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POLYNOMIAL JUMP-DIFFUSIONS ON THE UNIT SIMPLEX
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Polynomial jump-diffusions constitute a class of tractable stochastic
models with wide applicability in areas such as mathematical finance and
population genetics. We provide a full parameterization of polynomial jump-
diffusions on the unit simplex under natural structural hypotheses on the
jumps. As a stepping stone, we characterize well-posedness of the martin-
gale problem for polynomial operators on general compact state spaces.
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1. Introduction. Tractable families of Markov processes on the unit simplex,
featuring both diffusion and jump components, are challenging to construct, yet
play an important role in a host of applications. These include population genet-
ics [Epstein and Mazzeo (2013), Etheridge (2011)], dynamic modeling of prob-
abilities [Gourieroux and Jasiak (2006)] and mathematical finance, in particular
stochastic portfolio theory [Fernholz (2002), Fernholz and Karatzas (2005)]. The
present article addresses this challenge by specifying Markovian jump-diffusions
on the unit simplex that are polynomial, meaning that the (extended) generator
maps any polynomial to a polynomial of the same or lower degree.

Polynomial processes were introduced in Cuchiero, Keller-Ressel and Teich-
mann (2012) [see also Filipović and Larsson (2016, 2017)], and are inherently
tractable. Indeed, any polynomial jump-diffusion:

(i) is an Itô semimartingale, meaning that its semimartingale characteristics
are absolutely continuous with respect to Lebesgue measure. This justifies the
name jump-diffusion in the sense of Jacod and Shiryaev (2003), Chapter III.2;

(ii) admits explicit expressions for all moments in terms of matrix exponen-
tials.

The computational advantage associated with the second property has been ex-
ploited in a large variety of problems. In particular, applications in mathematical
finance include interest rates [Delbaen and Shirakawa (2002), Filipović, Larsson
and Trolle (2017)], credit risk [Ackerer and Filipović (2016)], stochastic volatil-
ity models [Ackerer, Filipović and Pulido (2016)], stochastic portfolio theory
[Cuchiero (2017), Cuchiero et al. (2016)], life insurance liabilities [Biagini and
Zhang (2016)] and variance swaps [Filipović, Gourier and Mancini (2016)].

In addition, polynomial jump-diffusions are highly flexible in that they allow
for a wide range of state spaces—the unit simplex being one of them—and a mul-
titude of possible jump and diffusion phenomena. This stands in contrast to the
thoroughly studied and frequently used sub-class of affine processes. Any affine
jump-diffusion that admits moments of all orders is polynomial, but there are many
polynomial jump-diffusions that are not affine. In particular, an affine process on
a compact and connected state space is necessarily deterministic; see Krühner and
Larsson (2017). Thus our interest in the unit simplex forces us to look beyond the
affine class.

Polynomial diffusions (without jumps) on the unit simplex have already ap-
peared numerous times in the literature. In population genetics, prototypical diffu-
sion processes on the unit simplex known as Wright–Fisher diffusions, or Kimura
diffusions, arise naturally as infinite population limits of discrete Wright–Fisher
models for allele prevalence in a population of fixed size; see Etheridge (2011)
for a survey. In finance, similar processes have appeared in Gourieroux and Jasiak
(2006) under the name of multivariate Jacobi processes. All these diffusions turn
out to be polynomial, and a full characterization is provided in Filipović and Lars-
son [(2016), Section 6.3], by means of necessary and sufficient parameter restric-
tions on the drift and diffusion coefficients. One could also study other compact
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state spaces, as has been done in Larsson and Pulido (2017), where polynomial
diffusions on compact quadric sets are considered.

As these papers all focus on the case without jumps, it is natural to ask what
happens in the jump-diffusion case, where the literature is much less developed.
This case is considered by Cuchiero, Keller-Ressel and Teichmann (2012), how-
ever, without treating questions of existence, uniqueness and parameterization for
polynomial jump-diffusions on specific state spaces. To analyze these questions
on the unit simplex, the technical difficulties associated with the diffusion case
remain, arising from the fact that the unit simplex is a nonsmooth stratified space
[Epstein and Mazzeo (2013), Chapter 1] and that the diffusion coefficient degen-
erates at the boundary. This complicates the analysis, and precludes the use of
standard results regarding existence and regularity of solutions to the correspond-
ing Kolmogorov backward equations. Additionally, in the jump case, the drift and
diffusion interact with the (small) jumps orthogonal to the boundary, which leads
to further mathematical challenges.

Allowing for jumps is however not only of theoretical interest, but has prac-
tical relevance as well. A concrete illustration of this fact comes from stochastic
portfolio theory [Fernholz (2002), Fernholz and Karatzas (2009)], where one is in-
terested in the market weights Xi = Si/(S1 + · · · + Sd) computed from the market
capitalizations Si , i = 1, . . . , d , of the constituents of a large stock index such as
the S&P 500 or the MSCI World Index. The time evolution of the vector of market
weights is thus a stochastic process on the unit simplex (see Figure 1). To model
the market weight process, polynomial diffusion models without jumps have been
found capable of matching certain empirically observed features such as typical
shape and fluctuations of capital distribution curves [Cuchiero (2017), Cuchiero
et al. (2016), Fernholz and Karatzas (2005)] when calibrated to jump-cleaned data.
However, the absence of jumps is a deficiency of these models. Indeed, an inspec-
tion of market data shows that jumps do occur and are an important feature of the
dynamics of the market weights. This is clearly visible in Figure 2 where, for illus-
trative purposes, we have extracted three companies from the MSCI World Index,

FIG. 1. Market weights of the MSCI World Index, August 2006–October 2007.
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FIG. 2. Example of market weights which exhibit jumps.

whose market weights exhibit jumps in the period from August 2006 to October
2007. This application from stochastic portfolio theory underlines the importance
of specifying jump structures within the polynomial framework. We elaborate on
this in Section 7.1.

Another natural application of the results developed in this paper arises in de-
fault risk modeling following the framework of Jarrow and Turnbull (1998) and
Krabichler and Teichmann (2017). One is then interested in modeling a [0,1]-
valued stochastic recovery rate which remains at level 1 for extended periods of
time, while occasionally performing excursions away from 1. Polynomial jump-
diffusion specifications turn out to be capable of producing such behavior, while
at the same time maintaining tractability. Further details are given in Section 7.2.

Let us now briefly summarize our main results. Our starting point is a linear
operator G whose domain consists of polynomials on a compact state space E (ini-
tially general, but soon taken to be the unit simplex) and which maps polynomials
to polynomials of the same or lower degree. We study the corresponding martin-
gale problem for which well-posedness holds if and only if G satisfies the positive
maximum principle and is conservative. In this case it is of Lévy type, specified by
a diffusion, drift and jump triplet (a, b, ν); see Theorem 2.3 and Theorem 2.8. We
emphasize that not only existence, but also uniqueness of solutions to the martin-
gale problem is obtained. This is yet another attractive feature of polynomial jump-
diffusions on compact state spaces; in general, uniqueness is notoriously difficult
to establish in the absence of ellipticity or Lipschitz properties. Next, our main
focus is on jump specifications with affine jump sizes, namely,

(1.1) ν(x,A) = λ(x)

∫
1A\{0}

(
γ (x, y)

)
μ(dy),

where λ : E → R+ is a nonnegative measurable function, μ a Lévy measure and
γ = (γ1, . . . , γd) is of the affine form

(1.2) γi(x, y) = y0
i + y1

i x1 + · · · + yd
i xd;
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see Definition 3.1. This is the most general specification in the class of jump ker-
nels with polynomial dependence on the current state; see Theorem 3.3. Under
the structural hypothesis of affine jump sizes, we classify all polynomial jump-
diffusions on the unit interval (i.e., the unit simplex in R2); see Theorem 4.3.
This classification is subsequently extended—under an additional assumption—to
higher dimensions; see Theorem 6.3. Referring to the unit interval for notational
convenience, we can distinguish four types of jump-diffusions, in addition to the
pure diffusion case without jumps:

Type 1: λ is constant and the support of ν(x, ·) is contained in [−x,1 − x];
Type 2: λ is (essentially) a linear-rational function with a pole of order one at

the boundary, and the process can only jump in the direction of the pole;
Type 3: λ is (essentially) a quadratic-rational function with a pole of order two

in the interior of the state space. There is no jump activity at the pole, but an
additional contribution to the diffusion coefficient.

Type 4: λ is a quadratic-rational function whose denominator has only complex
zeros, and μ in (1.1) is of infinite variation.

This classification already gives an indication of the diversity of possible behavior,
an impression which is strengthened in Section 5, where we provide a number of
examples both with and without affine jump sizes. On the one hand, these exam-
ples clearly show that without any structural assumptions like (1.1)–(1.2), a full
characterization of all polynomial jump-diffusions on the simplex, or even the unit
interval, is out of reach. On the other hand, the examples illustrate the richness and
flexibility of the polynomial class.

The remainder of the paper is organized as follows. Section 1.1 summarizes
some notation used throughout the article. Section 2 is concerned with polynomial
operators on general compact state spaces and their associated martingale prob-
lems. Section 3 introduces affine jump sizes. In Section 4, we classify all poly-
nomial jump-diffusions on the unit interval with affine jump sizes. It is followed
by Section 5 which deals with examples. Section 6 treats the simplex in arbitrary
dimension. Finally, Section 7 discusses applications in stochastic portfolio theory
and default risk modeling. Most proofs are gathered in the Appendices.

1.1. Notation. We denote by N the natural numbers, N0 := N ∪ {0} the non-
negative integers, and R+ the nonnegative reals. The symbols Rd×d , Sd , and Sd+
denote the d ×d real, real symmetric and real symmetric positive semidefinite ma-
trices, respectively. For any subset E ⊆ Rd , we let as usual C(E) denote the space
of continuous functions on E. For any sufficiently differentiable function f , we
write ∇f for the gradient of f and ∇2f for the Hessian of f . Next, ei stands for
the ith canonical unit vector, |v| denotes the Euclidean norm of the vector v ∈ Rd ,
δij is the Kronecker delta, δx is the Dirac mass at x and 1 is the vector whose en-
tries are all equal to 1. We denote by Pol(Rd) the vector space of all polynomials
on Rd and Poln(Rd) the subspace consisting of polynomials of degree at most n.
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A polynomial on E is the restriction p = q|E to E of a polynomial q ∈ Pol(Rd).
Its degree is given by

degp = min
{
degq : p = q|E,q ∈ Pol

(
Rd)}

.

We then let Pol(E) denote the vector space of polynomials on E, and write
Poln(E) for those elements whose degree is at most n. We frequently use multi-
index notation so that, for instance, xk = x

k1
1 · · ·xkd

d for k = (k1, . . . , kd) ∈Nd
0 .

2. Polynomial operators on compact state spaces. Let E ⊂ Rd be a com-
pact subset of Rd that will play the role of the state space for a Markov process.
Later we will specialize to the case where E is the unit interval or the unit simplex.
In this paper, we are concerned with operators of the following type, along with
solutions to the corresponding martingale problems.

DEFINITION 2.1. A linear operator G : Pol(E) → C(E) is called polynomial
if

G
(
Poln(E)

) ⊆ Poln(E) for all n ∈ N0.

Given a linear operator G : Pol(E) → C(E) and a probability distribution ρ

on E, a solution to the martingale problem for (G, ρ) is a càdlàg process X with
values in E defined on some probability space (�,F,P) such that P(X0 ∈ ·) = ρ

and the process (N
f
t )t≥0 given by

(2.1) N
f
t := f (Xt) −

∫ t

0
Gf (Xs) ds

is a martingale with respect to the filtration FX
t = σ(Xs : s ≤ t) for every f ∈

Pol(E). We say that the martingale problem for G is well-posed if there exists
a unique (in the sense of probability law) solution to the martingale problem for
(G, ρ) for any initial distribution ρ on E. If G is polynomial, then X is called a
polynomial jump-diffusion; this terminology is justified by Theorem 2.8 and the
subsequent discussion.

2.1. The positive maximum principle.

DEFINITION 2.2. A linear operator G : Pol(E) → C(E) satisfies the posi-
tive maximum principle if Gf (x0) ≤ 0 holds for any f ∈ Pol(E) and x0 ∈ E with
supx∈E f (x) = f (x0) ≥ 0.

Roughly speaking, the positive maximum principle is equivalent to the exis-
tence of solutions to the martingale problem. A typical result in this direction is
Theorem 4.5.4 in Ethier and Kurtz (2005). For polynomial operators on compact
state spaces more is true: we also get uniqueness.
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THEOREM 2.3. Let G : Pol(E) → C(E) be a polynomial operator. The mar-
tingale problem for G is well-posed if and only if G1 = 0 and G satisfies the positive
maximum principle.

PROOF. The existence of a solution to the martingale problem for (G, ρ) for
any initial distribution ρ on E, is guaranteed by Theorem 4.5.4 and Remark 4.5.5
in Ethier and Kurtz (2005). To prove uniqueness in law, by compactness of E

it is enough to prove that the marginal mixed moments of any solution X to the
martingale problem for (G, ρ) are uniquely determined by G and ρ; see Lemma 4.1
and Theorem 4.2 in Filipović and Larsson (2016). To this end, fix any n ∈ N, let
h1, . . . , hN be a basis of Poln(E), and set H = (h1, . . . , hN)�. The operator G
admits a unique matrix representation G ∈ RN×N with respect to this basis, so
that

Gp(x) = H(x)�G �p,

where p ∈ Poln(E) has coordinate representation �p ∈ RN , that is, p(x) = H(x) �p;
cf. Section 3 in Filipović and Larsson (2016) and the proof of Theorem 2.7 in
Cuchiero, Keller-Ressel and Teichmann (2012). Following the proof of Theo-
rem 3.1 in Filipović and Larsson (2016), we use the definition of a solution to
the martingale problem, linearity of expectation and integration and the fact that
polynomials on the compact set E are bounded, to obtain

�p�E
[
H(XT )|FX

t

] = E
[
p(XT )|FX

t

] = p(Xt) +E

[∫ T

t
Gp(Xs) ds|FX

t

]

= �p�H(Xt) + �p�G�
∫ T

t
E

[
H(Xs)|FX

t

]
ds

for any t ≤ T and any �p ∈ RN . For each fixed t , this yields a linear inte-
gral equation for E[H(XT )|FX

t ], whose unique solution is E[H(XT )|FX
t ] =

e(T −t)G�
H(Xt). Consequently,

E
[
p(XT )|FX

t

] = �p�E
[
H(XT )|FX

t

] = H(Xt)
�e(T −t)G �p,(2.2)

which in particular shows that all marginal mixed moments are uniquely deter-
mined by G and ρ, as required.

For the converse implication, observe that since every solution to the martingale
problem for (G, ρ) is conservative; the condition G1 = 0 follows directly by the
martingale property of (2.1) with f = 1. The necessity of the positive maximum
principle is standard; see, for instance, the proof of Lemma 2.3 in Filipović and
Larsson (2016). �

REMARK 2.4. Observe that a solution to the martingale problem is conserva-
tive by definition since it is supposed to take values in E. This is reflected by the
condition G1 = 0 of Theorem 2.3 and in the definition of a Lévy-type operator in
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the next section. Let us remark that the condition in Theorem 2.3, namely that the
positive maximum principle and G1 = 0 are satisfied, is equivalent to the maxi-
mum principle, that is, Gf (x0) ≤ 0 holds for any f ∈ Pol(E) and any x0 ∈ E with
supx∈E f (x) = f (x0).

REMARK 2.5. While existence of a solution to the martingale problem is
equivalent to the maximum principle in very general settings, it is remarkable that
in the case of polynomial operators on compact state spaces uniqueness also fol-
lows. Indeed, without the assumption that G is polynomial, it is well known that
the maximum principle is not enough to guarantee uniqueness. For example, with
E = [0,1] and Gf (x) = √

x(1 − x)f ′(x), the functions Xt = (et − 1)2/(et + 1)2

and Xt ≡ 0 are two different solutions to the martingale problem for (G, δ0). In the
polynomial case, well-posedness is deduced from uniqueness of moments, which
is a consequence of (2.2). Let us emphasize that (2.2) gives more than mere unique-
ness: it gives an explicit formula for computing the moments via a matrix exponen-
tial. This tractability is crucial in applications, and was used as a defining property
of this class of processes in Cuchiero, Keller-Ressel and Teichmann (2012).

2.2. Lévy-type representation.

DEFINITION 2.6. An operator G : Pol(E) → C(E) is said to be of Lévy-type
if it can be represented as

(2.3)
Gf (x) = 1

2
Tr

(
a(x)∇2f (x)

) + b(x)�∇f (x)

+
∫ (

f (x + ξ) − f (x) − ξ�∇f (x)
)
ν(x, dξ),

where the right-hand side can be computed using an arbitrary representative of f ,
and the triplet (a, b, ν) consists of bounded measurable functions a : E → Sd+ and
b : E →Rd , and a kernel ν(x, dξ) from E into Rd satisfying

(2.4)
sup
x∈E

∫
|ξ |2ν(x, dξ) < ∞, ν

(
x, {0}) = 0,

ν
(
x, (E − x)c

) = 0 for all x ∈ E.

Polynomial operators satisfying the positive maximum principle are always
Lévy-type operators, as is shown in Theorem 2.8 below. This parallels known re-
sults regarding operators acting on smooth and compactly supported functions; see
Courrège (1965) or Böttcher, Schilling and Wang (2013), Theorem 2.21, for Feller
generators and also Hoh (1998). A crucial ingredient in the proof of Theorem 2.8 is
the classical Riesz–Haviland theorem, which we now state. A proof can be found
in Haviland (1935) and (1936), or, for example, Marshall (2008).
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LEMMA 2.7 (Riesz–Haviland). Let K ⊂ Rd be compact, and consider a lin-
ear functional W : Pol(K) →R. Then the following conditions are equivalent:

(i) W(f ) = ∫
f (ξ)μ(dξ) for all f ∈ Pol(K) and a Borel measure μ concen-

trated on K .
(ii) W(f ) ≥ 0 for all f ∈ Pol(K) such that f ≥ 0 on E.

We now state Theorem 2.8 regarding the Lévy-type representation of operators
satisfying the positive maximum principle. The proof is given in Appendix A.

THEOREM 2.8. Consider a linear operator G : Pol(E) → C(E). If G1 = 0
and G satisfies the positive maximum principle, then G is a Lévy-type operator.

Suppose G : Pol(E) → C(E) is a linear operator with G1 = 0 that satisfies the
positive maximum principle, and let X be a solution to the associated martingale
problem. Then X is a semimartingale, as can be seen by taking f (x) = xi in (2.1).
We claim that its diffusion, drift and jump characteristics (with the identity map as
truncation function) are given by∫ t

0
a(Xs) ds,

∫ t

0
b(Xs) ds, ν(Xt−, dξ) dt,

where (a, b, ν) is the triplet of the Lévy-type representation (2.3). To see this,
first note that G can be extended to C2 functions on E using (2.3). Then an ap-
proximation argument shows that Nf in (2.1) remains a martingale for such func-
tions f . The claimed form of the characteristics of X now follows from Theo-
rem II.2.42 in Jacod and Shiryaev (2003); see also Proposition 2.12 in Cuchiero,
Keller-Ressel and Teichmann (2012). This justifies referring to X as a polynomial
jump-diffusion. Since the martingale problem is well-posed by Theorem 2.3, such
a polynomial jump-diffusion is a Markov process, and hence a polynomial process
in the sense of Cuchiero, Keller-Ressel and Teichmann (2012).

The following lemma provides necessary and sufficient conditions on the triplet
(a, b, ν) in order that G be polynomial.

LEMMA 2.9. Let G : Pol(E) → C(E) be a Lévy type operator with triplet
(a, b, ν). Then G is polynomial if and only if

bi ∈ Pol1(E), aij +
∫

ξiξj ν(·, dξ) ∈ Pol2(E),

∫
ξkν(·, dξ) ∈ Pol|k|(E)

for all i, j ∈ {1, . . . , d} and |k| ≥ 3.

PROOF. This result is well known [see, for instance, Cuchiero, Keller-Ressel
and Teichmann (2012)], and the proof is simple. Indeed, direct computation
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yields 0 = G(1)(x), bi(x) = G(e�
i (· − x))(x), aij (x) + ∫

ξiξj ν(x, dξ) = G(e�
i (· −

x)e�
j (·−x))(x), and

∫
ξkν(x, dξ) = G((·−x)k)(x) for |k| ≥ 3. Thus, if G is poly-

nomial, one can show that the triplet satisfies the stated conditions. The converse
implication is immediate from the observation that deg(pq) ≤ deg(p) + deg(q)

for any p,q ∈ Pol(E). �

2.3. Conic combinations of polynomial operators. Due to Theorem 2.3 and
Theorem 2.8, every member of the set

K := {
G : Pol(E) → C(E) :

G is polynomial and its martingale problem is well-posed
}

is of Lévy-type (2.3). The set K also possesses the following stability properties,
which are useful for constructing examples of polynomial jump-diffusions; we do
this in Section 5. The proofs of the following two results are given in Appendix B.

THEOREM 2.10. The set K is a convex cone closed under pointwise conver-
gence, in the sense that if Gn ∈ K for n ∈ N and Gf (x) := limn→∞ Gnf (x) exists
and is finite for all f ∈ Pol(E) and x ∈ E, then G ∈ K.

If an operator G is the limit of Gn as in Theorem 2.10, then its triplet (a, b, ν)

can be expressed in terms of the triplets (an, bn, νn) of the operators Gn.

LEMMA 2.11. Suppose that Gn ∈ K, and let an, bn, and νn(x, dξ) be
the coefficients of its Lévy-type representation, for all n ∈ N. Then Gf (x) :=
limn→∞ Gnf (x) exists and is finite for all f ∈ Pol(E) and x ∈ E if and only if
the coefficients

bn
i , an

ij +
∫

ξiξj ν
n(·, dξ),

∫
ξkνn(·, dξ)

converge pointwise as n → ∞ for all i, j ∈ {1, . . . , d} and |k| ≥ 3. In this case, the
triplet (a, b, ν) of the Lévy-type representation of G is given by

bi(x) = lim
n→∞bn

i (x),

aij (x) = lim
n→∞

(
an
ij (x) +

∫
ξiξj ν

n(x, dξ)

)
−

∫
ξiξj ν(x, dξ),

for all x ∈ E and i, j ∈ {1, . . . , d}, where the kernel ν(x, dξ) is uniquely deter-
mined by ∫

ξkν(x, dξ) = lim
n→∞

∫
ξkνn(x, dξ), |k| ≥ 3.

REMARK 2.12. The diffusion coefficient a(x) is the limit of an(x) if and only
if the weak limit of |ξ |2νn(x, dξ) exists and has no mass in zero. If the weak limit
does have mass in zero, then this mass is equal to the difference between Tr(a(x))

and the limit of Tr(an(x)).
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3. Affine and polynomial jump sizes. Throughout this section, we continue
to consider a compact state space E ⊂ Rd . In the absence of jumps, it is relatively
straightforward to explicitly write down a complete parametrization of polyno-
mial diffusions on the unit interval or the unit simplex; see Filipović and Larsson
(2016). With jumps, this is no longer the case. Indeed, examples in Section 5 il-
lustrate the diversity of behavior that is possible even on the simplest nontrivial
state space [0,1]. Therefore, in order to make progress we will restrict attention to
specifications whose jumps are of the following state-dependent type. Consider a
jump kernel ν(x, dξ) from E into Rd satisfying (2.4).

DEFINITION 3.1. The jump kernel ν(x, dξ) is said to have affine jump sizes
if it is of the form

(3.1) ν(x,A) = λ(x)

∫
1A\{0}

(
γ (x, y)

)
μ(dy),

where λ : E → R+ is a nonnegative measurable function, γ = (γ1, . . . , γd) is of
the affine form

(3.2) γi(x, y) = y0
i + y1

i x1 + · · · + yd
i xd,

and μ(dy) is a measure on Rd(d+1) satisfying
∫
(|y|2 ∧ 1)μ(dy) < ∞. Here, we

use the notation y = (y
j
i : i = 1, . . . , d, j = 0, . . . , d) ∈ Rd(d+1) for the vector of

coefficients appearing in (3.2).

REMARK 3.2. By (2.4) and compactness of E, the measure μ(dy) can always
be chosen compactly supported. In this case, all its moments of order at least two
are finite.

Intuitively, (3.1) means that the conditional distribution of the jump 
Xt , given
that it is nonzero and the location immediately before the jump is Xt− = x,
is the same as the distribution of γ (x, y) under μ(dy); at least when μ(dy)

is a probability measure. The jump intensity is state-dependent and given by
ν(x,Rd) = λ(x)μ({γ (x, ·) �= 0}), which may or may not be finite.

Jump kernels with affine jump sizes can be used as building blocks to obtain a
large class of specifications by means of Theorem 2.10. The jump kernels obtained
in this way are of the form

ν(x, dξ) = ∑
k

νk(x, dξ),

where each jump kernel νk(x, dξ) has affine jump sizes. We refer to such specifi-
cations as having mixed affine jump sizes.

The affine form of γ (x, y) is a particular case of the seemingly more general
situation where γ (x, y) is allowed to depend polynomially on the current state x.
However, this would not actually lead to an increase in generality in the context
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of polynomial jump-diffusions. Indeed, at least in the case when E has nonempty
relative interior in its affine hull, the following result shows that whenever jump
sizes are polynomial, they are necessarily affine. The proof is given in Appendix C.

THEOREM 3.3. Assume that E has nonempty relative interior in its affine hull.
Let ν(x, dξ) be a jump kernel from E into Rd of the form (3.1) and satisfying (2.4),
where λ is nonnegative and measurable, γ is given by

γi(x, y) = ∑
|k|≤K

yi
kx

k

for some K ∈ N0, and μ(dy) is a measure on (Rd)dim PolK(Rd ) with
∫
(|y|2 ∧

1)μ(dy) < ∞. Assume also that ν(x, dξ) satisfies

(3.3)
∫

ξkν(·, dξ) ∈ Pol|k|(E), |k| ≥ 3,

and that E has nonempty interior. Then one can choose μ(dy) so that yi
k = 0 a.e.

for all i = 1, . . . , d and all |k| ≥ 2. That is, ν(x, dξ) has affine jump sizes.

REMARK 3.4. Note that if ν(x, dξ) has affine jump sizes and satisfies (3.3),
then the function λ is can be expressed as the ratio of two polynomials of degree
at most four,

λ(x) =
∫ |ξ |4ν(x, dξ)∫ |γ (x, y)|4μ(dy)

,

at points x where the denominator is nonzero. At points x where the denominator
vanishes, we have γ (x, y) = 0 for μ-a.e. y, whence ν(x, dξ) = 0 due to (3.1).
Thus we may always take λ(x) = 0 at such points.

REMARK 3.5. Jump specifications of the form (3.1) are convenient from the
point of view of representing solutions X to the martingale problem for G as so-
lutions to stochastic differential equations driven by a Brownian motion and a
Poisson random measure. Indeed, such a stochastic differential equation has the
following form:

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0

√
a(Xs) dWs

+
∫ t

0

∫ λ(Xs−)

0

∫
γ (Xs−, y)

(
N(ds, du, dy) − ds duμ(dy)

)
,

where
√· denotes the matrix square root, W is a d-dimensional Brownian motion

and N(ds, du, dy) is a Poisson random measure on R2+ × supp(μ) whose intensity
measure is ds duμ(dy). See also, for instance, Dawson and Li [(2006), Section 5],
regarding analogous representations of affine processes. Note that a representation
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of the form (3.1) always exists, even with λ ≡ 1, if one allows y to lie a suitable
Blackwell space; see Jacod and Shiryaev (2003), Remark III.2.28. Thus, in view
of Theorem 3.3, our restriction to affine jump sizes in the sense of Definition 3.1 is
essentially equivalent to a polynomial dependence of γ (x, y) on x, somewhat gen-
eralized by allowing a state dependent intensity λ(x). Note also that once γ (x, y)

depends polynomially on x, there is no loss of generality to assume that y lies in
an Euclidean space.

4. The unit interval. Throughout this section, we consider the state space

E := [0,1].
Our goal is to characterize all polynomial jump-diffusions on E with affine jump
sizes. The general existence and uniqueness result Theorem 2.3, in conjunction
with Lemma 2.9, leads to the following refinement of Theorem 2.8, characterizing
those triplets (a, b, ν) that correspond to polynomial jump-diffusions. The proof is
given in Appendix D.

LEMMA 4.1. A linear operator G : Pol(E) → C(E) is polynomial and its
martingale problem is well-posed if and only if it is of form (2.3) and the corre-
sponding triplet (a, b, ν) satisfies:

(i) a ≥ 0 and ν(x, dξ) satisfies (2.4),
(ii) a(0) = a(1) = 0, b(0) − ∫

ξν(0, dξ) ≥ 0, and b(1) − ∫
ξν(1, dξ) ≤ 0,

(iii) b ∈ Pol1(E), a + ∫
ξ2ν(·, dξ) ∈ Pol2(E), and

∫
ξnν(·, dξ) ∈ Poln(E) for

all n ≥ 3.

Observe that condition (i) guarantees that G is of Lévy-type.

REMARK 4.2. Condition (ii) implies that
∫ |ξ |ν(x, dξ) < ∞ for x ∈ {0,1}.

Intuitively, this means that the solution to the martingale problem for G has a
purely discontinuous martingale part which is necessarily of finite variation on
the boundary of E.

We now turn to the setting of affine jump sizes in the sense of Definition 3.1.
We thus consider Lévy-type operators G of the form

(4.1)
Gf (x) = 1

2
a(x)f ′′(x) + b(x)f ′(x)

+ λ(x)

∫ (
f

(
x + γ (x, y)

) − f (x) − γ (x, y)f ′(x)
)
μ(dy),

where λ is nonnegative and measurable, and γ (x, y) is affine in x. The main result
of this section, Theorem 4.3 below, shows that the generator must be of one of five
mutually exclusive types, which we now describe.
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TYPE 0. Let a(x) = Ax(1−x), b(x) = κ(θ −x), where A ∈ R+, κ ∈R+, and
θ ∈ [0,1], and set λ = 0. Then G is a polynomial operator whose martingale prob-
lem is well-posed. The solution X corresponds simply to the well-known Jacobi
diffusion, which is the most general polynomial diffusion on the unit interval.

TYPE 1. Let a(x) = Ax(1 − x), b(x) = κ(θ − x), and λ(x) = 1, where A ∈
R+, κ ∈ R+, and θ ∈ [0,1]. Furthermore, writing y = (y1, y2) we define γ (x, y) =
y1(−x)+y2(1−x) and let μ be a nonzero measure on [0,1]2 \{0}. If the boundary
conditions

κθ ≥
∫

y2μ(dy) and κ(1 − θ) ≥
∫

y1μ(dy)

are satisfied, then G is a polynomial operator whose martingale problem is well-
posed.

Note that the boundary conditions imply that
∫ |ξ |ν(x, dξ) ≤ 2

∫ |y|μ(dy)

is bounded. Thus, the resulting process behaves like a Jacobi diffusion with
summable jumps. The arrival intensity of the jumps is ν(x,E − x) = μ({y :
γ (x, y) �= 0}), which may or may not be finite. Figure 3 illustrates the form of
a, λ and the support γ (x, y) under μ.

FIG. 3. A representation of Type 1, where λ(x) = 1 (in blue, colors online), a is a polynomial
of second degree vanishing on the boundaries (in red), and the support of ν(x, ·) is contained in
[−x,1 − x] (in green).
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TYPE 2. Let a(x) = Ax(1−x), b(x) = κ(θ −x), and λ(x) = 1
x
(1+qx)1{x �=0}

where A ∈ R+, κ ∈ R+, θ ∈ [0,1], and q ∈ [−1,∞). Furthermore, define
γ (x, y) = −xy and let μ be a nonzero square-integrable measure on (0,1]. Notice
that y is scalar. If the boundary condition

κ(1 − θ) ≥ (1 + q)

∫
yμ(dy)

is satisfied, then G is a polynomial operator whose martingale problem is well-
posed.

The boundary condition implies, if q > −1, that
∫ |ξ |ν(x, dξ) ≤ (1 + |q|) ×∫

yμ(dy) is bounded. Thus, in this case, the solution X to the martingale problem
for G has summable jumps. If q = −1, the jumps need not be summable. The
arrival intensity of the jumps is ν(x,E − x) = λ(x)μ((0,1]), and hence, even if
μ is a finite measure, the jump intensity is unbounded around x = 0. Moreover,
due to the form of γ (x, y), X can only jump to the left, and since ν(0,E) = 0, X

cannot leave x = 0 by means of a jump. Figure 4 illustrates the form of a, λ and
the support γ (x, y) under μ.

FIG. 4. A representation of Type 2, where λ has a pole of order 1 in x = 0 (in blue), a is a polyno-
mial of second degree vanishing on the boundaries (in red), and the support of ν(x, ·) is contained in
[−x,0] (in green) for all x ∈ E. This in particular implies that the distance to the “no-jump” point
always decreases if a jump occurs. Note that in x = 0 there is no jump activity since λ(0) = 0 and
thus ν(0,E) = 0.
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By reflecting the state space around the point 1/2, we obtain a similar structure
which we also classify as Type 2, where now the jump intensity is unbounded
around x = 1. The diffusion and drift coefficients remain as before, while λ(x) =

1
1−x

(1 + q(1 − x))1{x �=1} for some q ∈ [−1,∞), the jump sizes are γ (x, y) =
(1 − x)y, and μ is a nonzero square-integrable measure on (0,1] as before. The
boundary condition becomes κθ ≥ (1 + q)

∫
yμ(dy).

TYPE 3. Let x∗ ∈ (0,1); this will be a “no-jump” point. Let b(x) = κ(θ − x)

and set

λ(x) = q0 + q1x + q2x
2

(x − x∗)2 1{x �=x∗},

where κ ∈ R+, θ ∈ [0,1] and q0, q1, q2 are real numbers such that the numerator of
λ is nonnegative on E without zeros at x∗. Furthermore, define γ (x, y) = −(x −
x∗)y, and let μ be a nonzero square-integrable measure on (0, (x∗ ∨ (1 − x∗))−1].
Finally, let a(x) = Ax(1 − x) + aν1{x=x∗} where

aν = (
q0 + q1x

∗ + q2
(
x∗)2) ∫

y2μ(dy).

If the boundary conditions

κθ ≥ q0

x∗
∫

yμ(dy) and κ(1 − θ) ≥ q0 + q1 + q2

1 − x∗
∫

yμ(dy)

are satisfied, then G is a polynomial operator whose martingale problem is well-
posed.

If q0 + q1x + q2x
2 = Lx(1 − x) for some constant L ∈ R+, the solution X to

the martingale problem for G may have nonsummable jumps. If the numerator of
λ(x) is not of this form, then the boundary conditions imply that X has summable
jumps. The arrival intensity of the jumps is

ν(x,E − x) = λ(x)μ

((
0,

1

x∗ ∧ 1

1 − x∗
])

.

As a result, even if μ is a finite measure, the jump intensity has a pole of order two
at x = x∗, which results in a contribution of size aν to the diffusion coefficient.
Moreover, due to the form of γ (x, y), the jumps of X are always in the direction
of the “no-jump” point x∗. Although the jumps may overshoot x∗, they always
serve to reduce the distance to x∗. In particular, since ν(x∗,E −x∗) = 0, X cannot
leave x = x∗ by means of a jump. Figure 5 illustrates the form of a, λ and the
support γ (x, y) under μ.
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FIG. 5. A representation of Type 3, where λ has a pole of order 2 in x∗ ∈ (0,1) (in blue), a is a
polynomial of second degree on E \ {x∗} vanishing on the boundaries (in red), and the support of
ν(x, ·) is contained in [−2(x − x∗),0], respectively, [0,−2(x − x∗)], (in green) for all x ∈ E. This
in particular implies that the distance to the “no-jump” point x∗ always decreases if a jump occurs.
Note that in x∗ there is no jump activity since λ(x∗) = 0, but there is an extra contribution to the
diffusion coefficient at this point.

TYPE 4. Suppose α ∈C\R is a nonreal complex number such that |2α−1| <
1 and let μ be a nonzero square-integrable measure on [0,1] × [0,1] such that

(4.2)
∫ (

y1(−α) + y2(1 − α)
)n

μ(dy) = 0, n ≥ 2,

and
∫

y1μ(dy) = ∫
y2μ(dy) = ∞. Let b(x) = κ(θ − x) and set

λ(x) = Lx(1 − x)

(x − α)(x − α)
,

where κ ∈ R+, θ ∈ [0,1], and L > 0. Furthermore, define γ (x, y) = y1(−x) +
y2(1 − x) and let a(x) = Ax(1 − x) for some A ∈ R+. Then G is a polynomial
operator whose martingale problem is well-posed.

Having described five types of processes which are polynomial jump-diffusions
due to the conditions of Lemma 4.1, we are now ready to state the converse result,
namely that all polynomial jump-diffusions on [0,1] with affine jump sizes are
necessarily of one of these types. The proof is given in Appendix D.
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THEOREM 4.3. Let G be a polynomial operator whose martingale problem is
well-posed. If the associated jump kernel has affine jump sizes, then G necessarily
belongs to one of the Types 0–4.

REMARK 4.4. Let us end this section with some remarks regarding Type 4.
First, note that

∫
y1μ(dy) = ∫

y2μ(dy) = ∞ implies that μ(dy) cannot be a prod-
uct measure since in this case

∫
y1y2μ(dy) would be infinite, too, which however

contradicts square integrability. Second, after passing to polar coordinates (r, ϕ),
the condition (4.2) becomes

(4.3)
∫
[0,π ]×R+

rneinϕμα(dϕ, dr) = 0, n ≥ 2,

where μα is the compactly supported measure given by

μα(A) :=
∫

1A

(
Arg

(
y1(−α) + y2(1 − α)

)
,
∣∣y1(−α) + y2(1 − α)

∣∣)μ(dy)

for all measurable subsets A ⊆ [0, π]×R+. It can then be shown that r and ϕ can-
not be independent, that is, μα cannot be a product measure. These observations
indicate that natural attempts to find combinations of α and μ satisfying (4.2) do
not work. In fact, it is unknown to us what a potential example of Type 4 might
look like. Note also that Type 4 is distinct from all other types in the following
respect. For Types 1–3, λγ n(·, y) is a polynomial on E (outside the “no-jump”
point) of degree n ≥ 2 for all y ∈ supp(μ), whereas for Type 4 this property holds
true only for the integrated quantity λ

∫
γ (·, y)nμ(dy).

5. Examples of polynomial operators on the unit interval. In this section,
we present a number of examples that illustrate the diverse behavior of polynomial
jump-diffusions on [0,1]. While the diffusion case is simple—the Jacobi diffusions
(Type 0) are the only possibilities—the complexity increases significantly in the
presence of jumps. For instance, in Example 5.5 we obtain jump intensities with a
countable number of poles in the state space.

5.1. Examples with affine jump sizes.

EXAMPLE 5.1. We start with a well-known example of a polynomial jump-
diffusion on [0,1]; see Cuchiero, Keller-Ressel and Teichmann (2012), Exam-
ple 3.5. Consider the Jacobi process, which is the solution of the stochastic dif-
ferential equation

dXt = κ0(θ0 − Xt) dt + σ
√

Xt(1 − Xt)dWt , X0 = x0 ∈ [0,1],
where θ0 ∈ [0,1] and κ0, σ > 0. This process can also be regarded as the unique
solution to the martingale problem for (G, δx0), with the Type 0 operator:

Gf (x) := 1

2
σ 2x(1 − x)f ′′(x) + κ0(θ0 − x)f ′(x).
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This example can be extended by adding jumps, where the jump times correspond
to those of a Poisson process with intensity λ and the jump size is a function of the
process level. One can for instance specify that if a jump occurs, then the process
is reflected in 1/2. In this case, the process would be the unique solution to the
martingale problem for (G, δx0), where

Gf (x) := 1

2
σ 2x(1 − x)f ′′(x) + κ0(θ0 − x)f ′(x) + λ

(
f (1 − x) − f (x)

)
,

which is an operator of Type 1 with A = σ 2, κ = κ0 + 2λ, θ = κ0θ0+λ
κ0+2λ

, and μ =
λδ(1,1).

EXAMPLE 5.2. The following example features a simple state-dependent
jump distribution. Consider a Lévy-type operator G whose jump kernel ν(x, dξ)

is chosen such that x + ξ is uniformly distributed on (α(x), β(x)), where α,β ∈
Pol1(E) and 0 ≤ α(x) ≤ β(x) ≤ 1 for all x ∈ E. This in particular implies that α

and β can be written as

α(x) = α0(1 − x) + α1x and β(x) = β0(1 − x) + β1x

for some 0 ≤ α0 ≤ β0 ≤ 1 and 0 ≤ α1 ≤ β1 ≤ 1. Choosing the drift coefficient
b suitably, the operator G is then of Type 1 for μ being the push-forward of the
uniform distribution on (0,1) under the map z �→ (1 − z(β1 − α1) − α1, z(β0 −
α0) + α0).

The solution to the corresponding martingale problem is a Jacobi process ex-
tended by adding jumps, where the jump times correspond to those of a Poisson
process with unit intensity, and the jump’s target point is uniformly distributed on
(α(x), β(x)), given that the process is located at x immediately before the jump.

EXAMPLE 5.3. Polynomial operators are not always easy to recognize at first
sight. Consider a Lévy-type operator G whose diffusion and drift coefficients a

and b are zero, and whose jump kernel ν(x, dξ) is given by

ν(x,A) = 1{x �=0}
1 − x

x

∫ 1

0
1A\{0}

(−x sin2(
(x + z)π

))
dz.

Despite the presence of the sine function, the operator G satisfies all the conditions
of Lemma 4.1. It is thus polynomial and its martingale problem is well-posed. In
fact, this operator is of Type 2. Using the periodicity of the sine function, one can
show that ν(x, dξ) has affine jump sizes with λ(x) = 1−x

x
1{x �=0}, γ (x, y) = −xy,

and μ being the push-forward of Lebesgue measure on [0,1] under the map z �→
sin2(zπ). The associated polynomial jump-diffusion is a martingale since b = 0.
Moreover, the arrival intensity ν(x,E − x) of the jumps is given by 1−x

x
1{x �=0},

which is unbounded around zero.
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EXAMPLE 5.4. The Dunkl process with parameter n ∈ N0 is a polynomial
jump-diffusion on R [see, e.g., Cuchiero, Keller-Ressel and Teichmann (2012),
Example 3.7], and can be characterized as the unique martingale whose absolute
value is the Bessel process of dimension 1 + 2n; see Gallardo and Yor (2006).
The corresponding polynomial operator GDunkl is of Lévy-type with diffusion and
jump coefficients a(x) = 2 + 2n1{x=0} and b(x) = 0, and jump kernel

ν(x, dξ) = 1{x �=0}
n

2x2 δ−2x(dξ).

The arrival intensity of its jumps is thus given by ν(x,R) = n
2x2 1{x �=0}, which is a

rational function with a pole of second order in x = 0.
Observe that ν(x, dξ) exhibits several similarities with jump kernels of oper-

ators of Type 3, such as the form of the arrival intensity of the jumps, and the
extra contribution to the diffusion coefficient at the “no-jump” point x = 0. In fact,
defining f̃ := f (· + 1

2) and

Gf (x) = x(1 − x)GDunklf̃ (x − 1/2),

we obtain a polynomial operator of Type 3 with “no-jump” point x∗ = 1/2.

5.2. Constructions using conic combinations. We provide two examples illus-
trating the usefulness of Theorem 2.10 for combining operators with affine jump
sizes to achieve specifications with interesting properties.

EXAMPLE 5.5. We now construct a polynomial operator whose martingale
problem is well-posed, such that the arrival intensity of the jumps is unbounded
around infinitely many points, but finite for all x �= 1/2.

Let Gn, n ≥ 3, be operators of Type 3 with “no-jump” points x∗
n = 1

2 + 1
n

. Let
their diffusion coefficients be given by

an(x) = 1

3n2 x∗
n

(
1 − x∗

n

)
1{x=x∗

n},

the drift coefficients be 0, and the parameters of the jump kernels νn(x, dξ) be
given by

λn(x) = n−2 x(1 − x)

(x − x∗
n)2 1{x �=x∗

n}, γn(x, y) = −y
(
x − x∗

n

)
,

and μ be Lebesgue measure on [0,1]. Note that for all k ≥ 2 we have

(5.1)
∞∑

n=3

(
an(x)δk2 +

∫
ξkνn(x, dξ)

)
= x(1 − x)

k + 1

∞∑
n=3

n−2(
x∗
n − x

)k−2
< ∞.

By Theorem 2.10 and Lemma 2.11, this implies that the operator G := ∑∞
n=3 Gn

is again polynomial and its martingale problem is well-posed. In particular, G is a
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FIG. 6. A graphical representation of arrival intensity of the jumps ν(x,E − x) appearing in Ex-
ample 5.5.

Lévy-type operator with coefficients a(x) = ∑∞
n=3 an(x) and b(x) = 0, and jump

kernel ν(x, ·) := ∑∞
n=3 νn(x, ·). As a result, the arrival intensity of the jumps is

given by

ν(x,E − x) =
∞∑

n=3

λn(x) = x(1 − x)

∞∑
n=3

1

n2(x − x∗
n)2 1{x �=x∗

n},

which is unbounded around each x∗
n but finite for all x �= 1/2. At x = 1/2, the

jump intensity is infinite. Figure 6 contains an illustration.

EXAMPLE 5.6. This example shows that the operator of a polynomial diffu-
sion, or equivalently an operator of Type 0, can always be written as the limit of
“pure jump” polynomial operators, that is, with zero diffusion coefficients. Con-
sider the Jacobi diffusion with operator G given by

Gf (x) := Ax(1 − x)f ′′(x) + κ(θ − x)f ′(x),

for some A ∈ R+, κ ∈ R+, and θ ∈ [0,1]. Let then Gn be an operator of Type 2
and suppose that its diffusion coefficient an is zero, the drift coefficient is given by
bn(x) = κ(θ − x) and the parameters of the jump kernel νn(x, dξ) are

λn(x) = n2 A(1 − x)

x
1{x �=0}, γn(x, y) = −yx, μ = δ1/n.

Observe that, trivially, we have limn→∞ bn(x) = κ(θ − x). Also,

lim
n→∞

(
an(x) +

∫
ξ2νn(x, dξ)

)
= Ax(1 − x) and

lim
n→∞

∫
ξkνn(x, dξ) = 0, k ≥ 3.

By Lemma 2.11, we thus conclude that G = limn→∞ Gn in sense of Theorem 2.10.
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5.3. Mixed affine jump sizes. Consider now a Lévy-type polynomial operator
G whose jump kernel has mixed affine jump sizes in the sense of Section 3, that is,

(5.2) ν(x, dξ) =
L∑

�=1

ν�(x, dξ),

where each kernel ν�(x, dξ) has affine jump sizes. Suppose the martingale prob-
lem for G is well-posed, or equivalently, its triplet satisfies the conditions of
Lemma 4.1. A natural question is now whether the individual kernels ν�(x, dξ)

also satisfy the conditions of Lemma 4.1. If this were to be true, it would have
the pleasant consequence that G could be represented as a sum of operators of
Types 0–4. Unfortunately, this is not the case, which we illustrate in Example 5.7
below. In fact, there exist kernels of the form (5.2) that cannot even be obtained as
an infinite conic combination of the kernels appearing in Types 0–4.

EXAMPLE 5.7. Consider a Lévy-type operator G, whose coefficients are given
by a(x) = 0, b(x) = 1 − 2x, and whose jump kernel is given by (5.2) for L = 2,
where ν1(x, dξ) and ν2(x, dξ) have affine jump sizes with parameters λ1(x) =

1
x(x+1)

1{x �=0}, μ1 = δ(1,0), and λ2(x) = 2
(1−x)(x+1)

1{x �=1}, μ2 = δ(0,1/2). Observe
that

γ (x, y) = −x μ1-a.s. and γ (x, y) = 1

2
(1 − x) μ2-a.s.

One can verify that G satisfies all the conditions of Lemma 4.1, and is thus poly-
nomial and its martingale problem is well-posed.

Assume now for contradiction that ν(x, dξ) = ∑∞
�=1 ν̃�(x, dξ) for some kernels

ν̃�(x, dξ) that satisfy the conditions of Lemma 4.1 for some coefficients a�(x) and
b�(x). By Theorem 4.3, each ν̃�(x, dξ) then follows one of Types 0–4. Let λ̃�(x)

and μ̃�(x) be the parameters of the jump kernel ν̃�(x, dξ).
Since suppν(x, ·) ⊆ {−x, (1 − x)/2}, we also have supp ν̃�(x, ·) ⊆ {−x, (1 −

x)/2} for all x ∈ E, or equivalently,

(5.3) μ̃� = α�δ(1,0) + β�δ(0,1/2)

for some α�,β� ≥ 0. This already excludes that ν̃�(x, dξ) is of Type 3 or 4, and
gives us that for all x ∈ (0,1)

λ̃�(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qα
� (x)

x
if β� = 0,

q
β
� (x)

1 − x
if α� = 0,

c� otherwise,
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for some qα
� , q

β
� ∈ Pol1(E) and c� ∈ R+. In particular, note that for all x ∈ (0,1)

and � ∈N,

(5.4) α�λ̃�(x) = α�

qα
� (x)

x
and β�λ̃�(x) = β�

q
β
� (x)

1 − x

and hence, since Pol1(E) is closed under pointwise convergence,
∞∑

�=1

∫
ξnν̃�(x, dξ) = qα(x)

x
(−x)n + qβ(x)

1 − x

(
1 − x

2

)n

,

for all n ∈ N and some qα, qβ ∈ Pol1(E). Since
∫

ξnν(x, dξ) = ∑∞
�=1

∫
ξnν̃�(x,

dξ) by assumption, we obtain

−(−x)n−1 + ((1 − x)/2)n−1

x + 1
= −qα(x)(−x)n−1 + 1

2
qβ(x)

(
1 − x

2

)n−1
,

for all x ∈ (0,1), n ∈ N. The shortest way to see that this condition cannot be
satisfied is to use that if two polynomials coincide on (0,1), they have to coincide
on R, too. But, choosing x = −1 we obtain

−qα(−1) + 1

2
qβ(−1) = n − 1

2
for all n ∈ N, which is clearly not possible.

EXAMPLE 5.8. It is possible to show that operators with jump kernels of the
form (5.2) can have intensities λ� with multiple poles of multiple order outside the
state space. On the other hand, under some nondegeneracy conditions, they can
only have a single pole of order at most 2 inside the state space. We develop this
idea in more detail for the case when ν(x, ·) consists of finitely many atoms for all
x ∈ E.

Let G : Pol(E) → C(E) be an operator of the form described in Lemma 4.1 and
suppose that its jump kernel ν(x, dξ) is supported on {γ1(x), . . . , γL(x)}, where
γ� ∈ Pol1(E), � = 1, . . . ,L, are pairwise distinct polynomials with x + γ�(x) ∈ E

for all x ∈ E. As a result, we have

(5.5) ν(x, dξ) =
L∑

�=1

λ�(x)δγ�(x)(dξ)

for some functions λ� : E → R+. For n ≥ 2, set rn := ∫
ξnν(·, dξ) = ∑L

�=1 λ�γ
n
� ,

and recall that rn ∈ Poln(E) for all n ≥ 3 and that r2 is bounded on E. Using the
nonnegativity of λ and the boundary conditions for a, one can then establish the
following properties, which we state here without proof:

(i) If λ� has a pole at a point x0 ∈ E, then γ�(x0) = 0. Moreover, in this case,
analogously to Types 2 and 3, if x0 ∈ {0,1}, the order of the pole is 1 and if x0 ∈
(0,1), the order of the pole is 2. Note that nonnegativity of λ� and the fact that
γ� ∈ Pol1(E) imply that λ� can have a pole in at most one point of the state space.
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(ii) r2 ∈ Pol2(E \ {x∗
1 , . . . , x∗

L}), where x∗
� denotes the zero of γ�, and we have

(5.6) λ� = q�

γ 2
�

∏
j �=�(γ� − γj )

1{γ� �=0},

where q� ∈ PolL+1(E) and on E \ {x∗
1 , . . . , x∗

L} it is given by

q� =
L−1∑
k=0

(
(−1)krL−k+1

∑
�1<···<�k
�1,...,�k �=�

γ�1 · · ·γ�k

)
.

(iii) Since a + ∫
ξ2ν(·, dξ) ∈ Pol2(E) by Lemma 4.1, we can conclude that

(5.7) a(x) = Ax(1 − x) +
L∑

�=1

(
(−1)L−1q�(x)∏

j �=� γj (x)
1{x=x∗

� }
)
,

for some A ∈ R+ and all x ∈ E.

Conversely, fix a sequence of polynomials rk+2, k = 0, . . . ,L − 1, such that
rk+2 ∈ Polk+2(E) for all k. If for some affine functions γ1, . . . , γL as above, the
functions λ� given by equation (5.6) satisfy (i) and are all nonnegative on E, one
can conclude that for ν(x, dξ) as in (5.5), a as in (5.7), and a suitably chosen b ∈
Pol1(E), the corresponding Lévy-type operator is polynomial and its martingale
problem is well-posed.

REMARK 5.9. It is interesting to observe that Shur polynomials appear natu-
rally in the context of Example 5.8. Indeed, by point (ii) we know that each λ�(x),
and thus every moment rn(x) of the measures ν(x, ·), is uniquely determined by
γ1, . . . , γL and r2, . . . , rL+1. More precisely, for all n > L + 1 we can write

rn =
L∑

k=1

(−1)L−ksμL,n,k
(γ1, . . . , γL)rk+1,

where μL,n,k = (μ1
L,n,k, . . . ,μ

L
L,n,k) is the partition given by

μ1
L,n,k = n − L − 1, μ2

L,n,k = · · · = μL−k+1
L,n,k = 1, and

μL−k+2
L,n,k = · · · = μL

L,n,k = 0,

and sμL,n,k
is the corresponding Shur polynomial.

We now propose two interesting applications of Example 5.8, showing that it
can happen that λ1, . . . , λL have poles of high order and in several points outside
the state space.
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EXAMPLE 5.10. Consider a kernel of the form described in (5.5) for

γ1(x) = −x, γ2(x) = 1−x, γ3(x) = 1

3
(1−2x), γ4(x) = 2

3
(1−2x).

Defining λ� through expression (5.6) where we set

r2(x) = 1, r3(x) = 1 − 2x

2
, r4(x) = 2x2 − 2x + 5

18
,

r5(x) = (2x − 1)(5x2 − 5x + 1)

6
,

we obtain

λ1(x) = 9

2

(1 − x)

x(x + 1)(2 − x)
, λ2(x) = 9

2

x

(1 − x)(x + 1)(2 − x)
,

λ3(x) = 9

(x + 1)(2 − x)
, λ4(x) = 9

4

1

(x + 1)(2 − x)
,

for all x ∈ E. Note that the rational functions λ� satisfy point (i) of Example 5.8
and are all nonnegative on E. As a result, choosing the diffusion and drift coef-
ficients suitably, G is a polynomial operator whose martingale problem is well-
posed. Observe that each λ� has a pole in x = −1 and x = 2.

EXAMPLE 5.11. Consider a kernel of the form described in (5.5) for

γ1(x) = −x, γ2(x) = 1

2
(1 − x), γ3(x) = 1

3
(1 − 2x).

Defining λ� through expression (5.6) where we set

r2(x) = 1, r3(x) = 1 − 2x

2
, r4(x) = 10x2 − 9x + 3

12
,

we obtain

λ1(x) = 1

x(x + 1)2 , λ2(x) = 4(2x + 1)

(1 − x)(x + 1)2 ,

λ3(x) = 27x2

(1 − 2x)2(x + 1)2 ,

for all x ∈ E. Note that the rational functions λ� satisfy point (i) of Example 5.8
and are all nonnegative on E. As a result, choosing the diffusion and drift coef-
ficients suitably, G is a polynomial operator whose martingale problem is well-
posed. Observe that each λ� has a pole of second order in x = −1.
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6. The unit simplex. Throughout this section, the state space E ⊂ Rd is the
unit simplex of dimension d − 1, which we denote by

E := 
d =
{
x ∈Rd+ :

d∑
i=1

xi = 1

}
.

Similarly, as in Section 4, our goal is to provide a characterization of polynomial
jump-diffusions on E with affine jump sizes. Again, we combine Theorem 2.3 and
Lemma 2.9 to specialize Theorem 2.8 to the state space E. The proof is given in
Appendix E.

LEMMA 6.1. A linear operator G : Pol(E) → C(E) is polynomial and its
martingale problem is well-posed if and only if it is of form (2.3) and the corre-
sponding triplet (a, b, ν) satisfies:

(i) a(x) ∈ Sd+ for all x ∈ E and ν(x, dξ) satisfies (2.4),
(ii) aii(x) = 0 and bi(x) − ∫

ξiν(x, dξ) ≥ 0 for all x ∈ E ∩ {xi = 0},
(iii) a1 = 0 and b�1 = 0,
(iv) bi ∈ Pol1(E), aij + ∫

ξiξj ν(·, dξ) ∈ Pol2(E), and
∫

ξkν(·, dξ) ∈ Pol|k|(E)

for all |k| ≥ 3.

Observe that conditions (i) and (iii) guarantee that G is of Lévy-type. This in
particular ensures that the right-hand side of (2.3) can be computed using an arbi-
trary representative.

REMARK 6.2. Condition (ii) implies that
∫ |ξi |ν(x, dξ) < ∞ for all x ∈ E ∩

{xi = 0}. Analogously to the unit interval case, this gives us some intuition about
the behavior of the solution X on the boundary segment x ∈ E ∩ {xi = 0}. Indeed,
even if the component orthogonal to the boundary of the purely discontinuous
martingale part of X is necessarily of finite variation, the other components do not
need to satisfy this property. Moreover, since a(x) ∈ Sd+, condition (ii) also implies
that aij (x) = 0 for all j ∈ {1, . . . , d}.

We now focus on the setting of affine jump sizes in the sense of Definition 3.1.
We thus consider Lévy-type operators G of the form

(6.1)
Gf (x) = 1

2
Tr

(
a(x)∇2f (x)

) + b(x)�∇f (x)

+ λ(x)

∫ (
f

(
x + γ (x, y)

) − f (x) − γ (x, y)�∇f (x)
)
ν(x, dξ),

where λ is nonnegative and measurable, and γ (x, y) is affine in x. In order to
describe the form of the jump sizes, let us introduce the set (
d)d which is
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given by(

d)d = {

y = (
y1, . . . , yd) ∈ Rd×d+ : yi ∈ 
d for all i ∈ {1, . . . , d}}.

TYPE 0. For some αij ∈ R+, αij = αji , B ∈ Rd×d such that Bij ≥ 0 for i �= j

and Bii = −∑
j �=i Bji , let

aii(x) = ∑
i �=j

αij xixj and aij (x) = −αijxixj for all i �= j,(6.2)

b(x) = Bx,(6.3)

and set λ = 0. Then G is a polynomial operator whose martingale problem is well-
posed. The solutions X are multivariate Jacobi-type diffusion processes which
have been characterized in this form by Filipović and Larsson (2016), Section 6.3.
In the special case where αij = σ 2 for all i, j , they correspond to Wright–Fisher
diffusions, which are also known under the name multivariate Jacobi process; see
Gourieroux and Jasiak (2006).

TYPE 1. Let λ(x) = 1 and a(x), b(x) be given by (6.2) and (6.3). For all
y ∈ (
d)d , set

γ (x, y) =
d∑

i=1

(
yi − ei

)
xi,(6.4)

and let μ be a nonzero measure on (
d)d . If the boundary conditions

Bij −
∫

y
j
i μ(dy) ≥ 0

hold for all i �= j , then G is a polynomial operator whose martingale problem is
well-posed.

Note that the boundary conditions imply that∫
|ξ |ν(x, dξ) ≤

d∑
i=1

∫ ∣∣yi − ei

∣∣μ(dy)

is bounded. Hence the resulting process behaves like a multivariate Jacobi-type
diffusion process in the spirit of Filipović and Larsson [(2016), Section 6.3],
generalized to include summable jumps. The arrival intensity of the jumps is
ν(x,E − x) = μ({y : γ (x, y) �= 0}), which may or may not be finite.

TYPE 2. Fix i ∈ {1, . . . , d}. Let a(x), b(x) be given by (6.2) and (6.3), and let
λ(x) = q1(x)

xi
1{xi �=0} for some nonnegative q1 ∈ Pol1(E) such that λ is not constant

on E ∩ {xi �= 0}. Furthermore, for y ∈ 
d we define

γ (x, y) = (y − ei)xi,
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and let μ be a nonzero square-integrable measure on 
d \ {ei}. If the boundary
conditions

(6.5) Bkj − q1(ej )

∫
ykμ(dy) ≥ 0

hold for all k �= i and j �= k, then G is a polynomial operator whose martingale
problem is well-posed.

If q1(x) = Lxk for some k �= i and L > 0, the jumps need not to be summable.
More precisely, we can have

∫ |yi − 1|μ(dy) = ∫ |yk|μ(dy) = ∞. Otherwise, if
q1(x) is not proportional to xk on E for any k, the expression

∫ |ξ |ν(x, dξ) is
bounded, and the solution X to the martingale problem for G has thus summable
jumps. Indeed, ∫

|ξk|ν(x, dξ) ≤ sup
x∈E

q1(x)

∫
ykμ(dy),

which is bounded due to (6.5) and the existence of some x ∈ E ∩ {xk = 0} ∩ {xi �=
0} such that q1(x) �= 0; see Lemma E.1 in Appendix E for more details on the
second point.

The arrival intensity of the jumps is ν(x,E −x) = λ(x)μ(
d \{ei}), and hence,
even if μ is a finite measure, the jump intensity is unbounded around xi = 0. More-
over, due to the form of γ (x, y), X can only jump in the direction of the boundary
segment E ∩{xi = 0}, and since ν(x,E) = 0 whenever xi = 0, X cannot leave this
boundary segment by means of a jump. Figure 7 illustrates the form of λ and the
support of γ (x, y) under μ.

FIG. 7. A representation of Type 2, where λ explodes on the boundary segment {x2 = 0} (in blue,
colors online) and the support of ν(x, ·) is always contained in (
3 − e2)x2 (in green) for all
x ∈ E. This in particular implies that the distance to the “no-jump” hyperplane {x2 = 0} always
decreases if a jump occurs. Note that on {x2 = 0} there is no jump activity since ν(x, dξ) = 0 for all
x ∈ E ∩ {x2 = 0}.
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TYPE 3. Let i, j ∈ {1, . . . , d} be such that i �= j , and fix some constant c > 0.
Consider the hyperplane {cxi = xj } which will be a “no-jump” region. Let b be
given by (6.3) and set

λ(x) = q2(x)

(−cxi + xj )2 1{cxi �=xj }

for some q2 ∈ Pol2(E) given by q2(x) = ∑d
k=1(qikxixk +qjkxjxk), where qk� ∈ R

are chosen such that λ is nonnegative, and nonconstant on {cxi �= xj }. Furthermore,
define

γ (x, y) = y(−cxi + xj )(ei − ej )

and let μ be a nonzero square-integrable measure on (0, 1
c

∧ 1]. Finally, let

a(x) = ac(x) + aν(x)Aν1{cxi=xj },

where ac is of form (6.2), Aν ∈ Rd×d is a symmetric matrix given by Aν
ii = Aν

jj =
1, Aν

ij = −1 and Aν
k� = 0 if k /∈ {i, j}, and where

aν(x) = q2(x)

∫
y2μ(dy).

If the boundary conditions

(6.6)
∑
� �=k

Bk�x� − q2(x)

(−cxi + xj )
1{cxi �=xj }

∫
y(δik − δjk)μ(dy) ≥ 0

are satisfied for all x ∈ E ∩ {xk = 0} and k ∈ {1, . . . , d}, then G is a polynomial
operator whose martingale problem is well-posed. Note in particular that for k /∈
{i, j}, the condition (6.6) coincides with bk ≥ 0 on E ∩ {xk = 0}.

If the numerator of λ is of the form q2(x) = 2qij xixj for some qij ∈ R+, the
solution X to the martingale problem for G may have nonsummable jumps. If
q2(x) is not of this form, then by similar reasoning as for Type 2, the boundary
conditions imply that

∫
yμ(dy) < ∞, and thus X has summable jumps. The arrival

intensity of the jumps is

ν(x,E − x) = λ(x)μ(

(
0,

1

c
∧ 1]

)
.

As a result, even if μ is a finite measure, the jump intensity has a singularity of
order two along {cxi = xj }, which results in a contribution of aν(x)Aν to the dif-
fusion coefficient. Moreover, due to the form of γ (x, y), the jumps of X are al-
ways in the direction of the “no-jump” hyperplane {cxi = xj }. Although the jumps
may overshoot {cxi = xj }, they always serve to reduce the distance to {cxi = xj }.
In particular, since ν(x,E − x) = 0 for all x ∈ E ∩ {cxi = xj }, X cannot leave
{cxi = xj } by means of a jump. Figure 8 illustrates the form of λ and the support
of γ (x, y) under μ.
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FIG. 8. A representation of Type 3, where λ explodes on the hyperplane {cx1 = x2} (in blue) and
the support of ν(x, ·) is always contained in 
3 ∩ {x3 = 0} (in green) for all x ∈ E. Moreover the
distance to the “no-jump” hyperplane {cx1 = x2} always decreases if a jump occurs. Note that on
{cx1 = x2} there is no jump activity since ν(x, dξ) = 0 for all x ∈ E ∩ {cx1 = x2}, but we know form
the description of this type that there is an extra contribution to the diffusion matrix a.

In order to simplify the analysis, in particular in view of the arguments out-
lined in Remark 4.4, we do not consider operators corresponding to Type 4 on the
unit simplex. A condition on the jump kernel excluding this class is given by the
following assumption.

ASSUMPTION A. The condition λγi(·, y)3 ∈ Pol3(E) holds for all i ∈
{1, . . . , d} and all y ∈ supp(μ).

The polynomial property of G implies that the integrated quantities λ
∫

γi(·,
y)3μ(dy) lie in Pol3(E). Assumption A strengthens this by requiring that the func-
tions λγi(·, y)3 themselves lie in Pol3(E). This is a natural assumption, in partic-
ular in view of Types 1–3 on the unit interval. Moreover, it will turn out in the
course of the proof of Theorem 6.3 that Assumption A implies under the condition
of affine jump sizes and nonconstant λ that

γ (·, y) = H(y)P1,

where H is a μ-measurable function and P1 ∈ Pol1(E). Analogous to the unit
interval, the “no-jump” region is the intersection of E with the hyperplane given
by the zero set of a polynomial of first degree. The following theorem states the
announced characterization of polynomial jump-diffusions with polynomial jump
sizes under Assumption A. The proof is given in Appendix E.

THEOREM 6.3. Let G be a polynomial operator whose martingale problem
is well-posed. If the associated jump kernel has affine jump sizes and satisfies
Assumption A, then G necessarily belongs to one of the Types 0–3.
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7. Applications. In this section, we outline two natural applications in finance
of polynomial jump-diffusions on the unit simplex. The first application concerns
stochastic portfolio theory, while the second application is in the area of default
risk.

7.1. Market weights with jumps in stochastic portfolio theory. In the context
of stochastic portfolio theory (SPT), polynomial diffusion models for the pro-
cess of market weights have been found capable of matching certain empirically
observed properties when calibrated to jump-cleaned data; see Cuchiero (2017),
Cuchiero et al. (2016). This concerns the typical shape and dynamics of the capi-
tal distribution curves, but also features such as high volatility for low capitalized
stocks. As mentioned in the Introduction, a crucial deficiency of these models is
the lack of jumps since they are present in typical market data; see Figure 2.

We now demonstrate how the results of Section 6 can be used to construct poly-
nomial jump-diffusion models for the market weights. We focus on a concrete
specification that extends the volatility stabilized models introduced by Fernholz
and Karatzas (2005) by including jumps of Type 2. In the standard (diffusive)
volatility stabilized model, the market weights follow a Wright–Fisher diffusion,
which is a special case of Type 0 with parameters

αij = 1 ∀i �= j and B = 1 + β

2
11� − d(1 + β)

2
Id,

for some β ≥ 0. These models have two key properties which are of particular
relevance in SPT: First, the market weights remain a.s. in the relative interior of

d , denoted by 
̊d . Second, the model allows for relative arbitrage opportunities.
We may preserve these features by adding jumps of Type 2. More precisely, we
consider a model for the market weights (Xt)t≥0 of the form

Xt,i =
∫ t

0

(
1 + β

2
− d(1 + β)

2
Xs,i

)
ds +

∫ t

0

√
Xs,i(1 − Xs,i) dWs,i

− ∑
i �=j

Xs,i

√
Xs,i dWs,j +

∫ t

0

∫
ξi

(
μX(dξ, ds) − ν(Xs, dξ) ds

)
,

where μX denotes the integer-valued random measure associated to the jumps of
X, and W a d-dimensional standard Brownian motion. The jump specification is
given as a sum of Type 2 jumps,

ν(x,A) =
d∑

i=1

λi(x)

∫
1A

(
(y − ei)xi

)
μi(dy),

where λi(x) = qi(x)
xi

1{xi �=0} for some nonnegative qi ∈ Pol1(E) such that λ is not

constant on E ∩ {xi �= 0}, and the measures μi are supported on 
d \ {ei} and
satisfy

∫ |y|μi(dy) < ∞. Economically, this specification means that downward



2482 C. CUCHIERO, M. LARSSON AND S. SVALUTO-FERRO

jumps occur with higher and higher intensity the closer the assets are to 0, and can
therefore be used to model downward spirals in stock prices. We require that for
all j �= k,

β

2
− ∑

i �=k

qi(ej )

∫
ykμi(dy) + qk(ej )

∫ (
1 + log(yk) − yk

)
μk(dy) > 0,

which ensures that X remains in the relative interior 
̊d . This can be proved simi-
larly as in Filipović and Larsson (2016), Theorem 5.7. Furthermore, this model ad-
mits relative arbitrage opportunities. To see this, we argue that no equivalent proba-
bility measure can turn X into a martingale. Indeed, Lemma 5.6 in Cuchiero (2017)
implies that, under any martingale measure, X must reach the relative boundary of

d with positive probability on any time horizon, contradicting equivalence. Since
no equivalent martingale measure exists for the market weights, the model admits
relative arbitrage.

Clearly, any other polynomial diffusion model on the simplex can be enhanced
by jumps of this form, which yields a large class of tractable jump-diffusion mod-
els applicable in the realm of SPT.

7.2. Valuation of defaultable zero-coupon bonds. Polynomial jump-diffusions
on the unit interval can be brought to bear on default risk modeling. We con-
sider the stochastic recovery rate framework of Jarrow and Turnbull (1998) and
Krabichler and Teichmann (2017). For further references, see also Filipović and
Trolle (2013), Zheng (2006) and Jeanblanc, Yor and Chesney [(2009), Chapter 7],
for an overview, as well as Duffie (2004) for the classical approach using affine
processes. Note also that polynomial diffusion models for credit risk have appeared
in Ackerer and Filipović (2016).

Let (�,F,F,Q) with F = (Ft )t≥0 be a filtered probability space satisfying the
usual conditions. Here, Q is a risk neutral measure. Let B = (Bt )t≥0 be the value
of the risk-free bank account with initial value of one monetary unit. For any t ≤ T ,
we denote by P̃ (t, T ) the price at time t of a defaultable zero-coupon bond with
maturity T ≥ 0 and unit notional. Due to default risk, its actual payoff P̃ (T , T )

at maturity is random and lies between zero and one. Under the premise that all
discounted defaultable zero-coupon bond prices P̃ (t, T )/B(t) are true martingales
under Q, we get

P̃ (t, T ) = EQ

[
Bt

BT

ST

∣∣∣Ft

]
,

where St := P̃ (t, t) is known as the recovery rate. Suppose now for simplicity that
B and S are conditionally independent under Q. Then

P̃ (t, T ) = EQ

[
Bt

BT

∣∣∣Ft

]
EQ

[
ST |Ft

] = P(t, T )EQ[ST |Ft ],
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where P(t, T ) is the price of a nondefaultable zero-coupon bond with maturity
T ≥ 0 and unit notional.

Motivated by the typically long and complicated unwinding process after a de-
fault occurs, Krabichler and Teichmann (2017) drop the assumption that the recov-
ery rate S is known when default happens. Excursions of S below 1 are interpreted
as liquidity squeezes resulting in a delay of due payments, which may or may not
turn into a default. In this framework, the risk-neutral recovery rate S typically
starts with a constant trajectory at level 1. Once the recovery has jumped below
1, it pursues an unsteady course. Downward moves of the recovery rate are self-
exciting, as deterioration of the counterparty’s credit quality typically makes full
recovery more unlikely. Nonetheless, S may return to 1 and remain there for some
period of time.

A polynomial model for the recovery rate S can be constructed as follows. Let
X be a polynomial jump-diffusion of Type 2 with “no-jump” point x∗ = 0. Assume
that κ(1 − θ) = (1 + q)

∫
yμ(dy); this condition guarantees that if X reaches level

1, it can leave it only by means of a jump. More precisely, X persists at level 1
until its first jump, which occurs according to an (1 + q)-exponentially distributed
stopping time and a downward μ-distributed jump size. Moreover, since the jump
intensity is the positive branch of a hyperbola with a pole in zero, downward jumps
of X get more and more likely as the process approaches zero.

In view of the discussion above, polynomial transformations S := p(X) of X,
where p ∈ Pol([0,1]) is increasing and satisfies p([0,1]) ⊆ [0,1], are well suited
to describe the recovery rate. The polynomial property of X permits to express
the forward recovery rate F(t, T ) = EQ[ST | Ft ] in closed form. We provide two
concrete specifications, by choosing p(x) = x and p(x) = x2. In the first case,
S = X, the moment formula (2.2) yields

F(t, T ) = (
1 − e−(T −t)κ)

θ + e−(T −t)κSt .

In the second case, S = X2, we find

F(t, T ) = (κ(1 − e(T −t)G2) + G2(1 − e−(T −t)κ ))θ

κ + G2

+ G1(e
(T −t)G2 − e−(T −t)κ )

κ + G2

√
St + e−(T −t)κSt ,

where G1 := A + 2κθ + ∫
y2μ(dy) and G2 := −A − 2κ + q

∫
y2μ(dy).

APPENDIX A: PROOF OF THEOREM 2.8

We assume that G : Pol(E) → C(E) is a linear operator that satisfies the positive
maximum principle and G1 = 0.

Fix x ∈ E and define the linear functionals Wij : Pol(E − x) → R for i, j =
1, . . . d by

Wij (p) := G
(
p(· − x)e�

i (· − x)e�
j (· − x)

)
(x),
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as well as Wu : Pol(E − x) →R for u ∈ Rd by

Wu(p) :=
d∑

i,j=1

uiujWij (p) = G
(
p(· − x)

(
u�(· − x)

)2)
(x).

Here and throughout, the proof we view u�(· − x) as a polynomial on E to avoid
the more cumbersome notation u�(· − x)|E .

If p ≥ 0 on E − x, then p(· − x)(u�(· − x))2 ∈ Pol(E) is minimal at x, which
by the positive maximum principle yields Wu(p) ≥ 0. The Riesz–Haviland theo-
rem, Lemma 2.7, thus provides measures νu(x, dξ) concentrated on E − x such
that

Wu(p) =
∫

p(ξ)νu(x, dξ).

By polarisation, we have Wij = 1
2(Wei+ej

−Wei
−Wej

), whence

Wij (p) =
∫

p(ξ)νij (x, dξ), νij = 1

2
(νei+ej

− νei
− νej

).

The triplet (a, b, ν) is now defined at x by

(A.1) aij (x) := νij

(
x, {0}), bi(x) := G

(
e�
i (· − x)

)
(x),

and

ν(x, dξ) := 1

|ξ |2 1{ξ �=0}
(
νe1(x, dξ) + · · · + νed

(x, dξ)
)
.

Next, observe that

∫
ξiξjp(ξ)|ξ |2ν(x, dξ) =

d∑
k=1

∫
ξiξjp(ξ)νek

(x, dξ)

=
d∑

k=1

G
(
p(· − x)e�

i (· − x)e�
j (· − x)

(
e�
k (· − x)

)2)
(x)

= G
(
p(· − x)e�

i (· − x)e�
j (· − x)|· − x|2)

(x)

=Wij

(
p|·|2)

=
∫

p(ξ)|ξ |2νij (x, dξ),

for all p ∈ Pol(E − x). By Weierstrass’s theorem and dominated convergence,
this actually holds for all p ∈ C(E − x), whence 1{ξ �=0}νij (x, dξ) = ξiξj ν(x, dξ).
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Consequently,

(A.2) Wij (p) =
∫

p(ξ)ξiξj ν(x, dξ) + p(0)aij (x).

Consider now any polynomial p ∈ Pol(E − x), and choose a representative
q ∈ Pol(Rd), p = q|E−x . Note that q is of the form

q(ξ) = c0 +
d∑

i=1

ciξi +
d∑

i,j=1

ξiξj qij (ξ)

for some polynomials qij ∈ Pol(Rd). Let pij := qij |E−x ∈ Pol(E − x). Then the
linearity of G, the fact that G1 = 0, and (A.1) and (A.2) yield

G
(
p(· − x)

)
(x) = c0G1(x) +

d∑
i=1

ciG
(
e�
i (· − x)

)
(x)

+
d∑

i,j=1

G
(
pij (· − x)e�

i (· − x)e�
j (· − x)

)
(x)

=
d∑

i=1

cibi(x) +
d∑

i,j=1

(∫
qij (ξ)ξiξj ν(x, dξ) + qij (0)aij (x)

)

= 1

2
Tr

(
a(x)∇2q(0)

) + b(x)�∇q(0)

+
∫ (

q(ξ) − q(0) − ξ�∇q(0)
)
ν(x, dξ).

Thus, with p(ξ) = f (x + ξ) for a polynomial f ∈ Pol(E), we obtain the desired
form (2.3), where the right-hand side is computed using a representative of f , the
choice of which is arbitrary.

It remains to verify that the a, b, and ν satisfy the additional stated proper-
ties. First, a(x) is positive semidefinite since u�a(x)u = ∑d

i,j=1 uiujνij (x, {0}) =
νu(x, {0}) ≥ 0, and ν clearly satisfies the support conditions ν(x, {0}) = 0
and ν(x, (E − x)c) = 0. Next, since G maps polynomials to continuous func-
tions, it is clear from (A.1) that b is bounded and measurable. Similarly, x �→∫

p(ξ)νu(x, dξ) = G(p(· − x)(u�(· − x))2)(x) is continuous, hence bounded and
measurable, for every p ∈ Pol(E), and so by the monotone class theorem νu(·,A)

is measurable for every Borel set A ⊆ E − x. Thus νu(x, dξ) is a kernel, from
which it follows that a is measurable and ν(x, dξ) is a kernel. Finally, continuity
in x of

Tr
(
a(x)

) +
∫

|ξ |2ν(x, dξ) = νe1(x,E − x)+ · · ·+ νed
(x,E − x) = G

(|·− x|2)
(x)

implies that a and
∫ |ξ |2ν(·, dξ) are bounded on E.
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APPENDIX B: PROOF OF THEOREM 2.10 AND LEMMA 2.11

PROOF OF THEOREM 2.10. Let α,β ∈ R+ and G1,G2 ∈ K, and fix f ∈
Polk(E) for some k ∈ N. Then, since G1f,G2f ∈ Polk(E), we have that

Gf := αG1f + βG2f ∈ Polk(E)

as well, proving that it is polynomial. By Theorem 2.3, the well-posedness of the
martingale problem for G follows directly by the well-posedness of the martingale
problems of G1 and G2. For the second part, set (Gn)n∈N as in the statement of the
theorem and recall that Polk(E) is closed under pointwise convergence for each
k ∈ N0. Fixing f ∈ Polk(E), since Gnf ∈ Polk(E) by the polynomial property of
Gn, we can conclude that Gf ∈ Polk(E) as well. Again, existence and uniqueness
of a solution to the martingale problem is guaranteed by Theorem 2.3, since G1 = 0
and the positive maximum principle is preserved in the limit. �

PROOF OF LEMMA 2.11. In order to prove the first part of the lemma, it is
enough to observe that for all n ∈ N and |k| ≥ 1,

(B.1) Gn

(
(· − x)k

)
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bn
i (x) if k = ei,

an
ij (x) +

∫
ξiξj νn(x, dξ) if k = ei + ej ,∫

ξkνn(x, dξ) if |k| ≥ 3.

For the second part of the lemma, if G is well defined we know from Theorem 2.10
that it has a Lévy–Khintchine representation, for some coefficients a and b, and a
kernel ν(x, dξ). As a result, the analog of (B.1) holds true for G and by definition
of the limit we thus obtain

bi(x) = G
(
(· − x)k

)
(x) = lim

n→∞Gn

(
(· − x)k

)
(x) = lim

n→∞bn
i (x),

and similarly

(B.2)

aij (x)1{k=ei+ej } +
∫

ξkν(x, dξ)

= lim
n→∞

(
an
ij (x)1{k=ei+ej } +

∫
ξkνn(x, dξ)

)
,

for all |k| ≥ 2. Since ν(x, dξ) does not have mass in 0, ν(x, dξ) = |ξ |−4(|ξ |4ν(x,

dξ)). Moreover, using that moments completely determine compactly supported
finite distribution, the kernel |ξ |4ν(x, dξ), and thus ν(x, dξ), is uniquely deter-
mined by (B.2). �
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APPENDIX C: PROOF OF THEOREM 3.3

Throughout the proof, we assume without loss of generality that E has
nonempty interior. Suppose that ν(x, dξ) is the zero measure for all x ∈ E. Setting
λ = 0, the form of γ (x, y) and the measure μ are irrelevant and we are thus free to
choose K ≤ 1. We may therefore suppose that ν(x, ·) is nonzero for some x ∈ E,
and thus in particular

(C.1) μ
(
γ (x, ·) �= 0

)
> 0

for at least one x ∈ E. As in Remark 3.2, we can assume without loss of generality
that μ is compactly supported, and hence all its moments of order at least two are
finite. Set then

pn :=
∫

γ n(·, y)μ(dy) and rn :=
∫

ξnν(·, dξ) = λpn

and note that, by the integrability conditions on μ and condition (3.3), respectively,
pn and rn are polynomials on E for all |n| ≥ 3. In particular, p4ei

is a nonzero
polynomial for at least one i ∈ {1, . . . , d} by (C.1), and thus

(C.2) λ(x) = r4ei
(x)

p4ei
(x)

for all x ∈ E \ {p4ei
= 0}.

Since E has nonempty interior by assumption, each polynomial p ∈ Pol(E) has
a unique representative p ∈ Pol(Rd) such that p|E = p. In particular, the degree
of a polynomial on E always coincides with the maximal degree of its monomials.
Assume now for contradiction that K cannot be chosen less than or equal one. Let

nj := sup
{
k : μ(

y
j

k �= 0
) �= 0

}
be the multi-index corresponding to the leading monomial of γj (x, y), with respect
to some graded lexicographic order. Choose j ∈ {1, . . . , d} such that |nj | ≥ 2 and

note that by the maximality of nj and since
∫
(y

j
nj

)10μ(dy) > 0 we have that

deg(p10ej
) = deg

(∫ (
yj
nj

)10
μ(dy)x10nj

)
= 10|nj |.

Analogously, deg(p4ej
) = 4|nj | and thus (C.2) holds true for i = j . Since

p10ej
(x)r4ej

(x) = p4ej
(x)r10ej

(x), using that |nj | ≥ 2 we can compute

deg(p10ej
r4ej

) ≥ 10|nj | > 4|nj | + 10 ≥ deg(p4ej
r10ej

),

and obtain the desired contradiction. As a result, K can always be chosen smaller
than or equal one.
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APPENDIX D: THE UNIT INTERVAL, PROOF OF LEMMA 4.1 AND
THEOREM 4.3

PROOF OF LEMMA 4.1. Assume G is a polynomial operator and its martingale
problem is well-posed. Theorem 2.3 and Theorem 2.8 imply that G is of Lévy-
type for some triplet (a, b, ν), so that in particular (i) holds. Condition (iii) follows
from Lemma 2.9. To verify (ii), let fn be polynomials on [0,1] with 0 ≤ fn ≤ 1,
fn(0) = 1, xnfn(x) ≤ 1, and fn(x) ↓ 0 for x ∈ (0,1]. For example, one can choose
fn(x) := n−1

n
(1 − x)n + 1

n
. Let gn(x) := x

n
− x2fn(x). Then gn has a minimum at

x = 0, so by the positive maximum principle,

0 ≤ Ggn(0) = −a(0) + 1

n
b(0) −

∫
fn(ξ)ξ2ν(0, dξ) → −a(0), n → ∞,

where the dominated convergence theorem was used to pass to the limit. Simi-
larly, hn(x) := xfn(x) is nonnegative on [0,1] with a minimum at x = 0, so the
monotone convergence theorem yields

0 ≤ Ghn(0) = b(0) −
∫

ξ
(
1 − fn(ξ)

)
ν(0, dξ)

→ b(0) −
∫

ξν(0, dξ), n → ∞.

We have thus shown (ii) for the boundary point x = 0. The case x = 1 is similar.
We now prove the converse. Lemma 2.9 and (iii) imply that G is polynomial.

Next, clearly G1 = 0. Thus, by Theorem 2.3 it only remains to verify the positive
maximum principle in order to deduce that the martingale problem for G is well-
posed. To this end, let f ∈ Pol(E) be an arbitrary polynomial having a maximum
over E on some x ∈ E. If x ∈ int(E), it follows that f ′(x) = 0, f ′′(x) ≤ 0, and
f (x) ≥ f (x + ξ) for all ξ ∈ E − x. Hence, using that a ≥ 0 on E, we conclude
that Gf (x) ≤ 0. On the other hand, if x ∈ ∂E = {0,1} we use that a(x) = 0 and
the integrability of ξ with respect to ν(x, ·) to write

Gf (x) =
(
b(x) −

∫
ξν(x, dξ)

)
f ′(x) +

∫ (
f (x + ξ) − f (x)

)
ν(x, dξ).

The Karush–Kuhn–Tucker conditions [see, e.g., Proposition 3.3.1 in Bertsekas
(1995)] imply that f ′(x) ≤ 0 if x = 0 and f ′(x) ≥ 0 if x = 1, and thus the first
summand is nonnegative by (ii). Using as before that f (x) ≥ f (x + ξ) for all
ξ ∈ E − x, we conclude that Gf (x) ≤ 0. �

PROOF OF THEOREM 4.3. By assumption, G is polynomial and its martingale
problem is well-posed. Hence, conditions (i)–(iii) of Lemma 4.1 are satisfied. As
in Remark 3.2, we can assume without loss of generality that μ is compactly sup-
ported. In particular, all its moments of order at least two are finite. For all n ≥ 2,
set then

(D.1) pn :=
∫

γ n(·, y)μ(dy) and rn :=
∫

ξnν(·, dξ) = λpn.
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Note that pn ∈ Poln(E) for all n ≥ 2 by the integrability conditions on μ, and
rn ∈ Poln(E) for all n ≥ 3 by condition (iii) of Lemma 4.1. By Remark 3.4, we
know that

λ(x) = r4(x)

p4(x)
1{p4(x) �=0},

and hence the condition ν(x, (E − x)c) = 0 of (2.4) implies that μ can be chosen
to be supported on [0,1]2 and such that γ (x, y) = y1(−x) + y2(1 − x) μ-a.s. By
Lemma 4.1(iii), we also know that b ∈ Pol1(E) and, by Lemma 4.1(ii), that the
boundary conditions

(D.2) b(0) ≥ λ(0)

∫
γ (0, y)μ(dy) and b(1) ≤ λ(1)

∫
γ (1, y)μ(dy)

hold. We consider now five complementary assumptions, which will lead to
Types 0 to 4.

Assume that ν(x, dξ) = 0. Then Lemma 4.1 implies that a(x) = Ax(1 − x) for
some A ∈ R+. This proves that G is an operator of Type 0.

Assume now that ν(x, dξ) �= 0 and λ can be chosen to be constant. We can then
without loss of generality set λ = 1. Moreover, since in this case r2 ∈ Pol2(E), we
can conclude as before that a(x) = Ax(1 − x) for some A ∈ R+. This proves that
G is an operator of Type 1.

Assume that ν(x, dξ) �= 0, λ cannot be chosen to be constant, and p4(x
∗) = 0

for some x∗ ∈ R. By definition of p4, this automatically implies that γ (x∗, y) = 0,
and in particular x∗ = y2(y1 + y2)

−1, for μ-a.e. y ∈ [0,1]2. As a result, x∗ lies
in E, and setting y := y1 + y2 we obtain γ (x, y) = −y(x − x∗). Moreover, since
y = y2

x∗ = y1
1−x∗ μ-a.s., we can conclude that it is square-integrable and takes values

in the set [0, (x∗ ∨ (1 − x∗))−1] μ-a.s. By (D.1), we can then write

λ(x) = r3(x)

p3(x)
= r3(x)

(x − x∗)3

for some r3 ∈ Pol3(E), for all x ∈ E \ {x∗}. Since in this case ν(x∗, ·) = 0, we are
free to choose λ(x∗) = 0. By Lemma 4.1, we also know that r2 is bounded on E.
Therefore, noting that

r2(x) = r3(x)

(x − x∗)

∫
(−y)2μ(dy) for all x ∈ E \ {

x∗}
,

it follows that r3(x
∗) = 0, and thus λ(x) = q2(x)

(x−x∗)2 for some q2 ∈ Pol2(E) and
all in x ∈ E \ {x∗}. This in particular implies that r2 ∈ Pol2(E \ {x∗}), and hence
a ∈ Pol2(E \ {x∗}). Knowing that a + r2 has to be continuous by condition (iii) of
Lemma 4.1, we can finally deduce that

a
(
x∗) = lim

x→x∗ a(x) + q2
(
x∗) ∫

y2μ(dy).
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Suppose now x∗ ∈ {0,1}. Then, since a ≥ 0 on E and a(0) = a(1) = 0,
we conclude that q2(x

∗) = 0, a(x) = Ax(1 − x) for some A ∈ R+, and thus
λ(x) = q1(x)

(x−x∗)1{x �=x∗} for some q1 ∈ Pol1(E). For x∗ = 0, respectively x∗ = 1, the
nonnegativity of λ implies that q1(x) = 1+qx, respectively, q1(x) = 1+q(1−x),
for some q ∈ [−1,∞). As a result, G is an operator of Type 2.

On the other hand, if x∗ ∈ (0,1), using again that a ≥ 0 on E and a(0) = a(1) =
0, we conclude that

a(x) = Ax(1 − x) +
(
q2

(
x∗) ∫

y2μ(dy)

)
1{x=x∗},

for some A ∈ R+, proving that G is an operator of Type 3.
Assume now that ν(x, dξ) �= 0, λ cannot be chosen to be constant, and p4(x) �=

0 for all x ∈ R. We must argue that G is then necessarily of Type 4. By (D.1),
we have λ(x) = r4(x)

p4(x)
on E, and thus on R. Consequently, λ is locally bounded,

nonnegative and nonconstant. Moreover, (D.1) yields the expression λ(x) = r3(x)
p3(x)

for all x ∈ E with p3(x) �= 0. These facts combined with the fundamental theorem
of algebra imply that

(D.3) λ(x) = q2(x)

(x − α)(x − α)

for some positive q2 ∈ Pol2(E) and α ∈ C \ R. Without losing generality, we
choose to satisfy Im(α) < 0. Note that no further cancellation of polynomial fac-
tors is possible in (D.3) since λ is nonconstant. Furthermore, condition (iii) of
Lemma 4.1 yields rn ∈ Poln(E) for all n ≥ 3. Therefore, since pn(x)q2(x) =
(x − α)(x − α)rn(x) due to (D.1) and (D.3), it follows that pn(x) = (x − α)(x −
α)Rn−2(x) for all x ∈ E and n ≥ 3, for some Rn−2 ∈ Poln−2(E). This already
implies (4.2) for n ≥ 3, that is,

(D.4)
pn(α) =

∫
γ n(α, y)μ(dy)

=
∫ (

y1(−α) + y2(1 − α)
)n

μ(dy) = 0, n ≥ 3.

Next, we will establish (4.2) also for n = 2. In preparation for an application of
Lemma D.1 later on, choose a constant Cα such that∣∣∣∣1 + iγ (α, y)

Cα

∣∣∣∣ < 1 and
2|γ (α, y)|

Cα

< tan−1
∣∣∣∣ Im(1 − α)

Re(1 − α)

∣∣∣∣(D.5)

for all y ∈ [0,1]2 \ {0}. Define

fk(z) := 1 −
(

1 + iz

Cα

)k

,
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and note that |fk(γ (α, y))| ≤ 2 and limk→∞ fk(γ (α, y)) = 1 for all y ∈ [0,1]2 \
{0}. By dominated convergence, we then obtain

(D.6)
∫

γ 2(α, y)μ(dy) = lim
k→∞

∫
γ 2(α, y)fk

(
γ (α, y)

)
μ(dy) = 0,

where the last equality follows since, for each k ≥ 3, the integral on the right-hand
side is a linear combination of

∫
γ n(α, y)μ(dy) with 3 ≤ n ≤ k and, therefore,

vanishes due to (D.4). Hence, (4.2) holds also for n = 2.
We now derive some consequences. First, r2 ∈ Pol2(E) and hence a(x) =

Ax(1 − x) for some A ∈R+. Moreover, since

Arg
(
γ 2(α, ·)) ⊆ [

2 Arg(1 − α),2 Arg(−α)
]

holds μ-a.s., (D.6) implies that Arg(−α) − Arg(1 − α) ≥ π/2, or equivalently,
|2α − 1| ≤ 1. In the description of Type 4, it is claimed in addition that the in-
equality is strict, that is,

(D.7) |2α − 1| < 1.

To see this, observe that in case of equality, (D.6) would imply that Arg(γ (α, y)) ⊆
{Arg(−α),Arg(1 − α)} for μ-a.e. y ∈ [0,1]2, which is clearly incompatible with
having

∫
γ 3(α, y)μ(dy) = 0 for some nontrivial measure μ.

Next, we claim that
∫

y1μ(dy) = ∫
y2μ(dy) = ∞. We prove this by excluding

the complementary possibilities. First, assume for contradiction that
∫

y1μ(dy) <

∞ and
∫

y2μ(dy) < ∞. Then
∫ |γ (α, y)|μ(dy) < ∞. Proceeding as with (D.6),

we then deduce∫
γ (α, y)μ(dy) = lim

k→∞

∫
γ (α, y)fk

(
γ (α, y)

)
μ(dy) = 0,

which is clearly not possible since Im(γ (α, y)) > 0 μ-a.s. This is the desired con-
tradiction.

Suppose instead
∫

y1μ(dy) < ∞ and
∫

y2μ(dy) = ∞. Define

(D.8) gk(y) := Re
(
γ (α, y)fk

(
γ (α, y)

))
.

Set C := Im(1 − α)(Re(1 − α))−1 and observe that C > 0 due to the fact that
Re(1 − α) > 0 in view of (D.7). Then define the set

A :=
{
y ∈ [0,1]2 : Im(γ (α, y)/Cα)

Re(γ (α, y)/Cα)
∈ [C,2C],

2|γ (α, y)|
Cα

≤ tan−1(C), Im
(

γ (α, y)

Cα

)
≥ 0

}
.

Choosing ε > 0 small enough such that {y1 < εy2} ∩ [0,1]2 ⊆ A, by Lemma D.1
we have that

{y1 < εy2} ∩ [0,1]2 ⊆ A ⊆
{
hk

(
γ (α, y)

Cα

)
≥ 0

}
=

{
gk(y)

Cα

≥ 0
}

= {
gk(y) ≥ 0

}
.
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We can then compute

gk(y) ≥ −2
∣∣γ (α, y)

∣∣1{gk(y)<0} ≥ −2
∣∣γ (α, y)

∣∣1{y1≥εy2}

≥ −2
(
y1|α| + ε−1y1|1 − α|),

for all k ∈ N and μ-a.e. y ∈ [0,1]2. Fatou’s lemma then yields

0 = lim
k→∞

∫
gk(y)μ(dy) ≥ −Re(α)

∫
y1μ(dy) + Re(1 − α)

∫
y2μ(dy) = ∞,

using in the last step that Re(1 − α) > 0. Again we arrive at a contradiction.
Finally, suppose

∫
y1μ(dy) = ∞ and

∫
y2μ(dy) < ∞. We may then repeat the

arguments from the first case, using the function −gk instead of gk to obtain the re-
quired contradiction. In summary, we have shown that

∫
y1μ(dy) = ∫

y2μ(dy) =
∞, as claimed.

Finally, the boundary conditions (D.2) now forces λ(0) = λ(1) = 0, which in
view of (D.3) yields q2(0) = q2(1) = 0. Therefore, q2(x) = Lx(1 − x) for some
constant L > 0, as claimed. As a result, G is an operator of Type 4, and the proof
of Theorem 4.3 is complete. �

LEMMA D.1. Fix C > 0 and set hk(z) := Re(z(1 − (1 + iz)k)) for all k ∈ N.
Then there is some K ∈ N such that{

Im(z)/Re(z) ∈ [C,2C],2|z| ≤ tan−1(C), Im(z) ≥ 0
} ⊆ {

hk(z) ≥ 0
}

for all k ≥ K .

PROOF. Fix c ∈ [C,2C] and let z ∈ C such that Im(z) = c Re(z) and
Im(z) ≥ 0. Define then w := 1 + iz and compute

hk(z) = hk(i − iw) = Im(w)
(
1 − Re

(
wk) + c Im

(
wk)).

Let x := Arg(w), note that x = Arg(1 + iz) ∈ [0,2|z|], and moreover,

(D.9)

Re
(
wk) − c Im

(
wk) = cos(kx) − c sin(kx)

(c sin(x) + cos(x))k

=
√

1 + c2 cos(kx + tan−1(c))

(
√

1 + c2 cos(x − tan−1(c)))k
.

Since Im(w) = Re(z) ≥ 0, it is then enough to show that for k big enough this
expression is smaller than or equal to 1 for all x ∈ [0, tan−1(C)] and c ∈ [C,2C].

Let xc
k := (π − tan−1(c))/k be the first minimum of the numerator. Observe

that for x = xc
k the denominator converges to exp(c(π − tan−1(c))) >

√
1 + c2

uniformly on compact sets. As a result, for k big enough, we have that

sup
c∈[C,2C]

cos(kx) − c sin(kx)

(c sin(x) + cos(x))k
≤ sup

c∈[C,2C]
cos(kx) − c sin(kx)

(c sin(xc
k) + cos(xc

k))
k

≤ 1,

for all x ∈ [xc
k, tan−1(C)]. Since expression (D.9) takes value 1 for x = 0 and is

decreasing in x on [0, xc
k ], we conclude the proof. �



POLYNOMIAL JUMP-DIFFUSIONS ON THE UNIT SIMPLEX 2493

APPENDIX E: THE UNIT SIMPLEX, PROOF OF LEMMA 6.1 AND
THEOREM 6.3

PROOF OF LEMMA 6.1. Assume G is a polynomial operator and its martingale
problem is well-posed. Theorem 2.3 and Theorem 2.8 imply that G is of Lévy-
type for some triplet (a, b, ν), so that in particular (i) holds. Condition (iv) follows
from Lemma 2.9. To prove (ii), fix x ∈ E ∩ {xi = 0}. Let gi

n(x) := gn(xi) and
hi

n(x) := hn(xi), where gn and hn are the functions on [0,1] described in the proof
of Lemma 4.1. Then by the positive maximum principle we conclude that

0 ≤ Ggi
n(x) → −aii(x) and 0 ≤ Ghi

n(x) → bi(x) −
∫

ξiν(x, dξ).

The positive semidefiniteness of a(x) then implies that aij (x) = 0 for all j ∈
{1, . . . , d}. In order to verify (iii), note that setting f 
(x) := x�1 − 1, by the pos-
itive maximum principle we have

0 = G
(
f 
)

(x) = b(x)�1 and 0 = G
(
(· − x)ej f 
)

(x) = aj (x)�1,

where aj (x) denotes the j th column of a(x).
Conversely, Lemma 2.9 and (iv) imply that G is polynomial. Thus by Theo-

rem 2.3, the martingale problem for G is well-posed, provided that G1 = 0 and
G satisfies the positive maximum principle. The first condition is clearly satisfied.
For the second one, let gi(x) := xi and f ∈ Pol(E) be an arbitrary polynomial
having a maximum over E at some x ∈ E. Observe that

E = {
x ∈Rd : f 
 = 0 and gi ≥ 0 for all i ∈ {1, . . . , d}},

and let I (x) be the set of all active inequality constraints at point x, that is, I (x)

is the set of all i ∈ {1, . . . , d} such that xi = 0. By the necessity of the Karush–
Kuhn–Tucker conditions [see, e.g., Proposition 3.3.1 in Bertsekas (1995)], there
exist multipliers μ ∈ Rd+ and λ ∈R such that μi = 0 for all i ∈ {1, . . . , d} \ I (x),

∇f (x) = − ∑
i∈I (x)

μi∇gi(x) + λ∇f 
(x) = − ∑
i∈I (x)

μiei + λ1,

and v�∇2f (x)v ≤ 0 for all v ∈ Rd such that v�1 = 0 and vi = 0 for all i ∈ I (x).
Since ξ�1 = 0 for ν(x, ·)-a.e. ξ , b(x)�1 = 0 by (iii), and

∫ |ξi |ν(x, dξ) < ∞ for
all i ∈ I (x) by (ii), we can thus write

Gf (x) = 1

2
Tr

(
a(x)∇2f (x)

) + ∑
i∈I (x)

−μi

(
bi(x) −

∫
ξiν(x, dξ)

)

+
∫ (

f (x + ξ) − f (x)
)
ν(x, dξ).

We must argue that Gf (x) ≤ 0. The second term on the right-hand side is nonpos-
itive by (ii). The last term is also nonpositive since f is maximal over E at x. It
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remains to show that the first term is nonpositive. To this end, let
√

a(x) denote
the symmetric and positive semidefinite square root of a(x). Condition (iii) yields
a(x)1 = 0 and thus

√
a(x)1 = 0. By symmetry of

√
a(x), we deduce(√

a(x)v
)�1 = v�√

a(x)1 = 0 for all v ∈ Rd .

Moreover, by (ii) we also have that a(x)ei = 0, and hence
√

a(x)ei = 0, for all
i ∈ I (x). This implies that (

√
a(x))ij = 0, and thus (

√
a(x)v)i = 0, for all i ∈ I (x)

and v ∈ Rd . As a result,

v�(√
a(x)∇2f (x)

√
a(x)

)
v = (√

a(x)v
)�∇2f (x)

(√
a(x)v

) ≤ 0,

which implies that
√

a(x)∇2f (x)
√

a(x) is negative semidefinite. This gives the
desired inequality

Tr
(
a(x)∇2f (x)

) = Tr
(√

a(x)∇2f (x)
√

a(x)
) ≤ 0,

showing that Gf (x) ≤ 0. This completes the proof of the lemma. �

Before starting the proof of Theorem 6.3, we prove three auxiliary lemmas.

LEMMA E.1. Consider a polynomial p ∈ Poln(E):

(a) If p vanishes on E ∩ {xi = xj = 0}, it can be written as

(E.1) p(x) = xip
i
n−1(x) + xjp

j
n−1(x) for some pi

n−1,p
j
n−1 ∈ Poln−1(E).

(b) If p vanishes on E ∩ ({xi = 0} ∪ {xj = 0}) for some i �= j , it can be written
as

(E.2) p(x) = xixjpn−2(x) for some pn−2 ∈ Poln−2(E).

(c) If p vanishes on E ∩ {cxi = xj } for some c ≥ 0 and i �= j , it can be written
as

(E.3) p(x) = (−cxi + xj )pn−1(x) for some pn−1 ∈ Poln−1(E).

PROOF. Since every affine function on E can be written as a linear one, there
is a real collection (pn)|n|=n such that p(x) = ∑

|n|=n pnxn, for all x ∈ E. Observe
that for all x ∈ E ∩ {xi = xj = 0} we have that

0 = p(x) = ∑
|n|=n

ni=nj =0

pnxn.

Assume without loss of generality that i = d and j = d − 1 (resp., i = j = d if
i = j ) and note that, the polynomial q ∈ Pol(Rj−1) given by

q(x) := ∑
|n|=n

ni=nj =0

pnxn,
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where n = ∑j−1
k=1 nkek , is a homogeneous polynomial vanishing on the simplex.

This directly implies that q = 0, and hence pn = 0 for all |n| = n such that ni =
nj = 0. We can thus conclude that p satisfies (E.1).

Proceeding as before for the second part, we obtain that pn = 0 for all |n| = n

such that ni = 0 or nj = 0 and can thus conclude that p satisfies (E.2).
Finally, for the third part it is enough to note that the polynomial p ∈ Poln(E)

given by

p(x) := p

(
x + cxi

1 + c
(ej − ei)

)
vanishes on E ∩ {xj = 0}. By (a), this gives us that

p(x) = p
(
x + cxi(ei − ej )

) = (−cxi + xj )p
j
n−1(x)

on E ∩ {xj ≥ cxi}, and thus on E, proving that p satisfies (E.3). �

LEMMA E.2. Let μ be a nonzero measure on (
d)d \ {e1, . . . , ed}. The func-
tion γ : E × (
d)d → R given by γ (x, y) = ∑d

i=1(y
i − ei)xi can be represented

as

γ (x, y) = H(y)P1(x) μ-a.s.,(E.4)

for a measurable function H : (
d)d → Rd and P1 ∈ Pol1(E), if and only if one
of the following cases holds true:

(a) γ (x, y) = (yi − ei)xi μ-a.s. for some i ∈ {1, . . . , d}.
(b) γ (x, y) = y

j
i (−cxi + xj )(ei − ej ) μ-a.s. for some i �= j and c > 0. In this

case, y
j
i ∈ (0, 1

c
∧ 1] μ-a.s.

PROOF. First, assume that (E.4) holds true. Since P1 ∈ Pol1(E), and as every
affine function on E has a linear representation, we can write P1(x) = C�x, for
some C ∈ Rd . If C = 0, the support of μ has to be contained in {e1, . . . , ed}, which
is not possible by assumption.

If Ci �= 0 for some i ∈ {1, . . . , d}, item (a) follows if Cj = 0 for all j �= i.
If Ci and Cj are nonzero for some i �= j , item (b) follows if C� = 0 for all

� /∈ {i, j}. Indeed, by assumption we have (yk − ek) = CkH(y) for k ∈ {i, j}, and
thus

yi − ei = Ci

Cj

(
yj − ej

)
.

Since yi, yj ∈ 
d μ-a.s., we can conclude that yi
� = y

j
� = 0 for all � /∈ {i, j}, and

hence

(E.5)
yi
j

y
j
i

= 1 − yi
i

y
j
i

= − Ci

Cj

=: c
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proving that the conditions of item (b) hold true. In this case, y
j
i ∈ (0, 1

c
∧ 1] μ-a.s.

by (E.5).
Finally, if Ci �= 0 for at least three different values of i, the same reasoning

as for case (b) implies yi
� = 0 for all � �= i, and thus H = 0 μ-a.s., which is not

possible by assumption.
The converse direction is clear. �

LEMMA E.3. The following assertions are equivalent:

(i) The matrix a(x) ∈ Sd+ satisfies a1 = 0, aij ∈ Pol2(E), and aii = 0 on E ∩
{xi = 0}.

(ii) The matrix a(x) satisfies

aii(x) = ∑
i �=j

αij xixj and aij (x) = −αijxixj for all i �= j,

for some αij = αji ∈ R+.

PROOF. We start by proving (i) ⇒ (ii): By Lemma E.1, we already know that
for all i �= j we have aij = −αijxixj for some αij ∈ R. Moreover, as a1 = 0 on E,
we also have that

aii(x) = −∑
j �=i

aij (x) = ∑
i �=j

αij xixj

for all x ∈ E. Since a ∈ Sd+ on E and αij = 4aii((ei + ej )/2) for all i �= j , it
follows that αij ∈ R+, which completes the proof of the first direction. Concerning
(ii) ⇒ (i), the only condition which is not obvious is positive semidefiniteness of
a on E, which follows exactly as in the proof of Proposition 6.6 in Filipović and
Larsson (2016). �

PROOF OF THEOREM 6.3. As G is polynomial and its martingale problem
is well-posed, the conditions of Lemma 6.1 are satisfied. As in Remark 3.2, we
can assume without loss of generality that μ is compactly supported and all its
moments of order greater or equal two are thus finite. Analogously to (D.1), we set
then

(E.6) pn :=
∫

γ n(·, y)μ(dy) and rn :=
∫

ξnν(·, dξ) = λpn

for all |n| ≥ 2. Note that pn ∈ Pol|n|(E) for all |n| ≥ 2 by the integrability condi-
tions on μ. By condition (iv) of Lemma 6.1, we also have that rn ∈ Pol|n|(E) for
all |n| ≥ 3. By Remark 3.4, we know that

λ(x) =
∫ |ξ |4ν(x, dξ)∫ |γ (x, y)|4μ(dy)

1{∫ |γ (x,y)|4μ(dy) �=0},
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and hence condition ν(x, (E − x)c) = 0 implies that μ can be chosen supported
on (
d)d and such that

γ (x, y) =
d∑

i=1

(
yi − ei

)
xi μ-a.s.

By definition of affine jump sizes, the measure μ has to be square-integrable.
Concerning the statement on the drift, this is a consequence of Lemma 6.1.

Indeed (iv) yields the affine (and thus linear) form of the drift, (ii) leads to

(E.7)
∑
j �=i

(
Bijxj − λ(x)

∫
y

j
i xjμ(dy)

)
≥ 0, x ∈ E ∩ {xi = 0}

and finally B�1 = 0 is a consequence of (iii), namely b�1 = 0 for all x ∈ E.
Since condition (E.7) yields

∑
j �=i Bij xj ≥ 0, choosing x = ej we get Bij ≥ 0

for j �= i and Bii = −∑
j �=i Bji for all i ∈ {1, . . . , d}. We will now consider four

complementary assumptions, which will lead to Type 0 to 3.
Assume that ν(x, dξ) = 0. Then by Lemma 6.1, we can apply Lemma E.3 to

conclude that a satisfies (6.2). This proves that in this case G is an operator of
Type 0.

Assume now that ν(x, dξ) �= 0 and λ can be chosen to be constant. We can then
without loss of generality set λ = 1. Moreover, since in this case rei+ej

∈ Pol2(E)

for all i, j ∈ {1, . . . , d}, condition (iv) of Lemma 6.1 implies that the entries dif-
fusion matrix aij ∈ Pol2(E). We can thus conclude as before that a can be cho-
sen to be of form (6.2). Finally, condition (E.7) can be rewritten as

∑
j �=i (Bij −∫

y
j
i μ(dy))xj ≥ 0 for all x ∈ E ∩ {xi = 0}, which yields Bij − ∫

y
j
i μ(dy) for all

i �= j . As a result, G is an operator of Type 1.
Assume now that ν(x, dξ) �= 0 and λ cannot be chosen to be constant. We

already know that λ = p(x)
q(x)

for some p,q ∈ Pol(E). Supposing without loss
of generality that p(x) and q(x) are coprime polynomials, we necessarily have
due to Assumption A that q(x) is a divisor of γi(x, y)3 for each i ∈ {1, . . . , d}
and μ-a.e. y ∈ (
d)d . Since γi(·, y) ∈ Pol1(E) μ-a.s., this in turn implies that
γ (x, y) = H(y)P1(x) μ-a.s. with a measurable function H : (
d)d → Rd and
P1 ∈ Pol1(E).

Choose now i ∈ {1, . . . , d} such that μ(Hi(y) �= 0) > 0. By equation (E.6), we
have that

λ(x) = r3ei
(x)

p3ei
(x)

= r3ei
(x)

(P1(x))3

for some r3ei
∈ Pol3(E), for all x ∈ E \ {P1 = 0}. Since in this case ν(x, dξ) = 0

for all x ∈ E ∩{P1 = 0}, we are free to choose λ(x) = 0 on this set. By Lemma 6.1,
we also know that r2ei

has to be a bounded function on E. Noting that for all
x ∈ E \ {P1 = 0}

r2ei
= r3ei

(x)

P1(x)

∫
H 2

i (y)μ(dy),
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we see that this condition holds true if and only if r3ei
(x) = 0 for all x ∈ {P1 = 0}.

Since we know by Lemma E.2 that P1(x) = −cxi + xj for some c ≥ 0, by
Lemma E.1, we thus have that

λ(x) = q2(x)

(P1(x))2 1{P1 �=0}

for some q2 ∈ Pol2(E). This in particular implies that rek+e�
∈ Pol2(E \ {P1 = 0})

and hence, by condition (iv) of Lemma 6.1, ak� ∈ Pol2(E \ {P1 = 0}) for all k, � ∈
{1, . . . , d}. By the same condition, we also have that for all x ∈ E ∩ {P1 = 0}
(E.8) ak�(x) = ak�(x) + rek+e�

(x) = lim
z→x

ak�(z) + q2(x)

∫
Hk(y)H�(y)μ(dy),

and thus in particular, by positive semidefiniteness of a(x) and condition (ii) of
Lemma 6.1,

(E.9) aii(x) = lim
z→x

aii(z) = q2(x) = 0

for all x ∈ E ∩ {P1 = 0} ∩ {xi = 0}. Setting ac
k� ∈ Pol2(E) be such that

ac
k�|E\{P1=0} = ak�|E\{P1=0}, we obtain that ac := (ac

k�)k� satisfies the conditions
of Lemma E.3, and thus ac can be chosen to be of the form (6.2). By (E.8), we can
then conclude that

a(x) = ac(x) + q2(x)1{P1=0}
∫

H(y)H(y)�μ(dy).

By Lemma E.2, we know that there are only two complementary choices of H and
P1.

The first choice is H(y) = (yi − ei) and P1(x) = xi for some fixed i ∈
{1, . . . , d}. Then by (E.9) and Lemma E.1, we have q2(x) = q1(x)xi for some
q1 ∈ Pol1(E). Moreover, using that q1(x) = ∑d

j=1 q1(ej )xj , condition (E.7) can
be rewritten as∑

j �=k

(
Bkj − q1(ej )1{xi �=0}

∫
yi
kμ(dy)

)
xj ≥ 0, x ∈ E ∩ {xk = 0}

for all k ∈ {1, . . . , d}, which yields (6.5) for all k �= i and j �= k. As a result, G is
an operator of Type 2.

The second choice of H and P1 is H(y) = y
j
i (ei − ej ) and P1(x) = −cxi + xj

for some i, j ∈ {1, . . . , d} such that i �= j , where y
j
i ∈ (0, 1

c
∧ 1]. Then by (E.9)

and Lemma E.1, we have q2(x) = ∑d
k=1 qikxixk + qjkxjxk for some qk� ∈ R.

Since condition (E.7) coincides with condition (6.6), we can conclude that G is
an operator of Type 3. �
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FILIPOVIĆ, D., GOURIER, E. and MANCINI, L. (2016). Quadratic variance swap models. J. Financ.

Econ. 119 44–68.
FILIPOVIĆ, D. and LARSSON, M. (2016). Polynomial diffusions and applications in finance. Fi-

nance Stoch. 20 931–972. MR3551857
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