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Abstract. We study a biased random walk on the interlacement set of Zd for d ≥ 3. Although the walk is always transient, we can
show, in the case d = 3, that for any value of the bias the walk has a zero limiting speed and actually moves slower than any power.

Résumé. Nous étudions la marche biaisée sur un entrelac aléatoire de Z
d avec d ≥ 3. Nous montrons que la marche est transiente

mais que, dans le cas d = 3, elle est sous-ballistique pour toutes les valeurs du biais et que ses déplacements sont inférieurs à
n’importe quel polynôme.
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1. Introduction

The model of random interlacements was recently introduced by Sznitman in [21], and detailed accounts can be
found in the survey [6] and the recent book [7]. Loosely speaking, random interlacements in Z

d , d ≥ 3, is a stationary
Poissonian soup of (transient) doubly infinite simple random walk trajectories. The level of random interlacements is
an additional parameter u > 0 entering the intensity measure of the Poisson process; as the value of u increases, more
trajectories are added. The sites of Zd that are not touched by the trajectories constitute the vacant set Vu and the
union of trajectories is the interlacement set Iu, so that Vu = Z

d \ Iu. It is possible to show that Iu is connected for
all u > 0 a.s., cf. Theorem 1.5 of [5]. In fact, it is possible to construct the random interlacements simultaneously for
all u > 0 in such a way that Vu1 ⊂ Vu2 if u1 > u2. We refer to the above references for the formal definitions (we will
give a constructive definition in the next section).

Describing the geometrical properties of the interlacement set can be done in several ways. One of the methods
which has been popular in last decade is to study random walks in random environments (RWRE). See [19,20,22]
and [2] for further references on the topic. In this paper we aim to do just that by considering the biased random walk
on the interlacement set.

This is not the first study of RWRE on the interlacement set. Indeed it has been shown in [14] that the invariance
principle holds for the simple random walk on the interlacement cluster; by which we mean that “typical” displacement
of the particle by time n is of order

√
n and that the rescaled process converges to a Brownian motion. This result is

similar to what is observed for the simple random walk on the supercritical percolation cluster [3,12,15].
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In the context of the biased random walk on supercritical percolation clusters in Z
d , it has been shown that the walk

experiences a phase transition from a positive-speed phase (for small biases) to a zero-speed regime for large biases in
which the walk moves as nγ for some γ < 1 (see [8]). We show that, for biased random walks on the interlacement set
of Z3, the situation is radically different in the sense that for any biases the walk has zero-speed and actually moves
slower than any power in n.

1.1. The model

For x, y ∈ Z
d , let x · y be the usual scalar product, and we denote by e1, . . . , ed the unit vectors of the canonical

orthonormal basis. Also, ‖ · ‖ stands for the Euclidean norm. We write x ∼ y whenever ‖x − y‖ = 1, i.e., x and y are
neighbours in Z

d .
Let us denote by P SRW

x the law of the d-dimensional simple random walk (Sn,n ≥ 0) started from x.
For any A ⊂ Z

d let (using the convention min∅= +∞)

TA = min{k ≥ 1 : Sk ∈ A} (1.1)

be the hitting time of A, and write Tx := T{x} for x ∈ Z
d . We define the harmonic measure

eA(x) = P SRW
x [TA = ∞]1A;

the capacity of A is defined by

cap(A) =
∑
x∈A

eA(x),

see e.g. Section 6.5 of [10].
Let us give a “constructive” description of random interlacements at level u observed on a finite set A. Namely,

• take a Poisson(u cap(A)) number of particles;
• place these particles on the boundary of A independently, with law eA = ((capA)−1eA(x), x ∈ A);
• let the particles perform independent simple random walks (by transience, each walk only leaves a finite trace

on A).

As a consequence of the above, we obtain the following useful identity:

P
[
A ⊂ Vu

]= exp
(−u cap(A)

)
for all finite A ⊂ Z

d . (1.2)

For fixed u, we also define P0[·] := P[·|0 ∈ Iu] to be the law of the interlacement set conditioned to contain the origin.
Now, we define the biased random walk on the interlacement cluster, which is the main object of study of this

paper. Fix a parameter β > 1 (which accounts for the bias). Let us define the conductances on the edges of Zd in the
following way:

c(x, y) =
{

βmax(x·e1,y·e1), if x, y ∈ Iu, x ∼ y,

0, otherwise,

and we call the collection of all conductances ω = {c(x, y), x, y ∈ Z
d} the random environment. Consider a random

walk (Xn,n ≥ 0) in this environment of conductances; i.e., its transition probabilities are given by

qω(x, y) := Pω[Xn+1 = y|Xn = x] =
{

c(x,y)∑
z c(x,z)

, if x, y ∈ Iu, x ∼ y,

0, otherwise
(1.3)

(the superscript in Pω indicates that we are dealing with the “quenched” probabilities, i.e., when the underlying graph
is already fixed). As usual, we abbreviate Pω

x [·] := Pω[·|X0 = x]. For the sake of cleanness, we work under the measure
P0; then, we are able to choose the starting point X0 to be the origin. Let us also define P[·] = ∫

Pω
0 [·]dP0 to be the

averaged (a.k.a. annealed) probability measure for the walk starting at the origin.
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1.2. Results

The first result is that the random walk is transient.

Theorem 1.1. For d ≥ 3, we have

lim
n→∞‖Xn‖ = ∞, P-a.s.,

for any fixed drift β > 1 and any intensity parameter u > 0 of the random interlacements.

Remark 1.2. We believe that limn→∞ ‖Xn · e1‖ = ∞ P-a.s. for d ≥ 3. The natural way of proving this would be to
adapt the proof of Lemma 1.1 in [18]. However, this proof requires an estimate on the number of left-right crossings
(i.e., in the direction e1) of a large box, which seems to be difficult to obtain in the case of random interlacement (this
estimate is used in equation (1.35) of [18]). We decided not to pursue this in this paper, to be able to focus on the
surprising behaviour of the speed.

Our main result is that, in three dimensions, the biased random walk on the interlacement cluster has subpolynomial
speed:

Theorem 1.3. For d = 3, we have

lim
n→∞

ln‖Xn‖
lnn

= 0, P-a.s.,

for any fixed drift β > 1 and any intensity parameter u > 0 of the random interlacements.

As mentioned in the Introduction, this picture is very different from the one we would get by considering the simple
random walk on a supercritical percolation cluster in Z

d . As will become clear in the course of the proof, the above
result is genuinely three-dimensional. Indeed, using the same methods as for our main result, it is possible to show
that, in dimensions d ≥ 4, for large values of the bias the walk still has zero speed (see Theorem 1.4 below); but we
conjecture that if β is close enough to 1, then the biased random walk should have positive speed just as in the case
of the biased random walk on percolation clusters (see [8]). However, it is unclear how to prove this result because
of the difficulties to build a regeneration structure for the walk, due to the lack of the independence property of the
environment.

Theorem 1.4. Let d ≥ 4, and let ε > 0 be arbitrary. Then, for all large enough β > 1 (depending on d and ε) it holds
that

lim sup
n→∞

ln‖Xn‖
lnn

≤ ε, P-a.s.

Let us emphasize that, apart from the very last section, this paper is entirely devoted to the case d = 3.

2. Preliminary estimates

We start by introducing some further notation. Given a set V of vertices of Zd we denote by |V | its cardinality. We
define the inner boundary of V as

∂V = {x ∈ V : y /∈ V,x ∼ y}.
For any x ∈ Z

3 and L ≥ 1, we define the ball centered in x and with radius L as

Bx(L) = {
z ∈ Z

3 : ‖z − x‖ < L
}
.

The positive constants (not depending on n) are denoted by γ, γ ′, γ1, γ2, γ3 etc.
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2.1. Connectedness and exit probabilities

2.1.1. Exit probabilities of large cones
For L1,2,3 ≥ 0 let us denote

Cyl(−L1,L2,L3) = {
z ∈ Z

3,−L1 ≤ z · e1 ≤ L2, |z · ei | ≤ L3 for i ∈ {2,3}}
and

∂+Cyl(−L1,L2,L3) = {
z ∈ Z

3, z · e1 = L2, |z · ei | ≤ L3 for i ∈ {2,3}}.
For any x ∈ Z

3, we write Cylx(−L1,L2,L3) = {y ∈ Z
3, y = x + z with z ∈ Cyl(−L1,L2,L3)} and similarly for

∂+Cylx(−L1,L2,L3).

Lemma 2.1. For any α ∈ (0,1] there exists δ > 0 such that for any fixed u > 0 and all large enough n

P0
[
0 is connected to ∂+Cyl

(−nα,n,nα
)

in Iu ∩ Cyl
(−nα,n,nα

)]
≥ 1 − exp

(−γ nδ
)
. (2.1)

Proof. Let ρu(x, y) be the graph distance (in Iu) between x, y ∈ Iu, and let z0 = 0, z1 = k1e1, z = k2e1, . . . be the
sites of Iu lying on the ray {ke1 : k ∈ Z+} (where, naturally, 0 < k1 < k2 < · · · ). It holds that the three-dimensional
capacity of a “segment” {ke1 : k ∈ [0, h]} is of order h

lnh
(cf. e.g. Proposition 2.4.5 of [9]), so, for fixed u we obtain

from (1.2) that

P0[km+1 − km > h] ≤ exp

(
−γ ′ h

lnh

)
. (2.2)

Write, with small enough ε > 0

P0
[
ρu(zm, zm+1) > s

]
≤ P0[km+1 − km > εs] + P0

[
there exists y ∈ Bkme1(εs) such that ρu(kme1, y) > s

]
≤ exp

(
−γ ′ε s

ln s

)
+ γ ′′ exp

(−γ1s
δ
)
, (2.3)

where we used (2.2) to bound the first term and Theorem 1.3 of [5] to bound the second one.
Then, observe that the event in (2.1) contains the event{

ρu(zm, zm+1) ≤ nα

3
for all m = 0, . . . , n

}
.

The claim now follows from (2.3) and the union bound. �

Define the cone (see Figure 1)

CM(n) = {
x ∈ Z

3, |x · e1| ≤ n, |x · ei | ≤ M(n − x · e1) for i ∈ {2,3}}, (2.4)

and its “positive” and “negative” boundaries

∂−CM(n) = {
x ∈ Z

3, x · e1 = −n, |x · ei | ≤ M(n − x · e1) for i ∈ {2,3}},
∂+CM(n) = ∂CM(n) \ ∂−CM(n).

First, we prove that it is very probable that the walker exits large cones on the positive side:



Biased random walks on the interlacement set 1345

Fig. 1. The cone CM(n).

Lemma 2.2. For any M < ∞, we have

P[T∂−CM(n) < T∂+CM(n)] ≤ γ exp
(−γ nδ

)
,

for some δ < 1.

Proof. Let us consider the event

Gn := {
0 is connected in Iu ∩ Cyl

(−nα,n,nα
)

to ∂+Cyl
(−nα,n,nα

)}
.

For any environment ω, we may use equation (4) in [4] (or also exercise 2.36 in [11]) to see that

P ω
0 [T∂−CM(n) < T∂+CM(n)] ≤ Cω(0 ↔ ∂−CM(n))

Cω(0 ↔ ∂CM(n))
, (2.5)

where Cω stands for the effective conductance in the (weighted) interlacement graph restricted on CM(n). In an
environment ω ∈ Gn, we know that there is a simple path from 0 to ∂+Cyl(−nα,n,nα) within Cyl(−nα,n,nα) and
because of our definition of CM(n) this path has to cross ∂CM(n) before reaching ∂+Cyl(−nα,n,nα). This implies
that for ω ∈ Gn there exists a path P , composed of v0 = 0, v1, . . . , vi0 such that

(1) vi0 ∈ ∂CM(n),
(2) i0 ≤ |Cyl(−nα,n,nα)| ≤ γ n3,
(3) vj · e1 ≥ −nα for any j ≤ i0.
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We recall that Rayleigh’s monotonicity principle (see Section 2.4 of [11]) implies that closing edges in a graph
decreases all effective conductances. Hence, we know that the effective conductance Cω(0 ↔ ∂CM(n)) can be lower
bounded by the conductance of the path P which is at least cn−3β−nα

(where α < 1) since it is composed of at
most γ n3 edges in series which have conductance at least cβ−nα

. Hence, in an environment ω belonging to the event
appearing in Lemma 2.1, we have

Cω
(
0 ↔ ∂CM(n)

)≥ cn−3β−nα

. (2.6)

Rayleigh’s monotonicity principle also implies that merging vertices together increases effective conductances. Let us
merge all vertices of CM(n) \ ∂−CM(n) (which contains the origin) into 
1 and all vertices of ∂−CM(n) into 
2; we
can use Rayleigh’s monotonicity principle to see that Cω(0 ↔ ∂−CM(n)) ≤ Cω(
1 ↔ 
2). The latter can be upper
bounded by seeing that 
1 and 
2 are linked by at most γ n3 edges of conductances at most γβ−n. Hence

Cω(0 ↔ ∂−CM(n)) ≤ γ n3β−n. (2.7)

Putting together (2.5), (2.6) and (2.7) we see that, for any ω belonging to the event appearing in Lemma 2.1, we
have

Pω
0 [T∂−CM(n) < T∂+CM(n)] ≤ γ n6β−n+nα

,

for some α < 1. Hence, by using Lemma 2.1, we see that for some δ < 1 we have

P[T∂−CM(n) < T∂+CM(n)] = P
[
Gc

n

]+ E
[
Gn,Pω

0 [T∂−CM(n) < T∂+CM(n)]
]

≤ γ ′ exp
(−γ nδ

)
,

which implies the result. �

Let us introduce

�n =
n2/3⋂
i=1

{T∂+CM(in1/3) < T∂−CM(in1/3)}; (2.8)

we can then use the union bound and Lemma 2.2 to see that

P
[
�c

n

]≤ γ ′
n2/3∑
i=1

exp
(−γ

(
in1/3)δ). (2.9)

2.1.2. Proof of transience
Let us define

K(n) = {
x ∈ Z

3, x · e1 > −n, |x · ei | ≤ n + x · e1 for i ∈ {2,3}}.
Lemma 2.3. There exists δ > 0 such that for any fixed u > 0 and for all n large enough

P0
[
0 is connected to infinity in Iu ∩ K(n)

]≥ 1 − exp
(−γ nδ

)
. (2.10)

Proof. This can be proved quite similarly to Lemma 2.1. Using the same notation, observe that the event in (2.10)
contains the event{

ρu(zm, zm+1) ≤ n + m

3
for all m ≥ 0

}
.

Again, the claim follows from (2.3) and the union bound. �
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Fig. 2. A trap for the random walk X. The solid lines/curves are the interlacements; the trajectory of the RWRE X is not shown on the picture.

Let us now prove Theorem 1.1.

Proof. Using Lemma 2.3 and Borel–Cantelli we can show that P0-a.s. there exists N(ω) such that 0 belongs to an
infinite simple path lying in Iu ∩ K(N(ω)).

For any k ≥ 0, this path will contain at most γ k2 edges of conductances γβk−N(ω)+1. This means, using Rayleigh’s
monotonicity principle and the law of resistances in series (see Chapter 2 of [11]), we can prove that

Rω(0 ↔ ∞) ≤ γ
∑
k≥0

k2βN(ω)−k+1 < ∞.

This means that the resistance from 0 to ∞ is finite, which means that the random walk is transient (see Chapter 2
of [11]). �

2.2. Traps

Let us remind the reader that we are working in three dimensions.
As usual, the method for proving that the biased random walk has zero speed is showing that it will encounter a

trap, i.e., a part of the environment where the random walk will stay for a long time. For a biased random walk, this
consists in looking for dead-ends in the direction e1 from, once the biased walk has entered such a dead-end, it will
have to fight against the drift to exit the trap.

From now on we assume that M is not too small, say, M ≥ 10. Let us introduce the “quiver” set

Q(x,M,n) = ∂Cylx
(
0, �M lnn� + 1, (lnn)3/4), (2.11)

where �·� stands for the integer part. Also, for x ∈ Z
3 we denote xentry = xentry(x,M,n) = x +� 3

M
lnn�e1 and xtrap =

xtrap(x,M,n) = xentry + �M lnn�e1. Observe that xentry ∈ Q(xentry,M,n) and xtrap is strictly inside Q(xentry,M,n).
Our goal is to find a trapping structure for the walk. Let us denote T (x,M,n) the event that there exists a trap at x

(see Figure 2), defined in the following way: let

T (1)(x,M,n) = {
Iu intersects Q

(
xentry,M,n

)
only at xentry},

T (2)(x,M,n) =
{
x + je1 ∈ Iu, for all 0 ≤ j ≤

⌊
3

M
lnn

⌋}
,
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T (3)(x,M,n) = {
xtrap ∈ Iu

}
,

and we define T (x,M,n) = T (1)(x,M,n) ∩ T (2)(x,M,n) ∩ T (3)(x,M,n).
Not focusing, for now, on technicalities, the key part of the event T (x,M,n) is that, not far away from x in the

direction of the drift, there is a structure in Iu creating a dead end for the biased random walk.
Such a structure can appear if, for example

(1) all the walk traces forming Iu except one avoid Q(xentry,M,n);
(2) simultaneously, the one remaining walk’s trace has a behavior such that the two last conditions present in the

definition of T (x,M,n) are satisfied.

These two types of events are the ones we are going to study in order to understand the likelihood of finding traps.
Recall that P SRW

x stands for the law of simple random walk (Sn,n ≥ 0) started from x. Let σ1 = min{k > Txentry :
Sk = xtrap} be the time of the first visit to xtrap after visiting xentry, σ2 = min{k > Txentry : Sk = xentry} be the moment
when xentry is visited for the second time, and σ3 = min{k > Txentry : Sk ∈ Q(xentry,M,n)} be the moment when
Q(xentry,M,n) is first visited after Txentry . Define the event

Ex,M,n =
{
Si = x + ie1, i = 1, . . . ,

⌊
3

M
lnn

⌋
, σ1 < σ2 = σ3,

Sσ2+j = xentry − je1, j = 1, . . . ,

⌊
3

M
lnn

⌋}
; (2.12)

that is, the trajectory makes a loop that first goes straight from x to xentry, then goes to xtrap and returns to xentry

strictly inside Q(xentry,M,n), and then returns straight to x, see Figure 2.

Lemma 2.4. There is a constant γ > 0 such that

P SRW
x [Ex,M,n] ≥ n−γ /M (2.13)

for all large enough n.

Proof. Clearly, it holds that

P SRW
x

[
Sj = x + je1, Sσ2+j = xentry − je1, j = 1, . . . ,

⌊
3

M
lnn

⌋]
= 6−2� 3

M
lnn�, (2.14)

so it remains to find a lower bound on the probability that the trajectory behaves as it should inside Q(xentry,M,n).
Define

σ ′
1 = min

{
k ≥ 1 : Sk · e1 = xentry · e1 + �M lnn� −

⌊
1

M
lnn

⌋}
,

σ ′
2 = min

{
k ≥ 1 : Sk · e1 = xentry · e1 +

⌊
1

M
lnn

⌋}
.

Then, by the (strong) Markov property it holds that (recall that xentry ∈ Q(xentry,M,n))

P SRW
xentry [Txtrap < Txentry = TQ(xentry,M,n)]
≥ P SRW

xentry

[
σ ′

1 < TQ(xentry,M,n),
(
S1 − xentry) · e1 = 1

]
× P SRW

xentry

[
Txtrap − σ ′

1 ≤ 3

⌊
1

M
lnn

⌋
< TQ(xentry,M,n)|

(
S1 − xentry) · e1 = 1, σ ′

1 < TQ(xentry,M,n)

]
× P SRW

xtrap

[
σ ′

2 < TQ(xentry,M,n)

]
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× P SRW
xtrap

[
Txentry − σ ′

2 ≤ 3

⌊
1

M
lnn

⌋
< TQ(xentry,M,n)|σ ′

2 < TQ(xentry,M,n)

]
=: F1 × F2 × F3 × F4, (2.15)

F2 ∧ F4 ≥ 6−3� 1
M

lnn� (2.16)

(just follow a fixed path of length at most 3� 1
M

lnn� that leads to xentry or xtrap).

In order to estimate the other two terms in (2.15), denote S̃
(i)
k = Sk · ei , i = 1,2,3 and

S
(i)
k = S̃

(i)

θ
(i)
k

with θ
(i)
k = inf

{
j > θ

(i)
k−1, S̃

(i)
j − S̃

(i)
j−1 �= 0

}
,

initialized with θ
(i)
0 = 0. In words, S

(i)
k records the successive steps of the SRW S in the ith direction. Obviously, we

have that S(1), S(2) and S(3) are independent (the same is not true for S̃(i)).
Let T (i)’s be the corresponding hitting times defined analogously to (1.1). We then write

P SRW
0

[
T

(1)

�M lnn�−� 1
M

lnn� < M2 ln2 n,T
(1)

�M lnn�−� 1
M

lnn� < T
(1)
0

]
= P SRW

0

[
T

(1)

�M lnn�−� 1
M

lnn� < M2 ln2 n|T (1)

�M lnn�−� 1
M

lnn� < T
(1)
0

]
× P SRW

0

[
T

(1)

�M lnn�−� 1
M

lnn� < T
(1)
0

]
.

Clearly, the second term in the right-hand side of the above display is bounded below by 1/�M lnn�. As for the first
term, observe that formula (6) of [17] implies that the conditional expectation of the time the simple random walk
starting at 1 hits a ≥ 2, given that it hits a before hitting 0, is equal to (a2 − 1)/3. So, using Chebyshev’s inequality
for the probability of the complementary event, we see that the first term is bounded below by 2/3. Therefore, we
obtain that

P SRW
0

[
T

(1)

�M lnn�−� 1
M

lnn� < M2 ln2 n,T
(1)

�M lnn�−� 1
M

lnn� < T
(1)
0

]≥ 2

3M lnn
, (2.17)

which loosely speaking means that the first component has probability at least 2
3M lnn

to reach the right-hand side of
the quiver in time a time less than M2 ln2 n. Also, denote

τ (i) = min
{
k : ∣∣S(i)

k

∣∣= ⌊
(lnn)3/4⌋}

for i = 2,3. It holds that (see e.g. §21 of Chapter V of [16])

P SRW
[
τ (i) ≥ 1

4
M2 ln2 n

]
≥ exp

(−γ ′′M2(lnn)1/2), (2.18)

this means that the second and third coordinates have probability at least exp(−γ ′′M2(lnn)1/2) to stay confined in the
quiver for a time at least 1

4M2 ln2 n.
The last remaining step is to notice that by the law of large numbers the time-changes θ(i) are such that

P SRW
[
θ

(1)

M2 ln2 n
≤ 1

4
M2 ln2 n, θ

(2)
1
4 M2 ln2 n

>
1

8
M2 ln2 n, θ

(3)
1
4 M2 ln2 n

>
1

8
M2 ln2 n

]
≥ 1

2
,

since asymptotically 1/3 of the steps should be taken in any directions.
Since the time changes are independent of the walks S(j) we can use (2.17) and (2.18) to obtain that

F1 ∧ F3 ≥ 1

2
× 2

3M lnn
×
(

γ ′ exp(−γ ′′(lnn)1/2)

M lnn

)2

, (2.19)

and this concludes the proof of Lemma 2.4. �
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2.3. Finding traps in the interlacement set

First of all, we need to estimate the “cost” of having a trap in some fixed place.

Lemma 2.5. In three dimensions, we have cap(Q(x,M,n)) ≤ γM lnn
ln lnn

.

Proof. Abbreviate, for now, Q := Q(x,M,n) and m := lnn. Also, let g(x, y) be the Green’s function of the simple
random walk; it is well known that for all x, y ∈ Z

3

g(x, y) = g(y, x) = g(0, y − x) ≤ γ̂

1 + ‖x − y‖ (2.20)

for some positive constant γ̂ . Let us define the set of functions

�↓ =
{
ϕ ∈ R

Z
3 :
∑
y∈Q

g(x, y)ϕ(y) ≥ 1 for all x ∈ Q

}
.

Then it holds that

cap(Q) = inf
ϕ∈�↓

∑
x∈Q

ϕ(x), (2.21)

see Lemma 1.14 of [7].
Now, it is elementary to observe that for any x ∈ Q

∣∣{y ∈ Q : ‖x − y‖ ∈ [k, k + 1)
}∣∣≥ {

γ1k, for k = 1, . . . , �m3/4�
γ2m

3/4, for k = �m3/4� + 1, . . . , 1
2Mm.

From this, for any x ∈ Q we obtain

∑
y∈Q

1

‖x − y‖ ≥
1
2 Mm∑
k=1

|{y : ‖x − y‖ ∈ [k, k + 1)}|
k

≥ γ1m
3/4 + γ2

1
2 Mm∑

k=�m3/4�+1

m3/4

k

≥ γ3m
3/4 lnm,

so (recall (2.20)) a function ϕ that equals γ4
m3/4 lnm

on Q for large enough γ4, belongs to �↓ for all n large enough.

The claim of Lemma 2.5 now follows from (2.21) since |Q| is of order Mm7/4. �

One technical difficulty in proving that we regularly encounter traps is that we want to take into account the
information obtained from the past trajectory of the walk; indeed, correlations in the interlacement set have infinite
range. That is, we need to be able to work with the conditional law of the interlacement set, given that inside some
finite set the interlacement configuration is (partially or even completely) revealed. Next, we formulate a result from
[1] about the conditional decoupling for random interlacements. We also observe that the unconditional decoupling
from [13] is not enough in this situation.

With some abuse of notation, we denote by Iu
A the interlacement configuration on level u restricted on A, i.e., for

x ∈ A we write Iu
A(x) = 1 whenever x ∈ Iu.
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Proposition 2.6. Let u′ > u > 0, and let A1 = B0(r), A2 ⊂ Z
3 \ B0(r + s); assume that γ1s ≤ r ≤ γ2s for some fixed

γ1,2 > 0. Then, there are positive constants γ, γ ′ depending only on dimension, and a (measurable) set Gu′ ∈ {0,1}A2

such that

P
[
Iu

A2
∈ Gu′

]≥ 1 − exp
(−γ ′u′sd−2),

and for any increasing event E on the interlacements set intersected with A1, we have

P
[
E
(
Iu

A1

)|Iu
A2

]
1
{
Iu

A2
∈ Gu′

}
≤ (

P
[
E
(
Iu+u′

A1

)]+ γ exp
(−γ ′u′sd−2))1{Iu

A2
∈ Gu′

}
. (2.22)

Proof. This is an immediate corollary of Theorem 2.2 of [1]. �

The above decoupling result implies the following:

Lemma 2.7. For any M there exists a constant gM > 0 and a set G(x,M,n) of good environments on CM(n) such
that P0[G(x,M,n)] ≥ 1 − n−12 and, for Iu

CM(n)
∈ G(x,M,n)

P0
[
Q
(
xentry,M,n

)⊂ Vu|Iu
CM(n)

]≥ exp

(
−gM lnn

ln lnn

)
, (2.23)

for any x ∈ ∂+CM(n)

Proof. Indeed, let us first note that one can insert Q(xentry,M,n) inside a ball of radius M lnn in such a way that the
distance between this ball and CM(n) would be at least 2

M
lnn.

Then, use Proposition 2.6 with the increasing event {Q(xentry,M,n) ∩ Iu �=∅}, r = M lnn and s = 2
M

lnn.

Observe that one can choose a large enough u′ in such a way that the probability of the event (G(x,M,n))� would
be bounded above by any negative power of n.

An application of (1.2) together with Lemma 2.5 yields that for Iu
CM(n)

∈ G(x,M,n)

P0
[
Q
(
xentry,M,n

)∩ Iu �=∅|Iu
CM(n)

]≤ 1 − exp

(
−gM lnn

ln lnn

)
+ Cn−12,

which finishes the proof. �

The second important part for constructing a trap is to find an interlacement that actually creates the trap inside the
cylinder avoided by all the other walks. This is our aim for now. We need a result about “adding a loop to an existing
configuration”, which we now describe. Let A be a finite subset of Zd , d ≥ 3 (we formulate this result for general d

since it may be of independent interest). Fix any x0 ∈ A and let x0 = y0 ∼ y1 ∼ · · · ∼ ym = x0 be a nearest-neighbour
path that begins and ends in x0 and such that yk ∈ A \ ∂A for k = 0, . . . ,m. In the result below we need a finer control
of the random interlacements: let Lu(x) be the local time at site x at level u, that is, the sum of local (occupation)
times in x of all trajectories at level u. We denote by η ∈ {0,1,2, . . .}A a generic configuration of local times on A, and
by � the configuration “generated” by the above loop, i.e., �(x) =∑m

k=1 1{yk = x}. Write (η + �)(x) := η(x) + �(x),
and denote by Lu

A(x) the local time configuration on A ⊂ Z
d .

Lemma 2.8. For any η such that η(x0) = 1 we have

P
[
Lu

A = η + �
]≥ (2d)−mP

[
Lu

A = η
]

(2.24)

(recall that x0 is the initial vertex of the loop, and m is the number of steps in the loop).
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Proof. A trace on A is a finite sequence v = (v0, . . . , vs) of vertices of A such that either vi−1 ∼ vi or vi−1, vi ∈ ∂A

for all i = 1, . . . , s, and also v0, vs ∈ ∂A. For a trace v, define its weight as

pv =
s∏

j=1

P SRW
vj−1

[TA < ∞, STA
= vj ] × P SRW

vs
[TA = ∞];

observe that if vj−1 ∈ A\∂A then P SRW
vj−1

[TA < ∞, STA
= vj ] simply equals (2d)−1, and P SRW

vj−1
[TA < ∞, STA

= vj ] ≥
(2d)−1 in case vi−1 ∼ vi (the inequality is strict if both vi−1 and vi are on the boundary). For a finite sequence of
traces v = (v(1), . . . , v(|v|)) we define its total weight by

P[v] = e−u cap(A) (u cap(A))|v|

|v|!
|v|∏

k=1

eA(v
(k)
0 )

cap(A)
pv(k)

(in fact, one may cancel (cap(A))|v| in the above formula, but we prefer to write it this way to make it clearer that the
above equals the probability that v(k)’s are the traces left on A by the trajectories of random interlacements ordered
with respect to the u-coordinate). Write also

Lv(x) =
∑
k,j

1
{
v

(k)
j = x

}
,

so that Lv is the (total) local time of the traces of v, and observe that

P
[
Lu

A = η
]=

∑
v:Lv=η

P[v]. (2.25)

Next, for v such that Lv(x0) ≥ 1 let us define

k(v) = min
{
k : there exists j such that vk

j = x0
}

and

j(v) = min
{
j : v(k(v))

j = x0
}
.

Also, for such v define a sequence of traces

v̂ = (
v(1), . . . , v(k(v)−1), v̂(k(v)), v(k(v)+1), . . . , v(|v|)),

where

v̂
(k(v))
j =

⎧⎪⎨⎪⎩
v

(k(v))
j , if j ≤ j(v),

yi, if j = j(v) + i,0 < i ≤ m,

v
(k(v))
j−m , if j > j(v) + m;

in words, v̂ is obtained from v by inserting the loop at the first possible location. Now, by construction, it holds
that pv̂(k(v)) = (2d)−mpv(k(v)) (since the whole path lies in A \ ∂A), and so P[v̂] = (2d)−mP[v]. Now, Lv = η implies
Lv̂ = η + � so, using (2.25) and the fact that v �→ v̂ is an injection

P
[
Lu

A = η + �
]≥

∑
v:Lv=η

P[v̂] = (2d)−mP
[
Lu

A = η
]
,

which concludes the proof of Lemma 2.8. �
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Let A = CM(n + 3M lnn) so that Q(xentry,M,n) ⊂ A for all x ∈ ∂+CM(n), and, for a fixed ξ0 ∈ {0,1}CM(n) define

W
ξ0
1 = {

η ∈ {0,1,2, . . .}A : Lu(x) = 0 for all x ∈ Q
(
xentry,M,n

)
,

1
{
Lu(y) ≥ 1

}= 1
{
ξ0(y) = 1

}
for all y ∈ Iu

CM(n)

}
and

W
ξ0
2 = {

η ∈ {0,1,2, . . .}A : T (x,M,n) occurs on η,

1
{
Lu(y) ≥ 1

}= 1
{
ξ0(y) = 1

}
for all y ∈ Iu

CM(n)

}
.

Next, let � be the set of local times � of loops belonging to the event Ex,M,n, recall Lemma 2.4. Observe that, if
η ∈ W

ξ0
1 and � ∈ �, then η + � ∈ W

ξ0
2 , and also if η1 + �1 = η2 + �2 for η1,2 ∈ W

ξ0
1 and �1,2 ∈ �, then η1 = η2 and

�1 = �2. With these observations, we write for any ξ0 such that ξ0(0) > 0 and ξ0(x) > 0

P
[
T (x,M,n),Iu

CM(n) = ξ0
]=

∑
η∈Wξ0

2

P
[
Lu

A = η
]

≥
∑

η′∈Wξ0
1

∑
�∈�

P
[
Lu

A = η′ + �
]

≥
∑

η′∈Wξ0
1

P
[
Lu

A = η′]∑
�∈�

(2d)−|�|

≥ n−γ /M
P
[
Q
(
xentry,M,n

)
is vacant,Iu

CM(n) = ξ0
]

≥ n−γ /M exp

(
−gM lnn

ln lnn

)
P
[
Iu
CM(n) = ξ0

]
,

where the last inequality follows from Lemma 2.7 and the second-to-last one from Lemma 2.4. This implies that

P0
[
T (x,M,n)|Iu

CM(n), x ∈ Iu
CM(n)

]≥ n−γ /M, (2.26)

for any x ∈ ∂+CM(n).

3. Proofs of the main theorems

3.1. The biased random walk on the interlacement set in three dimensions has sub-polynomial speed

In this section we prove Theorem 1.3.
Consider a sequence of cones CM(jn1/3), j = 1, . . . , n2/3, and let τj = T∂CM(jn1/3), see Figure 3. Recall the defini-

tion of the “good” environment from Lemma 2.7, and define a decreasing sequence of events

Ĝk =
k⋂

j=1

⋂
x∈∂+CM(jn1/3)

G
(
x,M, jn1/3) (3.1)

for k ≤ n2/3; let also Ĝ := Ĝn2/3 . Observe that Lemma 2.7 implies that

P[Ĝ] ≥ 1 −
n2/3∑
k=1

M2(jn1/3)2 × (
jn1/3)−12 ≥ 1 − CM2n−3. (3.2)
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Fig. 3. On the proof of Theorem 1.3. There is a trap in front of Xτj−1 , but the walk manages to escape it; there is no trap in front of Xτj ; there is
again a trap in front of Xτj+1 and the walk finally gets caught there.

Next, let us define

ζ =

⎧⎪⎨⎪⎩
∞, on Ĝ,

j, on Ĝj \ Ĝj+1, if j < n2/3,

0, on Ĝ�
1 ,

and set formally τ0 = 0, τ∞ = ∞. We introduce another process X̂ in the following way: for k ≥ 0

X̂k =
{

Xk, for k ≤ τζ ,

Xτζ , for k > τζ ,

i.e., it is equal to the old process X until the process stays in the “good” cone CM(ζn1/3), and then is stopped. We
define also τ̂j = T̂∂CM(jn1/3), where T̂ ’s are the hitting times for X̂. Then, let us define a sequence of events

Ĥj =
{

�, on τ̂j = ∞ or when there exists k ≤ j such that X̂τ̂j
∈ ∂−CM(kn1/3),

{τ̂j+1 − τ̂j > n
1
3 M lnβ}, otherwise.

(3.3)

Let F̂τ̂j
be the sigma-algebra generated by X̂0, . . . , X̂τ̂j

.

We start by showing that when exiting a cone CM(jn1/3), conditionally on any type of past information which was
likely to occur, we have a decent chance of spending a lot of time in CM((j + 1)n1/3):

Lemma 3.1. Fix any M < ∞ and β > 1. We have for all j = 1, . . . , n2/3

P[Ĥj |F̂τ̂j
] ≥ n−2γ /M,

for all n large enough.
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Proof. Assume that x ∈ ∂+CM(jn1/3). In the following, we abbreviate xentry := xentry(x,M, jn1/3) and xtrap :=
xtrap(x,M, jn1/3). On the event T (x,M, jn1/3), we know that

(1) x + ke1 ∈ Iu, for 0 ≤ k ≤ � 3
M

lnn�;
(2) xentry is Iu-connected to xtrap inside Q(xentry,M, jn1/3);
(3) the connected component of xtrap in Iu \ xentry is finite.

In particular, the first property above implies

Pω
x

[
X1 = x + e1, . . . ,X� 3

M
lnn� = x +

⌊
3

M
lnn

⌋
e1

]
≥
(

β

β + 2d − 1

)� 3
M

lnn�
. (3.4)

Also on the event T (x,M, jn1/3), by the second and third property above, we know that the connected component
of xtrap in Iu \ xentry is finite and is adjacent to xentry. We denote by G the finite network formed by this connected
component and xentry. Let us also denote by PG the probability for the walk restricted on G.

On T (x,M, jn1/3) it is only possible to exit Q(xentry,M, jn1/3) through xentry; also, note that we defined traps in
such a way that from xentry the particle can jump only to the left or to the right, the jumps in the transversal directions
cannot happen since the corresponding sites are not in the interlacement set. Hence, the jump from xentry to the right
happens with probability β

β+1 , and we can write

Pω
xentry [Txtrap < TQ(xentry,M,jn1/3)] = β

β + 1
PG

xentry [Txtrap < Txentry ]. (3.5)

Using the notation πG(x) =∑
y∈G c(x, y) and CG for the effective conductance in G, we can use some standard

facts about electrical network theory (see e.g. (2.4) in [11]) to obtain that

PG
xentry [Txtrap < Txentry ] = CG(xentry ↔ xtrap)

πG(xentry)
,

and it is easy to see that πG(xentry) ≤ γβx·e1+� 3
M

lnn1/3� = γβx·e1+� 1
M

lnn� (recall that x is a site on ∂+CM(jn1/3)).
Furthermore, on T (x,M, jn1/3), there is a simple path linking xentry to xtrap of length at most γ (M lnn)3 edges all

with conductances at least βx·e1+� 1
M

lnn�. Rayleigh’s monotonicity principle then implies that

CG
(
xentry ↔ xtrap)≥ βx·e1+� 1

M
lnn�

γ (M lnn)3
,

so that

PG
xentry [Txtrap < Txentry ] ≥ γ (M lnn)−3.

The previous inequality along with (3.4) and (3.5) imply that on T (x,M, jn1/3)

Pω
x [Txtrap < T∂CM((j+1)n1/3)] ≥ n−γ /M. (3.6)

Moreover, on T (x,M, jn1/3), we know that starting from xtrap we need to reach xentry before we can exit CM((j +
1)n1/3)). Furthermore, we see by reversibility that

Pω
xtrap [Txentry < Txtrap ] = πG(xentry)

πG(xtrap)
Pω

xentry [Txtrap < Txentry ] ≤ γβ− M
3 lnn,

so the number of returns to xtrap before exiting CM((j + 1)n1/3)) is a geometric random variable of parameter at most

γβ− M
3 lnn. This means that the time to exit CM((j + 1)n1/3) is larger than a geometric random variable of parameter

at most γβ− M
3 lnn, so for some uniformly positive ε we have

Pω
xtrap

[
T∂CM((j+1)n1/3) ≥ βM lnn

]
> ε > 0.
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This result along with (3.6) and the Markov property implies that on any environment belonging to T (x,M, jn1/3)

Pω
x

[
T∂CM((j+1)n1/3) ≥ βM lnn

]≥ n−γ /M. (3.7)

Having dealt with the quenched probabilities, we move on. For any finite sequence x̃ = (x0, x1, . . . , xm) of sites in
Z

3 define

�ω(x̃) = Pω
x0

[X̂1 = x1, . . . , X̂m = xm].

Let x1, . . . , x be a sequence of sites in CM(jn1/3), and assume that x ∈ ∂+CM(jn1/3). Write

P[Ĥj |X̂1 = x1, . . . , X̂τj
= x]

= E0(Pω
0 [Ĥj |X̂1 = x1, . . . , X̂τj

= x]�ω(0, x1, . . . , x))

E0�ω(0, x1, . . . , x)

= E0(Pω
x [Ĥj ]�ω(0, x1, . . . , x))

E0�ω(0, x1, . . . , x)

≥ E0(Pω
x [Ĥj ]1{ω ∈ T (x,M, jn1/3)}�ω(0, x1, . . . , x))

E0�ω(0, x1, . . . , x)
. (3.8)

Note the following general fact: if ξ, η ≥ 0 are random variables, η is measurable with respect to a sigma-algebra A,
and E(ξ |A) ≥ γ1, then E(ξη) ≥ γ1Eη. Let Au

A be the sigma-algebra generated by the random interlacements of level
u on the set A ⊂ Z

3. Inequalities (2.26) and (3.7) imply that

E
(
Pω

x [Ĥj ]1
{
ω ∈ T

(
x,M, jn1/3)}|Au

CM(jn1/3)

)≥ n−2γ /M,

and, since �ω(0, x1, . . . , x) is clearly Au
CM(jn1/3)

-measurable, we finish the proof of Lemma 3.1 using (3.8) and the
above general fact. �

Lemma 3.2. There exists γ1 > 0 such that

P
[
T∂CM(n) ≥ n

1
3 M lnβ

]≥ 1 − n−γ1 .

Proof. First, observe that Lemma 3.1 implies that

P

[
n2/3⋂
j=1

Ĥ�
j

]
≤ exp

(−γ ′n
2
3 − γ

M
)

(3.9)

(indeed, we have n2/3 tries with success probability at least n−γ /M , independently of the past).
Now, recalling the notation of �n at 2.8, write

P
[
T∂CM(n) < n

1
3 M lnβ

]≤ P
[
T∂CM(n) < n

1
3 M lnβ,�n

]+ P
[
��

n

]
≤ E

(
Pω
[
T∂CM(n) < n

1
3 M lnβ,�n

]
1{Ĝ})+ P

[
Ĝ�]+ P

[
��

n

]
= E

(
Pω

[
n2/3⋂
j=1

Ĥ�
j

]
1{Ĝ}

)
+ P

[
Ĝ�]+ P

[
��

n

]

≤ P

[
n2/3⋂
j=1

Ĥ�
j

]
+ P

[
Ĝ�]+ P

[
��

n

]
,
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Fig. 4. Traps in higher dimensions (ε1,2 are supposed to be small enough). The shaded area corresponds to the already explored part of the
environment; •’s belong to the interlacement set, and ◦’s are vacant (the states of other sites can be arbitrary).

and we use (2.9), (3.2), and (3.9) to conclude the proof of Lemma 3.2. �

We now finish the proof of Theorem 1.3. Indeed, Lemma 3.2 together with Borel–Cantelli’s lemma imply that

P
[
T∂CM(2k) ≥ 2

k
3 M lnβ for almost all k

]= 1. (3.10)

So, for all large enough t ∈ [2 k
3 M lnβ,2

k+1
3 M lnβ) we have Xt ∈ CM(2k+1). Since y ∈ CM(n) implies ‖y‖ ≤ Mn, we

obtain

lim sup
t→∞

ln‖Xt‖
ln t

≤ lim sup
k→∞

(k + 1) ln 2 + lnM

1
3kM lnβ ln 2

= 3

M lnβ
P-a.s.,

which proves Theorem 1.3 since M is arbitrary.

3.2. Dimension d ≥ 4

In this section we prove Theorem 1.4.
The proof of this result is very similar to the proof of Theorem 1.3, so we only indicate where changes have to be

made. The point is that, in dimensions d ≥ 4, it costs too much to have a trap as on Figure 2. Instead, we use a simpler
kind of traps, see Figure 4. When the particle faces a yet unexplored region, we just ask that there is a straight segment
of sites belonging to the interlacement set of length lnn times a small constant, and the rightmost part of this segment
is surrounded by vacant sites, as shown on the picture. It can be shown that the capacity of the “quiver” of the vacant
sites is approximately γ ε2 lnn, so the cost of having this quiver in the environment is roughly n−γ ′ε2 , that is, power in
n, but with a small power. Then, it can be easily seen that the cost of having the straight segment of occupied sites is
similar, roughly n−γ ′′(ε1+ε2). Also, the decoupling argument works even better because of the sd−2 in Proposition 2.6.
So, it does not cost more than n−γ ′′(ε1+ε2) to have a trap like this each time when the particle faces the unexplored
region. Now, regardless of our choice of ε1,2, it is clear that if β is very large, then the walk will spend a lot of time
(say, at least n2) in the trap with probability at least n−γ1 , where γ1 can be made arbitrarily small by decreasing ε1,2.
This shows the result.
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