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Abstract. Consider a Boolean model � in R
d . The centers are given by a homogeneous Poisson point process with intensity λ and

the radii of distinct balls are i.i.d. with common distribution ν. The critical covered volume is the proportion of space covered by
� when the intensity λ is critical for percolation. We study the asymptotic behaviour, as d tends to infinity, of the critical covered
volume. It appears that, in contrast to what happens in the constant radii case studied by Penrose, geometrical dependencies do not
always vanish in high dimension.

Résumé. Considérons un modèle booléen � dans Rd . Les centres des boules sont donnés par un processus ponctuel de Poisson
homogène d’intensité λ, et les rayons par une suite de variables aléatoires indépendantes et identiquement distribuées de loi com-
mune ν. Le volume critique recouvert est la proportion de l’espace recouverte par � quand on prend pour λ la valeur critique
pour la percolation des boules. Nous étudions le comportement asymptotique, quand la dimension d tend vers +∞, de ce volume
critique recouvert. En particulier, nous montrons que contrairement à ce qui se passe dans le cas des boules de rayon constant étudié
par Penrose, les dépendances liées à la géométrie ne disparaissent pas toujours en grande dimension.
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1. Introduction and statement of the main results

Consider a homogeneous Poisson point process on R
d . At each point of this process, we center a ball with random

radius, the radii of distinct balls being i.i.d. and independent of the point process: the union � of these random balls
is called a Boolean model. This Boolean model depends on three parameters: the intensity λ of the point process of
centers, the common distribution ν of the radii of the balls and the dimension d . We denote by λc

d(ν) the critical
intensity for percolation in �.

In this paper, we mainly focus on distributions concentrating on two distinct radii. For any ρ ≥ 1 and d ≥ 1,
consider for instance the probability measure

μ
ρ
d = 1

1 + ρ−d

(
δ1 + ρ−dδρ

)
.

The ρ−d normalization will be discussed and motivated below Display (15). In our main result, Theorem 1.1, we will
give the asymptotic behavior of the critical intensity λc

d(μ
ρ
d ) as d tends to ∞.

Penrose studied in [12] the case of constant radii, which can be obtained by taking ρ = 1 and we studied in [8] the
case 1 < ρ < 2. In both cases, the asymptotic behavior of λc

d(μ
ρ
d ) is given by the asymptotic behavior of an associated

Galton–Watson process. This is due to the fact that the geometrical dependencies vanish in high dimension.
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We prove here that is it not the case for large values of ρ: it appears that when ρ > 2 the asymptotic behavior of
λc

d(μ
ρ
d ) is no longer given by the asymptotic behavior of the associated Galton–Watson process. In other words, when

ρ > 2, geometry still plays a significant role even when the dimension tends to infinity. Moreover, one observes that
the asymptotic behavior of λc

d(μ
ρ
d ) depends in a complex way on the value of ρ.

The Boolean model

Let us give here an equivalent construction of the Boolean model. Let ν be a finite1 measure on (0,+∞). We assume
that the mass of ν is positive. Let d ≥ 2 be an integer, λ > 0 be a real number and ξ be a Poisson point process on
R

d × (0,+∞) whose intensity measure is the Lebesgue measure on R
d times λν. We define a random subset of Rd

as follows:

�(λν) =
⋃

(c,r)∈ξ

B(c, r),

where B(c, r) is the open Euclidean ball centered at c ∈ R
d and with radius r ∈ (0,+∞). The random subset �(λν)

is a Boolean model driven by λν.
We say that �(λν) percolates if with positive probability the origin belongs to an unbounded connected component

of �(λν). This is equivalent to the almost-sure existence of an unbounded connected component of �(λν). We refer
to the book by Meester and Roy [9] for background on continuum percolation. The critical intensity is defined by:

λc
d(ν) = inf

{
λ > 0 : �(λν) percolates

}
.

One easily checks that λc
d(ν) is finite. In [6] it is proven that λc

d(ν) is positive if and only if∫
rdν(dr) < +∞. (1)

We assume from now on that this assumption is fulfilled.
By ergodicity, the Boolean model �(λν) has a deterministic natural density. This is also the probability that a given

point belongs to the Boolean model and it is given by:

P
(
0 ∈ �(λν)

) = 1 − exp

(
−λ

∫
vdrdν(dr)

)
,

where vd denotes the volume of the unit euclidean ball in R
d . The critical covered volume cc

d(ν) is the density of the
Boolean model when the intensity is critical:

cc
d(ν) = 1 − exp

(
−λc

d(ν)

∫
vdrdν(dr)

)
.

We define the normalized critical intensity as:

λ̃c
d(ν) = λc

d(ν)

∫
vd(2r)dν(dr).

We then have cc
d(ν) = 1 − exp(− λ̃c

d (ν)

2d ). The factor 2d may seem arbitrary here: it will simplify the statement of the
next theorems.

We will now give two scaling relations which partly justify our preference for cc
d or λ̃c

d over λc
d . For all a > 0,

define Haν as the image of ν under the map x �→ ax. By scaling, we get:

λ̃c
d

(
Haν

) = λ̃c
d(ν). (2)

1There is no greater generality in considering finite measures instead of probability measures; this is simply more convenient.
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This is a consequence of Proposition 2.11 in [9], and it may become more obvious when considering the two following
facts: a critical Boolean model remains critical when rescaling and the density is invariant by rescaling (here by
rescaling we mean rescaling centers and radii by the same constant); therefore the critical covered volume and then
the normalized threshold are invariant. One also easily checks the following invariance:

λ̃c
d (aν) = λ̃c

d(ν). (3)

Constant radii

Assume that the measure ν is a Dirac mass at 1, i.e. that the radii of the balls are all equal to 1. Penrose [12] proved
the following result:

lim
d→∞ λ̃c

d(δ1) = 1. (4)

The inequality λ̃c
d(δ1) > 1 holds for any d ≥ 2. The proof is simple, and here is the idea. We consider the following

natural genealogy. The deterministic ball B(0,1) is said to be the ball of generation 0. The random balls of �(λδ1)

that touch B(0,1) are then the balls of generation 1. The random balls that touch one ball of generation 1 without
being one of them are then the balls of generation 2; balls of generation 3 are those which intersect a ball of generation
2 and are not from generations 1 or 2, and so on. Let us denote by Nd the number of all balls that are descendants of
B(0,1). There is no percolation if and only if Nd is almost surely finite.

Now denote by m the Poisson distribution with mean λvd2d : this is the law of the number of balls of �(λδ1)

that touch a given ball of radius 1. Therefore, if there were no interference between children of different balls, Nd

would be equal to Z, the total population in a Galton–Watson process with offspring distribution m. Because of the
interferences due to the fact that the Boolean model lives in R

d , this is not true: in fact, Nd is only stochastically
dominated by Z. Therefore, if λvd2d ≤ 1, then Z is finite almost surely, then Nd is almost surely finite and therefore
there is no percolation. This implies

λ̃c
d (δ1) = vd2dλc

d(δ1) > 1.

The difficult part of (4) is to prove that if d is large, then the interferences are small, as a consequence Nd is close to
Z and therefore there is percolation as soon as vd2dλ = ν for a given ν > 1 and d large enough.

To sum up, at first order, the asymptotic behavior of the critical intensity of the Boolean model with constant radius
is given by the threshold of an associated Galton–Watson process: roughly speaking, as the dimension increases, the
geometrical constraints of the finite dimension space decrease and in the limit, we recover the non-geometrical case
of the corresponding Galton–Watson process.

Random radii with two values: A first simple case

Let ρ > 1, consider the measure μ = δ1 + δρ , and set, for d ≥ 2,

μd = δ1 + ρ−dδρ.

Let us motivate the definition of μd with the following two related properties:

(1) Consider the Boolean model �(λμd) on R
d driven by λμd where λ > 0. The number of balls of �(λμd) with

radius 1 that contains a given point is a Poisson random variable with intensity λvd . The number of balls of
�(λμd) with radius ρ that contains a given point is also a Poisson random variable with intensity λvd . Thus
the introduction of μd is done to keep the relative importance of the two types of radii independent of the
dimension d .

(2) Consider two independent Boolean model � and �′, both driven by λδ1. Then � ∪ρ�′ is a Boolean model driven
by λμd .
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In our previous work [8], we proved the following result in the specific case 1 < ρ < 2:

lim
d→+∞

1

d
ln
(̃
λc

d(μd)
) = ln

(
2
√

ρ

1 + ρ

)
. (5)

In this case, as in the case of deterministic radii, the first order of the asymptotic behavior of the critical intensity
in high dimension is given by the threshold of an associated Galton–Watson process, as we will briefly discuss now.

Thinking of the asymptotic (5), take λ = κd

vd2d where κ > 0 is a given constant.
The associated Galton–Watson process is now two-type, one for each radius. Consider the offspring distribution

of type ρ of an individual of type 1: it is the number of balls of a Boolean model directed by λ
ρd δρ that intersect a

given ball of radius 1. Therefore, this is a Poisson random variable with mean λ
ρd vd(1 + ρ)d . The other offspring

distributions are defined similarly. We moreover assume that the offspring of type 1 and ρ of a given individual are
independent. The matrix of means of offspring distributions is thus given by:

Md =
⎛⎝λvd(1 + 1)d λ

ρd vd(1 + ρ)d

λvd(1 + ρ)d λ
ρd vd(ρ + ρ)d

⎞⎠ = κd

(
1 (

1+ρ
2ρ

)d

(
1+ρ

2 )d 1

)
. (6)

Let rd denote the largest eigenvalue of Md . The extinction probability of the two-type Galton–Watson process is 1 if
and only if rd ≤ 1 (see Theorem 2, p. 186 in the book by Athreya and Ney [1]). We have:

rd ∼
(

κ(1 + ρ)

2
√

ρ

)d

, and thus κ = 2
√

ρ

1 + ρ
is the critical parameter.

As before, because of the geometric interferences, the number of all balls that are descendants of B(0,1) in the
Boolean model is only stochastically dominated by the total population of the two-types Galton–Watson process and

thus if κ ≤ 2
√

ρ

1+ρ
, there is no percolation for the Boolean model with intensity λ = κd

vd2d . So, for any dimension d ≥ 2,

1

d
ln
(̃
λc

d(μd)
) ≥ ln

(
2
√

ρ

1 + ρ

)
. (7)

Thus (5) says that the comparison with the two-type Galton–Watson process is asymptotically sharp on a logarithmic
scale when 1 < ρ ≤ 2. Here again, as the dimension increases, the geometrical constraints of the finite dimension
space decrease and in the limit, we recover the non-geometrical case of the corresponding Galton–Watson process.
This is no longer the case when ρ > 2, as we will see in our main result Theorem 1.1.

Let us now give some heuristics to explain why the behavior is different when 1 ≤ ρ < 2 and when ρ > 2. We can
see that the main contribution to the Galton–Watson process, in the limit when d tends to ∞, comes from lines in
which the two-types alternate. Indeed, let us keep only those lines. Let us assume that the ancestor is a ball of radius
ρ centered at 0. The mean number of grandchildren, in those alternating lines, of a the ancestor (centers of a ball of
radius ρ which touches a ball of radius 1 which touches the ancestor) is

κd(1 + ρ)d

(2ρ)d

κd(1 + ρ)d

2d
=

(
κ2(1 + ρ)2

4ρ

)d

. (8)

In particular, this is larger than one as soon as

κ >
2
√

ρ

1 + ρ
(9)

which corresponds, in the limit when d → ∞, to the critical threshold of the Galton–Watson process. Let us now
consider geometric constraints. Each grandchild (center of a ball of radius ρ which touches a ball of radius 1 which
touches the ancestor) is located at U + V where U and V are independent and uniformly distributed on B(0,1 + ρ).
But in high dimension, one typically has ‖U‖ ≈ 1 + ρ,‖V ‖ ≈ 1 + ρ and U · V ≈ 0 (see Lemma 3 in [12] for a close
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statement). Therefore, in high dimension, ‖U +V ‖ ≈ √
2(1 +ρ). Let us develop this heuristic argument by assuming

that each grandchild is centered in B(0,
√

2(1 + ρ)). The mean number of grandchildren is then bounded from above
by the mean number of balls of radius ρ centered in B(0,

√
2(1 + ρ)), that is

κd(
√

2(1 + ρ))d

(2ρ)d
=

(
κ(1 + ρ)√

2ρ

)d

. (10)

Considering (9) and comparing (8) and (10), one can guess that the geometrical constraints will be harmless when

κ2(1 + ρ)2

4ρ
≤ κ(1 + ρ)√

2ρ
for some κ >

2
√

ρ

1 + ρ
.

This happens when ρ < 2.

Random radii with two values: General case

To state our main result, we need some further notation. Fix ρ > 1 and k ≥ 1. Set r1 = rk+1 = 1 + ρ, and for i ∈
{2, . . . , k}, ri = 2. For (ai)2≤i≤k+1 ∈ [0,1)k , we build an increasing sequence of distances (di)1≤i≤k+1 by setting (see
Figure 1):

d1 = r1 = 1 + ρ, (11)

∀i ∈ {2, . . . , k + 1} d2
i = d2

i−1 + 2riaidi−1 + r2
i .

Note that the sequence (di)1≤i≤k+1 depends on ρ, k, and the ai ’s. Let then the function D be defined by the relation

D(a2, . . . , ak+1) = dk+1.

Now set, for every k ≥ 1,

κc
ρ(k) = inf

0≤a2,...,ak+1<1
max

((
4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1 − a2
i )

) 1
k+1

,
2ρ

D(a2, . . . , ak+1)

)
. (12)

d3

d2

d1

a2r2

a3r3

Fig. 1. Dotted circles are of respective radii di , i ∈ {1,2,3}. Circles in plain line are of radius 2.
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Finally, let:

κc
ρ = inf

k≥1
κc
ρ(k). (13)

We give some intuition on κc
ρ and the distances di in Section 2.2. Our main result says that κc

ρ gives the asymptotic
behavior of λ̃c

d(μd) when μ charges two distinct points:

Theorem 1.1. Let b > a > 0, α > 0 and β > 0. Set μ = αδa + βδb , ρ = b/a > 1 and, for d ≥ 2, μd = αa−dδa +
βb−dδb . Then

lim
d→+∞

1

d
ln
(̃
λc

d(μd)
) = ln

(
κc
ρ

)
< 0. (14)

Note that if one considers μ instead of μd , one has2 λ̃c
d(αδa + βδb) → 1 and thus λ̃c

d(αδa + βδb) ∼ λ̃c
d(δ1). This

behavior is due to the fact that, without normalization, the influence of the small balls vanishes in high dimension.
In the next lemma we collect some properties of the κc

ρ(k)’s and κc
ρ . In Figure 2, we plot κc

ρ(k), for k ∈ {1,2,3}.
The data come from the formulas in Lemma 1.2 for k = 1 and from numerical estimations for k ≥ 2.

Lemma 1.2. Let ρ > 1.

(i) 0 < κc
ρ(1) < 1. More precisely:

if 1 < ρ ≤ 2 then κc
ρ(1) = 2

√
ρ

1 + ρ
, while if ρ ≥ 2 then κc

ρ(1) =
√

4 + ρ2

1 + ρ
.

(ii) 0 < κc
ρ < 1.

Fig. 2. κc
ρ(k) as a function of ρ (k ∈ {1,2,3}, from left to right).

2The upper bound can be proven using λc
d
(αδa + βδb) ≤ λc

d
(βδb). The lower bound can be proven using the easy part of the comparison with a

two-type Galton–Watson process.
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(iii) There exists ρ0 > 2 such that if ρ ≤ ρ0, then κc
ρ = κc

ρ(1). This implies:

if 1 < ρ ≤ 2 then κc
ρ = 2

√
ρ

1 + ρ
, while if 2 ≤ ρ ≤ ρ0 then κc

ρ =
√

4 + ρ2

1 + ρ
.

(iv) As ρ goes to +∞, κc
ρ(k) = 1 − k

ρ
+ o(1/ρ). Thus one can not restrict the infimum in (13) to a finite number of k.

As we see in Lemma 1.2(iii), our previous result (5) for 1 < ρ ≤ 2 is a particular case of Theorem 1.1, where κρ

has a simple expression obtained by comparison with the associated two-type Galton–Watson process.
But for ρ > 2, the same comparison does not give the good value of κc

ρ any more: as we can see in (12) and (13),
the value of κc

ρ depends in a much more complex way of the radii ratio ρ. This expresses that in the case ρ > 2,
geometrical constraints still play a significant role in percolation properties even in the limit when d tends to ∞.

The proofs of Theorem 1.1 and of Lemma 1.2 are given in Section 2. The main ideas of the proofs are given in
Section 2.2. The general structure of the proof of Theorem 1.1 is the same as the proof of (5) in [8]: the lower bound
for κc

ρ follows from the comparison with a well-chosen branching process which takes into account some geometrical
constraints, while the upper bound is obtained by showing that when κ > κc

ρ , we can embed in the Boolean model

with intensity λ = κd

vd2d a super-critical 2-dimensional oriented percolation that implies the existence of infinite paths
of balls. But let us be more specific and explain the differences between [8] and this work.

In the special case 1 < ρ ≤ 2 that we studied in [8], it appears that the lower bound (7) obtained by comparison
with the two-types Galton–Watson process gives the right value for κc

ρ . To obtain the upper bound, we prove that
if κ > κc

ρ and if the dimension d is large enough, there exists with positive probability an infinite path along which
1-balls alternate with ρ-balls. To do so, we build an embedded oriented percolation: the existence of an open edge is
linked to the existence in the Boolean model of a well-positioned path composed of one 1-ball and one ρ-ball. The
existence of an infinite open path in the oriented percolation implies the existence of an infinite path of balls in the
Boolean model, and we can prove that for d large enough the oriented percolation is supercritical. This comparison
with oriented percolation was already the last step in the paper of Penrose [12].

But in the general case, this comparison with the two-type Galton–Watson process is too crude. To study the
existence of an infinite path of balls in the Boolean model, we first fix k ≥ 1 and look at k-alternating paths of balls:
a path is k-alternating if it is a path of balls along which balls with radius ρ alternate with sequences of k balls with
radius 1 – see (17) for a precise definition. We prove that the critical parameter for the existence of infinite k-alternating
paths of balls is κc

ρ(k), and this is done in two steps. The lower bound for κc
ρ(k) is, as before, obtained by comparison

with a well-chosen branching process. To obtain a sharp bound, we optimize in the positions of the centers of the
balls, and this is the role played by the (ai)2≤i≤k+1 in the definition (12) of κc

ρ(k) – see also Figure 1 and Section 2.2.
Then we prove in Proposition 2.7 that if κ > κc

ρ(k) and if the dimension d is large enough, there exists with positive
probability an infinite k-alternating path. As before, this step is done by embedding a super-critical 2-dimensional
oriented percolation in the Boolean model: an open edge corresponds here to the existence of a well-positioned path
composed of one ρ-ball followed by k 1-balls. The proof of the fact that the oriented percolation is supercritical when
d is large enough is more intricate as it has to include the optimization in the (ai)2≤i≤k+1. Finally, we deduce the
critical parameter κc

ρ for the existence of infinite paths of balls in the Boolean model from the critical parameters
κc
ρ(k) for the existence of infinite k-alternating paths of balls.

To summarize, this works provides a proof in whole generality, and the strategy is already present in our previous
work [8] on a particularly simple subcase.

General random radii

If μ is a finite measure on (0,+∞) and if d ≥ 2 is an integer, we define a measure μd on (0,+∞) by setting:

μd(dr) = r−dμ(dr). (15)

Note that, for any d , the assumption (1) is fulfilled by μd , and that (δ1)d = δ1. Note also that μd is not necessarily a
finite measure. However the definitions of λc

d(μd), cc
d(μd) and λ̃c

d(μd) made above still make sense in this case and
we still have λc

d(μd) ∈ (0,+∞) thanks to Theorem 1.1 in [7]. Theorem 1.3 is an easy consequence of Theorem 1.1.
Its proof is given in Section 3.
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Theorem 1.3. Let μ be a finite measure on (0,+∞). We assume that the mass of μ is positive and that μ is not
concentrated on a singleton. Then:

lim sup
d→+∞

1

d
ln
(̃
λc

d(μd)
)
< 0.

A straightforward consequence of Theorem 1.3 and (4) – or, actually, of the much weaker and easier convergence
of ln(̃λc

d(δ1)) to 0 – is the following result:

Corollary 1.4. Let μ be a finite measure on (0,+∞). We assume that the mass of μ is positive and that μ is not
concentrated on a singleton. Then, for any d large enough, we have:

λ̃c
d(μd) < λ̃c

d(δ1), or equivalently cc
d(μd) < cc

d(δ1).

In the physical literature, it is strongly believed that, at least when d = 2 and d = 3, the critical covered volume
is minimum in the case of a deterministic radius, when the distribution of radius is a Dirac measure. This conjecture
is supported by numerical evidence (to the best of our knowledge, the most accurate estimations are given in a paper
by Quintanilla and Ziff [13] when d = 2 and in a paper by Consiglio, Baker, Paul and Stanley [3] when d = 3).
The conjecture was also supported by some heuristic arguments in any dimension (see for example Dhar [4], Balram
and Dhar [2] and Meester, Roy and Sarkar [10]). We refer to [8] for more details. The asymptotic (5), combined
with (4), disproves the conjecture in high dimension. Corollary 1.4 states that, in some specific sense, the conjecture
is generically false in high dimension.

2. The case when the radii take two values

Before proving Theorem 1.1, we begin with the proof of Lemma 1.2:

2.1. Proof of Lemma 1.2

(i) By definition, κc
ρ(1) = inf0≤a<1 max(φ1(a),φ2(a)), where φ1, φ2 : [0,1) → R are defined by:

φ1(a) = 2
√

ρ

(1 + ρ)(1 − a2)1/4
and φ2(a) = ρ

√
2

(1 + ρ)
√

1 + a
.

If ρ ≤ 2 then φ1(0) ≥ φ2(0). As φ1 is increasing and φ2 is decreasing, we get:

κc
ρ(1) = inf

0≤a<1
φ1(a) = φ1(0) = 2

√
ρ

1 + ρ
.

Assume, on the contrary, ρ ≥ 2. Set

a = ρ2 − 4

ρ2 + 4
∈ [0,1).

Then φ1(a) = φ2(a). As φ1 is increasing and φ2 is decreasing, we get:

κc
ρ(1) = φ1(a) = φ2(a) =

√
4 + ρ2

1 + ρ
.

(ii) Clearly we have, for every k ≥ 1:

κc
ρ(k) ≥ inf

0≤a2,...,ak+1<1

(
4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1 − a2
i )

)1/(k+1)

=
(

4ρ

(1 + ρ)2

)1/(k+1)

.
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Therefore, as κc
ρ = infk≥1 κc

ρ(k),

0 <

(
4ρ

(1 + ρ)2

)1/2

≤ κc
ρ ≤ κc

ρ(1) < 1.

(iii) The last inequalities imply that κc
ρ = κc

ρ(1) if 1 < ρ ≤ 2. In fact,

if κc
ρ(1) ≤

(
4ρ

(1 + ρ)2

)1/3

, (16)

then ∀k ≥ 2 κc
ρ(1) ≤

(
4ρ

(1 + ρ)2

)1/3

≤
(

4ρ

(1 + ρ)2

)1/(k+1)

≤ κc
ρ(k),

and thus it is true that κc
ρ = κc

ρ(1). As the inequality in (16) is strict for ρ = 2, we obtain by continuity the existence
of ρ0 > 2 such that for every ρ ∈ (1, ρ0), κc

ρ = κc
ρ(1).

(iv) Fix k ≥ 1. The lower bound follows easily from the following observation: by construction, we have
D(a2, . . . , ak+1) ≤ 2(ρ + k). This implies

κc
ρ(k) ≥ inf

a2,...,ak+1

2ρ

D(a2, . . . , ak+1)
≥ ρ

ρ + k
= 1 − k

ρ
+ o(1/ρ).

To obtain the upper bound, note that for 1 ≤ i ≤ k − 1, we have

d2
i+1 = (di + 2ai+1)

2 + 4
(
1 − a2

i+1

) = (di + 2ai+1)
2
(

1 + 4(1 − a2
i+1)

(di + 2ai+1)2

)
and then

di + 2ai+1 ≤ di+1 ≤ (di + 2ai+1)

(
1 + 2(1 − a2

i+1)

(di + 2ai+1)2

)
= di + 2ai+1 + 2(1 − a2

i+1)

di + 2ai+1
≤ di + 2ai+1 + 2

1 + ρ
.

In the last step, we use the fact that the sequence (dj )j is non decreasing and that d1 = 1 + ρ. By summation, we get

dk = d1 +
k−1∑
i=1

(di+1 − di) = 1 + ρ + 2
k∑

i=2

ai + Rk, with 0 ≤ Rk ≤ 2(k − 1)

1 + ρ
.

Take now μ > 1/2 and ε > 0 such that μ + (k − 1)ε < 1. Take, for 2 ≤ i ≤ k, the specific values ai = cos(ρ−ε) and
ak+1 = cos(ρ−μ). Hence,

dk = (1 + ρ)

(
1 + 2(k − 1)

ρ
+ o

(
ρ−1)),

d2
k+1 = d2

k + 2(1 + ρ)dk cos
(
ρ−μ

) + (1 + ρ)2 = 4(1 + ρ)2
(

1 + 2(k − 1)

ρ
+ o

(
ρ−1)) and thus

2ρ

dk+1
= 1 − k

ρ
+ o

(
ρ−1).

On the other hand, we have

4ρ

(1 + ρ)2
√∏

2≤i≤k+1(1 − a2
i )

∼ 4ρ−1+(k−1)ε+μ = o(1).

Finally, κc
ρ(k) ≤ max((

4ρ

(1+ρ)2
√∏

2≤i≤k+1(1−a2
i )

)
1

k+1 ,
2ρ

dk+1
) = 1 − k

ρ
+ o(ρ−1). This ends the proof. �
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2.2. Notations and ideas of the proof of Theorem 1.1

In the whole proof, we fix ρ > 1 and κ > 0.
Once the dimension d ≥ 1 is given, we consider two independent stationary Poisson point processes on R

d : χ1 and
χρ , with respective intensities

λ1 = κd

vd2d
and λρ = κd

vd2dρd
.

With χ1 and χρ , we respectively associate the two Boolean models

�1 =
⋃
x∈χ1

B(x,1) and �ρ =
⋃

x∈χρ

B(x,ρ).

Note that �ρ is an independent copy of ρ�1. Note also that the expected number of balls of �1 that touches a given
ball of radius 1 is κd . Thus the expected number of balls of �ρ that touches a given ball of radius ρ is also κd .

We focus on the percolation properties of the following two-type Boolean model

� = �1 ∪ �ρ.

We begin by studying the existence of infinite k-alternating paths. For k ≥ 1, an infinite k-alternating path is an infinite
path made of balls such that the radius of the first ball is ρ, the radius of the next k balls is 1, the radius of the next ball
is ρ and so on. For a fixed k ≥ 1, we wonder whether infinite k-alternating paths exist and seek the critical threshold
for their existence. A natural first step is to study the following quantities:

N0 = #
{
x1 ∈ χρ : ‖x1‖ < 2ρ

}
, (17)

and for k ≥ 1, Nk = #

⎧⎨⎩
xk+1 ∈ χρ : ∃(xi)1≤i≤k ∈ χ1 distinct such that
‖x1‖ < 1 + ρ,∀i ∈ {1, . . . , k − 1} ‖xi+1 − xi‖ < 2,

‖xk+1 − xk‖ < 1 + ρ

⎫⎬⎭ .

Fix k ≥ 1. Remember that κc
ρ(k) is defined in (12).

A lower bound for κc
ρ(k)

In Section 2.3, we obtain lower bounds for κc
ρ(k) by looking for upper bounds for E(Nk). On one side, a natural

genealogy is associated to the definition of Nk : see the comments below (4). In particular, in this genealogy,

– The ancestor is 0. The children of 0 are the points of χ1 ∩ B(0,1 + ρ).
– For any j ∈ {1, . . . , k − 1} and any individual x of generation j , the children of x belongs to χ1 ∩ B(x,2).
– For any individual x of generation k, the children of x belongs to χρ ∩ B(x,1 + ρ).

On the other side, the process lives in R
d and the geometry induces dependences: if x1 and x′

1 are two individuals of
the first generation, their children are a priori dependent. If we forget geometry and only consider genealogy, we get
the following upper bound:

E(Nk) ≤ λ1
∣∣B(·,1 + ρ)

∣∣( k∏
i=2

λ1
∣∣B(·,2)

∣∣)λρ

∣∣B(·,1 + ρ)
∣∣,

where | · | stands for the volume. But the points of the last generation are in B(0,2ρ + 2k). So if we forget genealogy
and only consider geometry we get the following upper bound:

E(Nk) ≤ λρ

∣∣B(0,2ρ + 2k)
∣∣.

Expliciting the two previous bounds and combining them together, we get:

E(Nk) ≤ min

(
κk+1(1 + ρ)2

4ρ
,
κ(ρ + k)

ρ

)d

.
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In this upper bound, the first argument of the minimum is due to genealogy while the second one is due to geometry.
To get the geometrical term, we considered the worst case: the one in which, at each generation i, xi is as far from
the origin as possible. This gives a very poor bound. To get a better bound, we proceed as follows. Fix a2, . . . , ak+1 ∈
[0,1). As before, we set r1 = rk+1 = 1 + ρ, and for i ∈ {2, . . . , k}, ri = 2 and we build the increasing sequence of
distances (di)1≤i≤k+1 as in (11).

Denote by Ñk(a2, . . . , ak+1) the number of points xk+1 ∈ χρ for which there exists a path x1, . . . , xk fulfilling
the same requirement as for Nk and such that ‖xi‖ ≈ di for all i (a proper definition is provided in the proof of
Lemma 2.4). Proceeding as before, we obtain the following upper bound:

E
(
Ñk(a2, . . . , ak+1)

)
� min

(
κk+1 (1 + ρ)2

4ρ

√ ∏
2≤i≤k+1

(1 − ai)2,
κD(a2, . . . , ak+1)

2ρ

)d

.

Here again, the first argument of the minimum is due to genealogy while the second one is due to geometry.3,4

Optimizing then on the ai ’s, we get:

E(Nk) � sup
a2,...,ak+1

min

(
κk+1 (1 + ρ)2

4ρ

√ ∏
2≤i≤k+1

(1 − ai)2,
κD(a2, . . . , ak+1)

2ρ

)d

.

A precise statement is given in Lemma 2.4. The precise value of the threshold κc
ρ(k) given in (12) is then the value

such that the above upper bound converges to 0 when κ < κc
ρ(k). This heuristic will be developped in Section 2.3: we

will prove there that when κ < κc
ρ(k), E(Nk) converges to 0 as d tends to infinity, and this will imply that there exists

no infinite k-alternating paths.

An upper bound for κc
ρ(k)

If, on the contrary, κ > κc
ρ(k) then we will prove that E(Nk) does not converge to 0. Actually, to prove that when

κ > κc
ρ(k) there exist infinite k-alternating paths, we will show, in Section 2.4, the following stronger property: with a

probability that converges to 1 as d tends to infinity, we can find a path which fulfills the requirements of the definition
of Nk – or more precisely of Ñk(a2, . . . , ak+1) for some a2, . . . , ak+1 nearly optimal – and which fulfills some extra
conditions on the positions of the balls. This is Proposition 2.8 and this is the main technical part of this paper. Those
extra conditions provide independence properties between the existence of different paths of the same kind. We can
then show the existence of many such paths and concatenate some of them to build an infinite k-alternating path.
Technically, the last step is achieved by comparing our model with a supercritical oriented percolation process on Z

2.

3Genealogical and geometrical constraints are essentially the only constraints. Here is a closely related statement in an easier framework. Let n ≥ 1

be an integer. Let A1, . . . ,An be independent random subsets of an Euclidean sphere S in R
d . We assume the existence of a small p such that

P(x ∈ A�) = p for all x in the sphere and all � ∈ {1, . . . , n}. Let m denote the area on the sphere. Then E(m(
⋃

� A�)) = m(S)P (x ∈ ⋃
� A�) for

any given x ∈ S . Therefore:

E

(
m

(⋃
�

A�

))
≥ m(S)

(
nP (x ∈ A1) − n(n − 1)P (x ∈ A1)P (x ∈ A2)

) ≥ m(S)np(1 − np).

Note that m(S)p = E(m(A1)). If np ≤ 1/2 we get E(m(
⋃

� A�)) ≥ nE(m(A1))/2. If np > 1/2 we throw away some of the Ai . More precisely, we
keep n′ of them where n′ is the largest integer such that n′p ≤ 1/2. Using the fact that p is small, we get E(m(

⋃
� A�)) ≥ m(S)n′p/2 ≥ m(S)/5.

Therefore, we always have:

min
(
m(S), nE

(
m(A1)

))
/5 ≤ E

(
m

(⋃
�

A�

))
≤ min

(
m(S), nE

(
m(A1)

))
. (18)

In our setup, S will be the region of the space where we look for the individuals of a given generation i; the A� will be the regions of the space
where we look for the children of a given individual � of generation i − 1. If we multiply by the intensity the inequalities that replace (18) in our
setup, we get that the mean number of children at generation i is roughly given by the minimum between geometrical and genealogical constraints.
4There is essentially no geometrical constraint in generations 2 to k. Very roughly, this is due to the fact that, when i increases from 1 to k: there is
more and more space (the di are increasing) and the intensity of the relevant Poisson point process is the same; the expected number of individuals
in the ith generation of the Galton–Watson process decreases. In other words, geometrical constraints decrease while genealogical constraints
increase.
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In this comparison, an open bond in the oriented percolation process corresponds to one of the above paths in our
model.

From infinite k-alternating paths to infinite paths
Recall κc

ρ = infk≥1 κc
ρ(k). With the previous results, it is rather easy to show that there is no percolation for d large

enough as soon as κ < κc
ρ . When κ > κc

ρ then κ > κc
ρ(k) for a k ≥ 1. Therefore there is k-alternating percolation and

therefore there is percolation.

2.3. Subcritical phase

Let ρ > 1 be fixed. We consider, in R
d , the two-type Boolean model � introduced in Section 2.2, with radii 1 and ρ

and respective intensities

λ1 = κd

vd2d
and λρ = κd

vd2dρd

depending on some κ ∈ (0,1). The aim of this subsection is to prove the following proposition:

Proposition 2.1. Let ρ > 1 be fixed. If κ < κc
ρ , then, as soon as the dimension d is large enough, percolation does not

occur in the two-type Boolean model �.

In the following of this subsection, we fix ρ > 1 and 0 < κ < κc
ρ .

We start with an elementary upper bound, in which we do not take into account the geometrical constraints. We
recall that the Nk have been introduced in (17).

Lemma 2.2. E(N0) = κd and, for k ≥ 1, E(Nk) ≤ (
κk+1(1+ρ)2

4ρ
)d .

Proof. The result for N0 follows directly from the equality E(N0) = λρ |B(0,2ρ)|.
Take now k ≥ 1. We have:

E(Nk) ≤ λ1
∣∣B(·,1 + ρ)

∣∣( k∏
i=2

λ1
∣∣B(·,2)

∣∣)λρ

∣∣B(·,1 + ρ)
∣∣, (19)

where B(·, r) stands for a ball with radius r and center unspecified. This can for instance be seen as follows (we use
Slivnyak’s theorem, see Proposition 4.1.1 in [11]):

E(Nk) ≤ E

( ∑
x1,...,xk∈χ1 distinct,xk+1∈χρ

1x1∈B(0,1+ρ) · · ·1xk+1∈B(xk,1+ρ)

)

= λk
1λρ

∫
Rd(k+1)

dx1 · · ·dxk+11x1∈B(0,1+ρ) · · ·1xk+1∈B(xk,1+ρ),

which gives (19). The lemma follows. �

To give a more accurate upper bound for the Nk’s, we are going to cut the balls into slices and to estimate which
slices give the main contribution. For x ∈R

d \ {0}, 0 ≤ a < b ≤ 1 and r > 0, we now define:

if a > 0: B(x, r, a, b) =
{
y ∈R

d : ‖y − x‖ ≤ r and ar <

〈
y − x,

x

‖x‖
〉
≤ br

}
,

if a = 0: B(x, r,0, b) =
{
y ∈R

d : ‖y − x‖ ≤ r and

〈
y − x,

x

‖x‖
〉
≤ br

}
.

The next lemma gives asymptotics for the volume of these sets:
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•0 •e1

a

b

Fig. 3. The ball slice B(e1,1, a, b) (in grey) is contained in the cylinder (dotted) and contains the the slice of cone (dashed).

Lemma 2.3. For x ∈ R
d \ {0}, 0 ≤ a < b ≤ 1 and r > 0,

lim
d→+∞

1

d
ln

( |B(x, r, a, b)|
vd

)
= ln

(
r
√

1 − a2
)
.

Proof. Note that it is sufficient to prove the lemma for x = e1, the first vector of the canonical basis, and r = 1.
First, if a = 0, the result follows directly from the inequality vd/2 ≤ |B(e1,1,0, b)| ≤ vd .
Assume next that a > 0. On the one hand, B(e1,1, a, b) is included in the cylinder (see Figure 3){

x = (x1, . . . , xd) : x1 ∈ [a,1] and
∥∥(0, x2, . . . , xd)

∥∥ ≤
√

1 − a2
}
,

which implies∣∣B(e1,1, a, b)
∣∣ ≤ vd−1

√
1 − a2

d−1
(1 − a). (20)

On the other end, by convexity, B(e1,1, a, b) contains the following slice of cone (see Figure 3):{
x = (x1, . . . , xd) : x1 ∈ [a, b] and

∥∥(0, x2, . . . , xd)
∥∥ ≤

√
1 − a2 1 − x1

1 − a

}
,

which implies

vd−1
√

1 − a2d−1

d

(
(1 − a) − (1 − b)

) ≤ ∣∣B(e1,1, a, b)
∣∣. (21)

The lemma follows from (20) and (21). �

We can now improve the control given in Lemma 2.2:

Lemma 2.4. For every k ≥ 1,

lim sup
d→∞

1

d
ln
(
E(Nk)

)
≤ ln

(
sup

0≤a2,...,ak+1<1
min

(
κk+1 (1 + ρ)2

4ρ

√ ∏
2≤i≤k+1

(
1 − a2

i

)
,
κD(a2, . . . , ak+1)

2ρ

))

Proof. • Fix N ≥ 1. Note that the ball B(x, r) is the disjoint union of the slices B(x, r, n/N, (n + 1)/N) for n ∈
{0, . . . ,N − 1}. For any n2, . . . , nk+1 ∈ {0, . . . ,N − 1}, we set

ai = ni

N
and a+

i = ni + 1

N
.
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We focus on the contribution of a specific product of slices:

Nk(n2, . . . , nk+1) = #

⎧⎨⎩
xk+1 ∈ χρ : ∃(xi)1≤i≤k ∈ χ1 distinct with
‖x1‖ < 1 + ρ,∀i ∈ {1, . . . , k − 1} xi+1 ∈ B(xi,2, ai+1, a

+
i+1),

xk+1 ∈ B(xk,1 + ρ,ak+1, a
+
k+1)

⎫⎬⎭ .

Then we have:

Nk ≤
∑

Nk(n2, . . . , nk+1), (22)

where the sum is over (n2, . . . , nk+1) ∈ {0, . . . ,N − 1}k .
• As we can check that the points contributing to Nk(n2, . . . , nk+1) are in B(0,D(a+

2 , . . . , a+
k+1)), we get:

E
(
Nk(n2, . . . , nk+1)

) ≤ λρvdD
(
a+

2 , . . . , a+
k+1

)d
,

this leads to:

lim sup
d→+∞

1

d
ln
(
E
(
Nk(n2, . . . , nk+1)

)) ≤ ln

(
κD(a+

2 , . . . , a+
k+1)

2ρ

)
. (23)

• Besides, proceeding as in the proof of Lemma 2.2, we obtain:

E
(
Nk(n2, . . . , nk+1)

) ≤ λ1
∣∣B(0,1 + ρ)

∣∣( k∏
i=2

λ1
∣∣B(·,2, ai, a

+
i

)∣∣)λρ

∣∣B(·,1 + ρ,ak+1, a
+
k+1

)∣∣.
With Lemma 2.3, we deduce:

lim sup
d→∞

1

d
lnE

(
Nk(n2, . . . , nk+1)

) ≤ ln

(
κk+1 (1 + ρ)2

4ρ

√ ∏
2≤i≤k+1

(
1 − a2

i

))
. (24)

• From (22), (23) and (24) we finally get:

lim sup
d→+∞

ln(E(Nk))

d

≤ ln

(
max

a2,...,ak+1∈{0,..., N−1
N

}
min

(
κk+1 (1 + ρ)2

4ρ

√ ∏
2≤i≤k+1

(
1 − a2

i

)
,
κD(a+

2 , . . . , a+
k+1)

2ρ

))
.

As D is uniformly continuous on [0,1]k , we end the proof by taking the limit when N goes to +∞. �

The next step consists in taking into account all k ≥ 0 simultaneously; we thus introduce

N = #

⎛⎝⎧⎨⎩
y ∈ χρ : ∃k ≥ 1,∃(xi)1≤i≤k ∈ χ1 distinct with
‖x1‖ < 1 + ρ,∀i ∈ {1, . . . , k − 1} ‖xi+1 − xi‖ < 2,

‖y − xk‖ < 1 + ρ

⎫⎬⎭ ∪ {
y ∈ χρ : ‖y‖ < 2ρ

}⎞⎠ . (25)

Lemma 2.5. If κ < κc
ρ , then lim supd→+∞ 1

d
ln(E(N)) < 0.

Proof. We have:

E(N) ≤
∑
k≥0

E(Nk). (26)



1792 J.-B. Gouéré and R. Marchand

As κ < κc
ρ , Lemma 2.4 ensures that for every k ≥ 1:

lim sup
d→+∞

1

d
ln
(
E(Nk)

)
< 0. (27)

Moreover, the assumption κ < κc
ρ also implies, thanks to Lemma 1.2, that κ < 1. We can then choose k0 large enough

to have:

κk0+1(1 + ρ)2

4ρ
≤ exp(−1).

With Lemma 2.2, we thus get:

E(N0) +
∑
k≥k0

E(Nk) ≤ κd + exp(−d)
∑
k≥0

κkd = κd + exp(−d)
1

1 − κd
.

With (26) and (27), this ends the proof. �

The next lemma is elementary

Lemma 2.6. Assume κ < 1. Then the connected components of
⋃

x∈χ1
B(x,1) are bounded with probability 1.

Proof. For any integer k ≥ 0, denote by Mk the number of balls with radius 1 linked to B(0,1) by a chain of k distinct
balls with radius 1. Proceeding as in the proof of Lemma 2.2, we get:

E(Mk) ≤ κd(k+1).

Now denote by M the number of balls with radius 1 linked to B(0,1) by a chain of (perhaps no) balls with radius 1.
Then:

E(M) ≤ E

(∑
k≥0

Mk

)
= κd

1 − κd
< +∞.

Therefore, M is finite with probability 1. So the connected components that touch B(0,1) are bounded with probabil-
ity 1. So with probability 1, every connected component is bounded. �

Proof of Proposition 2.1. Remember that we proved in Lemma 1.2 that κc
ρ < 1. Take κ such that 0 < κ < κc

ρ < 1.
Let ξ1 be the set of balls with radius ρ that can be connected to B(0, ρ) through a chain of balls with radius 1 (we

consider the condition as fulfilled if the ball touches B(0, ρ) directly). Let ξ2 be the set of random balls with radius ρ

that are not in ξ1, but that can be connected to B(0, ρ) through a path of random balls in which there is only one ball
with radius ρ. Let ξ3 be the set of random balls with radius ρ that are not in ξ1 nor in ξ2, but that can be connected
to B(0, ρ) through a path of random balls in which there is two distinct balls with radius ρ. We define similarly ξ4, ξ5
and so on and denote by ξ the disjoint union of all these sets.

We have #ξ1 = N . (Remember that N has been defined in (25).) By Lemma 2.5, we have:

lim sup
d→+∞

1

d
ln
(
E(#ξ1)

)
< 0.

Take some μ > 0 and assume from now on that d is large enough to have

1

d
ln
(
E(#ξ1)

) ≤ −μ.

For every k ≥ 1, we have

E(#ξk) ≤ (
E(#ξ1)

)k ≤ exp(−dkμ). (28)
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This can be proven as follows. For x0, x1 ∈ R
d , write x0 ↔ x1 if there exists n ≥ 0 and c1, . . . , cn ∈ χ1 such that, in

the sequence B(x0, ρ),B(c1,1),B(c2,1), . . . ,B(cn,1),B(x1, ρ), each ball touches the next one. Remember that χ1
and χρ are two independent Poisson point processes, introduced in Section 2.2. For x0, x1, . . . , xk ∈R

d we denote by

{x0 ↔ x1}� {x1 ↔ x2}� · · · � {xk−1 ↔ xk}
the following event: each of the k properties xi ↔ xi+1 can be realized using different points c ∈ χ1. We have

E(#ξk) ≤ E

( ∑
x1,...,xk∈χρ distinct

1{0↔x1}� {x1↔x2}� ···� {xk−1↔xk}
)

= Eρ

( ∑
x1,...,xk∈χρ distinct

P1
({0 ↔ x1}� {x1 ↔ x2}� · · · � {xk−1 ↔ xk}

))
.

Here, P1 denotes the law of χ1 and Eρ the expectation with respect to the law of χρ : the last equality follows
from the independence of χ1 and χρ . Iterating BK inequality [14]5 to χ1 and then using stationarity we get, for any
x1, . . . , xk ∈ R

d ,

P1
({x0 ↔ x1}� {x1 ↔ x2}� · · · � {xk−1 ↔ xk}

)
≤ P1(0 ↔ x1)P1(x1 ↔ x2) · · ·P1(xk−1 ↔ xk)

= P1(0 ↔ x1)P1(0 ↔ x2 − x1) · · ·P1(0 ↔ xk − xk−1).

Thus,

E(#ξk) ≤ Eρ

( ∑
x1,...,xk∈χρ distinct

P1(0 ↔ x1)P1(0 ↔ x2 − x1) · · ·P1(0 ↔ xk − xk−1)

)
.

Slivnyak equality, applied to χρ , then yields

E(#ξk) ≤ λk
ρ

∫
(Rd )k

P1(0 ↔ x1)P1(0 ↔ x2 − x1) · · ·P1(0 ↔ xk − xk−1) dx1 · · ·dxk

≤
(

λρ

∫
Rd

P1(0 ↔ x)dx

)k

= E(#ξ1)
k.

This proves (28). As ξ = ⋃
k≥1 ξk , we deduce now from (28) that ξ is finite with probability 1. So if an unbounded

connected component of �1 ∪�ρ touches B(0, ρ) then there is an unbounded component in �1. As κ < 1, Lemma 2.6
rules out the possibility of an unbounded connected component in �1. So with probability 1, the connected compo-
nents of �1 ∪ �ρ that touch B(0, ρ) are bounded, which ends the proof. �

2.4. Supercritical phase

We fix here ρ > 1. We consider once again the two-type Boolean model � introduced in Section 2.2 and we fix an
integer k ≥ 1.

For every n ≥ 0, we set Rn = ρ if k + 1 divides n and Rn = 1 otherwise. We say that percolation by k-alternation
occurs if there exists an infinite sequence of distinct points (xn)n∈N in R

d such that, for every n ≥ 0:

– xn ∈ χRn .
– B(xn,Rn) ∩ B(xn+1,Rn+1) �=∅.

5In [14] the result is stated for events depending on a point process in a bounded set. To apply the result to our setting, we can restrict our events to
the ball B(0, n) by requiring that the centers of the balls of radius 1 belongs to B(0, n), apply BK inequality and then take the limit as n → ∞.
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In other words, percolation by k-alternation occurs if there exists an infinite path along which k balls of radius 1
alternate with one ball of radius ρ, i.e. if there exists an infinite k-alternating path. The aim of this subsection is to
prove the following proposition:

Proposition 2.7. Let ρ > 1 and k ≥ 1 be fixed. Assume that κ ∈ (κc
ρ(k),1). If the dimension d is large enough, then

percolation by k-alternation occurs with probability one.

As announced in Section 2.2, percolation by k-alternation of the two-type Boolean model in the supercritical case
will be proved by embedding in the model a supercritical 2-dimensional oriented percolation process.

We thus specify the two first coordinates, and introduce the following notations. When d ≥ 3, for any x ∈ R
d , we

write

x = (
x′, x′′) ∈ R

2 ×R
d−2.

We write B ′(c, r) for the open Euclidean balls of R2 with center c ∈ R
2 and radius r > 0. In the same way we denote

by B ′′(c, r) the open Euclidean balls of Rd−2 with center c ∈ R
d−2 and radius r > 0.

2.4.1. One step in the 2-dimensional oriented percolation model
The point here is to define the event that will govern the opening of the edges in the 2-dimensional oriented percolation
process: it is naturally linked to the existence of a finite path composed of k balls of radius 1 and a ball of radius ρ,
whose positions of centers are specified.

We define, for a given dimension d , the two following subsets of Rd :

W = d−1/2((−1,1) × (−1,0) ×R
d−2),

W+ = d−1/2((0,1) × (0,1) ×R
d−2).

For x ∈ W we set:

G+
k (x) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩ W+ and xk+1 ∈ χρ ∩ W+
such that x, x1, . . . , xk+1 is a path

}
. (29)

Our goal here is to prove that the probability of occurrence of this event is asymptotically large:

Proposition 2.8. Let ρ > 1 and k ≥ 1 be fixed. Assume that κ ∈ (κc
ρ(k),1) and choose p ∈ (0,1). If the dimension d

is large enough, then for every x ∈ W ,

P
(
G+

k (x)
) ≥ p.

Note already that by translation invariance, P(G+
k (x)) does not depend on x′′, so we can assume without loss of

generality that x′′ = 0. In the sequel of this subsection, ρ > 1 and k ≥ 1 are fixed.
Remember the definitions of the (di)1≤i≤k+1 and of κc

ρ(k) we give in the Introduction (see Figure 1). The first step
consists in choosing a nearly optimal sequence (ai)2≤i≤k+1 ∈ [0,1)k that satisfies some extra inequalities:

Lemma 2.9. We can choose (ai)2≤i≤k+1 ∈ [0,1)k such that:

1 < κk+1 (1 + ρ)2

4ρ

√ ∏
2≤j≤k+1

(
1 − a2

j

)
< κ

dk+1

2ρ
. (30)

Proof. As κc
ρ(k) < κ , we can choose (a∗

i )2≤i≤k+1 ∈ (0,1)k such that the two following conditions

κ >

(
4ρ

(1 + ρ)2
√

1 − a2
2 · · ·

√
1 − a2

k+1

) 1
k+1

, (31)
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κ >
2ρ

dk+1
(32)

are fullfilled for (ai)i = (a∗
i )i . We fix (a3, . . . , ak+1) = (a∗

3 , . . . , a∗
k+1). Note that

f : a2 �→ κ
dk+1

2ρ
is continuous and increasing,

g : a2 �→ κk+1 (1 + ρ)2

4ρ

√ ∏
2≤j≤k+1

(
1 − a2

j

)
is continuous and decreasing,

and that lima2→1 g(a2) = 0. Moreover, Conditions (32) and (31) ensure that f (a∗
2) > 1 and g(a∗

2) > 1.
Thus if f (a∗

2) > g(a∗
2) the proof is over. If f (a∗

2) ≤ g(a∗
2), we can take a2 > a∗

2 such that 1 < g(a2) < f (a∗
2): then

f (a2) ≥ f (a∗
2) > g(a2) > 1 and the lemma is proved. �

Note that (30) implies (31) and (32).
As explained in Section 2.3, the main contribution to the number Nk of centers xk+1 of balls of radius ρ that are

linked to a ball of radius ρ centered at the origin by a chain (xi)1≤i≤k of k balls of radius 1 – see the precise definition
(17) – is obtained for ‖xi‖ ∼ di , where the di ’s are build from a (nearly) optimal sequence (ai)2≤i≤k+1 ∈ [0,1)k .
So we fix a nearly optimal family (ai)2≤i≤k+1 ∈ (0,1)k satisfying (30), we build the associated family of distances
(di)1≤i≤k+1 ∈ (0,1)k and we are going to look for a good sequence of centers (xi)1≤i≤k+1 ∈ (0,1)k with ‖xi‖ ∼ di .

We thus introduce the following subsets of R2:

D′
0 = (−d−1/2, d−1/2) × (−d−1/2,0

)
,

∀i ∈ {1, . . . , k + 1} D′
i = (

0, d−1/2)2
,

and the followining sets in R
d−2

C′′
0 = {0},

∀i ∈ {1, . . . , k + 1} C′′
i = B ′′(0, di − 2d−1) \ B ′′(0, di − 3d−1).

Finally, for i ∈ {0, . . . , k + 1}, we set Ci = D′
i × C′′

i . Note that for d large enough, these sets are disjoint. The next
lemma controls the asymptotics in the dimension d of the volume of these sets

Lemma 2.10. For every i ∈ {1, . . . , k + 1}:

lim
d→+∞

1

d
ln

|C′′
i |

vd−2
= lim

d→+∞
1

d
ln

|Ci |
vd

= lndi.

Proof. This can be proven by elementary computations. �

Each xi will be taken in Ci , but we also have to ensure that the (xi)1≤i≤k+1 form a path. Note that for i ∈ {2, . . . ,

k + 1}, we have 0 < di−1 + airi < di , which legitimates the following definition. See also Figure 1. For i ∈ {2, . . . ,

k + 1} and d large enough, we denote by θi the unique real number in (0,π/2) such that

cos θi = di−1 + airi

di

+ d−1/2.

We introduce next, for y = (y′, y′′) ∈ Ci−1, the following subset of Rd−2:

D′′
i

(
y′′) = {

z′′ ∈ C′′
i : 〈z′′, y′′〉 ≥ ∥∥y′′∥∥ · ∥∥z′′∥∥ · cos θi

}
.
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We also set D′′
0 = C′′

0 and D′′
1 (y′′) = C′′

1 for every y ∈ C0. Finally, we define for every i ∈ {1, . . . , k +1} and y ∈ Ci−1:

Di(y) = D′
i × D′′

i

(
y′′) ⊂ Ci,

and D0 = D′
0 × D′′

0 .

Lemma 2.11. • If the dimension d is large enough, for every i ∈ {1, . . . , k + 1} and y ∈ Ci−1,

Di(y) ⊂ B(y, ri) ∩ Ci.

• Let x0 ∈ D0. If there exist X1, . . . ,Xk ∈ χ1 and Xk+1 ∈ χρ such that X1 ∈ D1(x0),X2 ∈ D2(X1), . . . ,Xk+1 ∈
Dk+1(Xk), then the event G+(x0) occurs.

Proof. • The inclusion Di(y) ⊂ Ci is clear for every i ∈ {1, . . . , k+1}. Let i ∈ {2, . . . , k+1}, y ∈ Ci−1 and z ∈ Di(y).
Then, as soon as d is large enough,

‖z − y‖2 = ∥∥z′ − y′∥∥2 + ∥∥z′′ − y′′∥∥2

≤ 2

d
+ ∥∥y′′∥∥2 + ∥∥z′′∥∥2 − 2

〈
y′′, z′′〉

≤ 2

d
+ (

di−1 − 2d−1)2 + (
di − 2d−1)2 − 2

(
di−1 − 3d−1)(di − 3d−1) cos θi

≤ d2
i + d2

i−1 − 2di−1(di−1 + airi) − 2d−1/2didi−1 + Oi

(
d−1)

≤ r2
i − 2d−1/2didi−1 + Oi

(
d−1) ≤ r2

i .

Let now y ∈ C0 and z ∈ D1(y). As d1 = 1 + ρ = r1 > 2, we obtain, for d large enough:

‖z − y‖2 = ∥∥z′ − y′∥∥2 + ∥∥z′′ − y′′∥∥2 ≤ 8

d
+ (

d1 − 2d−1)2 ≤ r2
1 .

• The second point is a simple consequence of the first point, of the fact that the sets Di(xi−1), as the sets Ci , are
disjoint and of the definition of the event G+(x0). �

Note that for i ∈ {1, . . . , k + 1}, |Di(y)| and |D′′
i (y′′)| do not depend on the choice of y ∈ Ci−1. We thus denote by

|Di | and |D′′
i | these values. We now give asymptotic estimates for these values:

Lemma 2.12. For every i ∈ {2, . . . , k + 1},

lim
d→+∞

1

d
ln

|D′′
i |

vd−2
= lim

d→+∞
1

d
ln

|Di |
vd

= ln
(
ri

√
1 − a2

i

)
.

Proof. We have, by homogeneity and isotropy:∣∣D′′
i

∣∣ = ((
di − 2d−1)d−2 − (

di − 3d−1)d−2)|S|, (33)

where S = {x = (x1, . . . , xd−2) ∈ B ′′(0,1) : x1 ≥ ‖x‖ cos(θi)}. But, as illustrated on Figure 4, S is included in the
cylinder{

(xi)1≤i≤d−2 ∈R
d−2 : x1 ∈ [0,1],∥∥(x2, . . . , xd−2)

∥∥ ≤ sin(θi)
}

and S contains the cone{
(xi)1≤i≤d−2 ∈R

d−2 : x1 ∈ [
0, cos(θi)

]
,
∥∥(x2, . . . , xd−2)

∥∥ ≤ x1 sin(θi) cos(θi)
−1}.
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0
θi

Fig. 4. In light grey, the portion S of the unit ball B′′(0,1) ⊂R
d−2 is included in the cylinder (dashed) and contains the cone (dotted).

Therefore:

vd−3 cos(θi) sin(θi)
d−3(d − 2)−1 ≤ |S| ≤ vd−3 sin(θi)

d−3. (34)

From (33), (34), and the limits cos(θi) → (di−1 + airi)d
−1
i �= 0 and di sin(θi) → ri

√
1 − a2

i , we get

lim
d→+∞

1

d
ln

( |D′′
i |

vd−2

)
= ln

(
ri

√
1 − a2

i

)
.

The lemma follows. Note that a direct calculation with spherical coordinates can also give the announced estimates. �

Everything is now in place to prove Proposition 2.8.

Proof of Proposition 2.8. Choose p < 1 and x ∈ W such that x′′ = 0.
• Remember that by construction, for d large enough, the Ci ’s are disjoint. We start with a single individual,

encoded by its position ζ0 = {x} ⊂ C0, and we build, generation by generation, its offspring: we set, for 1 ≤ i ≤ k,

ζi = χ1 ∩
⋃

y∈ζi−1

Di(y) ⊂ Ci,

and for the (k + 1)th generation, we finally set

ζk+1 = χρ ∩
⋃
y∈ζk

Dk+1(y) ⊂ Ck+1.

By Lemma 2.11, if ζk+1 �= ∅ then the event G+
k (x) occurs, at least for d large enough. To bound from below the

probability that ζk+1 �=∅, we now build a simpler process ξ , stochastically dominated by ζ .
• Before building the simpler process ξ , let us explain a possible way to generate ζ . Let X0 = x be the position of

the first individual. We set αi = λ1|Di | for i ∈ {1, . . . , k} and αk+1 = λρ |Dk+1|: thus, αi is the mean number of chil-

dren of a point of the (i −1)th generation. Let (N
j
i )i≥1,j≥1 be independent Poisson variables such that N

j
i has param-

eter αi . We now proceed generation by generation. First we throw N1
1 random point (X

j

1)1≤j≤N1
1

uniformly in D1(X0)

to obtain the first generation ζ1 ⊂ C1. Then if we have obtain the (i − 1)th generation ζi−1 = (X
j

i−1)1≤j≤Mi−1 ⊂ Ci−1

for some i ≤ k + 1, we throw, for each j ≤ Mi−1, N
j
i random points uniformly in Di(X

j

i−1) ⊂ Ci , we remove the
ones that fell in

⋃
k≤j−1 Di(X

k
i−1) and we order all these points according to some deterministic rule to obtain the ith

generation ζi = (X
j
i )1≤j≤Mi

⊂ Ci .
• The idea to obtain the simpler process ξ is roughly to keep, from generation 1 on, only the first child of each

individual. To do so, we will generate N = N1
1 independent branches of descendance for x, and then we will perform

a rejection procedure to take into account the geometric constraints.



1798 J.-B. Gouéré and R. Marchand

Let us now do the construction in detail. Consider a random vector X = (X0,X1, . . . ,Xk+1) of points in R
d defined

as follows: X0 is defined by X0 = x, X1 is taken uniformly in D1(X0), then X2 is taken uniformly in D2(X1), and
so on. We think of X as a potential single branch of descendance of x. Let then (Xj )j≥1 be independent copies of
X, independent of N . The (Xj )j≤N represent the N potential branches of descendance of x. Note that X0’s progeny

ξ̃1 = (X1
j )j≤N is distributed as ζ1, while, for the moment, the j th individual X

j
i in generation i, with 1 ≤ i ≤ k, has

exactly one child X
j

i+1.
Having in mind that in ζ , it is possible for an individual to have no child, we now perform a first decimation of our

process. Let Y = (Y
j
i )2≤i≤k+1,j≥1 be a family, independent of the previous random variables, of independent random

variables, such that Y
j
i follows the Bernoulli law with parameter 1 − exp(−αi), which is the probability that a Poisson

random variable with parameter αi is different from 0. For j ≤ N and 2 ≤ i ≤ k + 1, we keep the individual X
j
i if and

only if Y
j

2 = · · · = Y
j
i = 1. We thus set J1 = {1, . . . ,N} and, for every i ∈ {2, . . . , k + 1}:

Ji = {
1 ≤ j ≤ N : Y j

2 = · · · = Y
j
i = 1

}
and ξ̃i = {

X
j
i , j ∈ Ji

}
.

Until now, we did not take into account the geometrical constraints between individuals. For every i ∈ {2, . . . , k+1}
and every j ≥ 1, we set

Z
j
i = 1 if X

j
i /∈

⋃
j ′∈Ji−1\{j}

Di

(
X

j ′
i−1

)
and Z

j
i = 0 otherwise;

ξi = {
X

j
i , j ∈ Ji : Zj

2 = · · · = Z
j
i = 1

}
.

We thus reject an individual X
j
i and its descendance as soon as Z

j
i = 0. Recall that, when building generation i from

generation i − 1, we explore the Poisson point processes in the area
⋃

j∈Ji−1
Di(X

j

i−1) ⊂ Ci . By construction of the
Ci ’s, these areas are disjoint for different generations. Therefore, one can check that, for every i ∈ {2, . . . , k + 1}, ξi is
stochastically dominated by ζi . Thus to prove Proposition 2.8, we now need to bound from below the probability that
ξk+1 is not empty.

• Let T be the smallest integer j such that Y
j

2 = · · · = Y
j

k+1 = 1: in other words, T is the smallest exponent of
a branch that lives till generation k + 1. To ensure that ξk+1 �= ∅, it is sufficient that T ≤ N and that ZT

2 = · · · =
ZT

k+1 = 1. So:

1 − P
(
G+

k (x)
) ≤ P(ξk+1 =∅)

≤ P(#Jk+1 = 0) + P

(
{T ≤ N} ∩

⋃
2≤i≤k+1

{
ZT

i = 0
})

≤ P(#Jk+1 = 0) +
∑

2≤i≤k+1

P
(
T ≤ N and ZT

i = 0
)
.

For every 2 ≤ i ≤ k + 1, we have by construction:

P
(
T ≤ N and ZT

i = 0
) = P

(
T ≤ N,∃j ∈ Ji−1 \ {T } such that XT

i ∈ Di

(
X

j

i−1

))
≤

∑
j≥1

P
(
T ≤ N and j ∈ Ji−1 \ {T } and XT

i ∈ Di

(
X

j

i−1

))
=

∑
j≥1

E
(
1T ≤N 1j∈Ji−1\{T }P

(
XT

i ∈ Di

(
X

j

i−1

)|Y,N
))

=
∑
j≥1

E(1T ≤N 1j∈Ji−1\{T })P
(
X1

i ∈ Di

(
X2

i−1

))
≤ E(#Ji−1)P

(
X1

i ∈ Di

(
X2

i−1

))
.
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Conditionally to Xi−1, Xi is uniformly distributed on Di(Xi−1) = D′
i × D′′

i (X′′
i−1). Therefore, conditionally to

X′′
i−1, X′′

i is uniformly distributed on D′′
i (X′′

i−1) which is the intersection of C′′
i and of a cone of given aperture and

axis directed by X′′
i−1. But, by isotropy of the model, the distribution of X′′

i−1 is isotropic. As a consequence, X′′
i is

uniformly distributed on C′′
i .6 So (X1

i )
′′ is uniformly distributed on C′′

i and is independent of (X2
i−1)

′′, which leads to

P
(
X1

i ∈ Di

(
X2

i−1

)) = P
((

X1
i

)′′ ∈ D′′
i

((
X2

i−1

)′′)) = |D′′
i |

|C′′
i | . (35)

This leads to

1 − P
(
G+

k (x)
) ≤ P(#Jk+1 = 0) +

k+1∑
i=2

E(#Ji−1)
|D′′

i |
|C′′

i | . (36)

• For 1 ≤ i ≤ k + 1, the cardinality of Ji follows a Poisson law with parameter

ηi = α1

i∏
i′=2

(
1 − exp(−αi′)

)
.

Remember that αi = λ1|Di | for i ∈ {1, . . . , k} and αk+1 = λρ |Dk+1|. By Lemmas 2.10 and 2.12, we have the following
limits:

lim
d→+∞

1

d
lnα1 = ln

κ(1 + ρ)

2
> 0,

lim
d→+∞

1

d
lnαi = ln

(
κ

√
1 − a2

i

)
< 0 for 2 ≤ i ≤ k,

lim
d→+∞

1

d
lnαk+1 = ln

(
κ

√
1 − a2

k+1
1 + ρ

2ρ

)
< 0.

To see the signs of the limits, note that κ < 1, that 1+ρ
2ρ

< 1 and that (30) implies that

κ > κk+1 >
4ρ

(1 + ρ)2
√

1 − a2
2 · · ·

√
1 − a2

k+1

>
2

1 + ρ
.

Consequently, we first see that

lim
d→+∞

1

d
ln(ηk+1) = lim

d→+∞
1

d
ln(α1 · · ·αk+1) = ln

(
κk+1 (1 + ρ)2

4ρ

√ ∏
2≤j≤k+1

(
1 − a2

j

))
> 0 with (30);

therefore, lim
d→+∞P(#Jk+1 = 0) = 0. (37)

6For any Borel map φ :Rd−2 →R+ we have

E
(
φ
(
X′′

i

)) =
∫
Rd

dPX′′
i−1

(
x′′
i−1

)∫
Rd

dx′′
i

1

|D′′
i
| 1D′′

i
(x′′

i−1)

(
x′′
i

)
φ
(
x′′
i

)
=

∫
Rd

dPX′′
i−1

(
x′′
i−1

)∫
C′′

i

dx′′
i

1

|D′′
i
| 1〈x′′

i
,x′′

i−1〉≥‖x′′
i
‖‖x′′

i−1‖ cos(θi )
φ
(
x′′
i

)
=

∫
C′′

i

dx′′
i φ

(
x′′
i

)∫
Rd

dPX′′
i−1

(
x′′
i−1

) 1

|D′′
i
| 1〈x′′

i
,x′′

i−1〉≥‖x′′
i
‖‖x′′

i−1‖ cos(θi )
.

By isotropy of PX′′
i−1

, the inner integral does not depend on x′′
i

. This constant can only be |C′′
i
|−1. This implies the result.
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Similarly, for 2 ≤ i ≤ k + 1, we have

lim
d→+∞

1

d
ln(ηi−1) = ln

(
κi−1 1 + ρ

2

√ ∏
2≤i′≤i−1

(
1 − a2

i′
))

.

Lemmas 2.10 and 2.12 ensure that:

lim
d→+∞

1

d
ln

( |D′′
i |

|C′′
i |

)
= ln

( ri

√
1 − a2

i

di

)
.

Thus, from the two previous inequalities, we see that for 2 ≤ i ≤ k + 1, we have:

lim
d→+∞

1

d
ln

(
E(#Ji−1)

|D′′
i |

|C′′
i |

)
= ln

(
ri(1 + ρ)κi−1

2di

√ ∏
2≤i′≤i

(
1 − a2

i′
))

.

Now,

for 2 ≤ i ≤ k, lim sup
d→+∞

1

d
ln

(
E(#Ji−1)

|D′′
i |

|C′′
i |

)
≤ ln

(
1 + ρ

di

)
< 0, (38)

lim sup
d→+∞

1

d
ln

(
E(#Jk)

|D′′
k+1|

|C′′
k+1|

)
≤ ln

(
(1 + ρ)2κk

2dk+1

√ ∏
2≤i′≤k+1

(
1 − a2

i′
))

< 0 (39)

with (30). To end the proof, we put estimates (37), (38) and (39) in (36). �

2.4.2. Several steps in the 2-dimensional oriented percolation model
We prove here Proposition 2.7 by building the supercritical 2-dimensional oriented percolation process embedded in
the two-type Boolean Model.

Proof of Proposition 2.7. We first define an oriented graph in the following manner: the set of sites is

S = {
(a,n) ∈ Z×N : |a| ≤ n,a + n is even

};
from any point (a,n) ∈ S, we put an oriented edge from (a,n) to (a + 1, n + 1), and an oriented edge from (a,n) to
(a − 1, n + 1). We denote by �pc(2) ∈ (0,1) the critical parameter for Bernoulli percolation on this oriented graph –
see Durrett [5] for results on oriented percolation in dimension 2.

For any (a,n) ∈ S, we define the following subsets of Rd

Wa,n = d−1/2(]a − 1, a + 1[ × ]n − 1, n[ ×R
d−2),

W−
a,n = d−1/2(]a − 1, a[ × ]n,n + 1[ ×R

d−2),
W+

a,n = d−1/2(]a, a + 1[ × ]n,n + 1[ ×R
d−2).

Note that the (Wa,n)(a,n)∈S are disjoint and that W+
a,n ∪ W−

a+2,n ⊂ Wa+1,n+1.
We now fix k ≥ 1 and κ ∈ (κc

ρ(k),1), and for x0 ∈ Wa,n, we introduce the events:

G+
a,n(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩ W+

a,n and xk+1 ∈ χρ ∩ W+
a,n

such that x0, x1, . . . , xk+1 is a path

}
,

G−
a,n(x0) =

{
There exist distinct x1, . . . , xk ∈ χ1 ∩ W−

a,n and xk+1 ∈ χρ ∩ W−
a,n

such that x0, x1, . . . , xk+1 is a path

}
.
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Note that G+
0,0(x) is exactly the event G+(x) introduced in (29), and that the other events are obtained from this one

by symmetry and/or translation.
Next we choose p ∈ ( �pc(2),1). With Proposition 2.8, and by translation and symmetry invariance, we know that

for every large enough dimension d , for every (a,n) ∈ S, for every x ∈ Wa,n:

P
(
G±

a,n(x)
) ≥ p. (40)

We fix then a dimension d large enough to satisfy (40). We can now construct the random states, open or closed, of
the edges of our oriented graph. We denote by ∞ a virtual site.

Definition of the site on level 0. Almost surely, χρ ∩ W0,0 �=∅. We take then some x(0,0) ∈ χρ ∩ W0,0.
Definition of the edges between levels n and n + 1. Fix n ≥ 0 and assume we built a site x(a,n) ∈ Wa,n ∪ {∞} for

every a such that (a,n) ∈ S. Consider (a,n) ∈ S:

– If x(a,n) = ∞: we decide that each of the two edges starting from (a,n) is open with probability p and closed
with probability 1 − p, independently of everything else; we set z−(a,n) = z+(a,n) = ∞.

– Otherwise:
• Edge to the left-hand side:

∗ if the event G−
a,n(x(a,n)) occurs: we take for z−(a,n) some point xk+1 ∈ χρ ∩ W−

a,n ⊂ Wa−1,n+1 given by the
occurrence of the event, and we open the edge from (a,n) to (a − 1, n + 1);

∗ otherwise: we set z−(a,n) = ∞ and we close the edge from (a,n) to (a − 1, n + 1).
• Edge to the right-hand side:

∗ if the event G+
a,n(x(a,n)) occurs: we take for z+(a,n) some point xk+1 ∈ χρ ∩ W+

a,n ⊂ Wa+1,n+1 given by the
occurrence of the event, and we open the edge from (a,n) to (a + 1, n + 1);

∗ otherwise: we set z+(a,n) = ∞ and we close the edge from (a,n) to (a + 1, n + 1).

For (a,n) outside S, we set z±(a,n) = ∞.
Definition of the sites at level n + 1. Fix n ≥ 0 and assume we determined the state of every edge between levels n

and n + 1. Consider (a,n + 1) ∈ S:

– If z+(a − 1, n) �= ∞: set x(a,n + 1) = z+(a − 1, n) ∈ Wa,n+1.
– Otherwise:

• if z−(a + 1, n) �= ∞: set x(a,n + 1) = z−(a + 1, n) ∈ Wa,n+1;
• otherwise: set x(a,n + 1) = ∞.

Assume that there exists an open path of length n starting from the origin in this oriented percolation: we can
check that the leftmost open path of length n starting from the origin gives a path in the two-type Boolean model
with n alternating sequences of k balls with radius 1 and one ball with radius ρ. Thus, percolation in this oriented
percolation model implies percolation by k-alternation in the two-type Boolean model. Let us check that percolation
occurs indeed with positive probability.

For every n, denote by Fn the σ -field generated by the restrictions of the Poisson point processes χ1 and χρ to the
set

d−1/2(
R× (−∞, n) ×R

d−2).
By definition of the events G – remember that the (Wa,n)(a,n)∈S are disjoint – and by (40), the states of the different
edges between levels n and n+1 are independent given Fn. Moreover, given Fn, the edges between levels n and n+1
has a probability at least p to be open. Therefore, the oriented percolation model we built stochastically dominates
Bernoulli oriented percolation with parameter p. As p > �pc(Z

2), with positive probability, there exists an infinite
open path in the oriented percolation model we built; this ends the proof of Proposition 2.7. �

2.5. Proof of Theorem 1.1

We first prove how Propositions 2.1 and 2.7 give (14) when a = 1, b > 1 and α = β = 1, and then we see how we can
deduce the general case by scaling and coupling.
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When a = 1, b > 1 and α = β = 1
Set ρ = b. In this case, ν = δ1 + δρ , so νd = δ1 + 1

ρd δρ .
Note then that the two-type Boolean model � introduced in Section 2.2 and whose intensities depend on κ ∈ (0,1)

coincides with the Boolean model directed by the measure

κd

vd2d
νd

as defined in the Introduction.
If κ < κc

ρ then, by Proposition 2.1, there is no percolation for d large enough. Therefore, for any such κ and for
any large enough d we have:

λc
d(νd) ≥ κd

vd2d
and then λ̃c

d (νd) = λc
d(νd)vd2d

∫
rdνd(dr) ≥ 2κd .

Letting d goes to +∞ and then κ goes to κc
ρ , we then obtain

lim inf
d→+∞

1

d
ln
(
λc

d(νd)
) ≥ ln

(
κc
ρ

)
. (41)

As κc
ρ < 1 by Lemma 1.2, choose now κ such that κc

ρ < κ < 1. Then, there exists k ≥ 1 such that κc
ρ(k) < κ .

Therefore, by Proposition 2.7, there is percolation for d large enough in �; by coupling, this remains true for larger κ .
Therefore, for any κ > κc

ρ and for any large enough d we have, as before:

λc
d(νd) ≤ κd

vd2d
and then λ̃c

d (νd) ≤ 2κd .

Letting d goes to +∞ and then κ goes to κc
ρ , we then obtain

lim sup
d→+∞

1

d
ln
(
λc

d(νd)
) ≤ ln

(
κc
ρ

)
. (42)

Bringing (41) and (42) together, we get (14) when a = 1, b = ρ > 1 and α = β = 1.

When b > a > 0 and α = β = 1
Set ρ = b/a. Here, ν = δa + δb; set μ = δ1 + δρ . With the notation of the Introduction,

νd = 1

ad

(
δa + 1

ρd
δb

)
= 1

ad
Ha

(
δ1 + 1

ρd
δρ

)
= 1

ad
Haμd.

By the scaling relations (2) and (3), we obtain

λ̃c
d (νd) = λ̃c

d(μd).

The result when b > a > 0 and α = β = 1 follows then from the previous case.

When b > a > 0 and α,β > 0
Here ν = αδa + βδb . Set μ = δa + δb , m = min(α,β) and M = max(α,β). Then mμd ≤ νd ≤ Mμd and so

m

∫
rd dμd(r) ≤

∫
rd dνd(r) ≤ M

∫
rd dμd(r).

Moreover, once again by coupling,

1

M
λc

d(μd) = λc
d(Mμd) ≤ λc

d(νd) ≤ λc
d(mμd) = 1

m
λc

d(μd).
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The two previous inequalities give:

m

M
λ̃c

d(μd) ≤ λ̃c
d(νd) ≤ M

m
λ̃c

d(μd),

and the theorem follows from the previous case. �

3. Proof of Theorem 1.3

Theorem 1.3 follows from Theorem 1.1 by coupling and scaling. By assumption, μ is a measure on (0,+∞) whose
support is not a singleton. We can therefore choose b′ > a′ > 0 in the support, set ρ = b′/a′ and then take a small
enough ε > 0 such that

a′(1 + ε) < b′(1 − ε), μ(
[
a′(1 − ε), a′(1 + ε)

]
> 0,

μ
([

b′(1 − ε), b′(1 + ε)
])

> 0, (1 + ε)(1 − ε)−1κc
ρ < 1.

Set a = a′(1 − ε), b = b′(1 − ε) and τ = (1 + ε)(1 − ε)−1 > 1. We have

aτ < b, μ
([a, aτ ]) > 0, μ

([b, bτ ]) > 0 and τκc
ρ < 1.

Set ν = μ([a, aτ ])δa + μ([b, bτ ])δb and S = [a, aτ ] ∪ [b, bτ ]. For all d ≥ 1 we have

τ−dνd

({a}) = μ
([a, aτ ])(aτ)−d ≤

∫
[a,aτ ]

r−dμ(dr) = μd

([a, aτ ])
and, similarly, τ−dνd({b}) ≤ μd([b, bτ ]). By coupling, this implies that λc

d(1Sμd) ≤ λc
d(τ−dνd), and then that

λc
d(μd) ≤ λc

d(1Sμd) ≤ λc
d

(
τ−dνd

) = τdλc
d(νd).

But λ̃c
d(μd) = λc

d(μd)2dvdμ((0,+∞)) and, similarly, λ̃c
d(νd) = λc

d(ν)2dvdν((0,+∞)), which leads to

λ̃c
d(μd) ≤ τd μ((0,+∞))

ν((0,+∞))
λ̃c

d(νd).

But by Theorem 1.1 we have

lim
d→+∞

1

d
ln
(̃
λc

d(νd)
) = ln

(
κc
ρ

)
, and then lim sup

d→+∞
1

d
ln
(̃
λc

d(μd)
) ≤ ln

(
τκc

ρ

)
< 0,

which ends the proof. �

Note that as a byproduct of the proof, we obtain the following upper bound:

lim sup
d→+∞

1

d
ln
(̃
λc

d(μd)
) ≤ inf

0<a<b<+∞,a,b∈Supp(μ)
ln
(
κc
b/a

)
.
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