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Abstract. We consider the Boolean model Z on Rd with random compact grains of bounded diameter, i.e. Z := ⋃
i∈N(Zi +

Xi) where {X1,X2, . . . } is a Poisson point process of intensity t and (Z1,Z2, . . . ) is an i.i.d. sequence of compact grains (not
necessarily balls) with diameters a.s. bounded by some constant. We will show that exponential decay holds in the sub-critical
regime, that means the volume and radius of the cluster of the typical grain in Z have an exponential tail. To achieve this we adapt
the arguments of (A new proof of the sharpness of the phase transition for Bernoulli percolation on Zd (2015) Preprint) and apply
a new construction of the cluster of the typical grain together with arguments related to branching processes.

In the second part of the paper, we obtain new lower bounds for the Boolean model with deterministic grains. Some of these
bounds are rigorous, while others are obtained via simulation. The simulated bounds come with confidence intervals and are much
more precise than the rigorous ones. They improve known results (J. Chem. Phys. 137 (2012) 074106) in dimension six and above.

Résumé. Nous considérons le modèle Booléen Z sur Rd avec des grains compacts aléatoires de diamètres bornés, c’est-à-dire Z :=⋃
i∈N(Zi + Xi) où {X1,X2, . . . } est un processus de Poisson d’intensité t et (Z1,Z2, . . . ) est une suite i.i.d. de grains compacts

(non nécessairement des boules) de diamètres p.s. bornés par une constante. Nous montrons une décroissance exponentielle dans
le régime sous-critique, ce qui veut dire que le volume et le rayon du cluster d’un grain typique dans Z a une queue exponentielle.
Pour cela, nous adaptons des résultats de (A new proof of the sharpness of the phase transition for Bernoulli percolation on Zd

(2015) Preprint) et appliquons une nouvelle construction du cluster d’un grain typique avec des arguments issus des processus de
branchement. Dans la seconde partie du papier, nous obtenons de nouvelles bornes inférieures pour le modèle booléen avec grains
déterministes. Certaines des ces bornes sont rigoureuses, alors que d’autres sont obtenues par simulation. Les bornes obtenues par
simulation sont fournies avec des intervalles de confiance et sont beaucoup plus précises que celles obtenues rigoureusement. Elles
améliorent les résultats connus (J. Chem. Phys. 137 (2012) 074106) en dimension 6 et plus.
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1. Introduction

Percolation was introduced by Broadbent and Hammersley in the late fifties as a model on the d-dimensional lattice.
During the eighties Menshikov [11] and Aizenman and Barsky [2] proved that the model exhibits a sharp phase
transition in all dimensions d ≥ 2. However, both proofs where a little involved and it was difficult to adapt them to
other percolation models. Recently Duminil-Copin and Tassion [5] found an astonishingly simple and elegant proof
of the sharp phase transition. We will transfer this proof to continuum percolation.

In the continuum percolation model introduced by Hall [6] we attach a random compact set (grain) to each point of
a Poisson process on Rd and study the connectivity properties of the covered region. There are two books, by Penrose
[13] and by Meester and Roy [10], that cover a lot of the theory, but deal mostly with ball shaped grains. In the setup
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where all grains are unit balls, a discretization argument was applied in Penrose’s book to obtain the sharp phase
transition. The generalization to random grains of arbitrary shape is a novelty in this paper. We will now define the
model rigorously.

Let Cd be the set of nonempty compact subsets of Rd that contain the origin equipped with the Hausdorff metric
and Q a probability measure on Cd . Let ξt := {(X1,Z1), (X2,Z2), . . . } be a Poisson point process on the particle
space � := Rd × Cd with intensity measure tλd ⊗ Q, where λd is the d-dimensional Lebesgue measure and t ≥ 0.
This corresponds to an independently marked Poisson process on Rd with intensity t and mark distribution Q. We
will say that a particle (x,K) ∈ � has location x and grain K . The well known properties of the Poisson process
imply that we do not lose generality by considering only grains that contain the origin.

However, we will always assume that there is a radius R ∈ R such that Q is concentrated on grains contained in
the ball BR of radius R centered at the origin (in the 2-dimensional case, this assumption might be relaxed; see [1]).
This is crucial for our proof to work.

We write N(�) for the set of simple locally finite counting measures on �. Each element η = ∑τ
i=1 δ(xi ,Ki) ∈

N(�), τ ∈ N ∪ {∞} is identified with its support {(xi,Ki)|i ∈ N, i ≤ τ }. That means the notations η ∩ A and η|A are
employed simultaneously (η|A shall denote the restriction of the measure to the set A).

The union of particles

η∪ :=
⋃
i∈N

(Ki + xi) (1.1)

is closely related to the graph G(η) := (V ,E) with vertex set V := {xi |i ∈ N} and edge set E such that two distinct
locations xi, xj are adjacent iff (Ki + xi)∩ (Kj + xj ) 	=∅, i.e. iff the corresponding particles overlap. In this way the
connected components of the Boolean model ξ∪

t correspond to the connected components of G(ξt ) if Q is concentrated
on the connected sets (this is true in most cases, but we will not need this assumption).

We want to study the connected component (cluster) of a typical particle of ξt in G(ξt ) which is (due to the well
known properties of the Palm distribution of Poisson processes, which can be found in [14]) the same as studying
the cluster of the origin in G(ξt + δ(0,Z0)) where Z0 ∼ Q is independent of ξt . Hence we define the zero cluster
C0 := C0(t) as the set of particles (x,K) ∈ ξt for which x is connected to 0 in G(ξt + δ(0,Z0)). For D1,D2 ⊂ Rd and
μ = {(xn,Kn)|n ∈ N} ∈ N(�), we denote by {D1 ↔ D2 in μ} the event that there is a path (xa1 , . . . , xan) in G(μ)

with Ka1 + xa1 ∩ D1 	= ∅ and Kan + xan ∩ D2 	= ∅. We write {D1 ↔ ∞ in ξt } for the event that D1 is intersected by
an infinite cluster of G(ξt ) and observe that this is a.s. equal to

⋂
n∈N{D1 ↔ Bc

n in ξt }.
For a finite set of particles C ⊂ � we call

ρ(C) := max
x∈C∪

‖x‖2 (1.2)

the radius of C. We denote by Br(x) the Euclidean ball centered in x ∈Rd of radius r and define Br := Br(0).
We recall the definition of the critical intensity

tc := sup
{
t ≥ 0|P[∣∣C0(t)

∣∣ = ∞] = 0
}

(1.3)

and point out that under our assumption Z0 ⊂ BR a.s. it is easy to show that tc > 0. This is due to a simple coupling
of the model with the model where a.s. Z0 = BR . However, if the grains do not contain a small ball with positive
probability, it is possible that tc = ∞ (see [6] for a more elaborate version of these statements). But as there are also
interesting grain distributions with lower dimensional grains (e.g. randomly rotated line segments in the plane), we do
not want to exclude this case. Our following main result is unaffected by that.

Theorem 1.1. For t < tc there are constants c1, c2 > 0 depending on t , such that

P
[
ρ
(
C0(t)

) ≥ r
] ≤ e−c1r , r ≥ 0,

P
[∣∣C0(t)

∣∣ ≥ r
] ≤ e−c2r , r ≥ 0.
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Moreover, E|C0(tc)| = ∞ and for t > tc

P[BR ↔ ∞ in ξt ] ≥ t − tc

t
,

P
[∣∣C0(t)

∣∣ = ∞] ≥ t − tc

t2λd(B2R)
.

The structure of the paper is as follows. In Section 2 we recall the tools needed to work with Poisson processes
and discuss a basic algorithm for the construction of C0. In Section 3 we show the exponential decay of the tail of
ρ(C0) and |C0| in the subcritical regime by constructing C0 in a new way and using a comparison with a branching
process. We will also show the mean-field lower bound P[|C0(t)| = ∞] ≥ t−tc

t2λd(B2R)
for the percolation function in the

supercritical regime. This is done by an adaptation of the arguments in [5]. In the fourth and fifth section we use these
results to obtain new lower bounds for the critical intensity tc in the model where the grains are a.s. balls of radius
one.

2. Preliminaries

To work with the Poisson process ξt we need two well known tools. The first one is the Mecke-equation for Poisson
processes which can be found in [8, Thm 4.1]. Let f : N(�) × � → [0,∞) be measurable. Then

E
∑

(x,K)∈ξt

f (ξt , x,K) = t

∫
Cd

∫
Rd

E
[
f (ξt + δ(x,K), x,K)

]
dxQ(dK). (2.1)

Let A ⊂ N(�) be measurable with respect to the usual σ -algebra (see [14, Chapter 3]). We say that the event A is
determined by a set D ⊂ � if for all η1, η2 ∈ N(�) with η1|D = η2|D we have

η1 ∈ A ⇔ η2 ∈ A. (2.2)

The second important relation is a Margulis–Russo type formula for Poisson processes, see e.g. [7]. Let D ⊂ � be
such that (λd ⊗Q)(D) < ∞ and let A be an event that is determined by D. Then

∂P[ξt ∈ A]
∂t

=
∫
Cd

∫
Rd

E
[
1A(ξt + δ(x,K)) − 1A(ξt )

]
dxQ(dK). (2.3)

A thorough treatment of the Poisson process can also be found in [8].
In addition to these tools, we will heavily use the independence properties of the Poisson process which we will

recall briefly. Let D,D(1),D(2) ⊂ � such that D(1) ∪· D(2) = D and let (ξ
(n)
t )n∈N0 be an i.i.d. sequence of Poisson

processes with the same distribution as, but independent of ξt . Then clearly ξ
(1)
t |D(1) + ξ

(2)
t |D(2)

d= ξt |D . This remains
true, even if D(1) ⊂ D is a random set independent of (ξ

(1)
t , ξ

(2)
t , ξt ) and D(2) := D \ D(1).

Hence, given D ⊂ � and a measurable function f mapping counting measures on � to measurable subsets of �,
we obtain that

ξt
d= ξ

(1)
t |D + ξ

(2)
t |Dc (2.4)

d= ξ
(1)
t |D + ξ

(2)
t |

f (ξ
(1)
t |D)\D + ξ

(3)
t |

(f (ξ
(1)
t |D)∪D)c

. (2.5)

This corresponds to an algorithmic construction of the Poisson process in the following way. First we generate all the
particles in the region D and afterwards we generate the particles in Dc. We might do the latter generation again in
two steps by splitting Dc into two parts. However, this splitting may depend on the particles already generated (in D).
Clearly this procedure may also be iterated, i.e. (f (ξ

(1)
t |D)∪D)c in (2.5) maybe split again depending on the first two

summands.
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We will use this reasoning (including lots of iterations) to justify several ways of constructing ξt . All these ways are
described algorithmically rather than by writing down f explicitly for each iteration. The most basic and important
way has already been used by Penrose [12] and we recall it to prepare the reader for the more refined ones that come
up later.

Assume for the moment (and for simplicity) that all grains are a.s. equal to the ball B1 and that t < λd(B2)
−1. In

this case it is enough to construct ηt := {Xi |i ∈ N} ⊂ Rd . We start by generating ηt on B2(0). This set is chosen, since
it contains the locations x (and only those) for which B1(x) intersects the typical ball at the origin B1(0). Afterwards,
we pick one of the generated particles, call it (x1,B1) and generate ηt on B2(x1) ∩ B2(0)c which is the part of B2(0)c

where balls would intersect B1(x1). Then we pick again one of the in B2(0) or B2(x1) generated particles (x2,B1)

with x2 	= x1 and generate ηt on B2(x2)∩B2(x1)
c ∩B2(0)c . We go on with this until all generated particles have been

picked once. This happens a.s. as the expected number of new particles in each iteration is dominated by a Poisson
random variable with expected value tλd(B2) < 1. Say, that we had n iterations so far, then in the last step, we generate
ηt everywhere else, i.e. on the set (

⋃n
i=0 B2(xi))

c where x0 := 0. It is clear, that by this algorithm C0 = ⋃n
i=0(xi,B1).

Hence

ηt
d= η

(0)
t |B2 +

n∑
i=1

(
η

(i)
t |

B2(xi )\(⋃i−1
j=0 B2(xj ))

) + η
(n+1)
t |(⋃n

j=0 B2(xj ))c (2.6)

and

ξt ∪ (0,B1)
d= C0(t) ∪ {

(x,B1)|x ∈ η
(n+1)
t ,B1(x) ∩ C0(t)

∪ =∅
}
. (2.7)

It is not hard to derive the exponential tails of |C0| and ρ(C0) for t < λd(B2)
−1 with this algorithm. To this end, we

observe the natural tree structure imposed on the locations x0, . . . , xn. If a location xi is generated by the point process
η

(j)
t , i.e. if xi ∈ η

(j)
t |

B2(xj )\(⋃j−1
k=0 B2(xk))

, then we say xi is a child of xj . This results in a tree T with root x0. The size

of T is equal to |C0| and the depth of T times two is an upper bound for ρ(C0) as a parent and a child node of T are
at a distance of at most 2 due to the overlap of the corresponding balls.

To obtain a bound on the size and depth of T we observe, that

η
(i)
t |

B2(xi )\(⋃i−1
j=0 B2(xj ))

⊂ η
(i)
t |B2(xi ). (2.8)

Hence there is a coupling between T and a Galton–Watson tree TGW where the number of offsprings is Poisson
distributed with parameter E[ηt (B2)] = tλd(B2) < 1 such that T is a subtree of TGW. It is well known, that the depth
and size of such a Galton–Watson tree have exponential tails (see [3] for a comprehensive treatment of branching
processes).

3. A sharp phase transition

For D ⊂Rd we write

[D] := {
(x,K) ∈ �|(K + x) ∩ D 	=∅

}
(3.1)

for the set of particles that intersect D (this is a subset of � not of the Poisson process). We also define the set

∂D := [D] ∩ [
Dc

]
(3.2)

that contains the particles that intersect D as well as Dc and the set

D◦ := � \ [
Dc

]
(3.3)

of particles that are contained in D.
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The heart of the proof in [5] is the study of a functional ϕ on subsets S of Zd containing the origin. The functional
is equal to the expected number of open edges in the edge-boundary of S that are connected to the origin in S. The
proper counterpart of ϕ in our model is defined for each measurable, bounded S ⊂Rd with BR ⊂ S by

ϕt (S) := E
∑

(x,K)∈ξt

1
{
(x,K) ∈ ∂S,BR ↔ K + x in ξt ∩ S◦} (3.4)

= t

∫
Cd

∫
Rd

1
{
(x,K) ∈ ∂S

}
P
[
BR ↔ K + x in ξt ∩ S◦]dxQ(dK). (3.5)

This is the expected number of particles that “cross the boundary of S” and are connected to BR by particles contained
in S. We proceed as in [5] by defining a “new” critical intensity

t̃c := sup
{
t ≥ 0|∃S ∈ B

(
Rd

)
bounded : BR ⊂ S,ϕt (S) < 1

}
. (3.6)

Theorem 3.1. The “new” critical intensity has the following properties:

(i) For t < t̃c there are constants c1, c2 > 0 depending on t such that

P
[
ρ
(
C0(t)

) ≥ r
] ≤ e−c1r , r ≥ 0, (3.7)

P
[∣∣C0(t)

∣∣ ≥ r
] ≤ e−c2r , r ≥ 0, (3.8)

(ii) for t = t̃c,

E
∣∣C0(t)

∣∣ = ∞, (3.9)

(iii) for t > t̃c,

P[BR ↔ ∞ in ξt ] ≥ t − t̃c

t
, (3.10)

P
[∣∣C0(t)

∣∣ = ∞] ≥ t − t̃c

t2λd(B2R)
. (3.11)

In particular, tc = t̃c .

Proof. To prove (i), let t < t̃c and let S ⊂Rd be measurable, bounded, with ϕt (S) < 1 and BR ⊂ S.
When we explained Penrose’s algorithm in Section 2 in the special case of fixed balls B1 as grains, we observed that

|C0| is a.s. finite for t < λ(B2)
−1. We will now refine this approach such that it is applicable to the whole subcritical

regime t < t̃c and random grains instead of fixed balls.
Before going into technical details, we want to give an informal description how we construct the cluster C0 in our

modification of Penrose’s algorithm. After generating the grain Z0 we explore the cluster of Z0 in S◦ (in the same
way as in the original algorithm). Then we generate all particles on ∂S that are connected to Z0 in S◦. We pick one
of these grains (x,K) that wasn’t picked before and repeat the procedure with S being replaced by S + x except
that we generate our Poisson process only once everywhere. We repeat this until all grains had been picked once (see
Figure 1).

To formalize this let (ξ
(n)
t )n∈N0 be an i.i.d. sequence of Poisson processes on � with intensity measure tλd ⊗Q. We

start by explaining, how to adapt Penrose’s algorithm to random grains. Our starting point is the typical particle (0,Z0)

at the origin. First we generate the particles intersecting Z0. That means we make the split ξt
d= ξ

(0)
t |[Z0] + ξ

(1)
t |[Z0]c .

If we generated no new particle in [Z0] we only have to generate ξt on [Z0]c . Otherwise, we pick one of the generated
particles (x1,K1) and generate ξt on [K1 + x1] ∩ [Z0]c . If there are particles left that have not been picked yet, we
pick another one (x2,K2), x2 	= x1 and generate ξt on [K2 + x2] ∩ [K1 + x1]c ∩ [Z0]c . We repeat this procedure until
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Fig. 1. The first steps of the new algorithm to construct C0 where Q has probability mass .5 on each of two ellipses. In (I) the grain Z0 at the origin
is constructed. In (II) the cluster of (0,Z0) in S◦ is explored and called C0. In (III) the particles in ∂S that intersect C0 are generated and added to
C0. (IV) shows in green the translated version of S where the steps (b) and (c) of the algorithm are repeated.

every particle has been picked once. Then we generate ξt on the remaining part of �. Defining K0 := Z0 and x0 := 0,
this leads to

ξt
d= ξ

(0)
t |[Z0] +

n∑
i=1

(
ξ

(i)
t |[Ki+xi ]\[⋃i−1

j=0 Kj +xj ]
) + ξ

(n+1)
t |[⋃n

j=0 Kj +xj ]c (3.12)

and

ξt ∪ (0,Z0)
d= C0(t) ∪ {

(x,K) ∈ ξ
(n+1)
t |(x,K) /∈ [

C0(t)
∪]}

(3.13)

in the very same way we obtained (2.6) and (2.7).
We define, what it means “to explore the cluster of a particle (x0,K0) in a set D ⊂ �” (this happens several times

during the course of the algorithm). Assume we already generated particles on E ⊂ � \ D during the course of the
algorithm, one of which was (x0,K0). Then we do the above expansion starting with (x0,K0) instead of (0,Z0) but
we only add particles from D to the cluster. Formally this leads to

ξt
d= ξE + ξ

(0)
t |[K0+x0]∩D∩Ec +

n∑
i=1

(
ξ

(i)
t |[Ki+xi ]∩[⋃i−1

j=0 Kj +xj ]c∩D∩Ec

)
(3.14)

+ ξ
(n+1)
t |([⋃n

j=0 Kj +xj ]c∪Dc)\E, (3.15)

where ξE stands for the particles generated up to this point. Applying this, we use the following refined version of the
algorithm explained above:

1. Let Q be an empty queue of particles.
2. Let R := � be the remaining part of �, i.e. the part where ξt has not been generated yet.
3. Generate Z0 and append (0,Z0) to the end of Q.
4. If Q is not empty, then do the following:

(a) Remove the first particle (y,L) from Q.
(b) Explore the cluster of (y,L) in (S + y)◦ ∩R and write Cy for the set of all newly generated particles in this

step.
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(c) Set R =R \ [L + y ∪ Cy∪].
(d) Generate ξt on [Cy∪] ∩ ∂(S + y) ∩ R. Hence, all particles are generated that “cross the boundary of S + y”

and that intersect a particle of Cy .
(e) Append all newly generated particles of step (d) to Q and also add them to Cy .
(f) Set R =R \ ([Cy∪] ∩ ∂(S + y)).

5. Generate ξt on R.

We write (y0,L0), . . . , (yn,Ln) for the particles that are removed from Q during the algorithm. The definition of
Cy implies that for all i = 0, . . . , n the particle (yi,Li) is not contained in Cyi . We claim that

C0 = {
(0,Z0)

} ∪
n⋃

i=0

Cyi . (3.16)

On the one hand, it is obvious from the algorithm that any particle which is generated in any but the very last step
(step 5) is connected to Z0. On the other hand, for each particle (z,M) that is generated we eventually generate ξt on
[M + z] even though this might be split into [M + z] ∩ D◦ (during an exploration in 4(b)) and [M + z] ∩ ∂D (during
the generation of crossing particles in 4(d)) for some D which is a translate of S. The property BR ⊂ S ensures in this
case that [M + z] ∩ [D]c is always empty, hence we do not forget to generate a neighbour of (z,M).

Equation (3.16) enables an analysis similar to the one at the end of Section 2. There is a natural tree structure on
the particles (yi,Li), i = 0, . . . , n. If a particle (yi,Li) was removed from Q in step 4(a) then all particles generated
in step (d) of this iteration are the children of (yi,Li). This results in a tree T with root (y0,L0). The depth and the
size of T relate nicely to |C0| and ρ(C0). If (yi,Li) and (yj ,Lj ) are a mother and child pair of T , then ‖yi − yj‖ ≤
supx∈S ‖x‖ + R as Lj + yj has to intersect S + yi . Hence

ρ(C0) ≤ depth(T )
(

sup
x∈S

‖x‖ + R
)
. (3.17)

Moreover, we have Cy ⊂ ξt |[S+y] and hence (3.16) implies that |C0| is stochastically dominated by

1 +
size(T )∑

i=1

∣∣ξ (i)
t |[S+yi ]

∣∣.

Hence, the proof of (i) is easy, if we can ensure exponential tails for the size and the depth of T . To this end,
we observe that the number of children of a particle (y,L) is less than |ξt |∂(S+y)|. Further observe, that the particles
generated in step (d) are a subset of

{
(x,K) ∈ ξt |(x,K) ∈ ∂(S + y),BR(y) ↔ K + x in ξt ∩ (S + y)◦

}
.

This implies, that the expected number of children is less or equal to ϕt (S) which is less than 1. Hence, like in Penrose’s
algorithm, T may be seen as a subtree of a Galton–Watson tree with an offspring distribution that has exponential tails
and an expected value of less than 1. As mentioned in Section 2 the basic theory of branching processes implies that
in this case the size and the depth of T have exponential tails too.

To prove (ii) we observe that due to [7, Theorem 3.1] ϕt (S) is an analytic and hence continuous function in t for a
fixed and bounded S. It follows that the set of parameters t where there is a bounded set S ∈ B(Rd) such that BR ⊂ S

and ϕt (S) < 1 is open in the interval [0,1]. We deduce that for any such S we have ϕt̃c
(S) ≥ 1 and hence

E
∣∣C0(t̃c)

∣∣ = E
∑

(x,K)∈ξt̃c

1{Z0 ↔ K + x in ξt̃c
}

≥
∞∑

n=1

E
∑

(x,K)∈ξt̃c

1
{
(x,K) ∈ ∂B3nR,Z0 ↔ K + x in ξt̃c

}
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≥
∞∑

n=1

ϕt̃c
(B3nR)

= ∞.

We prove assertion (iii) with the help of equation (2.3) applied to the event {BR ↔ Bc
r in ξt ∩ [Br ]} for r > R. This

yields

∂P[BR ↔ Bc
r in ξt ∩ [Br ]]
∂t

=
∫
Cd

∫
Rd

E
[
1
{
BR ↔ Bc

r in (ξt + δ(x,K)) ∩ [Br ] but not in ξt ∩ [Br ]
}]

dxQ(dK).

Let Ur be the set of particles in ξt that are connected to Bc
r in ξt ∩ [Br ]. Then a simple case-by-case analysis shows,

that

∂P[BR ↔ Bc
r in ξt ∩ [Br ]]
∂t

=
∫
Cd

∫
Rd

E
[
1
{
BR ↔ K + x in ξt ∩ [

Bc
r ∪ U∪

r

]c
,BR /∈ [

U∪
r

]
,K + x ∈ ∂

(
Bc

r ∪ U∪
r

)}]
dxQ(dK).

Applying the algorithm, that lead to (3.13) starting with ∂Br instead of [Z0], we obtain

ξt ∩ [Br ] d= Ur ∪ {
(x,K) ∈ ξ

(n+1)
t ∩ [Br ]|(x,K) /∈ [

U∪
r

]}
. (3.18)

Hence, we condition on U∪
r (denoting its distribution by PU∪

r
) and observe that conditioned on the event {U∪

r = A}
the particles in ξt ∩ [Bc

r ∪ U∪
r ]c are distributed like ξ

(1)
t ∩ [Bc

r ∪ A]c . Using this, the resulting independence and the
definition of ϕt , we obtain

∂P[BR ↔ Bc
r in ξt ∩ [Br ]]
∂t

=
∫
Cd

∫
Rd

∫
E

[
1
{
BR ↔ K + x in ξ

(1)
t ∩ [

Bc
r ∪ A

]c
,BR /∈ [A],

K + x ∈ ∂
(
Bc

r ∪ A
)}|U∪

r = A
]
PU∪

r
(dA)dxQ(dK)

=
∫ ∫

Cd

∫
Rd

P
[
BR ↔ K + x in ξ

(1)
t ∩ [

Bc
r ∪ A

]c]

× 1
{
K + x ∈ ∂(Bc

r ∪ A)
}
dxQ(dK)1

{
BR /∈ [A]}PU∪

r
(dA)

= 1

t

∫
ϕt

((
Bc

r ∪ A
)c)1{

BR /∈ [A]}PU∪
r
(dA).

For any t ≥ t̃c the functional ϕt is greater or equal to 1. This yields

∂P[BR ↔ Bc
r in ξt ∩ [Br ]]
∂t

≥ P[BR /∈ [U∪
r ]]

t
(3.19)

= 1 − P[BR ↔ Bc
r in ξt ∩ [Br ]]

t
(3.20)

for such t . Dividing the inequality by 1 −P[BR ↔ Bc
r in ξt ∩ [Br ]], integrating it from t̃c to some t > t̃c and using the

trivial inequality P[BR ↔ Bc
r in ξt̃c

∩ [Br ]] ≥ 0 we obtain for t ≥ t̃c that

P
[
BR ↔ Bc

r in ξt ∩ [Br ]
] ≥ t − t̃c

t
. (3.21)
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Taking the limit r → ∞ yields that

P[BR ↔ ∞ in ξt ] ≥ t − t̃c

t
.

The last step is to relate the Palm probability P[|C0(t)| = ∞] to the probability that BR intersects the infinite cluster.
We use the well known formula for Palm probabilities (see [14, Theorems 3.3.2 and 3.5.3]) that implies

P
[∣∣C0(t)

∣∣ = ∞] = 1

tλd(B2R)
E

∑
(x,K)∈ξt

1{x ∈ B2R,K + x ↔ ∞}

≥ 1

tλd(B2R)
P
[∃(x,K) ∈ ξt : x ∈ B2R,K + x ↔ ∞]

≥ 1

tλd(B2R)
P[BR ↔ ∞ in ξt ]

≥ t − t̃c

t2λd(B2R)
. �

It is an open problem to adapt the argument to grains of arbitrary size. In the current algorithmic approach large
grains lead to a bias as they are reached more often when they intersect the boundary of S and would also have larger
clusters than small grains in the following step. At the moment, this bias is controlled by the use of BR instead of a
random grain in the definition of ϕt . With arbitrarily large grains this does not work anymore.

4. Rigorous lower bounds for the critical intensity

Theorem 3.1 opens up several ways to obtain lower bounds for the critical intensity. We get the first one, by choosing
a certain S and calculating or estimating ϕt (S) depending on t . If we are able to choose t such that ϕt (S) < 1, the
chosen t is a lower bound for tc .

In the special case, where Q is concentrated on B1 we retrieve the Penrose bound, by setting S := B1. Then
ϕt (S) = E[|ξt ∩ [B1]|] = tλd(B2) and hence tc ≥ λd(B2)

−1.
But this exact lower bound can be sharpened by choosing S := B3. In this case we have ∂S = {B1(x)|2 < ‖x‖2 ≤

4}, S◦ = {B1(x)|‖x‖2 ≤ 2} and R = 1. Moreover, any ball B1(y) ∈ S◦ intersects B1 and hence for any x such that
B1(x) ∈ ∂S,

P
[
B1 ↔ B1(x) in ξt ∩ S◦] = P

[
ξt

([B1] ∩ [
B1(x)

]) ≥ 1
]

= 1 − e−tλd (B2∩B2(x)).

It follows from definition (3.5) that

ϕt (S) = t

∫
Rd

1
{
B1(x) ∈ ∂S

}
P
[
B1 ↔ B1(x) in ξt ∩ S◦]dx

= tλd(B1)

∫ 4

2
rd−1(1 − e−tλd (B2∩B2(re1))

)
dr,

where e1 is an arbitrary vector of unit length. The integral may be evaluated numerically to almost arbitrary precision
and hence it is easy to find a good approximation of the value t where ϕt (B3) = 1. The corresponding lower bounds
are listed in Table 1. These two approaches obviously work with other fixed grain shapes too, but the numerical
calculations might become significantly more involved.

When working on lower bounds for the critical intensity, it has to be mentioned that the first rigorous lower bound
was given by Hall in [6] for dimension d = 2. To our knowledge the approach has never been applied to higher
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Table 1
Lower bounds for the critical intensity tc in dimension 2 to 11 when Q is concentrated on B1

d Bound via ϕt (B3) Penrose bound

2 0.135802 . . . 0.0795774 . . .

3 0.0433691 . . . 0.0298415 . . .

4 0.0167131 . . . 0.0126651 . . .

5 0.00734445 . . . 0.00593678 . . .

6 0.00357261 . . . 0.00302358 . . .

7 0.00188850 . . . 0.00165352 . . .

8 0.00107117 . . . 0.000962435 . . .

9 0.000645942 . . . 0.000592123 . . .

10 0.000411202 . . . 0.000382941 . . .

11 0.000274803 . . . 0.000259158 . . .

dimensions and it was stated in the book by Meester and Roy [10] that it was untractable there. We want to take a
short moment to show that this is not the case and even gives bounds that are better than the ones in Table 1.

The idea of Hall may be seen today as a refinement of the Penrose bound. Hall also modified the algorithm from
Section 3 to construct C0 by creating more Poisson points. In the algorithm the children of each grain (x,K) are
determined by the Poisson process of grains that intersect K + x but not any previous grain in the cluster C. Halls
modification was, to take all grains as children of (x,K) that intersect (x,K) but not the ancestor of (x,K). In the
case where all grains are a.s. equal to B1 the number of children of the grain B1(x) only depends on the distance of x

to the center y of its ancestor grain B1(y). In this way the cluster C generated by the algorithm can be compared with
a multitype branching process, where the type of each grain is the distance to the center of its ancestor grain. Hall
showed that the expected size of C was given by

1 +
∞∑

n=1

tnT n(1(0,2))(1),

where T is an operator from the set of continuous functions on the interval (0,2) onto itself that is defined by

T (f )(x) :=
∫ 2

0
f (y)g(y, x) dx. (4.1)

The function g(y, x) is given by the d − 1 dimensional Hausdorff measure of the set {z ∈ Rd |‖z‖2 > 2,‖z − xe1‖2 =
y}. Hence to calculate g in higher dimensions, we have to determine the surface area of a spherical cap in higher
dimensions. The formulas for this can be found in the literature (see [9]) and we obtain

g(y, x) =
⎧⎨
⎩(d − 1)λd(B1)y

d−1
∫ arccos( 4−x2−y2

2xy
)

0 sind−2(ϕ) dϕ, y ∈ (2 − x,2),

0, y ∈ (0,2 − x).

Hall concludes that the expected size of C is finite if the largest eigenvalue of T is less than 1/t . For fixed d the
integral defining g can be solved analytically. Afterwards the largest eigenvalue of T can be found numerically with
very high precision. The results have been collected in Table 2.

5. Highly probable lower bounds for the critical intensity

The second way to obtain lower bounds from Theorem 3.1 is, to use the mean-field lower bound. It follows from
(3.21) by an easy calculation that for any t ∈ [0,∞) and r > 1

tc ≥ t
(
1 − θt (r)

)
, (5.1)
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Table 2
Rigorous lower bounds for tc from Section 4 for the Boolean model where Q is concentrated
on {B1}

d Penrose Via ϕt (B3) Hall

2 0.0795774 0.135802 0.174746
3 0.0298415 0.0433691 0.0534187
4 0.0126651 0.0167131 0.0198296
5 0.00593678 0.00734445 0.00845546
6 0.00302358 0.00357261 0.00401478
7 0.00165352 0.00188850 0.00208114
8 0.000962436 0.00107117 0.00116176
9 0.000592124 0.000645943 0.000691455

10 0.000382941 0.000411203 0.000435437
11 0.000259158 0.000274804 0.000288394

Table 3
Simulation results for lower bounds of the critical intensity tc in dimension 2 to 11 in the Boolean model where Q is concentrated on B1

d r t Runs Successes 99% CI for θt (r) Lower bound

2 16000 0.357 10000 0 0.00063692 0.356772
3 2000 0.0814 10000 0 0.00063692 0.0813481
4 500 0.0261 10000 10 0.002119993 0.0260445
5 500 0.0101 10000 0 0.00063692 0.0100935
6 200 0.00456 10000 1 0.000813077 0.00455628
7 200 0.00228 10000 18 0.003154537 0.00227278
8 150 0.00124 10000 21 0.003529665 0.00123560
9 150 0.000725 10000 6 0.001571485 0.000723859

10 120 0.000450 10000 4 0.001282615 0.000449422
11 120 0.0002955 10000 8 0.001849554 0.000294952

where

θt (r) := P
[
B1 ↔ Bc

r in ξt ∩ [Br ]
]
. (5.2)

Hence to obtain a lower bound for tc, it suffices to choose an arbitrary t and r > 1 and estimate θt (r) by simulation. The
event {B1 ↔ Bc

r in ξt ∩ [Br ]} can be simulated exactly and hence we may compute a rigorous one-sided confidence
interval for the true value of θt (r) and hence a confidence interval for the lower bound of tc.

We also want to point out that for any t < tc the limit limr→∞ θt (r) = 0. Hence by investing enough computing
time it is in principle possible to approximate the value of tc arbitrarily well.

We did our simulations in the following way. We fixed a dimension, chose t slightly below the best known value for
tc from the literature and picked r such that our simulations could finish in reasonable time. We simulated 10,000 times
the cluster C0 with the algorithm stated before the proof of Theorem 3.1 and counted the number of times it intersected
Bc

r . In higher dimensions we also terminated the algorithm when the size of C exceeded some large threshold. In this
case we counted this run as if C had intersected Bc

r and hence had a conservative estimate. After 10,000 runs, we
computed the corresponding confidence interval for θt (r) with the prop.test method of the statistical language R
and calculated the lower bound for tc . Depending on how fast this was done and on how many times the boundary
was reached, we increased t and started another 10,000 runs. This lead to the results in Table 3.

We want to briefly discuss the chosen parameters and results. It can be observed that the precision never exceeds
three significant digits. This is due to the fact that we only get a high precision if the confidence interval is small.
The size of the confidence interval, however, depends on the number of runs and successes. It turned out in practice
that choosing 10,000 runs and a t such that not more than about 20 runs succeed, gave the best tradeoff between
time and precision. The few runs, where the cluster actually reaches Bc

r are extremely time consuming, hence it is
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Table 4
Simulated lower bounds for tc for the Boolean model where Q is concentrated on {B1} com-
pared to the best known values in the literature

Sim. θr (t), 99% CI Sim. [15] Sim. [15]
d for lower bound lower bound upper bound

2 0.356772 0.359076 0.359085
3 0.0813481 0.081854 0.081858
4 0.0260445 0.02632 0.02642
5 0.0100935 0.01032 0.01034
6 0.00455628 0.004516 0.004526
7 0.00226708 0.002218 0.002272
8 0.00123560 0.001206 0.001208
9 0.000722539 0.0007121 0.0007133

10 0.000449422 0.0004450 0.0004462
11 0.000294952 0.0002933 0.0002935

more efficient, to chose t slightly below the expected “true” tc. Nevertheless, it can be seen in Table 4 that for high
dimensions our lower bounds exceed the upper error bound (upper end of the 1-σ band) of best simulation results in
the literature (see [15]).

A few words concerning the implementation of the algorithm. It is very useful to save the approximate position of
the grains in the cluster to have a faster access when comparing if the current grain intersects C. Due to the fact that
only a tiny fraction of the space is covered by the cluster, when t is close to critical, we preferred a hashmap over an
array for this task. Another important issue is the ball-picking method, i.e. the method to generate a random vector in
B1. This can either be done by generating points in [−1,1]d and throwing away the points that don’t lie in B1 or it
can be done by the formula proposed in [4]. The first approach is faster than the second one in low dimensions. We
found that the second method was faster for d ≥ 7.
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