

∣∣Iε,5(t)
∣∣
Bα

p(D)
≤ c

∫ t

0
(t − s)

− 1
2 (1+ 2

p
−σ)

∣∣uϕ(s)
∣∣
Bα

p(D)

∣∣zε(s)
∣∣
Bσ

p (D)
ds.

As we are assuming θ ≥ σ + 1 − 2/p, we have that θ > α − 2/p, so that for any η > 0 such that θ − η > α − 2/p,
we have H 1+θ−η(D) ↪→ Bα

p(D). By interpolation, this implies

|x|Bα
p(D) ≤ cη|x|H 1+θ−η(D) ≤ cη|x|1−η

H 1+θ (D)
|x|η

Hθ (D)
,

so that

|x|
2

1−η

Bα
p(D)

≤ cη|x|2
H 1+θ (D)

|x|
2η

1−η

Hθ (D)
.

According to (5.3), this implies that uϕ ∈ L
2

1−η (0, T ;Bα
p(D)) and∣∣uϕ

∣∣
L

2
1−η (0,T ;Bα

p(D))
≤ cγ,η

(|u0|Hθ (D)

)
. (5.11)

Due to condition (5.1), since θ ≥ σ + 1 − 2/p, we can find η ∈ (0,1) such that

1 − 2

β
< η < θ + 2

p
− α.

For such η > 0 we have

∣∣Iε,5(t)
∣∣
Bσ

p (D)
≤ c

(∫ t

0
s
− 1

2 (1+ 2
p

−α)
β

β−1 ds

) β−1
β ∣∣uϕ

∣∣
L

2
1−η (0,t;Bα

p(D))
|zε |Lκ(0,t;Bσ

p (D)), (5.12)

where

1

κ
= 1 −

[
1 − η

2
+ β − 1

β

]
= 1

β
− 1 − η

2
.

Analogously, if we pick η > 1 − 2/p, we get

∫ t

0

∣∣Iε,5(s)
∣∣β
Bα

p(D)
ds ≤ c

(∫ t

0
s
− 1

2 (1+ 2
p

−σ)
ds

)β ∣∣uϕ
∣∣β
L

2
1−η (0,t;Bα

p(D))

|zε |
L

2β
2−β(1−η) (0,t;Bσ

p (D))

.

Thanks to (5.11), this, together with (5.12), implies that there exists some ρ ≥ 1 such that

|Iε,5|ET
≤ c4(t)cγ

(|u0|Hθ (D)

)|zε |Lρ(0,t;Bσ
p (D)). (5.13)

Collecting together (5.5), (5.8), (5.9), (5.10) and (5.13), we conclude that

|ρε |Et
≤ c(t)cγ

(|u0|Hθ (D)

)|ρε |Et

(|ρε |C([0,t];Bσ
p (D)) + |zε |Lρ(0,T ;Bσ

p (D)) + 1
) + cT

∣∣zε(0)
∣∣
Bσ

p (D)

+ c(t)cγ

(|u0|Hθ (D)

)(|zε |Lρ(0,T ;Bσ
p (D)) + |zε ⊗ zε − εϑδ(ε)I |Lρ(0,T ;[H−γ (D)]4)

) + ∣∣�ε − �(ϕ)
∣∣
ET

,

for some continuous increasing function c(t) such that c(0) = 0.
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Now, we are going to show that for any sequence {εn}n∈N converging to zero, there exists a subsequence {εnk
}k∈N ⊂

{εn}n∈N, such that

lim
k→∞|ρεnk

|ET
= 0, P-a.s. (5.14)

and this clearly implies that

lim
ε→0

|ρε |ET
= 0, P-a.s.

As u
ϕε
ε (t) − uϕ(t) = ρε(t) + zε(t), for t ∈ [0, T ], according to (A.1) we can conclude that

lim
ε→0

sup
t∈[0,T ]

∣∣uϕε
ε (t) − uϕ(t)

∣∣
Bσ

p (D)
= 0, P-a.s. (5.15)

Let {εn}n∈N be a sequence converging to zero. As we are assuming that α < 2/p, there exists ρ < 1 such that
Hρ(D) ↪→ Bα

p(D), so that, due to (4.13) we have

lim
ε→0

∣∣�ε − �(ϕ)
∣∣
ET

= 0, P-a.s. (5.16)

Then, as a consequence of (A.1), (A.13) and (5.16), we have that there exists a subsequence of {εn}n∈N, that for
simplicity of notations we are still denoting by {εn}n∈N, and a set �′ ⊆ � with P(�′) = 1, such that

lim
n→∞

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zε(ω) ⊗ zε(ω) − εϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

+ ∣∣�εn(ω) − �(ϕ)(ω)
∣∣
ET

) = 0, ω ∈ �′. (5.17)

Next, for any ε > 0 we denote

τε := inf
{
t ≥ 0 : ∣∣ρε(t)

∣∣
Bσ

p (D)
≥ 1

}
.

If we fix any ω ∈ �′, in view of (A.1) there exists some n0 = n0(ω) ∈N such that for any n ≥ n0 and t ≤ τεn(ω)∣∣ρε(ω)
∣∣
Et

≤ 3c(t)cγ

(|u0|Hθ (D)

)∣∣ρε(ω)
∣∣
Et

+ cT

∣∣zε(0)
∣∣
Bσ

p (D)
+ ∣∣�ε(ω) − �(ϕ)(ω)

∣∣
ET

+ c(t)cγ

(|u0|Hθ (D)

)(∣∣zε(ω)
∣∣
Lρ(0,T ;Bσ

p (D))
+ ∣∣zε(ω) ⊗ zε(ω) − εϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
.

This implies that if we take t0 > 0 such that

3c(t0)cγ

(|u0|Hθ (D)

) ≤ 1

2
,

for any n ≥ n0 and t ≤ τεn(ω) ∧ t0∣∣ρεn(ω)
∣∣
Et

≤ c
∣∣�εn(ω) − �(ϕ)(ω)

∣∣
ET

+ cT

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zεn(ω) ⊗ zεn(ω) − εnϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
.

As a consequence of (5.17), there exists n1 = n1(ω) ≥ n0 such that

cT

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zεn(ω) ⊗ zεn(ω) − εnϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
+ c

∣∣�εn(ω) − �(ϕ)(ω)
∣∣
ET

≤ 1

2
, n ≥ n1,
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so that τεn(ω) ∧ t0 = t0, for n ≥ n1, and

∣∣ρεn(ω)
∣∣
Et0

≤ c
∣∣�εn(ω) − �(ϕ)(ω)

∣∣
ET

+ cT

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zεn(ω) ⊗ zεn(ω) − εnϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
.

Now, we can repeat the same argument in the intervals [(i − 1)t0, it0], for i = 0, . . . , iT , where iT is the smallest
integer such that iT t0 ≥ T , and we find

∣∣ρεn(ω)
∣∣
E(i−1)t0,it0

≤ ic
∣∣�εn(ω) − �(ϕ)(ω)

∣∣
ET

+ icT

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zεn(ω) ⊗ zεn(ω) − εnϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
, (5.18)

for every n ≥ ni = ni(ω), where ni(ω) ≥ ni−1(ω) is such that

cT

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zεn(ω) ⊗ zεn(ω) − εnϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
+ c

∣∣�εn(ω) − �(ϕ)(ω)
∣∣
ET

≤ 1

2i
, n ≥ ni.

Therefore, from (5.18) we obtain that for any n ≥ niT (ω)

∣∣ρεn(ω)
∣∣
ET

≤ ic
∣∣�εn(ω) − �(ϕ)(ω)

∣∣
ET

+ icT

(∣∣zεn(ω)
∣∣
C([0,T ];Bσ

p (D))
+ ∣∣zεn(ω) ⊗ zεn(ω) − εnϑδ(ε)I

∣∣
Lρ(0,T ;[H−γ (D)]4)

)
,

and due to (5.17) we can conclude that

lim
n→∞

∣∣ρεn(ω)
∣∣
ET

= 0.

Appendix

Here we describe and prove some properties of the solution of the linear problem. As in Section 2, for every α ≥ 0
and ε > 0 we denote by zα

ε (t) the stationary solution of the linear problem

dz(t) = (A − α)z(t) dt + √
ε dwδ(ε)(t), t ≥ 0.

The process zα
ε (t) is given by

zα
ε (t) = √

ε

∫ t

−∞
e(t−s)(A−α) dw̄δ(ε)(s), t ≥ 0.

As we already mentioned in Section 2, for any fixed ε > 0 the process zα
ε belongs to the space Lp(�;C([0, T ];

D((−A)β))), for any T > 0, p ≥ 1 and β < γ/2.
We first want to estimate the norm of zα

ε in Besov spaces of negative exponent.

Lemma A.1. For any α ≥ 0 and ε > 0 and for any p,κ ≥ 1 and σ < σ ′ < 0 it holds

E sup
t∈[0,T ]

∣∣zα
ε (t)

∣∣κ
Bσ

p (D)
≤ cκ,p

(
ε

∑
k∈Z2

0

|k|2(σ ′−1)

) κ
2

. (A.1)
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Proof. Since zα
ε (t) = (−A)− σ

2 (−A)
σ
2 zα

ε (t), we have∣∣zα
ε (t)

∣∣
Bσ

p (D)
≤ ∣∣(−A)

σ
2 zα

ε (t)
∣∣
Lp(D)

. (A.2)

By using stochastic factorization, for any β ∈ (0,1) we have

(−A)
σ
2 zα

ε (t) = sinπβ

π

∫ t

−∞
(t − s)β−1e(t−s)AYε,β(s) ds,

where

Yε,β(s) =
∫ s

−∞
(s − ρ)−βe(s−ρ)A(−A)

σ
2 dwδ(ε)(ρ).

Therefore, if we take p ≥ 1/β , we get

∣∣(−A)
σ
2 zα

ε (t)
∣∣p
Lp(D)

≤ cβ,p

(∫ t

−∞
s
− (1−β)p

p−1 e
− p

p−1 s
ds

)p−1 ∫ t

−∞
∣∣Yε,β(s)

∣∣p
Lp(D)

ds. (A.3)

Now, for any t ∈R and x ∈ D

E
∣∣Yε,β(t, x)

∣∣p = cpε
p
2 E

(∑
k∈Z2

0

∫ t

−∞
λk

(
δ(ε)

)|k|σ (t − s)−βe−(t−s)(|k|2+α)ek(x) dβk(s)

)p

≤ cpε
p
2

(∑
k∈Z2

0

∫ t

−∞
λk

(
δ(ε)

)2|k|2σ (t − s)−2βe−2(t−s)(|k|2+α)
∣∣ek(x)

∣∣2
ds

) p
2

≤ cpε
p
2

(∑
k∈Z2

0

|k|2σ+4β−2
) p

2

,

so that, integrating with respect to x ∈ D, for any β < −σ/2, and hence p ≥ −2/σ ,

E
∣∣Yε,β(t)

∣∣p
Lp(D)

≤ cp

(
ε

∑
k∈Z2

0

|k|2(σ+2β−1)

) p
2

.

Therefore, thanks to (A.2) and (A.3), for any κ ≥ p ≥ 2/σ this yields

E sup
t∈[0,T ]

∣∣zα
ε (t)

∣∣κ
Bσ

p (D)
≤ E sup

t∈[0,T ]
∣∣(−A)

σ
2 zα

ε (t)
∣∣κ
Lp(D)

≤ cκ,pE sup
t∈[0,T ]

∣∣(−A)
σ
2 zα

ε (t)
∣∣κ
Lk(D)

≤ cκ,p

(
ε

∑
k∈Z2

0

|k|2(σ+2β−1)

) κ
2

.

The general case follows from the Hölder inequality. �

Next, we estimate the norm of zα
ε in Lp(D)-spaces. This lemma could be proved using stochastic calculus in

Banach spaces and the notion of γ -radonfying operators (see [2]). We give here an elementary proof.

Lemma A.2. For every α ≥ 0 and ε > 0 and for every p ≥ 1 it holds

E
∣∣zα

ε (t)
∣∣p
Lp(D)

≤ cp(T )

(
ε log

(
1 + δ(ε)

δ(ε)

)) p
2

, t ∈ [0, T ]. (A.4)
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Proof. For every p ≥ 1 we have

E
∣∣zα

ε (t)
∣∣p
Lp(D)

= ε
p
2 E

∫
D

∣∣∣∣∑
k∈Z2

0

∫ t

−∞
e−(t−s)(|k|2+α)λk

(
δ(ε)

)
ek(x) dβ̄k(s)

∣∣∣∣
p

dx

≤ ε
p
2

∫
D

(∑
k∈Z2

0

e−2(t−s)(|k|2+α)λk

(
δ(ε)

)2∣∣ek(x)
∣∣2

ds

) p
2

dx

≤ |D|ε p
2

(∑
k∈Z2

0

1

|k|2(1 + δ(ε)|k|2γ )

) p
2

.

Since we have

∑
k∈Z2

0

1

|k|2(1 + δ(ε)|k|2γ )
∼

∫ +∞

1

1

x(1 + δ(ε)xγ )
dx

= 1

γ

∫ ∞

δ(ε)

1

x(1 + x)
dx = 1

γ

(
log

(
1 + δ(ε)

) + log
1

δ(ε)

)
,

this implies that (A.4) holds. �

Now, by proceeding as in the proof of [9, Proposition 2.1], it is possible to show that for any p ≥ 1 and β ∈ (0,1/4)

there exist θ = θ(p,β) ∈ (0,1/4) and ρ = ρ(p,β) ∈ (0,1), and a random variable Kε(p,β) such that for any α ≥ 0
and ε > 0∣∣zα

ε (t)
∣∣
Lp(D)

≤ (α ∨ 1)−θ
(
1 + tρ

)
Kε(p,β), P-a.s., (A.5)

where

Kε(p,β) = cp,β

(∫ +∞

−∞
(
1 + σ 2)−1∣∣Yε(σ )

∣∣m
Lp(D)

dσ

)1/m

, (A.6)

for some m = m(p,β) ≥ 1, and where

Yε(σ ) = √
ε

∫ σ

−∞
(σ − s)−βe(σ−s)A dwδ(ε)(s). (A.7)

In particular, we have∣∣zα
ε

∣∣
C([0,T ];Lp(D))

≤ (α ∨ 1)−θ cp(T )Kε(p,β), P-a.s. (A.8)

In what follows, it will be important that the random variable Kε(p,β) has all moments finite, with an uniform
bound with respect to ε > 0.

Lemma A.3. Let p,q ≥ 1 and ε > 0 be fixed. Then, for any η ∈ (0,1/2γ ) there exists βη ∈ (0,1/4) such that

E
∣∣Kε(p,βη)

∣∣q ≤ cp,βη,q

(
εδ(ε)−η

)cq,p , (A.9)

Proof. It is immediate to check that, for any q ≥ m, we have

E
∣∣Kε(p,β)

∣∣q ≤ cp,β,q

∫ +∞

−∞
(
1 + σ 2)−1

E
∣∣Yε(σ )

∣∣q
Lp(D)

dσ.
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Now, since

Yε(σ, x) = √
ε

∑
k∈Z2

0

∫ σ

−∞
(σ − s)−βλk

(
δ(ε)

)
e−|k|2(σ−s)ek(x) dβ̄k(s),

we have

E
∣∣Yε(σ, x)

∣∣p ≤ cpεp/2
(∑

k∈Z2
0

|ek|2L∞(D)

∫ ∞

0
s−2βλk

(
δ(ε)

)2
e−|k|2s ds

) p
2

≤ cp

(
ε

∑
k∈Z2

0

|k|−2(1−2β)
(
1 + δ(ε)|k|2γ

)−1
) p

2 =: cp�β(ε)
p
2 .

This implies that for any p,q ≥ 1

E
∣∣Yε(σ )

∣∣q
Lp(D)

≤ c1(q,p)�β(ε)c2(q,p),

for some positive constants c1(q,p) and c2(q,p). Now, we have

�β(ε) ∼ ε

∫ +∞

1

1

x1−2β(1 + δ(ε)xγ )
dx = ε

1

γ

(
1

δ(ε)

) 2β
γ

∫ +∞

δ(ε)

y
2β
γ

−1 1

1 + y
dy.

Therefore, if we pick any η ∈ (0,1/2γ ) and define βη := ηγ/2, we have

�βη(ε) ≤ cεδ(ε)−η,

and this implies (A.9). �

In what follows, we shall denote H := R
Z

2
0 and μ := N (0, (−A)−1/2). The Gaussian measure μ is defined on H,

but in fact μ(Hσ (D)) = 1, if σ < 0, so that the support of μ is contained in Hσ (D), for every σ < 0.
Now, for any h ∈ H and δ > 0, we define

hδ :=
∑
k∈Z2

0

〈h, ek〉λk(δ)ek,

where we recall that, for any k ∈ Z
2
0 and δ > 0,

λk(δ) = 1√
1 + δ|k|2γ

.

Next, for i = 1,2 we define

: (hi
δ

)2 : (x) = √
2
[(

hi
δ

)2
(x) − ϑδ

]
, x ∈ D,δ > 0, (A.10)

where

ϑδ = 1

2(2π)2

∑
k∈Z2

0

k2
1

|k|4 λk(δ)
2 = 1

2(2π)2

∑
k∈Z2

0

k2
2

|k|4 λk(δ)
2. (A.11)

By proceeding as in [8, Appendix] it is possible to prove that for i = 1,2

∃ lim
δ→0

: (hi
δ

)2 : in Lκ
(
H,μ;Hσ (D)

)
,
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and

∃ lim
δ→0

h1
δh

2
δ in Lκ

(
H,μ;Hσ (D)

)
,

for every κ ≥ 1 and σ < 0. In particular, due to definition (A.10), this implies that

∃ lim
δ→0

(hδ ⊗ hδ − ϑδIR2) in Lκ
(
H,μ; [Hσ (D)

]4)
. (A.12)

Lemma A.4. For every ε > 0, let us denote zε(t) := z0
ε (t). Then, for σ < 0 and κ,p ≥ 1 we have

lim
ε→0

E|zε ⊗ zε − εϑδ(ε)I |κ
Lp(0,T ;[Hσ (D)]4)

= 0. (A.13)

Proof. It is immediate to check that

zε(t) = √
εQεz(t), t ∈R,

where

z(t) =
∫ t

−∞
e(t−s)A dw(t) =

∑
k∈Z2

0

∫ t

−∞
e−(t−s)|k|2 dβk(s).

The process z(t) is stationary Gaussian and L(z(t)) = μ, for every t ∈R. This means that for any p ≥ 1

E|zε ⊗ zε − εϑδ(ε)I |p
Lp(0,T ;[Hσ (D)]4)

= E

∫ T

0

∣∣zε(t) ⊗ zε(t) − εϑδ(ε)I
∣∣p[Hσ (D)]4 dt

= εpT

∫
H

|Qεh ⊗ Qεh − ϑδ(ε)I |p[Hσ (D)]4μ(dh)

= εpT

∫
H

|hδ(ε) ⊗ hδ(ε) − ϑδ(ε)I |p[Hσ (D)]4μ(dh).

Because of (A.12), this implies (A.13) in the case κ = p ≥ 1. The case κ,p ≥ 1 follows from the Hölder inequality
and the fact that Lp(D) ⊂ Lq(D), if p ≥ q . �
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