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Abstract. Conditions on the generator of a Markov process to control the fluctuations of its bridges are found. In particular,
continuous time random walks on graphs and gradient diffusions are considered. Under these conditions, a concentration of measure
inequality for the marginals of the bridge of a gradient diffusion and refined large deviation expansions for the tails of a random walk
on a graph are derived. In contrast with the existing literature about bridges, all the estimates we obtain hold for non asymptotic
time scales. New concentration of measure inequalities for pinned Poisson random vectors are also established. The quantities
expressing our conditions are the so called reciprocal characteristics associated with the Markov generator.

Résumé. Dans cet article nous exhibons des conditions sur le générateur d’un processus de Markov qui nous permettent de quan-
tifier les fluctuations de ses ponts. Nous nous intéressons plus précisément aux marches aléatoires sur les graphes et aux diffusions
de type gradient. Nous démontrons une inégalité de concentration pour la loi marginale du pont d’une diffusion gradient ainsi
qu’un principe de grandes déviations pour les queues d’une marche aléatoire sur un graphe. L’originalité de nos résultats réside
dans le fait qu’ils sont valables pour toute échelle de temps, tandis que ceux qui préexistent dans la litérature sont uniquement
asymptotiques. Nous établissons aussi des inégalités de concentration pour des vecteurs aléatoires poissoniens conditionnés. Les
paramètres, dérivés des processus markoviens, qui interviennent dans les conditions mises en évidence, sont leurs invariants réci-
proques.
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1. Introduction

In this paper we study quantitatively bridges of Markov processes over the time-interval [0,1]. Our motivation for this
study is twofold. One the one hand, we want relate geometric properties of the generator of a Markov process with the
dynamics of its bridges. For example, we want to know how the potential of the Langevin dynamics has to be chosen
to observe bridge-marginals with small variance. The answer to this basic question is well known for the Langevin
dynamics, but not for its bridge. Similar problems arise in applications, where bridges are by now widely used. On
the other hand, understanding bridges is a step toward the quantitative study of reciprocal processes and Schrödinger
bridges (see [24] for results in this direction). Both these family of stochastic processes are constructed as bridge
mixtures and have recently been the object of renewed interest because of their connections wit Optimal Transport
[38] and their use in applications [15,16]. As a guideline, independently from the details of the model, we have in
mind the sketch of the motion of a bridge as divided into two symmetric phases. At first one observes an expansion
phase, in which the bridge, starting from its deterministic initial position, increases its randomness. After time 1/2,
a contraction phase takes place, in which the damping effect of the pinning at the terminal time is so strong that
randomness decreases and eventually dies out. Moreover, one also expects that the two phases enjoy some symmetry
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with respect to time reversal. To summarize, one can say that the motion of bridge resembles that of an accordion. The
aim of this paper is to obtain a quantitative explanation of this picture. This means that we consider a Markov process
and try to understand how its semimartingale characteristics should look like in order to observe bridges where the
influence of pinning over randomness is stronger than that of a reference model, for which computations can be carried
out in explicit form. As we shall see, some precise answers can be given. It is interesting to note that the quantities
expressing our conditions are not related to those used to measure the speed of convergence to equilibrium, as one
might expect at first glance (see Remark 2.3 for a comparison with the �2 condition of Bakry and Émery [3]).

There are many possible quantities that could be used to estimate the balance of power between pinning and
randomness and make precise mathematical statements. Some of them are discussed in the sequel, depending on
the model: in this paper, Brownian diffusions with gradient drift and continuous time random walks on a graph are
considered.

Our results take the form of comparison theorems, which yield quantitative information on the bridge at non
asymptotic time scales. In Theorem 2.1 we find conditions on the potential of a gradient diffusion for its bridges to
have marginals with better concentration properties than those of an Ornsetin Uhlenbeck bridge. This is one of the
main novelties with respect to the existing literature about bridges where, to the best of our knowledge, only Large
Deviations-type estimates have been proved, and mostly in the short time regime, see among others [1,2,4,5,27,42,50]
and [52]. The proof of this result is done by first showing an ad hoc Girsanov formula for bridges, which differs from
the usual one. We then employ some tools developed in [10] to transfer log concavity of the density from the path
space to the marginals, and use the well known properties of log concave distributions.

Theorems 3.2 and 3.3 concern continuous time random walks on graphs with constant speed: we find conditions
on the jump rates under which the marginals of the bridge have lighter tails than those of the simple random walk.
For their proof we rely on some elementary, though non trivial combinatorial constructions that allow to control the
growth of the reciprocal characteristics associated with the cycles of the graph, as the length of the cycles increases.
The study of bridges of continuous random walks brings naturally to consider pinned Poisson random vectors: we
derive concentration of measure inequality for these distributions, using a Modified Log Sobolev Inequality and an
interpolation argument.

Reciprocal characteristics

An interesting aspect is that the conditions which we impose to derive the estimates are expressed in terms of the
so called reciprocal characteristics. The reciprocal characteristics of a Markov process are a set of invariants which
fully determine the family of bridges associated with it: such a concept has been introduced by Krener in [34], who
was interested in developing a theory of stochastic differential equations of second order, motivated by problems in
Stochastic Mechanics. Several authors then contributed to the development of the theory of reciprocal processes and
second order differential equations. Important contributions are those of Clark [17], Thieullen [49], Lévy and Krener
[39], and Krener [35]. Roelly and Thieullien in [44,45] introduced a new approach based on integration by parts
formulae. This approach was used to study reciprocal classes of continuous time jump processes in [20,22,23]. The
precise definitions are given at Definitions 2.1 and 3.1 below. However, let us give some intuition on why they are
an interesting object to consider to bring some answers to the aforementioned problems. For simplicity, we assume
that Px is a diffusion with drift b and unitary dispersion coefficients. It is well known that the bridge Pxy is another
Brownian diffusion with unitary diffusion matrix and whose drift field b̃ admits the following representation:

b̃(t, z) = b(t, z) + ∇ logh(t, z),

where h(t, z) solves the Kolmogorov backward PDE:

∂th(t, z) + b · ∇h(t, z) + 1

2
�h(t, z) = 0, lim

t↑1
h(t, z) = δy.

This is the classical way of looking at bridges as h-transforms, which goes back to Doob [28]. However, it might not
be the most convenient one to perform explicit computations. The first reason is that h is not given in explicit form.
Moreover, this representation does not account for the time symmetric nature of bridges. Actually, the problem of
restoring this time symmetry was one of the motivations for several definitions of conditional velocity and acceleration
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for diffusions in the context of stochastic mechanics, see e.g. [25,41,49]. The theory of reciprocal processes proposes
a different approach to bridges: there one looks for a family of (non-linear) differential operators A with the property
that the system of equations

A b̃ = A b, A ∈ A

together with some boundary conditions characterizes the drift b̃ of Pxy . For diffusions, they were computed for the
first time by Krener in [34], and subsequently used by Clark [17] to characterize reciprocal processes.

For instance, in the case of 1-dimensional Brownian diffusions we have A = {A } with

A b = 1

2
∂xxb + b∂xb + ∂tb.

The advantage of this approach is to show that the drift of the bridge b̃ depends on b only through the subfields A b, for
A ∈ A, and not on anything else. In other words, two different processes with the same reciprocal characteristics share
their bridges (for results of this type, see [6,20–23,29,44,45]). Therefore, one sees that any optimal condition to control
the fluctuations of Pxy shall be formulated in terms of the characteristics since other conditions will necessarily involve
some features of b which play no role in the construction of Pxy . This simple observation already rules out some naive
approaches to the problems studied in this paper. Indeed, one might observe that when Px is time homogeneous we
have

Pxy(Xt ∈ dz) ∝ Px(Xt ∈ z + dz)Pz(X1−t ∈ y + dy)

and then an optimal criterion to control the fluctuations of the marginals of P suffices. But since any known condition
to bound them is not expressed in terms of the reciprocal characteristics, this strategy has to be discarded. Reciprocal
characteristics enjoy a probabilistic interpretation: they appear as the coefficient of the leading terms in the short time
expansion of either the conditional probability of some events (see [21] for the discrete case) or the conditional mean
acceleration (see [35] in the diffusion setting). Indeed, one can view the results of this article as the global version of
the “local” estimates which appear in the works above. A first result in this direction has been obtained in [19], where
a comparison principle for bridges of counting processes is proven. Reciprocal characteristics have been divided into
two families, harmonic characteristics and rotational (closed walk) characteristics. We discuss the role of harmonic
characteristics in the diffusion setting and the role of rotational characteristics for continuous time random walks on
graphs.

Organization of the paper
In Sections 2 and 3 present our main results for diffusions and random walks. They are Theorems 2.1, 3.1, 3.2 and
3.3. Section 4 is devoted to proofs. We collect in the Appendix some results on which we rely for the proofs.

General notation
We consider Markov processes over [0,1] whose state space X is either Rd or the set of vertices of a countable
directed graph. We always denote by � the càdlàg space over X , by (Xt )0≤t≤1 the canonical process, and by P(�)

the space of probability measures over �. On � a Markov probability measure P is given, and we study its bridges. In
our setting, bridges will always be well defined for every x, y ∈X 2 and not only in the almost sure sense. We will make
clear case by case why this is possible. As usual Px is P(·|X0 = x), Pxy is the xy bridge, Pxy := P(·|X0 = x,X1 = y).
For I ⊆ [0,1], we call XI the collection (Xt )t∈I and the image measure of XI is denoted PI . Similarly, we define
Px

I , and P
xy
I . For a general Q ∈P(�), expectation under Q is denoted EQ. We use the notation ∝ when two functions

differ only by a multiplicative constant.

2. Bridges of gradient diffusions: Concentration of measure for the marginals

Preliminaries. We consider gradient-type diffusions. The potential U is possibly time dependent and satisfies one
among hypothesis (2.2.5) and (2.2.6) of Theorem 2.2.19 in [47], which ensure existence of solutions for

dXt = −∇U(t,Xt ) dt + dBt , X0 = x. (1)
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Bridges of Brownian diffusions are well defined for any x, y ∈ Rd . This fact is ensured by [13, Th. 1] and the fact that
P admits a smooth transition density. A special notation is used for Ornstein–Uhlenbeck processes. We use αPx for
the law of:

dXt = −αXt dt + dBt , X0 = x, (2)

where α > 0 is a positive constant. αPxy is then the xy bridge of αPx . Let us give some standard notation. For v ∈ Rd ,
vT is the transposed vector. If w is another vector in Rd , we denote the inner product of v and w by v · w. Similarly,
if H is a matrix and v a vector, the product is denoted H · v. The Hessian matrix of a function U is denoted Hess(U),
and by Hess(U) ≥ αid we mean, as usual, that

inf
v:v·v=1

vT · Hess(U)(z) · v ≥ α.

The norm of v ∈ Rd is ‖v‖. Let us now give definition of reciprocal characteristics for gradient diffusions. It goes
back to Krener [34].

Definition 2.1. Let U : [0,1] ×Rd → R be a smooth potential. We define U : [0,1] ×Rd →R as:

U (t, z) :=
[

1

2
‖∇U‖2 − ∂tU − 1

2
�U

]
(t, z). (3)

The harmonic characteristic associated with U is the vector field ∇U .

Measuring the fluctuations. Consider the bridge-marginal Pxy
t . We denote its density w.r.t. to the Lebesgue measure

by p
xy
t (z). As an indicator for the “randomness” of Pxy

t we use γ (t), defined by:

γ (t) = sup
{
β : −Hess

(
logp

xy
t

)
(z) ≥ βid

}
. (4)

It is well known that lower bounds on γ (t) translate into concentration properties for Pxy
t , see Theorem 2.7 of [36].

The better the bound, the stronger the concentration. In the Ornstein Uhlenbeck case, γ (t) := γα(t) can be explicitly
computed. The actual computation will be carried out in the proof of Theorem 2.1. We have:

γα(t) = 2α(1 − exp(−2α))

(1 − exp(−2αt))(1 − exp(−2α(1 − t)))
. (5)

Note that γα obeys few stylized facts:

(i) It is symmetric around 1/2: this reflects the time symmetry of the bridge.
(ii) It converges to +∞ as t converges to either 0 or 1. This is due to the pinning.

(iii) γα is convex in t . This also agrees with the description of the dynamics of a bridge we sketched in the
Introduction. Convexity reflects the fact that, as time passes, the balance of power between pinning and randomness
goes in favor of pinning, whose impact on the dynamics grows stronger and stronger, whereas the push towards
randomness stays constant, since the diffusion coefficient does not depend on time.

(iv) It is increasing in α.

Theorem 2.1 is a comparison theorem for γ (t). We show that if the Hessian of U (see (3)) enjoys some convexity
lower bound, say 1

2α2, then γ (t) lies above γα(t). This means that Pxy is more concentrated than αPxy .

Theorem 2.1. Let Px be the law of (1) and U be defined at (3). If, uniformly in r ∈ [0,1], z ∈Rd

Hess(U )(r, z) ≥ α2

2
id (6)

then the following estimate holds for any t ∈ [0,1],R > 0, and any 1-Lipschitz function f :

Pxy
(
f (Xt ) ≥ EPxy

(
f (Xt )

) + R
) ≤ exp

(
−1

2
γα(t)R2

)
,

where γα(t) is defined at (5).
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The proof of Theorem 2.1 uses three main tools: the first one is an integration by parts formula for bridges of
Brownian diffusions due to Roelly and Thieullen, see [44] and [45]. Such formula has the advantage of elucidating
the role of reciprocal characteristics, and we reported it in the Appendix. The second one is a statement about the
preservation of strong log-concavity due to Brascamp and Lieb [10]. This theorem is a quantitative version of the well
known fact that marginals of log concave distributions are log concave. We refer to Remark 4.1 for more comparisons
between Theorem 2.1 with some of the results of [10]. Finally, we will profit from the well known concentration of
measure properties of log concave distributions, for which we refer to [36, Chapter 2].

Example 2.1. Let us consider d = 1 and a a potential U(z) of the form az4 + bz2 for some a, b > 0. Then we have
that

U (r, z) = 8a2z6 + 8abz4 + (
2b2 − 6a

)
z2 − b

so that

∂zzU (r, z) := 240a2z4 + 96z2 + (
4b2 − 12a

)
.

A standard computation shows that the hypothesis (6) is satisfied iff b ≥ √
3a. In this case, one can choose α =

2
√

2b2 − 6a.

Remark 2.1. The condition (6) does not depend on the endpoints (x, y) of the bridge.

Remark 2.2. The estimates obtained here are sharp, as the Ornstein Uhlenbeck case demonstrates: a simple compu-

tation shows that α2

2 id is indeed the Hessian of U when Px =α Px .

Remark 2.3. The �2 condition of Bakry and Émery in this case reads as

Hess(U) ≥ αid,

which is clearly very different from (6). In particular, (6) involves derivatives of order up to four. However, a simple
manipulation of Girsanov’s theorem formally relates the two conditions. Consider the density M of Px with respect
to the Brownian motion started at x. We have by Girsanov’s formula (for simplicity, we assume U not to depend on
time):

M = exp

(
−

∫ 1

0
∇U(Xt) · dXt − 1

2

∫ 1

0
‖∇U‖2(Xt ) dt

)
.

A standard application of Itô formula allows to rewrite M as

exp

(
−U(X1)︸ ︷︷ ︸

�2

+U(x) − 1

2

∫ 1

0
‖∇U‖2(Xt ) − �U(Xt)︸ ︷︷ ︸

=2U

dt

)
.

Imposing convexity on the first term, one obtains �2, whereas imposing convexity on the integrand, yields (6).

Remark 2.4. Krener’s notion of reciprocal characteristic goes well beyond gradient type diffusions. Indeed, they
are defined for non gradient vector fields as well as for non unitary diffusion coefficients. For example, a general
smooth drift field b(t, z) admits two reciprocal characteristics: the harmonic charachteristic, which can be defined as
in Definition 2.1, and the rotational characteristic (
i,j )1≤i<j≤d , which is the rotational of the drift field:


i,j (t, z) = (
∂ib

j − ∂j b
i
)
(t, z).

More information can be found in the papers by Krener quoted in the Introduction, or in Murr’s phd thesis [40,
Ch. 5]. The original motivation for the introduction of reciprocal characteristics was to describe the dynamic properties
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of a class of processes called reciprocal processes, which can be written as arbitrary bridge mixtures of a given
reference Markov process (in this case, a diffusion process). Such processes fail to be Markov in general. However,
using reciproal characteristics, Krener described them as “second order diffusion processes”, see [35, Thm 2.1]. Our
concentration of measure results do not apply to general reciprocal processes, for the simple reason that concentration
is not stable under mixing. However, reciprocal characteristics can be used to derive other quantitative results the
reciprocal processes associated with a gradient diffusion. For instance, in [24, Thm 1.3] a comparison principle for
reciprocal processes is proven under suitable assumptions on the characteristic.

3. Continuous time random walks

In this section we prove various estimates for the bridges of continuous time random walks with constant speed. These
estimate are obtained by imposing conditions on the closed walk characteristics associated with the random walk. It is
shown in [21, Th. 2.4] that the closed walk characteristics of a constant speed random walk fully determine its bridges.

Preliminaries. Let X be a countable set and A ⊂ X 2. The directed graph associated with A is defined by means
of the relation →. For all z, z′ ∈X we have z → z′ if and only if (z, z′) ∈ A. We denote (X 2,→) this directed graph,
say that any (z, z′) ∈ A is an arc and write (z → z′) ∈ A instead of (z, z′) ∈ A. For any n ≥ 1 and x0, . . . , xn ∈ X
such that x0 → x1, x1 → x2, . . . , xn−1 → xn, the ordered sequence (x0, x1, . . . , xn) is called a walk. We adopt the
notation w = (x0 → x1 → ·· · → xn). When xn = x0, the walk c = (x0 → x1 → ·· · → xn = x0) is said to be closed.
The length n of w is denoted by �(w). The graph distance d(x, y) is the length of the shortest walk going from x

to y. We introduce a continuous time random walk Px with intensity of jumps j : A → R+. j (z → z′) is the rate at
which the walk jumps from z to z′. To ensure existence of the process, we make some standard assumptions on j

and (X ,→), which are detailed at Assumptions 4.2 and 4.1. These assumptions also ensure that the bridge is defined
between any pair of vertices x, y ∈ X . In this paper, we consider constant speed random walks (CSRW). This means
that the function z �→ j̄ (z) = ∑

z′:z→z′ j (z → z′) is a constant. Let us define the closed walk characteristics associated
with j . We refer to [20,21,23] for an extensive discussion.

Definition 3.1. Let (X ,→) be a graph satisfying Assumption 4.2 and j be a jump intensity satisfying Assumption 4.1.
For any closed walk c = (x0 → ·· · → xn = x0) we define the corresponding closed walk characteristic as:

�j(c) :=
n−1∏
i=0

j (xi → xi+1). (7)

The intuition behind the fact that the closed walk characteristics determine the bridge of a random walk with constant
speed is given in [21, Th 2.7]. It is shown there that they express the short time probability for any bridge to follow
a given closed walk. This result is the analogous for bridges of the basic fact that the jump intensity of a random
walk expresses the short time probability to observe a transition along a given arc. Let us remark that reciprocal
characteristics are defined also for random walks with non constant speed. In this case, one has to add to the closed
walk characteristics the so called harmonic characteristics (see Definitions 2.3 in [21]).

3.1. Concentration of measure for pinned Poisson random vectors

A simple question
We fix k ∈ N and consider the graph (X ,→) where X = Z, and z → z′ if and only if z′ = z − 1 or z′ = z + k. We
consider a random walk P with time and space-homogeneous rates:

j (z → z + k) ≡ jk, j (z → z − 1) ≡ j−1 ∀z ∈ Z.

The simple1 closed walks of (X ,→) are of the form

c = (x → x − 1 → x − 2 → ·· · → x − k → x)

1See Definition 4.2 for the meaning of simple walk.
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for some x ∈ Z and, because of the homogeneity of the rates, we have

∀c simple closed walk, �j (c) ≡ jk
−1jk := �.

We introduce random variables Nk and N−1 which count the number of jumps along arcs of the form (x → x +k) and
(x → x − 1) respectively. Obviously, under P0 the vector (Nk,N−1) is a two dimensional vector with independent
components following a Poisson law of parameter jk and j−1 respectively. Let us consider the 00 bridge of P, P00.
The distribution of Nk is that of the first coordinate of a Poisson random vector conditioned to belong to an affine
subspace, precisely {(nk, n−1) ∈N2 : knk − n−1 = 0}. We call this distribution ρ�.

ρ�(·) = P00(Nk ∈ ·) = P0(Nk ∈ ·|kNk − N−1 = 0
)
. (8)

We aim at establishing a concentration of measure inequality for ρ�. This is very natural in the study of bridges: one
wants to know how many jumps of a certain type the bridge performs. The role of pinning against randomness should
be visible in the concentration properties of this distribution. This task is not trivial because ρ� is no longer a Pois-
sonian distribution. This is in contrast with the Gaussian case, where pinning a Gaussian vector to an affine subspace
gives back a Gaussian vector. To gain some insight on what rates to expect let us recall Chen’s characterization of the
Poisson distribution (see [14]) of parameter λ, which we call μλ:

∀f > 0 λEμλ

(
f (n + 1)

) = Eμλ

(
f (n)n

)
. (9)

Using [20, Prop. 3.8], one finds an analogous characterization for ρ� as the only solution of

∀f > 0 �Eρ�

(
f (n + 1)

) = Eρ�

(
f (n)n

k−1∏
i=0

(kn − i)

)
. (10)

The density on the right hand side of (10) is a polynomial of degree k + 1. By choosing f (n) = 1n=z in both (9) and
(10), we obtain:

∀z ∈ N,
μλ(z − 1)

μλ(z)
= 1

λ
z,

ρ�(z − 1)

ρ�(z)
= z

∏k−1
i=0 (kz − i)

�
∼ zk+1

�
(11)

from which we deduce that ρ� has much lighter tails than μλ. The corresponding concentration inequalities should
reflect this fact. We derived the following result:

Theorem 3.1. Let ρ� be defined by (8). Consider a 1-Lipschitz function f . Then, for all R > 0:

ρ�

(
f ≥ Eρ�(f ) + R

) ≤ exp
(−(k + 1)R logR + [

log(�) + c
]
R + o(R)

)
. (12)

The constant c is a structural constant which depends only on k.

In (12), and in the rest of the paper, by o(R) we mean a function g such that limR→+∞ g(R)/R = 0. The o(R) term
in (12) can be made explicit: it depends on � and k, but not on f . By following carefully the proof of this theorem, it
is possible to see that the bound (12) is interesting (i.e. the right hand side is <1) when R ≥ � + 1

k+1�1/(k+1). The
bound is very accurate for R large, see Remark 4.2.

Remark 3.1.

(i) The size of the large jump drives the leading order in the concentration rate, while the reciprocal characteristic
is responsible for the exponential correction term.

(ii) The larger k, the more concentrated is the random variable. This is because, to compensate a large jump,
a bridge has to make many small jumps and this reduces the probability of large jumps.

(iii) The smaller �, the better the concentration. This fits with the short time interpretation of � given in [21,
Th. 2.7].
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Remark 3.2 (Sharpness). It can be seen, using Stirling’s approximation and (11), that the leading order term −(k +
1)R logR is optimal and the linear dependence on log(�) at the exponential correction term is correct.

The proof of this theorem is based on the construction of a measure π� which interpolates ρ� and for which the
modified log Sobolev (MLSI) inequality gives sharp concentration results. Several MLSI have been proposed for the
Poisson distribution. We use the one which is considered for example in in [26] and [51, Cor 2.2]. The reason for
this choice is that there are robust criteria (see [11]) under which such inequality holds. Other kinds of modified
Logarithmic Sobolev inequalities for the Poisson law are presented in [7,8,12] and [30].

The interpolation argument is crucial to achieve the rate −(k +1)R logR. Indeed, the MLSI cannot yield any better
than −R logR. While doing the proof, we repeat the classical Herbst’s argument for the MLSI, improving on some
results of [7] (which were obtained by using a different MLSI).

3.2. Bridges of CSRW on the square lattice: Refined large deviations for the marginals

Let v1 = (1,0), v2 = (0,1). The square lattice is defined by X = Z2 and by saying that the neighbors of x are x ± v1
and x ± v2. We associate to any vertex x ∈ Z2 the clockwise oriented face fx and two closed walks of length two,
ex,1, ex,2 as follows:

fx = (x → x + v2 → x + v1 + v2 → x + v1 → x),

ex,1 = (x → x + v1 → x), ex,2 = (x → x + v2 → x).

The set of closed walks of length two is denoted E

E = {
(x → y → x) : (x → y) ∈ A

} = {
ex,i , x ∈X , i ∈ {1,2}}. (13)

The set of clockwise oriented faces is F

F := {
fx : x ∈ Z2}.

In this subsection we prove an analogous statement to Theorem 2.1 for CSRWs on the square lattice. A serious
difficulty here is represented by the fact that there is not such a well developed theory to prove concentration of
measure inequalities with Poissonian rates. In particular, all the tools we use in the proof of Theorem 2.1 do not have
a “Poissonian” counterpart. To the best of our knowledge, the only result concerning Poisson-type deviation bounds
for the marginals of a continuous time Markov chain is due to Joulin [32]. In Theorem 3.1 the author provides abstract
curvature conditions under which such bounds hold. However, explicit construction of Markov generators fulfilling
these conditions is limited to 1-dimensional birth and death processes, see Section 4. Therefore, instead of using γ (t)

(see (4)), we shall use a simpler way to measure the fluctuations of the bridge, adopting a Large Deviations viewpoint.
We will look at asymptotic tail expansions, and relate the coefficients in the expansions with reciprocal characteristics.
This is a much rougher measurement, but still gives interesting results. We consider the 00 bridge P00 of the simple
random walk which jumps along any arc with intensity constantly equal to λ. Using some classical expansions (see
Lemma A.4) one finds that

logP00(d(
Xt,EP00(Xt )

) ≥ R
) = −2R logR + [

log
(
4λ2t (1 − t)

) + 2
]
R + o(R). (14)

Theorem 3.2 provides a condition on the reciprocal characteristics for (14) to hold when replacing = with ≤. The
conditions are expressed as conditions on the closed walks characteristics associated to the walks in E ∪ F : we
Figure 1 for a visual explanation.

Theorem 3.2. Let j :A →R+ be the intensity of a CSRW P on the square lattice. Assume that for some λ > 0

∀x ∈ Z2, i ∈ {1,2} �j(ex,i ) ≤ λ2 (15)

and

∀x ∈ Z2 �j(ex,2)�j (ex,1) ≤ �j(fx) ≤ �j(ex+v1,2)�j (ex+v2,1). (16)
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Fig. 1. A visual explanation of condition (16): The characteristic associated with the face fx (red) has to be larger than the product of the charac-
teristics associated with its left and lower side (blue), and smaller than the product of the characteristics associated with its upper and right side
(yellow).

Then for any x ∈ Z2

logPxx
(
d
(
Xt,EPxx (Xt )

) ≥ R
) ≤ −2R logR + [

log
(
4λ2t (1 − t)

) + 2
]
R + o(R).

Example 3.1. Consider another random walk with space homogeneous rates. This means that for some j1, j−1, j2, j−2
we have

j (x → x + v1) ≡ j1, j (x → x − v1) ≡ j−1

and

j (x → x + v2) ≡ j2, j (x → x − v1) ≡ j−2.

With such choices, condition (16) is always verified with = instead of ≤, and therefore Theorem 3.2 applies with
λ = max{j1j−1, j2j−2}.

Remark 3.3. The function t �→ − log(4λ2t (1 − t)) plays the same role as γα(t) in the diffusion case and it features
the same stylized facts we observed for it.

Remark 3.4.

(i) One nice aspect of (15) and (16) is that they are local conditions, that is, for a given fx they depend only on
the closed walks of length two that intersect f.

(ii) The fact that j fulfills the hypothesis of the Theorem does not imply that j (z → z′) ≤ λ on every arc of the
lattice. This means that there exist CSRWs whose tails are heavier than the simple random walk, but the tails of their
bridges are lighter than those of the bridge of the simple random walk.

(iii) These conditions are easy to check and there are many jump intensities satisfying them. We show in
Lemma 4.7 that for any ϕ : E ∪F →R+ there exists at least one intensity j such that �j(c) = ϕ(c) over E ∪F .

(iv) In the proof of Theorem 3.2 it is seen how condition (16) makes sure that among the simple closed walks with
the same perimeter, the ones with smallest area are those which have the largest value of �j(·).

The idea of the proof of Theorem 3.2 is that the local conditions we impose on the faces ensure that for any closed
walk �j(c) can be controlled in terms of λ�(c). Bulding on Girsanov’s theorem for continuous time random walks
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Fig. 2. Left: The blue arcs form a tree T : each pair of red arcs forms an element of E∗ . Right: The closed walk cd→a is obtained by concatenating
(d → a) with the unique simple walk in T from a to d (blue).

(see [18, Th. 2.3.1] or the more general results containted in [31,37]), we prove an ad hoc version for bridges, which
gives us a form of the density in terms of the reciprocal closed walk characteristics. Finally, we conclude that such
density has a global upper bound on path space. It is very likely that one can relax (15), (16) by imposing them only
in the limit when ‖x‖ ↑ +∞. To simplify the presentation and the proofs, we did not consider this case.

3.3. Bridges of CSRW on general graphs

We consider a graph (X ,→) satisfying Assumption 4.2 below and a CSRW Px on (X ,→) with intensity j . Our aim
is to prove a result similar to Theorem 3.2. As the notion of faces does not exist for general graphs, we work with its
natural substitute: the basis of closed walks. This notion is a slight generalization of the notion of cycle basis for an
undirected graph, for which we refer to [9, Section 2.6].

Trees and basis of the closed walks
Prior to the definition, let us recall some terminology about graphs. A subgraph of (X ,→) is a graph on X whose
arc set in included in the arc set A of (X ,→). We say that two subgraphs intersect if their arc sets do so, and we say
that one is included in the other if their arc sets are so. Let us recall that for a given vertex z ∈ X , its outer degree
is deg(z) := |{z′′ : (z → z′′) ∈ A}|. As in the previous subsection, the set of closed walks of length two is denoted E .
Figure 2 helps in understanding the next definition.

Definition 3.2 (Tree and basis of closed walks). Let (X ,→) be a graph fulfilling Assumption 4.2.

(a) We call tree a symmetric connected subgraph T of (X ,→) which spans2 X and does not have closed walks
of length at least three.3

(b) For a tree T , E∗ is the set of closed walks of length two which do not intersect T .

E∗ = {e ∈ E : e ∩ T =∅}. (17)

(c) For any (x → y) ∈ A \ T we denote cx→y the closed walk obtained by concatenating (x → y) with the only
simple directed walk from y to x in T .

2I.e. it connects all vertices of (X ,→).
3Closed walk of length two are allowed, as the graph is symmetric.
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(d) Let T be a tree. A T -basis of the closed walks of (X ,→) is any subset C of closed walks of the form

C = C∗ ∪ E,

where C∗ is obtained by choosing for any e = (x → y → x) ∈ E∗ exactly one among cx→y and cy→x . We denote the
chosen element by ce.

Theorem 3.3 gives a condition to control the tails of d(Xt , x) under Pxx .

Theorem 3.3. Let (X ,→) be a directed graph satisfying Assumption 4.2 and 1/δ its maximum outer degree. More-
over, we consider an intensity j :A→ R+ satisfying Assumption 4.1 and assume that for some tree T and a T -based
basis for the closed walks C it holds that

∀e ∈ E \ E∗, �j (e) ≤ (λδ)2, (18)

∀e ∈ E∗, (λδ)�(ce)−1�j(e) ≤ �j(ce) ≤ (λδ)1−�(ce)
∏

e′∈E,e′ �=e
e′∩ce �=∅

�j

(
e′). (19)

Then for any x ∈X and any t ∈ [0,1]
logPxx

(
d(Xt , x) ≥ R

) ≤ −2R logR + R
[
2 + 2 log

(
λt(1 − t)

) + 3 log(1/δ − 1)
] + o(R). (20)

The proof of the theorem is divided into two steps. In a first step one shows that for some constant c, Pxx(d(Xt , x) ≥
R) ≤ cSxx

λ (d(Xt , x) ≥ R), where Sx
λ is the CSRW defined by:

j
(
z → z′) = λ

deg(z)
∀z → z′ ∈A. (21)

The second step consists in estimating Sxx
λ (d(Xt , x) ≥ R) with the right hand side of (20). Clearly, due to the fact that

graph (X ,→) has no specific structure, the estimate we obtain is less precise than the one in Theorem 3.2. However,
it can be shown to be optimal for a certain class of graphs, and it displays the same type of decay for the decay for the
tails: a leading term of order −R logR and a correction term of order R.

Remark 3.5. Basis for closed walks have been computed explicitly for several graphs in [21, Section 4], including
the complete graph and the discrete hypercube. Building on those examples, it is easy to construct jump intensities
fulfilling the hypothesis of Theorem 3.3.

Remark 3.6. We show in Lemma 4.8 that to any ϕ : C → R+ we can associate a CSRW whose reciprocal charac-
teristics coincide with ϕ over C. This shows that the conditions (18) and (19) are fulfilled by a large class of Markov
jump intensities. It can be seen that there exists no tree of the square lattice such that a cycle basis associated with it
coincides with the faces of the lattice. Therefore Theorem 3.2 is not implied by Theorem 3.3.

4. Proof of the main results

Proof of Theorem 2.1

Preliminaries
We define px

t (z) as the density of the marginal Px
t , and p

xy
t (z) as the density of Pxy

t . Clearly, if U does not depend on
time, we have the relation:

p
xy
t (z) = px

t (z)pz
1−t (y)

px
1 (y)

.
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αpx
t (·) and αp

xy
t (·) are defined accordingly. As Ornstein Uhlenbeck processes are Gaussian processes, for any finite

set I = {0 = t0, t1, t2, . . . , tl} ⊆ [0,1] there exists a positive definite quadratic form �α
I over Rd×(l+1) such that ∀A ⊆

Rd×l and x ∈Rd

αPx(XI ∈ A) =
∫

A

exp
(−�α

I

(
x, x1, . . . , xl

))
dx1 · · · dxl

=
∫

A

[
px

t1

(
x1) l∏

j=2

pxj−1

�tj

(
xj

)]
dx1 · · · dxl, (22)

where we set �tj := tj − tj−1. Using the transition density of the Ornstein Uhlenbeck process (see e.g. [33, Sec-
tion 5.6]), we can write down the explicit expression of �α

I :

�α
I

(
x0, x1, . . . , xl

)
=

l∏
j=1

√
α

π(1 − e−2α�tj )
exp

(
− α

(1 − e−2α�tj )

(
xj − e−α�tj xj−1

)2
)

,

where we set t0 = 0. In particular, we will be interested in the case when I is the set �m defined as

�m = {
0,1/m, . . . , (m − 1)/m,1

}
. (23)

For t ∈ [0,1], we define

j (t) = max{j : j/m < t}, �<t
m = {

0,1/m, . . . , j (t)/m, t
}
. (24)

We can now prove Theorem 2.1.

Proof. In a first step we show that the density of Pxy with respect to the Brownian Bridge Wxy is given by

dPxy

dWxy
= 1

Z
exp

(
−

∫ 1

0
U (t,Xt ) dt

)
:= M, (25)

where U has been defined at (3) and Z is a normalization constant. To do this, we show that the measure

Q := MWxy

fulfills the hypothesis of the Duality formula by Roelly and Thieullen, see Theorem A.1 in the Appendix. It can be
easily verified that the regularity hypothesis are verified by Q, because of the regularity of the transition density of
the Brownian bridge and of the smoothness of U . Moreover, Q((X0,X1) = (x, y)) = 1. Let us now compute the
directional derivative Dh of M . We have

DhM(X) = lim
ε→0

1

ε

(
M(X + εh) − M(X)

)
= lim

ε→0

1

Zε
exp

(
−

∫ 1

0
U

(
t,Xt + εh(t)

)
dt

)
− exp

(
−

∫ 1

0
U (t,Xt ) dt

)

= 1

Z

[
−

∫ 1

0
∇U (t,Xt ) · h(t) dt

]
exp

(
−

∫ 1

0
U (t,Xt ) dt

)

=
[
−

∫ 1

0
∇U (t,Xt ) · h(t) dt

]
M. (26)
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Now let us consider any simple functional F . By using Theorem A.14 for the Brownian bridge Wxy , Leibniz’s rule
and (26) we obtain:

Q(DhF ) = Wxy
(
(DhF )M

)
= Wxy

(
Dh(FM)

) −Wxy
(
F(DhM)

)
= Wxy

(
(FM)

∫ 1

0
ḣ(t) · dXt

)
+Wxy

(
(FM)

∫ 1

0
∇U (t,Xt ) · h(t) dt

)

= Q

(
F

[∫ 1

0
ḣ(t) · dXt +

∫ 1

0
∇U (t,Xt ) · h(t) dt

])
,

from which (25) follows, because of the arbitrary choice of F . As a by-product, we obtain that, if we choose α as in
(6), we have:

dPxy

dαPxy
= exp

(∫ 1

0
V (t,Xt ) dt

)
,

where

V (t,Xt ) = 1

2
α2‖x‖2 − U (t,Xt ) − log

(
Z′),

where Z′ is a normalization constant. Note that because of (6), V (t, ·) is concave for all t . The next step in the proof

is to prove that z �→ dP
xy
t

dαP
xy
t

(z) is log concave. To do this we will show that (x, z, y) �→ dP
xy
t

dαP
xy
t

(z) is log concave, which

is a slightly stronger statement. To this aim, we observe that, applying the Markov property for αPxy we have

dP
xy
t

dαP
xy
t

(z) = EαPxy

(
exp

(∫ 1

0
V (s,Xs) ds

)∣∣∣Xt = z

)

= EαPxy

(
exp

(∫ t

0
V (s,Xs) ds

)∣∣∣Xt = z

)

×EαPxy

(
exp

(∫ 1

t

V (s,Xs) ds

)∣∣∣Xt = z

)
. (27)

We show that each factor is a log concave function of (x, y, z). Let us consider the first factor. A further application
of the Markov property for Px gives:

EαPxy

(
exp

(∫ t

0
V (s,Xs) ds

)∣∣∣Xt = z

)
= EαPx

(
exp

(∫ t

0
V (s,Xs) ds

)∣∣∣Xt = z

)
:= G(x, z).

Consider a discretisation parameter m ∈ N, and �m, j (t), �<t
m as in (23), (24) and define:

Im : Rd×(j (t)+2) → R,

Im

(
x, x1, . . . , xj (t)+1) = 1

m
V (0, x) + 1

m

∑
1≤j≤j (t)−1

V
(
j/m,xj

) + ((
t − j (t)

)
/m

)
V

(
j (t)/m,xj (t)

)

4For the application we are going to make of the duality formula to be completely justified one shall extend its validity from the simple functionals
to the differentiable functionals. A simple approximation argument, which we do not present here, takes care of that.
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and

Gm(x, z) := EαPx

(
exp

(
Im(X�<t

m
)
)|Xt = z

)
= EαPx

�<t
m

(
exp

(
Im

(
x, x1, . . . , xj (t), xj (t+1)

)|xj (t)+1 = z
))

.

Clearly, Gm(x, z) → G(x, z) pointwise. The conditional density of αPx
�<t

m
given Xt = z is

1
αpx

t (z)
×

[
αpx

1/m(x1)

(
j (t)∏
j=2

αpxj−1

1/m (xj )

)
αpxj

t−j (t)/m(z)

]
. (28)

Using (22) we rewrite both the numerator and the normalization factor at the denominator to obtain the following
equivalent expression for the conditional density:

exp(−�α
�<t

m
(x, x1, . . . , xj (t), z))∫

Rd×j (t) exp(−�α
�<t

m
(x, x1, . . . , xj (t), z)) dx1 · · · dxj (t)

,

which then gives

Gm(x, z) :=
∫
Rd×j (t) exp(Im(x, x1, . . . , xj (t), z) − �α

�<t
m

(x, x1, . . . , xj (t), z)) dx1 · · · dxj (t)∫
Rd×j (t) exp(−�α

�<t
m

(x, x1, . . . , xj (t), z)) dx1 · · · dxj (t)
.

By mean of the identifications

w ↪→ (
x, x1, . . . , xj (t), z

) ∈Rd×j (t)+2,

v ↪→ (
x1, . . . , xj (t)

) ∈ Rd×j (t),

v′ ↪→ (x, z) ∈Rd×2,

F (w) ↪→ exp
(
Im(w)

)
,

we can rewrite Gm(x, z) as the right hand side of (63). By the hypothesis (6) V (t, ·) is concave for any t ∈ [0,1].
Hence Im is concave as well. Therefore we can apply Theorem A.2 to conclude that Gm(x, z) is log-concave for
all m, and therefore so is the limit. This concludes the proof that the first of the two factors appearing in (27) is log
concave. With the same argument we have just used, one shows that also the other factor is log concave and therefore
dP

xy
t

dαP
xy
t

is log-concave. This tells us that

inf
z∈Rd ,v∈Rd ,‖v‖=1

−v · Hess
(
logp

xy
t

)
(z) · v ≥ inf

z∈Rd ,v∈Rd ,‖v‖=1
−v · Hess

(
log αp

xy
t

)
(z) · v. (29)

The explicit expression for αpx
t (z) is well known, see e.g. [33, Section 5.6]:

αpx
t (z) =

√
α

π(1 − exp(−2αt))
exp

(
− α

(1 − e−2αt )

∥∥z − xe−αt
∥∥2

)
.

Therefore, as a function of z:

αp
xy
t (z) ∝α px

t (z)αpz
1−t (y)

∝ exp

(
− α

(1 − e−2αt )

∥∥z − xe−αt
∥∥2 − α

(1 − e−2α(1−t))

∥∥y − ze−α(1−t)
∥∥2

)
.
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It is then an easy computation to show that Hess(log αp
xy
t )(z) = −γα(t)id, where γα(t) had been defined at (5). Equa-

tion (29) tells that the bridge-marginal Pxy
t is a log concave perturbation of the marginal of the Ornstein Uhlenbeck

bridge. Theorem 2.7 in [36] relates log concavity with concentration of measure. Thanks agin to (29) we are entitled
to apply this theorem with the choices μ = P

xy
t and c = γα(t). This gives the conclusion. �

Remark 4.1. In [10, Th. 6.1] log-concavity of solutions to

∂tφ(t, z) − 1

2
�φ(t, z) + V (z)φ(t, z) = 0

is established when V is convex. Define now φ(t, z) as the second factor in (27) and assume for simplicity that α = 0
and V not to depend on time:

φ(t, z) := EWxy

(
exp

(∫ 1

t

V (Xs) ds

)∣∣∣Xt = z

)
.

Using Feynman–Kac formula and the expression for the drift of the Brownian bridge we have that φ solves

∂tφ(t, z) + 1

2
�φ(t, z) + (y − z)

(1 − t)
∇φ(t, z) + V (t, z)φ(t, z) = 0.

Log-concavity of φ when V is concave is established in the proof of Theorem 2.1.

Proof of Theorem 3.1

The main steps of the proof are the Lemmas 4.1 and 4.3. In Lemma 4.1 we revisit Herbst’s argument, while in
Lemma 4.1 we construct an auxiliary measure π� for which sharp concentration bounds can be obtained through
MLSI.

A refined Herbst’s argument
We apply the Herbst’s argument to a Modified Log Sobolev Inequality studied, among others, by Dai Pra, Paganoni,
and Posta in [26]. In their Proposition 3.1 they show that the Poisson distribution μλ(·) of mean λ satisfies the
following inequality

∀f > 0, Eμλ(f logf ) −Eμλ(f ) log
(
Eμλ(f )

) ≤ λEμλ(∇f ∇ logf ), (30)

where ∇f (n) is the discrete gradient f (n + 1) − f (n).

Lemma 4.1. Let μλ satisfy (30). Then for any 1-Lipschitz function f : N→R

μλ

(
f ≥ Eμλ(f ) + R

) ≤ exp

(
−(R + 2λ)

[
log

(
1 + R

2λ

)
+ 1

])
. (31)

In particular,

μλ

(
f ≥ Eμλ(f ) + R

) ≤ exp
(−R logR + [

log(2λ) + 1
]
R + o(R)

)
.

Remark 4.2. We are able to improve the concentration rate obtained in [7, Prop. 10] and [51, Cor 2.2] for the Poisson
distribution. For instance, in [7] the following deviation bound for 1-Lipschitz functions is obtained under the Poisson
distribution μλ of parameter λ:

μλ

(
f ≥ Eμλ(f ) + R

) ≤ exp

(
−R

4
log

(
1 + R

2λ

))
. (32)
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Note that the right hand side can be rewritten as −R
4 log(R) + log(2λ)

4 R + o(R). We improve (32) to

μλ

(
f ≥ Eμλ(f ) + R

) ≤ exp

(
−(R + 2λ) log

(
1 + R

2λ

)
+ R

)
. (33)

In this case, the rate has the form exp(−R logR + (log(λ) + 1 + log(2))R + o(R)). This rate is sharp in the leading
term −R log(R). Indeed, if one uses the explicit form of the Laplace transform of μλ one gets the following deviation
bound for the identity function (see e.g. Example 7.3 in [46]):

μλ

(
n ≥ Eμλ(n) + R

) ≤ exp

(
−R

(
log

(
1 + R

λ

)
− 1

)
− λ log

(
1 + R

λ

))
. (34)

The rate here is of the form −R logR + (log(λ) + 1)R + o(R). This shows that (31) is sharp concerning the leading
term and has the right dependence on λ in the exponential correction term. Concerning the constants appearing in the
exponential terms, we have 1 + log(2). We do not know whether this is sharp or not. However, nothing better than 1
is reasonable to expect because of (34).

Proof. Let f be 1-Lipschitz. It is then standard to show that f has exponential moments of all order. Therefore, all
the expectations we are going to consider in the next lines are finite. Let us define

ϕτ := Eμλ

(
exp(τf )

)
, ψτ := logEμλ

(
exp(τf )

)
.

We apply the inequality (30) to exp(τf ). Note that the left hand side reads as τ∂τϕτ − ϕτψτ . The right hand side can
be written as

λτEμλ

(
exp(τf )

[
exp(τ∇f ) − 1

]∇f
)
.

Using that f is 1-Lipschitz and the elementary fact that for all τ > 0

sup
y∈[−1,1]

∣∣y[
exp(τy) − 1

]∣∣ = exp(τ ) − 1

we can bound the above expression by

λτ
[
exp(τ ) − 1

]
Eμλ

(
exp(τf )

) = λτ
[
exp(τ ) − 1

]
ϕτ .

We thus get the following differential inequality

τ∂τϕτ − ϕτψτ ≤ λτϕτ

(
exp(τ ) − 1

)
. (35)

Dividing on both sides by ϕτ and using the chain rule, it can be rewritten as a differential inequality for ψ :

τ∂τψτ − ψτ ≤ λτ
(
exp(τ ) − 1

)
, ∂τψ0 = Eμλ(f ),ψ0 = 0. (36)

The ODE corresponding to this inequality is

τ∂τhτ − hτ = λτ
(
exp(τ ) − 1

)
, ∂τ h0 = Eμλ(f ),h0 = 0. (37)

Note that the condition h0 = 0 is implied by the form of the equation, and it is not an additional constraint. (37) admits
a unique solution, given by:

hτ = τEμλ(f ) + λτγ (τ), (38)

where

γ (τ) =
+∞∑
k=1

1

k

τ k

k! . (39)
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The fact that (38) is the solution to (37) can be checked directly by differentiating term by term the series defining γ

in (39). We claim that

∀τ ≥ 0, ψτ ≤ hτ . (40)

The proof of this claim, is postponed to the Appendix section, see Propositon A.1. Given (40), a standard argument
with Markov inequality yields

μλ

(
f ≥ Eμλ(f ) + R

) ≤ exp
(

inf
τ≥0

ψτ − τEμλ(f ) − τR
)

≤ exp
(

inf
τ>0

λτγ (τ) − τR
)
.

We can bound γ in an elementary way:

γ (τ) =
+∞∑
k=1

1

k

τk

k! ≤ 2

τ

+∞∑
k=1

τ k+1

(k + 1)! = 2
exp(τ ) − τ − 1

τ

and therefore

μλ

(
f ≥ Eμλ(f ) + R

) ≤ exp
(

inf
τ>0

2λ exp(τ ) − (2λ + R)τ − 2λ
)
.

Solving the optimization problem yields the conclusion. �

An interpolation. The idea behind the proof of Theorem 3.1 is to construct a measure π� (see Definition 4.1) which
“interpolates” ρ� and for which the MLSI (30) gives sharp concentration bounds.

Definition 4.1. Let ρ� be defined by (8). We define π� ∈ P(N) as follows:

π�(m) = 1

Z�

ρ�

(
n(m)

)1−α(m)
ρ�

(
n(m) + 1

)α(m)
, (41)

where

n(m) = ⌊
m/(k + 1)

⌋
, α(m) = m/(k + 1) − n(m). (42)

Another ingredient we shall use in the proof is the following criterion for MLSI, due to Caputo and Posta. What
we make here is a summary of some of their results in Section 2 of the paper [11], adapted to our scopes. To keep
track of the constants, we also use Lemma 1.2 of [36]. We do not reprove these results here.

Lemma 4.2 (Caputo and Posta criterion for MLSI [11]). Let π ∈P(N) be such that

c(m) := π(m − 1)

π(m)
(43)

has the property that for some v ∈N

inf
m≥1

c(m + v) − c(m) > 0 (44)

and that supm≥0 c(m + v) − c(m) < +∞. Then the function c̃ defined by

c̃(m) := c(m) + 1

v

v−1∑
i=0

v − i

v

[
c(m + i) + c(m − i) − 2c(m)

]
(45)
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is uniformly increasing, that is

inf
m≥0

c̃(m + 1) − c̃(m) ≥ δ (46)

for some δ > 0. Moreover, if we define π̃ ∈ P(N) by

π̃(0) = 1

Z̃
, π̃(m) = 1

Z̃

m∏
i=1

1

c̃(i)
, (47)

then π̃ is equivalent to π in the sense that there exist ε > 0 such that:

ε ≤ π(m)

π̃(m)
≤ ε−1. (48)

Finally, π satisfies the MLSI (30) with δ−1 exp(4ε−1) instead of λ.

Using this criterion, we derive MLSI for π�.

Lemma 4.3. The measure π� satisfies the MLSI (30) with a constant of the form �1/(k+1)c, where c is a constant
independent from �.

Proof. For � ∈ R+ we let c� be defined by (43) by replacing π with π�. We define c̃� by (45) with the choice
v = k + 1. Moreover, we define δ� as in (46), π̃� as in (47) and ε� as in (48). Let us prove that:

inf
m≥1

c1(m + k + 1) − c1(m) > 0, sup
m≥1

c1(m + k + 1) − c1(m) < +∞. (49)

Equation (11) tells that:

∀n ∈ N,
ρ1(n − 1)

ρ1(n)
= n ×

k−1∏
i=0

(kn − i) := h(n). (50)

By definition of n(m) and α(m) we have that for all m ∈ N, n(m + k + 1) = n(m) + 1 and α(m + k + 1) = α(m).
Therefore, by definition of π1:

c1(m + k + 1) − c1(m) = π1(m + k)

π1(m + k + 1)
− π1(m − 1)

π1(m)

= ρ1(n(m − 1) + 1)1−α(m−1)ρ1(n(m − 1) + 2)α(m−1)

ρ1(n(m) + 1)1−α(m)ρ1(n(m) + 2)α(m)

− ρ1(n(m − 1))1−α(m−1)ρ1(n(m − 1) + 1)α(m−1)

ρ1(n(m))1−α(m)ρ1(n(m) + 1)α(m)
.

We have two cases:

m ∈ (k + 1)N. In this case n(m − 1) = n(m) − 1 and α(m) = 0, α(m − 1) = k/(k + 1). Therefore:

c1(m + k + 1) − c1(m) =
[

ρ1(n(m))

ρ1(n(m) + 1)

]1/k+1

−
[

ρ1(n(m) − 1)

ρ1(n(m))

]1/k+1

= h1/(k+1)
(
n(m) + 1

) − h1/(k+1)
(
n(m)

)
,

where the function x �→ h(x) has been defined in (50).
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m /∈ (k + 1)N. In this case n(m − 1) = n(m) and α(m) = α(m − 1) + 1/(k + 1). Therefore:

c1(m + k + 1) − c1(m) =
[
ρ1(n(m) + 1)

ρ1(n(m) + 2)

]1/k+1

−
[

ρ1(n(m))

ρ1(n(m) + 1)

]1/k+1

= h1/(k+1)
(
n(m) + 2

) − h1/(k+1)
(
n(m) + 1

)
.

It can be checked with a direct computation that h is strictly increasing and limx→+∞ ∂xh
1/k+1(x) = kk/(k+1). Using

this fact in the two expressions above yields (49). We are then entitled to apply Lemma 4.2, which tells that π̃1 satisfies
the MLSI (30) with a positive constant δ−1

1 and π1 satisfies the MLSI with constant δ−1
1 exp(4ε−1

1 ). Let now consider
� �= 1. It is an elementary observation to show that c�(m) = �−1/(k+1)c1(m). This means that (see Definition 4.1)

π�(m) =
[+∞∑

m=0

�−m/(k+1)π1(m)

]−1

�−m/(k+1)π1(m).

Moreover, by construction (see (45)) we also have that c̃� = �−1/(k+1)c1. This implies that δ� = �1/(k+1)δ1 and that

π̃�(m) =
[+∞∑

m=0

�−m/(k+1)π̃1(m)

]−1

�−m/(k+1)π̃1(m).

It is then easy to see that, using the two expressions for π� and π̃� we have just derived, that ε� ≥ ε2
1. Another

application of Lemma 4.2 gives that π� satisfies the MLSI with constant �−1/(k+1)δ−1
1 exp(4ε−2

1 ). �

We can finally prove Theorem 3.1.

Proof. Consider f : N→R, which is 1-Lipschitz. Then define g : N→ R by:

g(m) := (
1 − α(m)

)
f

(
n(m)

) + α(m)f
(
n(m) + 1

)
, (51)

where n(m),α(m) have been defined at (42). It is immediate to verify that g is 1/(k + 1)-Lipschitz. Because of
Lemma 4.3 there exists c independent from � such that π� satisfies MLSI (30) with constant c�1/(k+1). We define

M := � + �1/k+1

k+1 Using the concentration bound from Lemma 4.1 on (k + 1)g we get that, for any R > M

π�

({
m : g(m) ≥ Eπ�(g) − M + R

})
≤ exp

(−(k + 1)(R − M) log(R − M) + [c + log�](R − M) + o(R)
)

= exp
(−(k + 1)R log(R) + [c + log�]R + o(R)

)
,

where to obtain the last inequality we used the fact that the difference (R − M) log(R − M) − R log(R) is a function
in the class o(R). It is proven in Lemma A.2 (see Appendix) that Eπ�(g) − M ≤ Eπ (f ). This implies that π�({m :
g(m) ≥ Eπ�(g) − M + R}) ≥ π�({m : g(m) ≥ Eρ�(f ) + R}). Finally, we observe that

π�

({
m : g(m) ≥ Eρ�(f ) + R

})
≥ π�

({
m : g(m) ≥ Eρ�(f ) + R,m ∈ (k + 1)N

})
= 1

Z�

ρ�

({
n : f (n) ≥ Eρ�(f ) + R

})
≥ 1

k + 1
ρ�

({
n : f (n) ≥ Eρ�(f ) + R

})
,
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where we used the arithmetic geometric mean inequality to show that

Z� =
+∞∑
m=0

ρ�

(
n(m)

)1−α(m)
ρ�

(
n(m) + 1

)α(m) ≤ k + 1.

Summing up we have

ρ�

({
n : f (n) ≥ Eρ�(f ) + R

}) ≤ (k + 1)π�

({
m : g(m) ≥ Eρ�(f ) + R

})
≤ (k + 1) exp

(−(k + 1)R log(R) + [c + log�]R + o(R)
)
.

The proof of the Theorem is now concluded. �

4.1. Proof of Theorems 3.2 and 3.3

Preliminaries
Let us specify the assumptions on the jump intensity.

Assumption 4.1. The jump intensity j : A→R+ verifies the following requirements:

(1) It has constant speed: there exists v > 0 such that

∀z ∈ X , v =
∑

z′:z→z′
j
(
z → z′) := j̄ (z). (52)

(2) It is everywhere positive: j (z → z′) > 0 for all z → z′ ∈A.

Here is some vocabulary about graphs.

Definition 4.2. Let A⊂X 2 specify a directed graph (X ,→) on X satisfying Assumption 4.2.

(a) The distance d(z, z′) between two vertices z and z′ is the length of the shortest walk joining z with z′. Due to
point (1) of Assumption 4.2, d is symmetric.

(b) If w = (x0 → x1 → ·· · → xn) is a walk, then w∗ is the walk obtained by reverting the orientation of all arcs:

w∗ := (xn → xn−1 → ·· · → x0). (53)

(c) A closed walk c = (x0 → x1 → ·· · → xn = x0) is said to be simple if the cardinality of the visited vertices
{x0, x1, . . . , xn−1} is equal to the length n of the walk. This means that a simple closed walk cannot be decomposed
into several closed walks. A non-closed walk w = (x0 → x1 → x2 → ·· · → xn �= x0) is said to be simple if the
cardinality of the visited vertices {x0, x1, . . . , xn} is equal to the length n + 1.

Proof of Theorem 3.2
The proof of Theorem 3.2 is based on the following Lemma, which ensures that we can control �j(c) in terms of
λ�(c). To ease the notation, we write �(·) instead of �j(·). The idea of the proof of the lemma is the following: given
a closed walk w, we can always “filp inwards” one of its corners to obtain another closed walkw′, which lies in the
interior of w, and is such that �j(w) ≤ �j(w′), see Figures 4 and 5 below.

Lemma 4.4. Let j be as in the hypothesis of Theorem 3.2. Then for any closed walk c, �j(c) ≤ λ�(c).

Proof. We observe that it is sufficient to consider the case when c is simple. Simple closed walks have an orientation,
which is unique, and it can be either clockwise or counterclockwise. The interior of a closed walk is then also well
defined and we call area the number of squares in the interior of c. The proof is by induction on the area of the closed
walk.
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Fig. 3. A simple closed walk c (red). x1 is the minimum in the lexicographic order among the vertices visited by the closed walk. Because of that
the walk cannot pass neither through the vertex left to x1, nor through the vertex below x1 (yellow). Therefore c must pass through the vertices
above x1 and right of x1. If x2 is the vertex above x1 the walk is clockwise oriented.

Fig. 4. c̃ is constructed by cutting (x0 → x1 → x2) from c and replacing it with p = (x0 → z → x2) (blue). c̃ has the same perimeter but smaller
area than c.

Base step. If the area of c is zero and c is simple, then c is a walk of length two, i.e. c ∈ E . The conclusion then
follows by (15).

Inductive step. Consider the minimum in the lexicographic order of the vertices of c. w.l.o.g. such vertex can be
chosen to be x1. By construction then, either (x0, x2) = (x1 + e1, x1 + e2) or (x0, x2) = (x1 + e2, x1 + e1), see
Figure 3.
(a) (x0, x2) = (x1 + e1, x1 + e2). We define z, cx2→x0 and p by

z := x2 + v1 = x0 + v2, c := (x0 → x1 → x2 → cx2→x0), p := (x0 → z → x2). (54)

We also define c̃ by concatenating p and cx2→x0 (see Figure 4):

c̃ := (p → cx2→x0).
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Fig. 5. An illustration of case (a.2) in the proof of Lemma 4.4. The purple contour is c, the green path is p. The blue and red areas represent the
interior of c̃1 and c̃2 respectively.

We then have, recalling that p∗ is obtained by reversing p (see Definition 3.2):

�(c) = j (x0 → x1)j (x1 → x2)�(cx2→x0)

= j (x0 → x1)j (x1 → x2)

�(p)
�(p)�(cx2→x0)

= j (x0 → x1)j (x1 → x2)

�(p)
�(c̃)

= j (x0 → x1)j (x1 → x2)�(p∗)
�(p∗)�(p)

�(c̃)

= �(fx1)

�(ex+v2,1)�(ex+v1,2)
�(c̃).

By (15),
�(fx1 )

�(ex1+v2,1)�(ex1+v1,2)
≤ 1. Since �(c̃) = �(c), we would be done if we could show that �(c̃) ≤ λ�(c). We

have two cases:
(a.1) z was not touched by c. In this situation, c̃ is a simple closed walk. By construction, c̃ lies in the

interior of c. Moreover, fx1 belongs to the interior of c but does not belong to the interior of c̃.
Therefore, we can use the inductive hypothesis and obtain that �(c̃) ≤ λ�(c̃), which is the desired re-
sult.

(a.2) z was touched by c. In this case z = xj for some j ≥ 3. We observe that we can write c̃ = (c̃1 → c̃2)

with c̃1 = (x2 → ·· · → xj = z → x2) and c̃2 = (xj = z → xj+1 → ·· · → x0 → z) and that both
c̃1 and c̃2 are simple closed walks which lie in the interior of c and have disjoint interiors, see Fig-
ure 5. Moreover, since none of the walks has fx1 in its interior, by inductive hypothesis �(c̃1) ≤
λ�(c̃1) and �(c̃2) ≤ λ�(c̃2). But then �(c̃) = �(c̃1)�(c̃2) ≤ λ�(c̃1)+�(c̃2) = λ�(c̃), which is the desired re-
sult.

(b) (x0, x2) = (x1 +e2, x1 +e1). In this case the simple walk c is counterclockwise oriented. Let cx2→x0 be defined
as in (54) above. Moreover we define

z := x0 + v1 = x2 + v2, p := (x0 → z → x2)
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and c̃ := (p → c̃x2→x0). We have:

�(c) = j (x0 → x1)j (x1 → x2)�(cx2→x0)

= j (x0 → x1)j (x1 → x2)

�(p)
�(p)�(cx2→x0)

= j (x0 → x1)j (x1 → x2)

�(p)
�(c̃)

= j (x0 → x1)j (x1 → x2)j (x2 → x1)j (x1 → x0)

j (x0 → z)j (z → x2)j (x2 → x1)j (x1 → x0)
�(c̃)

= �(ex1,2)�(ex1,1)

�(fx1)
�(c̃).

Thanks to (16),
�(ex1,2)�(ex1,1)

�(fx1 )
≤ 1. The proof that �(c̃) ≤ λ�(c) is the same as in point (a). �

We can now prove Theorem 3.2. Let us first state a simple Lemma we shall need, without proving it.

Lemma 4.5. Let P,Q be two probability measures on the same probability space and let Q � P, and M = dQ
dP

. If A

is an event such that Q(A) > 0 then

dQ[·|A]
dP[·|A] = M1A

P(A)

Q(A)
.

Thanks to the last two Lemmas, the proof is then an almost straightforward application of Girsanov’s theorem.

Proof. Let Px be a random walk of intensity j . We denote Sx
λ the random walk with constant intensity λ started at x.

The density of Px w.r.t. Sx
λ is given by (see [31] or [18] for a more ad-hoc version) is

dPx

dSx
λ

= exp

(
N1∑
i=1

log j (XTi−1 → XTi
) − log(λ) −

∫ 1

0
j̄ (t,Xt−) + 4λdt

)
,

where N1 is the total number of jumps up to time 1 and Ti is the ith jump time. Since Px is a CSRW, the term∫ 1
0 j̄ (t,Xt−) dt is constant. Moreover, if we call w(X) the random sequence (X0 → XT1 → ·· · → XTN1

) and use
Lemma 4.5 we obtain

dPxx

dSxx
λ

∝ 1{X0=X1=x}�j

(
w(X)

)
λ−�(w(X)).

But then, since on the event {X0 = X1 = x}, w(X) is a closed walk, we can apply Lemma 4.4 to conclude that the
density has a global upper bound on path space. The conclusion immediately follows from Lemma A.4, which we
prove in the Appendix. �

Proof of Theorem 3.3
Let us first specify the assumptions we make on the graph.

Assumption 4.2. The directed graph (X ,→) satisfies the following requirements:

(1) A is symmetric: (x → y) ∈A⇒ (y → x) ∈A.
(2) It is connected: for any x, y ∈ X 2 there exist a directed walk from x to y.
(3) It is of bounded degree.
(4) It has no loops, meaning that (z → z) /∈ A for all z ∈X .
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Let us prove the correspondent of Lemma 4.4. In this case the key ey step of the proof is to show that any given closed
walk w can be suitably transformed to another closed walk w′ by using only the elements of C in such a way that
�j(w) ≤ λδ�j (w).

Lemma 4.6. Let j satisfy the assumptions of Theorem 3.3. Then we have:

∀c ∈ C, �j (c) ≤ (λδ)�(c).

Proof. Again, to ease the notation, we write � instead of �j . The proof goes by induction on the number of elements
in E∗ that intersect c. To this aim we define

n(c) = ∣∣{e ∈ E∗ : e ∩ c �=∅
}∣∣.

Base step. If n(c) = 0, then c ⊆ T . It is easy to see that c can be decomposed into closed walks of length two. The
conclusion then follows from (18).

Inductive step. Consider any e ∈ E∗ such that e ∩ c �=∅. Then there are two possible cases:
|e ∩ c| = 2. In this case c can be seen as the concatenation of e with two other closed walks, say c1, c2. Clearly,

n(c1), n(c2) < n(c), and therefore applying the inductive hypothesis and (18) we have:

�(c) = �(c1)�(e)�(c2) ≤ (δλ)�(c1)+2+�(c2) = (λδ)�(c).

|e ∩ c| = 1. In this case, let us call z → z′ the only arc in e ∩ c. By recalling the definition of ce at point (e) of
Definition 3.2, we have two subcases:

ce = cz→z′ . We define cx0→z, cz′→x0 and wz′→z through the following identities

c = (
cx0→z → z → z′ → cz′→x0

)
, ce = (

z → z′ → wz′→z

)
. (55)

Finally, we also define c̃ as follows

c̃ = (
cx0,z → w∗

z′→z → cz,x0

)
,

where w∗
z′→z

is the reversed walk (see Definition 4.2). Let us remark that, by definition of cz→z′ , we have
wz′→z ⊆ T . But then also w∗

z′→z
⊆ T because T is a symmetric graph. Therefore n(c̃) = n(c) − 1. We have

�(c) = �(cx0→z)j
(
z → z′)�(cz′→x0)

= �(cx0→z)�
(
w∗

z′→z

)
�(cz′→x0)

j (z → z′)
�(w∗

z′→z
)

= �(c̃)
j (z → z′)
�(w∗

z′→z
)
.

Using the inductive hypothesis on �(c̃) we have that �(c̃) ≤ (λδ)�(c̃) = (λδ)�(c)+�(ce)−1. If we could show that
j (t,z→z′)
�(w∗

z→z′ )
≤ (λδ)1−�(ce), then we would be done. For this aim, let us observe that by concatenating w∗

z′→z
with

z′ → z we obtain cz′→z. Then:

j (z → z′)
�(w∗

z′→z
)

= j (z → z′)j (z′ → z)

�(w∗
z′→z

)j (z′ → z)
= �(e)

�(cz′→z)
. (56)

Finally, we observe that

�(cz′→z) = 1

�(cz→z′)

∏
e′∈E,

e′∩ce �=∅

�
(
e′) = 1

�(ce)

∏
e′∈E,

e′∩ce �=∅

�
(
e′),
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which combined with (56) gives:

j (z → z′)
�(w∗

z′→z
)

= �(ce)

{ ∏
e′∈E,e′ �=e
e′∩ce �=∅

�
(
e′)}−1

,

where we used the fact that, by construction, e is the only element of E which intersects ce and is not in T .
Using the upper bound for ce in (19) the conclusion follows.

ce = cz′→z. Let cx0→z, cz′→x0 be defined as in (55), wz→z′ and c̃ be defined by

ce = (
z′ → z → wz→z′

)
, c̃ = (cx0→z → wz→z′ → cz′→x0).

We have

�(c) = �(cx0→z)j
(
z → z′)�(cz′→x0)

= �(cx0→z)�(wz→z′)�(cz′→x0)
j (z → z′)
�(wz→z′)

= �(c̃)
j (z → z′)
�(wz→z′)

= �(c̃)
j (z → z′)j (z′ → z)

�(wz→z′)j (z′ → z)

= �(c̃)
�(e)
�(ce)

.

By construction, n(c̃) = n(c) − 1, so we can use the inductive hypothesis together with the lower bound in (19)
to obtain

�(c̃)
�(e)
�(ce)

≤ (λδ)�(c)+�(ce)−1(λδ)1−�(ce) = (λδ)�(c),

from which the conclusion follows. �

The proof of Theorem 3.3 can be deduced from that of Theorem 3.2 by replacing Sx
λ with the random walk defined

at (21), Lemma A.4 with Lemma A.3 (which we prove in the Appendix) and Lemma 4.4 with Lemma 4.6. Therefore,
we shall not repeat it.

On the feasibility of (15), (16) and (18), (19)

In this section we address the problem of how to construct jump intensities satisfying (15), (16) (resp. (18), (19)).
Lemma 4.7 (resp. 4.8) shows that for any arbitrary assignment of positive numbers ϕ on E ∪F (resp. C) there exists at
least an intensity j satisfying Assumption 4.1 and such that �j ≡ ϕ on E ∪F (resp. C). It is then possible to construct
the desired jump intensities in two steps. W.l.o.g. we restrict to the square lattice, the procedure being identical in the
case of a general graph.

Step 1. Construct a positive function ϕ on E ∪ F such that (15), (16) hold when replacing �j with ϕ. It is rather
easy to see that this is possible.

Step 2. Construct j such that �j = ϕ on E ∪F . The existence of such j (and a way of constructing it) is proven
in Lemma 4.7.
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Square lattice
Although we are interested in the lattice case, Lemma 4.7 is easier to prove for a general planar graph. Planar graphs
have a privileged set of closed walks: the faces, which are uniquely determined once a planar representation is fixed.
We choose the representation in such a way that both arcs corresponding to an element of E lie on the same segment
in the planar representation.5 As in the case of the square lattice, the set of clockwise oriented faces of a planar graph
is denoted F .

Lemma 4.7. Let (X ,→) be a planar directed graph satisfying Assumption 4.2. Let ϕ : F ∪ E → R+ be bounded
from above. Then there exists at least one j : A→ R+ fulfilling Assumption 4.1 and such that

∀f ∈F, �j (f) = ϕ(f), ∀e ∈ E, �j (e) = ϕ(e). (57)

If X is a finite set, then j is unique. If X is infinite, then all intensities k :A →R+ with such properties can be written
in the form

k
(
z → z′) = exp

(
φ
(
z′) − φ(z)

)
j
(
z → z′),

where h = exp(φ) is a positive solution to:

∀z ∈ X ,
∑

z′:z→z′
j
(
z → z′)h(

z′) = vh(z),

for some constant v > 0.

Proof. In a first step we show the existence of a function j : A → R+ such that (57) is satisfied. The proof goes by
induction on the number of arcs of (X ,→). The base step is trivial. For the inductive step, consider two clockwise
orient faces f1, f2 which are adjacent. This means that there exist e0 = (x → y → x) ∈ E such that (x → y) ∈ f1
and (y → x) ∈ f2. Consider the graph (X ,→1) obtained by removing e0 from (X ,→). This planar graph instead of
the two faces f1 and f2 has a single face h, which corresponds to the union of f1 and f2. On this (X ,→) we define
ψ : E \ e0 ∪F \ {f1, f2} ∪ h as follows:

∀e ∈ E \ e0, ψ(e) = ϕ(e),

∀f ∈F \ {f1, f2}, ψ(f) = ϕ(f), (58)

ψ(h) = ϕ(f1)ϕ(f2)

ϕ(e0)
.

By the inductive hypothesis there exist j :A \ e0 → R+ such that

∀e ∈ E \ e0, �j (e) = ψ(e) (59)

and

∀f ∈F \ {f1, f2} ∪ {h}, �j (f) = ψ(f). (60)

Consider f1 = (x → y → x2 → ·· · → x) and f2 = (y → x → y2 → ·· · → y). We extend j to e0 by defining

j (x → y) = ϕ(f1)

[
j (y → x2)

�(f1)−1∏
i=2

j (xi → xi+1)

]−1

,

j (y → x) = ϕ(f2)

[
j (x → y2)

�(f2)−1∏
i=2

j (yi → yi+1)

]−1

.

(61)

5This is because we do not consider the walks of length two as faces. Faces have length at least three.
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We claim that j as constructed here satisfies (57). For f �= f1, f2 and e �= e0, this is granted by (59) and (60). Using
(61), it is seen that �j(f1) = ϕ(f1) and �j(f2) = ϕ(f2). Therefore we only need to check e0. Using (58), the inductive
hypothesis and what we have just proven we arrive at

�j(e0) = �j(f1)�j (f2)

�j (h)
= ϕ(f1)ϕ(f2)

ψ(h)

(58)= ϕ(e0),

which is the desired conclusion. This concludes the proof that an intensity j : A → R+ satisfying (57) exists. To
complete the proof we show that it is possible to modify j in such a way that both Assumption 4.1 and (57) are
satisfied. For this purpose, we observe that if j is an intensity satisfying (57), all other intensities k :A →R+ fulfilling
(57) are of the form

k
(
z → z′) = exp

(
φ
(
z′) − φ(z)

)
j
(
z → z′),

where φ : X → R is some potential on X . For Assumption 4.1 to hold, there must exist v > 0 such that k̄(z) ≡ v for
all z ∈X . Let us define h := exp(φ). What we look for is then a pair h,v such that

∀z ∈ X ,
∑

z′:z→z′
j
(
z → z′)h(

z′) = vh(z), h(z) > 0 ∀z ∈X .

Since w.l.o.g X ⊆ N, if we define the matrix K = (km,n)m,∈N with km,n := k(m → n), we can rewrite the former
equation as

K · h = vh, v > 0, h > 0.

If X is finite, the existence of a solution is ensured by the standard Perron Frobenius Theorem. The uniqueness
statement is a consequence of the fact that the eigenspace of the positive eigenvalue has dimension 1. If X is infinite
and countable, we can use Corollary of Theorem 2 at page 1799 of [43]. We are entitled to use the Corollary because
(X ,→) is of bounded degree. �

General graph
Lemma 4.8. Let (X ,→) be a graph fulfilling Assumption 4.2, T be a tree and C be a T -basis of the closed walks.
Let ϕ : C → R+ be bounded from above. Then there exist j :A →R+ such that Assumption 4.1 is satisfied and

∀c ∈ C, �j (c) = ϕ(c). (62)

If X is a finite set, then j is unique. If X is infinite, then all other functions k :A→ R+ fulfilling Assumption 4.1 and
(62) can be written in the form

k
(
z → z′) = exp

(
φ
(
z′) − φ(z)

)
j
(
z → z′),

where h = exp(φ) is a positive solution to:

∀z ∈ X ,
∑

z′;z→z′
j
(
z → z′)h(

z′) = vh(z)

for some constant v > 0.

Here is the proof of Lemma 4.8.

Proof. We only show that we can construct j : A → R+ such that (62) is satisfied. The proof that j can be turned
into an intensity k satisfying Assumption 4.1 can be done following Lemma 4.7 with almost no change. For any
e = (x → y → x) ∈ E \ E∗ (i.e. e ⊆ T ), we choose exactly one among (x → y) and (y → x) and set the value of
j (x → y) to an arbitrary positive value. Then we set j (y → x) = ϕ(e)

j (x→y)
. Next, for any e ∈ E∗ we let x → y be the
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arc of e such that cx→y = ce. We observe that cx→y can be written as (x → y → py→x) for some simple walk py→x

from y to x whose arcs are in T . The value of j has been already set on py→x : therefore we can then set j (x → y) as
ϕ(ce)

�j (py→x)
. Finally, we set j on y → x by j (y → x) := ϕ(e)/j (x → y). It is then easy to check that the intensity j so

constructed satisfies (62). �

Appendix

The appendix is organized as follows: we first recall the main tools used in the proof of Theorem 2.1. Then we prove
the two Lemmas A.1 and A.2, which are needed in the proof of Theorem 3.1. Finally, we prove Lemma A.4, which is
part of the proof of Theorem 3.2.

About Theorem 2.1

We recall two of the main ingredients used in the proof. The first one is the integration by parts (duality) formula
proved in [45, Th.4.1] to characterize bridges of Brownian diffusions. Here, we report a slightly simplified version of
the formula, which still suffices for the scopes of this paper.

Theorem A.1 (Integration by parts formula). Let Px be law of

dXt = −∇U(t,Xt ) dt + dBt , X0 = x.

Let Q be a probability measure on C([0,1],Rd) satisfying the regularity hypothesis (A0), (H1), (H2) of Theorem 4.1
in [45]. Then Q is the bridge Pxy if and only if Q((X0,X1) = (x, y)) = 1 and the formula

EQ(DhF ) = EQ

(
F

∫ 1

0
ḣ(t) · dXt

)
+EQ

(
F

∫ 1

0
∇U (t,Xt ) · h(t) dt

)
holds for any simple functional F and any direction of differentiation h which is continuous, piecewise linear and
satisfies the loop condition

h(1) = h(0) = 0.

Let us recall that by a simple functional we mean a functional that can be written in the form ϕ(Xt1 , . . . ,Xtk ) for some
C∞

b (Rd×k) function ϕ and finitely many t1, . . . , tk . The directional Fréchet derivative DhF of the simple functional F

is defined as usual:

DhF = lim
ε→0

ϕ(Xt1 + εh(t1), . . . ,Xtk + εh(tk)) − ϕ(Xt1, . . . ,Xtk )

ε

=
k∑

j=1

d∑
i=1

∂
x

j
i

ϕ(Xt1, . . . ,Xtk )hi(tj ).

The second ingredient is a Theorem proved in [10] that gives a quantitative version of the statement that marginaliza-
tion preserves log-concavity. We follow the presentation of [48].

Theorem A.2 (Preservation of strong log-concavity). Let F : Rm+n → R+ be log concave and let �(·) be a positive
quadratic form on Rm+n. Write w = (v, v′), with z ∈ Rm+n, v ∈ Rm, v′ ∈ Rn. Let F(w) be jointly log-concave on
Rm+n and define on Rn,

G
(
v′) =

∫
Rm F (w) exp(−�(w))dv∫

Rm exp(−�(w))dv
. (63)

Then v′ �→ G(v′) is log-concave.

For the proof we refer to [48, Theroem 13.3, pag. 204] or [10, Theorem 4.3].
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Proof of Lemma A.1

Lemma A.1. Let h be defined by (37) and ψ be as in (36). Then

∀τ > 0, ψτ ≤ hτ .

Proof. Consider ε > 0 and define hε
τ as the unique solution of

τ∂τ h
ε
τ − hε

τ = τ
(
exp(τ ) − 1

)
, ∂τ h

ε
0 = ρ(f ) + ε. (64)

Then ηε
0 := ψ0 − hε

0 = 0 satisfies:

τ∂τ η
ε
τ − ηε

τ ≤ 0, ∂τ η
ε
0 = −ε.

Since ηε is continuously differentiable, we have that T > 0, where T is defined as

T := inf
{
τ > 0 : ∂τ η

ε
τ = 0

}
. (65)

Assume that T < +∞. Then, at T , we have

T ∂τ η
ε
T︸︷︷︸

=0

− ηε
T ≤ 0 ⇒ ηε

T ≥ 0. (66)

But this is impossible since ηε
0 = 0, ∂τ η

ε
τ < 0 for all τ < T . Therefore ∂τ η

ε
τ < 0 for all τ > 0. Since ηε

0 = 0, we also
have that ψε

τ < 0 for all τ > 0. Therefore, as the choice of ε was arbitrary,

∀τ > 0, ψτ ≤ inf
ε>0

hε
τ = hτ . �

Proof of Lemma A.2

Lemma A.2.

Eπ�(g) −
(

� + 1

k + 1
�1/(k+1)

)
≤ Eρ�(f ).

Proof. By construction of g, see (51) we can w.l.o.g assume that f (0) = g(0) = 0. By (11), we have that ρ�(n) ≤
�
n
ρ�(n − 1).6 Therefore, using the 1-Lipschitzianity of f and f (0) = 0:

Eρ�(f ) ≥ −
+∞∑
n=1

nρ�(n) ≥ −�

+∞∑
n=1

ρ�(n − 1) ≥ −�.

By construction, g is 1/(k + 1) Lipschitz, and w.l.o.g. g(0) = 0. Moreover, it is easy to see from the definition of π�

given at (41), that we have π�(n) ≤ �1/k+1

n
π�(n − 1). Using all this:

Eπ�(g) ≤ 1

k + 1

+∞∑
n=1

nπ�(n) ≤ �1/k+1

k + 1

+∞∑
n=1

π�(n − 1) ≤ �1/k+1

k + 1
.

The proof is complete. �

6Actually, the quotient ρ�(n)/ρ�(n − 1) is of the order 1/nk+1. However, here it suffices to consider 1/n.
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Lemmas A.3 and A.4

Lemma A.3. Let (X ,→) be a graph satisfying Assumption 4.2 and let Sx
λ be the simple random walk defined at (21).

Then

logSxx
λ

(
d(Xt , x) ≥ R

) ≤ −2R logR + R
[
2 + 2 log

(
λt(1 − t)

) + 3 log(1/δ − 1)
] + o(R).

Proof. Let x, y ∈ X . Recall that the maximum outer degree is 1/δ For simplicity, we set 1/δ =: η. We first show that
for some c1 > 0

Sx
λ(Xt = y) ≤ c1

(λt)d(x,y)

d(x, y)! (η − 1)d(x,y). (67)

To this aim we define Wk as the set of walks of length k which begin at x and end at y. We have, by conditioning on
the total number of jumps up to time t ,

Sx
λ(Xt = y) = exp(−λt)

+∞∑
k=d(x,y)

(λt)k

k!
∑

w∈Wk

λ−k · �j(w).

It is rather easy to see that λ−k�j (c) ≤ 1. Moreover, the cardinality of Wk can be bounded above by η(η − 1)k−2.
Using these two observations

Sx
λ(Xt = y) ≤ c0 exp(−λt)

+∞∑
k=d(x,y)

(λt)k

k! (η − 1)k (68)

for some constant c0. A standard argument based on Stirling’s formula shows that the sum appearing in (68) can be
controlled with its first summand, i.e. there exists a constant c1 independent from d(x, y) such that

Sx
λ(Xt = y) ≤ c1

(λt)d(x,y)

d(x, y)! (η − 1)d(x,y), (69)

which proves (67). Since there cannot be more than (η − 1)R vertices at distance R from x, we get that, using twice
(69),

Sxx
(
d(Xt , x) = R

) = 1

Sx
λ(X1 = x)

∑
y:d(x,y)=R

Sx
λ(Xt = y)S

y
λ(X1−t = x)

≤ c2
(λ2t (1 − t))R

R!2 (η − 1)3R

for some c2 > 0. Therefore:

Sxx
(
d(Xt , x) ≥ R

) ≤ c2

+∞∑
k=R

(λ2t (1 − t))k

k!2 (η − 1)3k.

Using again a standard argument with Stirling formula as we did in (68), we obtain

Sxx
(
d(Xt , x) ≥ R

) ≤ c3
(λ2t (1 − t))R

R!2 (η − 1)3R

for some c3 > 0. The conclusion follows from Stirling’s formula, which allows to write logR! = R logR − R +
o(R). �
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Lemma A.4. Let Sx
λ be the constant speed random walk on the square lattice defined by

j (x → x + v1) = j (x → x + v2) ≡ λ.

Then

logSxx
λ

(
d
(
Xt,ESxx

λ
(Xt )

) ≥ R
) = −2R logR + [

log
(
4λ2t (1 − t)

) + 2
]
R + o(R). (70)

Lemma A.4 is not directly implied by Lemma A.3. However, one can derive its proof by going along the same lines
of the proof of Lemma A.3 and use the exact computations that can be performed for the square lattice.
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