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GLIVENKO–CANTELLI THEORY, ORNSTEIN–WEISS
QUASI-TILINGS, AND UNIFORM ERGODIC THEOREMS FOR
DISTRIBUTION-VALUED FIELDS OVER AMENABLE GROUPS

BY CHRISTOPH SCHUMACHER∗, FABIAN SCHWARZENBERGER† AND
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TU Dortmund∗ and HTW Dresden†

We consider random fields indexed by finite subsets of an amenable dis-
crete group, taking values in the Banach-space of bounded right-continuous
functions. The field is assumed to be equivariant, local, coordinate-wise
monotone and almost additive, with finite range dependence. Using the the-
ory of quasi-tilings we prove an uniform ergodic theorem, more precisely,
that averages along a Følner sequence converge uniformly to a limiting func-
tion. Moreover, we give explicit error estimates for the approximation in the
sup norm.

1. Introduction. Ergodic theorems for Banach space valued functions or
fields have been studied among others in [6, 7, 11] in a combinatorial setting. The
three quoted papers consider different group actions in increasing generality: the
lattice Z

d , monotilable amenable discrete groups and general amenable discrete
groups, respectively. Note that amenability is a natural assumption for the validity
of the ergodic theorem, as shown explicitly in [14]. Already before that combina-
torial ergodic theorems for Banach space valued functions have been proven in the
context of Delone dynamical systems; see [8] and the references therein.

The combinatorial framework offers the advantage of a minimum of probabilis-
tic or measure theoretic assumptions, the necessary one being that frequencies or
densities of finite patterns are well defined and can be approximated by an exhaus-
tion (corresponding to a law of large numbers). A disadvantage of the combina-
torial approach chosen is that the range of colors (or the alphabet corresponding
to the values of the random variables) needs to be finite. Also, the derived ergodic
theorems are in a sense conditional: The convergence bound depends on the speed
of convergence of the pattern frequencies.

Our present research aims at dispensing with the finiteness condition on the set
of colors. The price to pay is that we have to assume more probabilistic structure
and in particular independence or at least finite range correlations. In return, this
structure yields automatically quantitative approximation error bounds. No extra
assumptions on the speed of convergence of the pattern frequencies are needed.
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For the case of fields defined over Zd and Z
d -actions, we have established such an

ergodic theorem in [12], which takes on the form of a Glivenko–Cantelli theorem,
and which we recall now in an informal way.

THEOREM A ([12]). Let �n = [0, n)d ∩ Z
d , and ω = (ωg)g∈Zd ∈ R

Z
d

be an
i.i.d. sequence of real random variables. Assume the field

f : P(Zd)×R
Z

d → B := {D : R→R | D right-continuous and bounded}
is Zd -equivariant, monotone in each coordinate ωg , local and almost additive, that
is, for disjoint Q1, . . . ,Qn ⊆ Z

d and Q :=⋃n
i=1 Qi we have∥∥∥∥∥f (Q,ω) −

n∑
i=1

f (Qi,ω)

∥∥∥∥∥∞ ≤
n∑

i=1

|∂Qi |,

where ∂Qi denotes the boundary set. Assume furthermore that f∞ := supω ‖f (id,

ω)‖∞ < ∞.
Then there is a function f ∗ : R → R such that for each m ∈ N, there exist

a(m), b(m) > 0, such that for all j ∈ N, j > 2m, there is an event �j,m ⊆ R
Z

d
,

with the properties

P(�j,m) ≥ 1 − b(m) exp
(−a(m)|�j |)

and

∀ω ∈ �j,m :
∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥∞ ≤ 22d+1

(
(6d + 3 + 2f∞)md + 1

j − 2m
+ 4

m

)
.

In particular, almost surely we have limn→∞ ‖f (�n,•)
|�n| − f ∗‖∞ = 0.

For a precise formulation of the properties of the field f , see Section 2. Let us
note that in our theorem f takes values in the Banach space B of right continuous
and bounded functions with sup-norm while in [6, 7, 11] an arbitrary Banach space
was allowed. This restriction is due to our use of the Glivenko–Cantelli theory in
the proof, and currently we do not know how to extend it to arbitrary Banach
spaces.

Naturally, one asks whether the above result and its proof extend to general
finitely generated amenable groups. In this case, obviously, the boundary has to be
taken with respect to a generating set S ⊆ G, and the sequence of squares �n has
to be replaced by a Følner sequence. Indeed, if G satisfies additionally,

(�) There exists a Følner sequence (�n)n∈N in G, and a sequence of symmetric
grids Tn = T −1

n ⊆ G such that G = ⋃̇t∈Tn
�nt is a disjoint union.

the proofs of [12] apply with technical, but no strategic, modifications, as sketched
in Appendix B.
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However, it is not clear in which generality assumption (�) holds. In fact, the
existence of tiling Følner sequences (for general amenable groups) has been in-
vestigated in several instances. It turned out that there exist useful additional con-
ditions which imply the validity of (�); cf. [5, 16]. For instance, a group which
is residually finite and amenable contains a tiling Følner sequence. Unfortunately,
there is a lack of the complete picture: It is still an open question whether there
exists a tiling Følner sequence in each amenable group.

Since this question seems hard to answer, Ornstein and Weiss invented in [10]
the theory of ε-quasi tilings. The idea is to consider a tiling which is in several
senses weaker as the one in (�). For a given ε > 0, one has the following proper-
ties:

• the group is not tiled with one element of a Følner sequence, but with finitely
many elements of this sequence; the number of these elements depends on ε;

• the tiles are allowed to overlap, but the proportion of the part of any tile which
is allowed to intersect other tiles is at most of size ε. This property is called
ε-disjointness;

• each element of a Følner sequence with a sufficiently large index is, up to a
proportion of size ε the union of ε-disjoint tiles.

The authors showed that each amenable group can be ε-quasi tiled. In [11], these
ideas have been developed further in order to obtain quantitative estimates on the
portion which is covered by translates of one specific element of the tiles. The
proof of our main result, which we state now in an informal way, is based on these
results on quasi tilings.

THEOREM B. Let (�n) be a Følner sequence in a finitely generated group G.
Let ω = (ωg)g∈G ∈ R

G be an i.i.d. sequence of real random variables. Assume the
field

f : P(G) ×R
G → {D : R →R | D right-continuous and bounded},

is G-equivariant, monotone in each coordinate ωg , local and almost additive, that
is, for disjoint Q1, . . . ,Qn ⊆ G and Q :=⋃n

i=1 Qi we have∥∥∥∥∥f (Q,ω) −
n∑

i=1

f (Qi,ω)

∥∥∥∥∥∞ ≤
n∑

i=1

|∂Qi |,

where ∂Qi denotes the boundary relative to a set of generators S ⊆ G. Assume
furthermore, that f∞ := supω ‖f (id,ω)‖∞ < ∞.

Then there is a function f ∗ : R → R such that for each δ ∈ (0,1), there exists
a(δ) > 0, such that for all sufficiently large j ∈ N, there is an event �j,δ ⊆ R

G,
with the properties

P(�j,δ) ≥ 1 − exp
(−a(δ)|�j |)
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and

∀ω ∈ �j,δ

∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥∞ ≤ (37f∞ + 84|S| + 131

)
δ.

In particular, almost surely we have limn→∞ ‖f (�n,•)
|�n| − f ∗‖∞ = 0.

For a precise formulation, see Definition 2.2 and Theorem 2.5. To achieve the
error bound in the theorem, we work with an ε-quasi tiling with ε = δ2.

REMARK 1.1. Let us sketch the difference between the proof of Theorem B
(see also Theorem 2.5 below) and the Theorem 2.8 of [12] sketched as Theorem A
above. There we heavily relied on the fact that Zd can be tiled exactly with any
cube of integer length. Since a general discrete amenable group need not have such
a tiling, we have to modify the geometric parts of the proof and use ε-quasi tilings
as in [10, 11]. Since quasi tilings in general overlap, we lose independence of the
corresponding random variables. This requires a change in the probabilistic part
of the proof and in particular the use of resampling.

The structure of the paper is as follows. In Section 2, we precisely describe the
model and our result. In Section 3, we summarize results about ε-quasi tilings,
which are fundamental for our proof. The error estimate in the main theorem and
the corresponding approximation procedure naturally split in three parts, which are
treated consecutively in Sections 4 to 6. Section 4 is of geometric nature. Section 5
is based on multivariate Glivenko–Cantelli theory. Section 6 is geometric in spirit
again. In the Appendix, we prove a resampling lemma and indicate how the proof
of [12] could be adapted to cover monotileable amenable groups.

2. Model and main results. We start this section with the introduction of
the geometric and probabilistic setting: We recall the notion of a Cayley graph
of an amenable group G, introduce random colorings of vertices, and define so-
called admissible fields, which are random functions mapping finite subsets of G

to functions on R and satisfying a number of natural properties; cf. Definition 2.2.
We are then in the position to formulate our main Theorem 2.5.

Let G be a finitely generated group and S = S−1 ⊆ G \ {id} a finite generating
system. Obviously, G is countable. The set of all finite subsets of G is denoted
by F and is countable as well. Throughout this paper, we will assume that G is
amenable, that is, there exists a sequence (�n)n∈N of elements in F such that for
each K ∈ F one has

(2.1)
|�n�K�n|

|�n|
n→∞−−−→ 0.

Here, K�n := {kg | k ∈ K,g ∈ �n} is the pointwise group multiplication of sets,
�n�K�n denotes the symmetric difference between the sets �n and K�n and |A|
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denotes the cardinality of the finite set A. A sequence (�n)n∈N satisfying property
(2.1) is called Følner sequence.

The pair (G,S) gives rise to an undirected graph �(G,S) = (V ,E) with vertex
set V := G and edge set E := {{x, y} | xy−1 ∈ S}. The graph �(G,S) is known
as the Cayley graph of G with respect to the generating system S. Note that by
symmetry of S the edge set E is well defined. Let d : G×G →N0 denote the usual
graph metric of �(G,S). The distance between two nonempty sets �1,�2 ⊆ G is
given by

d(�1,�2) := min
{
d(x, y) | x ∈ �1, y ∈ �2

}
.

In the case where �1 = {x} consists of only one element, we write d(x,�2) for
d({x},�2). The diameter of a nonempty set � ∈ F is defined by diam(�) :=
max{d(x, y) | x, y ∈ �}.

Given r ≥ 0, the r-boundary of a set � ⊆ G is defined by

∂r(�) := {x ∈ � | d(x,G \ �) ≤ r
}∪ {x ∈ G \ � | d(x,�) ≤ r

}
and besides this we use the notation:

�r := � \ ∂r(�) = {x ∈ � | d(x,G \ �) > r
}
.

It is easy to verify that for a given Følner sequence (�n)n∈N, or (�n) for short,
and r ≥ 0 we have

(2.2) lim
n→∞

|∂r(�n)|
|�n| = 0 and lim

n→∞
|�r

n|
|�n| = 1.

Moreover, if (�n) is a Følner sequence, then for arbitrary r ≥ 0 the sequence (�r
n)

is a Følner sequence as well. Conversely, in order to show that a given sequence
(�n) is a Følner sequence, it is sufficient [1, 13] to show for n → ∞ either

|�n�S�n|
|�n| → 0 or

|∂1(�n)|
|�n| → 0.(2.3)

Let us introduce colorings of the group G [or equivalently colorings of the ver-
tices of �(G,S)]. We choose a (finite or infinite) set of possible colors A ∈ B(R).
The sample set,

� =AG = {ω = (ωg)g∈G | ωj ∈ A
}
,

is the set of all possible colorings of G. Note that G acts in a natural way via
translations on �. To be precise, we define for each g ∈ G

(2.4) τg : � → �, (τgω)x = ωxg (x ∈ G).

Next, we introduce random colorings. As the σ -algebra, we choose B(�), the
product σ -algebra on � generated by cylinder sets. Oftentimes, we are interested
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in (finite) products of A embedded in the infinite product space �. To this end, we
set for � ⊆ G

�� := A� := {(ωg)g∈� | ωg ∈ A
}

and define

�� : � → �� by
(
��(ω)

)
g := ωg for each g ∈ �.

As shorthand notation, we write ω� instead of ��(ω). Having introduced the mea-
surable space (�,B(�)), we choose a probability measure P with the following
properties:

(M1) equivariance: For each g ∈ G, we have P ◦ τ−1
g = P.

(M2) existence of densities: There is a σ -finite measure μ0 on (A,B(A)), such
that for each � ∈ F the measure P� := P ◦ �−1

� is absolutely continuous with re-
spect to μ� :=⊗g∈� μ0 on ��. We denote the corresponding probability density
function by ρ�.

(M3) independence condition: There exists r ≥ 0 such that for all n ∈ N

and nonempty �1, . . . ,�n ∈ F with min{d(�i,�j ) | i �= j} > r we have ρ� =∏n
j=1 ρ�j

, where � =⋃n
j=1 �j .

The measure P� is called the marginal measure of P. It is defined on (��,B(��)),
where again B(��) is generated by the corresponding cylinder sets.

REMARK 2.1. (a) The constant r ≥ 0 in (M3) can be interpreted as the cor-
relation length. In particular, if r = 0 this property implies that the colors of the
vertices are chosen independently.

(b) (M2) is trivially satisfied, if P is a product measure.

In the following, we consider partial orderings on � and on R
k , respectively.

Here, we write ω ≤ ω′ for ω,ω′ ∈ �, if for all g ∈ G we have ωg ≤ ω′
g . The notion

x ≤ x′ for x, x′ ∈ R
k is defined in the same way. We consider the Banach space

B := {F : R →R | F right-continuous and bounded},
which is equipped with supremum norm ‖ · ‖ := ‖ · ‖∞.

DEFINITION 2.2. A field f : F ×� → B is called admissible if the following
conditions are satisfied:

(A1) equivariance: for � ∈ F , g ∈ G and ω ∈ � we have

f (�g,ω) = f (�, τgω).

(A2) locality: for all � ∈ F and ω,ω′ ∈ � satisfying ��(ω) = ��(ω′) we
have

f (�,ω) = f
(
�,ω′).



GLIVENKO–CANTELLI THEORY OVER AMENABLE GROUPS 2423

(A3) almost additivity: for arbitrary ω ∈ �, pairwise disjoint �1, . . . ,�n ∈ F
and � :=⋃n

i=1 �i we have∥∥∥∥∥f (�,ω) −
n∑

i=1

f (�i,ω)

∥∥∥∥∥≤
n∑

i=1

b(�i),

where b : F → [0,∞) satisfies:

• b(�) = b(�g) for arbitrary � ∈ F and g ∈ G,
• ∃Df > 0 with b(�) ≤ Df |�| for arbitrary � ∈ F ,
• limi→∞ b(�i)/|�i | = 0, if (�i)i∈N is a Følner sequence.
• for �,�′ ∈F , we have b(�∪�′) ≤ b(�)+ b(�′), b(�∩�′) ≤ b(�)+ b(�′),

and b(� \ �′) ≤ b(�) + b(�′).
(A4) monotonicity: f is antitone with respect to the partial orderings on � ⊆

R
G and B, that is, if ω,ω′ ∈ � satisfy ω ≤ ω′, we have

f (�,ω)(x) ≥ f
(
�,ω′)(x) for all x ∈ R and � ∈ F .

(A5) boundedness:

sup
ω∈�

∥∥f ({id},ω)∥∥< ∞.

REMARK 2.3. • Locality (A2) can be formulated as follows: f (�, · ) is
σ(��)-measurable. This enables us to define f� : �� → B by f�(ω�) :=
f (�,ω) with � ∈ F and ω ∈ �.

• We call the function b in (A3) boundary term. Note that the fourth assumption
on b in (A3) was not made in [12]. Indeed, this inequality is used to separate
overlapping tiles and is unnecessary as soon as the group has the tiling property
(�). This fourth point is used only in Lemmas 3.5 and 5.3.

• The antitonicity assumption in (A4) can be weakened. In particular, our proofs
apply to fields which are monotone in each coordinate, where the direction of
the monotonicity can be different for distinct coordinates. For simplicity reasons
and as our main example (see [12]) satisfies (A4), we restrict ourselves to this
kind of monotonicity.

• As shown in [12], a combination of (A1), (A3) and (A5) implies that the bound

Kf := sup
{∥∥f (�,ω)

∥∥/|�| | ω ∈ �,� ∈F
}

≤ Df + sup
ω∈�

∥∥f ({id},ω)∥∥< ∞.
(2.5)

DEFINITION 2.4. A set U of admissible fields is called admissible set, if their
bound is uniform:

KU := sup
f ∈U

Kf < ∞

and each for each f ∈ U condition (A3) is satisfied with the same boundary term b.
In this situation, we denote the constant in (A3) by DU .
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Let us state the main theorem of this paper.

THEOREM 2.5. Let G be a finitely generated amenable group with a Følner
sequence (�n). Further, let A ∈ B(R) and (� =AG,B(�),P) a probability space
such that P satisfies (M1) to (M3). Finally, let U be an admissible set.

(a) Then there exists an event �̃ ∈ B(�) such that P(�̃) = 1 and for any
f ∈ U there exists a function f ∗ ∈ B, which does not depend on the specific Følner
seqeunce (�n), with

∀ω ∈ �̃ : lim
n→∞

∥∥∥∥f (�n,ω)

|�n| − f ∗
∥∥∥∥= 0.

(b) Furthermore, for each ε ∈ (0,1/10), there exist j0(ε) ∈ N, independent
of KU , and a(ε,KU ), b(ε,KU ) > 0, such that for all j ∈ N, j ≥ j0(ε), there is an
event �j,ε,KU ∈ B(�), with the properties

P(�j,ε,KU ) ≥ 1 − b(ε,KU ) exp
(−a(ε,KU )|�j |)

and ∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥

≤ (37KU + 47DU + 47)
√

ε for all ω ∈ �j,ε,KU and all f ∈ U .

For examples of measures P satisfying (M1) to (M3) and of admissible
fields, we refer to [12]. The generalization of the geometry from the lattice
Z

d to an amenable group G does not affect the examples. See also [9, 15]
for a discussion of models giving rise to a discontinuous integrated density of
states, which nevertheless can be uniformly approximated by almost additive
fields.

3. Outline of ε-quasi tilings. Let us give a brief introduction to the theory of
ε-quasi tilings. The main ideas go back to Ornstein and Weiss in [10]. However,
the specific results we use here are taken from [11]; see also [13].

Let (Qn) be a Følner sequence. This sequence is called nested, if for all n ∈ N

we have {id} ⊆ Qn ⊆ Qn+1. Using translations and subsequences, it is easy to
show that every amenable group contains a nested Følner sequence; cf. [11],
Lemma 2.6.

We will use the elements of the nested Følner sequence (Qn) to ε-quasi tile ele-
ments of a given Følner sequence (�j ) for (very) large index j . The next definition
provides the notion of an α-covering, ε-disjointness and ε-quasi tiling.

DEFINITION 3.1. Let G be a finitely generated group, α, ε ∈ (0,1) and I

some index set.
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• The sets Qi ∈ F , i ∈ I , are said to α-cover the set � ∈F , if:

(i)
⋃

i∈I Qi ⊆ �, and
(ii) |� ∩⋃i∈I Qi | ≥ α|�|.

• The sets Qi ∈ F , i ∈ I are called ε-disjoint, if there are subsets Q̊i ⊆ Qi , i ∈ I ,
such that for all i ∈ I we have:

(i) |Qi \ Q̊i | ≤ ε|Qi |, and
(ii) Q̊i and

⋃
j∈I\{i} Q̊j are disjoint.

• The Ki ∈ F , i ∈ I , are said to ε-quasi tile � ∈ F , if there exist Ti ∈ F , i ∈ I ,
such that:

(i) the elements of {KiTi | i ∈ I } are pairwise disjoint,
(ii) for each i ∈ I , the elements of {Kit | t ∈ Ti} are ε-disjoint, and

(iii) the family {KiTi | i ∈ I } (1 − 2ε)-covers �.

The set Ti is called center set for the tile Ki , i ∈ I .

Actually, the details in this definition are adapted to our needs in this paper, as
is the following theorem. The general and more technical versions as well as the
proof of can be found [11]. See also [10] for earlier results.

Roughly speaking, the following theorem provides, in the setting of finitely gen-
erated amenable groups, ε-quasi covers for every set with small enough boundary
compared to its volume. Additionally, the theorem also provides control over the
fraction covered by different tiles with uniform almost densities. To quantify these
densities, we use the standard notation �b� := inf{z ∈ Z | z ≥ b} = infZ ∩ [b,∞)

for the smallest integer above b ∈ R and define, for all ε > 0 and i ∈ N,

(3.1) N(ε) :=
⌈

ln(ε)

ln(1 − ε)

⌉
and ηi(ε) := ε(1 − ε)N(ε)−i .

THEOREM 3.2. Let G be a finitely generated amenable group, (Qn) a nested
Følner sequence and ε ∈ (0,1/10). Then there is a finite and strictly increasing
selection of sets Ki ∈ {Qn | n ∈ N}, i ∈ {1, . . . ,N(ε)}, with the following quasi
tiling property. For each Følner sequence (�j ), there exists j0(ε) ∈N such that for
all j ≥ j0(ε), the sets Ki , i ∈ {1, . . . ,N(ε)}, are an ε-quasi tiling of �j . Moreover,
for all j ≥ j0(ε) and all i ∈ {1, . . . ,N(ε)}, the proportion of �j covered by the tile
Ki satisfies

(3.2)
∣∣∣∣ |KiT

j
i |

|�j | − ηi(ε)

∣∣∣∣≤ ε2

N(ε)
,

where T
j
i denotes the center set of the tile Ki for the ε-quasi cover of �j .

To make full use of Theorem 3.2, we need some properties of the densities ηi(ε).
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LEMMA 3.3. For N(ε) and ηi(ε) as in (3.1), the following hold true:

(a) For each ε ∈ (0,1), we have

1 − ε ≤
N(ε)∑
i=1

ηi(ε) = 1 − (1 − ε)N(ε) ≤ 1.

(b) For each ε ∈ (0,1/10) and i ∈ {1, . . . ,N(ε)}, we have
ε

N(ε)
≤ ηi(ε) ≤ ε.

(c) For a bounded sequence (αi)i∈N and ε ∈ (0,1/10), we have the inequality∣∣∣∣∣
N(ε)∑
i=1

αiηi(ε)

∣∣∣∣∣≤ A
√

ε + Aε,

where A := sup{|αi | | i ∈ N} and Aε := sup{|αi | | i ∈ N, i ≥ ε−1/2}. In particular,

lim
ε↘0

N(ε)∑
i=1

αiηi(ε) ≤ lim inf
i→∞ |αi |.

PROOF. Part (a) is an easy implication of the sum formula for the geometric
series. We refer to [11], Remark 4.3, for the details.

Let us prove (b). By definition of ηi(ε), we have ηi(ε) ≤ ε. In order to see the
other inequality, we note that

ηi(ε) ≥ ε(1 − ε)N(ε)−1 ≥ ε(1 − ε)
ln(ε)

ln(1−ε) = ε2.

Thus, it is sufficient to show that ε ≥ 1/N(ε). To this end, note that by definition
of N(ε) the following holds true:

εN(ε) ≥ ε ln(ε)

ln(1 − ε)
.

Using the assumption ε ∈ (0,1/10), a short and elementary calculation shows that
the last expression is bounded from below by 1.

To verify part (c), set N∗
ε := �ε−1/2� := supZ ∩ (−∞, ε−1/2], and calculate as

follows:∣∣∣∣∣
N(ε)∑
i=1

αiηi(ε)

∣∣∣∣∣≤
∣∣∣∣∣
N∗

ε∑
i=1

αiηi(ε)

∣∣∣∣∣+
∣∣∣∣∣

N(ε)∑
i=N∗

ε +1

αiηi(ε)

∣∣∣∣∣≤ AN∗
ε ε + Aε ≤ A

√
ε + Aε.

Note that it is easy to show that for 0 < ε < 1/10 we have N(ε) > N∗
ε > 0, such

that both sums are nonempty. �

Next, we derive a useful corollary of Theorem 3.2.
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COROLLARY 3.4. Let a finitely generated group G, a subset � ∈ F and ε ∈
(0,1/2) be given. Assume furthermore that the sets Ki ∈ F , i ∈ {1, . . . ,N(ε)}
are an ε-quasi tiling of � with almost densities ηi(ε) and center sets Ti ∈ F ,
i ∈ {1, . . . ,N(ε)}, satisfying (3.2). Then we have for each i ∈ {1, . . . ,N(ε)}, the
inequality estimating the “density” of the tile Ki :∣∣∣∣ |Ti |

|�| − ηi(ε)

|Ki |
∣∣∣∣≤ 4ε

ηi(ε)

|Ki | .

PROOF. We fix i ∈ {1, . . . ,N(ε)}, employ ε-disjointness and the density esti-
mate (3.2) and deduce

(1 − ε)
|Ki ||Ti |

|�| ≤ |KiTi |
|�| ≤ ηi(ε) + ε2

N(ε)
.

Therefore, with part (b) of Lemma 3.3, we get

|Ti |
|�| − ηi(ε)

|Ki | ≤ ηi(ε) + ε2

N(ε)

(1 − ε)|Ki | − ηi(ε)

|Ki |

= εηi(ε) + ε2

N(ε)

(1 − ε)|Ki |
≤ 2εηi(ε)

(1 − ε)|Ki | ≤ 4εηi(ε)

|Ki | .

Equation (3.2) gives also a bound for the other direction. To be precise, we use

(3.3) ηi(ε) − ε2

N(ε)
≤ |KiTi |

|�| ≤ |Ki ||Ti |
|�|

and again part (b) of Lemma 3.3 to obtain

|Ti |
|�| − ηi(ε)

|Ki | ≥ ηi(ε) − ε2

N(ε)

|Ki | − ηi(ε)

|Ki | = − ε2

N(ε)|Ki | ≥ −εηi(ε)

|Ki | .

This implies the claimed bound. �

Finally, we provide a generalization of almost additivity for sets which are not
disjoint, but only ε-disjoint. The proof can be found in [13], Lemma 5.23.

LEMMA 3.5. Let G be a finitely generated group, f an admissible field with
boundary term b and ε ∈ (0,1/2). Then for any ε-disjoint sets Qi , i ∈ {1, . . . , k},
we have for each ω ∈ �∥∥∥∥∥f (Q,ω) −

k∑
i=1

f (Qi,ω)

∥∥∥∥∥≤ ε(3Kf + 9Df )|Q| + 3
k∑

i=1

b(Qi),

where Q :=⋃k
i=1 Qi and Df is the constant from (A3) of Definition 2.2.
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4. Approximation via the empirical measure. Given some Følner sequence
(�j ) and an admissible field f , the aim of this section is the approximation of the

expression f (�j ,ω)

|�j | using elements of a second Følner sequence (Qn) and asso-
ciated empirical measures; cf. Lemma 4.3. This second sequence needs to satisfy
certain additional assumptions, namely we need that (Qn) is nested and satisfies
for the correlation length r ∈ N0 from (M3) that the sequences(

b(Qn)

|Qn|
)
,

(
b(Qr

n)

|Qn|
)

and

( |∂r(Qn)|
|Qn|

)
converge monotonically to 0.

(4.1)

That these sequences converge to zero is clear by the fact that (Qn) is a Følner
sequence and b a boundary term in the sense of Definition 2.2. In order to obtain
the monotonicity in (4.1), we choose a subsequence of (Qn). These considerations
show that each amenable group admits a nested Følner sequence (Qn) which sat-
isfies (4.1). These terms will be used in the error estimates in the approximations
throughout this text. To abbreviate the notation, we define

(4.2) β ′
n := max

{
b(Qn)

|Qn| ,
b(Qr

n)

|Qn| ,
|∂r(Qn)|

|Qn|
}

and β(ε) := β ′
1
√

ε + β ′
�1/

√
ε�

for n ∈ N and ε ∈ (0,1/10). Note that (β ′
n)n is a monotone sequence and converges

to 0, and that by Lemma 3.3(c)

(4.3)
N(ε)∑
i=1

β ′
iηi(ε) ≤ β(ε)

ε↘0−−→ 0.

REMARK 4.1. For the proof of Theorem 2.5, we additionally have to ensure
β ′

n ≤ (2n)−1 for all n ∈ N while taking the subsequences above. We will track the
boundary terms throughout the paper and use β(ε) until the very end, where we
simplify the result by applying

β(ε) = β ′
1
√

ε + β ′
�1/

√
ε� ≤ 1

2

√
ε + 1

2�1/
√

ε� ≤ √
ε.

The cost of this additional condition on the boundary terms is that, via Theo-
rem 3.2, j0(ε) in Theorem 2.5 will potentially increase. But up to here, we deal
only with the geometry of G and still have that j0(ε) depends only on ε.

Moreover, let us emphasize that when considering an admissible set U the value√
ε gives a uniform bound on β(ε) for all f ∈ U , since in this situation all f ∈ U

are almost additive with the same boundary term b.

Define for an admissible field f and � ∈ F the function

(4.4) f� : �� → B, f�(ω) := f
(
�,ω′) where ω′ ∈ �−1

�

({ω}).
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Note that by (A2) of Definition 2.2 we see that f� is well defined (and measurable).
In the situation where we insert elements of the Følner sequence (�n) or (�r

n), for
some r ∈ N0, we write

(4.5) fn := f�n or f r
n := f�r

n
.

For given K,T ∈F and ω ∈ �, we define the empirical measure by

(4.6) Lω(K,T ) : B(�KT ) → [0,1], Lω(K,T ) = 1

|T |
∑
t∈T

δ(τtω)K .

Given ε ∈ (0,1/10) and sequences (�j ) and (Qj ) as above, we obtain by The-
orem 3.2 finite sets Ki(ε), i = 1, . . . ,N(ε) and (for j large enough) center sets
T

j
i (ε) which form an ε-quasi tiling of �j . In this setting, we use for given ω ∈ �,

ε ∈ (0,1/10), r > 0, i ∈ {1, . . . ,N(ε)} and j ∈ N large enough the notation

(4.7) Lω
i,j (ε) := Lω(Ki(ε), T

j
i (ε)
)

and fi(ε) := fKi(ε)

as well as

(4.8) L
r,ω
i,j (ε) := Lω(Kr

i (ε), T
j
i (ε)
)

and f r
i (ε) := fKr

i (ε).

Here, the reader may recall that Kr
i (ε) = Ki(ε) \ ∂r(Ki(ε)).

Moreover, we use for � ∈ F , a measurable f : �� → B and a measure ν on
(��,B(��)) the notation

〈f, ν〉 :=
∫
��

f (ω)dν(ω).

LEMMA 4.2. Let f be an admissible field and let K,T ∈ F and ω ∈ �. Then

〈
fK,Lω(K,T )

〉= 1

|T |
∑
t∈T

f (Kt,ω).

PROOF. We calculate using linearity and (A1) of Definition 2.2:〈
fK,Lω(K,T )

〉= ∫
�K

fK

(
ω′)dLω(K,T )

(
ω′)

= 1

|T |
∑
t∈T

∫
�K

fK

(
ω′)dδ(τtω)K

(
ω′)

= 1

|T |
∑
t∈T

fK

(
(τtω)K

)

= 1

|T |
∑
t∈T

f (Kt,ω).
�

We proceed with the first approximation lemma.
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LEMMA 4.3. Let G be a finitely generated amenable group, let f be an admis-
sible field and let (�n) and (Qn) be Følner sequences, where (Qn) is additionally
nested and satisfies (4.1). Then we have for all ω ∈ � that

(4.9) lim
ε↘0

lim
j→∞

∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥= 0,

where Ki(ε), i ∈ {1, . . . ,N(ε)} are given by Theorem 3.2. Moreover, we have for
arbitrary ε ∈ (0,1/10) and j ≥ j0(ε), with j0(ε) from Theorem 3.2, the inequality∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ (9Kf + 15Df )ε + 12(2 + Kf + Df )β(ε).

PROOF. Let ε ∈ (0,1/10) and j ≥ j0(ε) ∈ N be given, where j0(ε) is the
constant given by Theorem 3.2. We estimate using the triangle inequality∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ a(ε, j) +
N(ε)∑
i=1

bi(ε, j) +
N(ε)∑
i=1

ci(ε, j),

(4.10)

where

a(ε, j) := 1

|�j |
∥∥∥∥∥f (�j ,ω) −

N(ε)∑
i=1

∑
t∈T

j
i (ε)

f
(
Ki(ε)t,ω

)∥∥∥∥∥,

bi(ε, j) :=
∥∥∥∥ ∑
t∈T

j
i (ε)

f (Ki(ε)t,ω)

|�j | − ηi(ε)
〈fi(ε),L

ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥ and

ci(ε, j) := ηi(ε)

|Ki(ε)|
∥∥〈fi(ε),L

ω
i,j (ε)
〉− 〈f r

i (ε),L
r,ω
i,j (ε)

〉∥∥.
Here, the expressions Lω

i,j (ε) and fi(ε) are given by (4.7). Let us estimate the
term a(ε, j). To this end, denote the part which is covered by translates of Ki(ε),
i ∈ {1, . . . ,N(ε)} by

R
j
i (ε) :=

N(ε)⋃
i=1

Ki(ε)T
j
i (ε) ⊆ �j .

Then we have, using the properties of the ε-quasi tiling and part (a) of Lemma 3.3,

∣∣Rj
i (ε)
∣∣= N(ε)∑

i=1

∣∣Ki(ε)T
j
i (ε)
∣∣≥ |�j |

N(ε)∑
i=1

(
ηi(ε) − ε2

N(ε)

)
≥ (1 − 2ε)|�j |,
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which in turn gives |�j \R
j
i (ε)| ≤ 2ε|�j |. We use this and Lemma 3.5 to calculate

|�j |a(ε, j) ≤ (3Kf + 9Df )ε|�j | + 3b
(
�j \ R

j
i (ε)
)

+ ∥∥f (�j \ R
j
i (ε)
)∥∥+ 3

N(ε)∑
i=1

∑
t∈T

j
i (ε)

b
(
Ki(ε)t

)

≤ (3Kf + 9Df )ε|�j | + (Kf + 3Df )
∣∣�j \ R

j
i (ε)
∣∣

+ 3
N(ε)∑
i=1

∣∣T j
i (ε)
∣∣b(Ki(ε)

)

≤ (5Kf + 15Df )ε|�j | + 3
N(ε)∑
i=1

∣∣T j
i (ε)
∣∣b(Ki(ε)

)
.

By ε-disjointness and (3.2), we obtain

1

2

∣∣Ki(ε)
∣∣∣∣T j

i (ε)
∣∣≤ (1 − ε)

∣∣Ki(ε)
∣∣∣∣T j

i (ε)
∣∣

≤ ∣∣Ki(ε)T
j
i (ε)
∣∣

≤
(
ηi(ε) + ε2

N(ε)

)
|�j |,

(4.11)

which together with (b) of Lemma 3.3 gives

N(ε)∑
i=1

∣∣T j
i (ε)
∣∣b(Ki(ε)

)

≤ 2|�j |
N(ε)∑
i=1

(
ηi(ε) + ε2

N(ε)

)
b(Ki(ε))

|Ki(ε)|

≤ 4|�j |
N(ε)∑
i=1

ηi(ε)
b(Ki(ε))

|Ki(ε)| .

This implies the following bound:

a(ε, j) ≤ (5Kf + 15Df )ε + 12
N(ε)∑
i=1

ηi(ε)
b(Ki(ε))

|Ki(ε)| .(4.12)

To estimate the second term in (4.10), we apply Lemma 4.2 to obtain∑
t∈T

j
i (ε)

f
(
Ki(ε)t,ω

)= ∣∣T j
i (ε)
∣∣ · 〈fi(ε),L

ω
i,j (ε)
〉
.



2432 C. SCHUMACHER, F. SCHWARZENBERGER AND I. VESELIĆ

Thus, by Corollary 3.4 and the fact ‖〈fi(ε),L
ω
i,j (ε)〉‖ ≤ Kf |Ki(ε)|, we have for

each i ∈ {1, . . . ,N(ε)}

bi(ε, j) =
∥∥∥∥ |T

j
i (ε)|〈fi(ε),L

ω
i,j (ε)〉

|�j | − ηi(ε)
〈fi(ε),L

ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥

=
∣∣∣∣ |T

j
i (ε)|
|�j | − ηi(ε)

|Ki(ε)|
∣∣∣∣∥∥〈fi(ε),L

ω
i,j (ε)
〉∥∥(4.13)

≤ 4
εηi(ε)

|Ki(ε)|Kf

∣∣Ki(ε)
∣∣= 4Kf εηi(ε).

Let us finally estimate the term ci(ε, j). By Lemma 4.2, we have for each i ∈
{1, . . . ,N(ε)}:∥∥〈fi(ε),L

ω
i,j (ε)
〉− 〈f r

i (ε),L
r,ω
i,j (ε)

〉∥∥
≤ 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

∥∥f (Ki(ε)t,ω
)− f
(
Kr

i (ε)t,ω
)∥∥

≤ 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

b
(
Kr

i (ε)
)+ b
(
∂r(Ki(ε)

)∩ Ki(ε)
)

+ ∥∥f (∂r(Ki(ε)
)
t ∩ Ki(ε)t,ω

)∥∥
≤ b
(
Kr

i (ε)
)+ (Kf + Df )

∣∣∂r(Ki(ε)
)∣∣.

(4.14)

Together with (4.10), the estimates for a(ε, j) in (4.12), for bi(ε, j) in (4.13) and
for ci(ε, j) in (4.14) yield

∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ (5Kf + 15Df )ε + 12
N(ε)∑
i=1

ηi(ε)
b(Ki(ε))

|Ki(ε)|

+
N(ε)∑
i=1

ηi(ε)

(
4Kf ε + b(Kr

i (ε)) + (Kf + Df )|∂r(Ki(ε))|
|Ki(ε)|

)

≤ (9Kf + 15Df )ε

+ 12
N(ε)∑
i=1

ηi(ε)
b(Ki(ε)) + b(Kr

i (ε)) + (Kf + Df )|∂r(Ki(ε))|
|Ki(ε)| .
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To verify (4.9), recall that we assumed that (Qn) satisfies (4.1). By the choice of
Ki(ε) in Theorem 3.2, this gives∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ (9Kf + 15Df )ε

+ 12
N(ε)∑
i=1

ηi(ε)
b(Qi) + b(Qr

i ) + (Kf + Df )|∂r(Qi)|
|Qi |︸ ︷︷ ︸

≤(2+Kf +Df )β ′
i

≤ (9Kf + 15Df )ε + 12(2 + Kf + Df )β(ε).

The last inequality follows from (4.3). As this bound holds for arbitrary ε ∈
(0,1/10) and j ≥ j0(ε), this particularly proves (4.9). �

5. Approximation via Glivenko–Cantelli. In this section, we aim to apply
a multivariate Glivenko–Cantelli theorem in order to approximate the empirical
measure using the theoretical measure. Recall that a Glivenko–Cantelli theorem
compares the empirical measure of a normalized sum of independent and identi-
cally distributed random variables with their distribution. At the end of this section,
we will apply the following Glivenko–Cantelli theorem which was proved in [12]
based on results by DeHardt and Wright; see [3, 17]. Monotone functions on R

k

were defined in (A4).

THEOREM 5.1. Let (�,A,P) be a probability space and Xt : � → R
k ,

t ∈ N, independent and identically distributed random variables such that the
distribution μ := P(X ∈ · ) is absolutely continuous with respect to a prod-
uct measure

⊗k
�=1 μ� on R

k , where μ�, � ∈ {1, . . . , k}, are σ -finite measures

on R. For each n ∈ N, we denote by L
(ω)
n := 1

n

∑n
t=1 δXt the empirical dis-

tribution of (Xt)t∈{1,...,n}. Further, fix M ∈ R and let M := {g : R
k → R |

g is monotone, and supx∈Rk |g(x)| ≤ M}.
Then, for all κ > 0, there are a = a(κ,M) > 0 and b = b(κ,M) > 0 such that

for all n ∈N, there exists an event �κ,n,M ∈ A with large probability P(�κ,n,M) ≥
1 − b exp(−an), such that for all ω ∈ �κ,n,M , we have

sup
g∈M
∣∣〈g,L(ω)

n − μ
〉∣∣≤ κ.

In particular, there exists a set �0 ∈ A with P(�0) = 1 and supg∈M |〈g,

L
(ω)
n − μ〉| n→∞−−−→ 0 for all ω ∈ �0.

In the present situation, we encounter several challenges when applying Theo-
rem 5.1, caused by our tiling scheme:
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• Each �j is tiled using N(ε) different shapes. Thus, the corresponding random
variables (for different shapes) are not identically distributed.

• In an ε-quasi tiling, translates of the same shape Ki are allowed to overlap.
Thus, the corresponding random variables are not necessarily independent.

The first point can be handled by applying Glivenko–Cantelli theory for each
shape Ki separately. The second point is more challenging. The core of the fol-
lowing approach is the “generation of independence” by resampling of the over-
lapping areas using conditional probabilities and controlling errors introduced on
the altered areas with their volume. Let us explain this in detail.

Fix ε > 0, i ∈ {1, . . . ,N(ε)} and j ∈ N, j ≥ j0(ε) (cf. Theorem 3.2), and con-
sider Figure 1, which sketches a tile K = Ki , a finite set � = �j , and the transla-

tions Kt , t ∈ T := T
j
i (ε), of K = Ki from an ε-quasi tiling. The sets

(5.1) Ui,j,t := (Kr
i t
) \ (Ki

(
T

j
i (ε) \ {t}))⊆ G, t ∈ T ,

are marked with stripes. Their distance is at least

(5.2) d
(
Ui,j,t ,Ui,j,t ′)≥ d

(
Kr

i t,G \ Kit
)
> r, t �= t ′,

so the colors there are P-independent from each other. Unfortunately, if we take
only the values on Ui,j,t , t ∈ T , we will end up with an independent, but not identi-
cally distributed sample. We therefore resample independent colors in Kr \ Ui,j,t .

FIG. 1. ε-covering and independence structure: The set � = �j ⊆ G is ε-quasi covered by copies

of K = Ki with centers in T = T
j
i (ε) = {t1, . . . , t5}. The sets Ut = Ui,j,t , t ∈ T , here marked by

diagonal stripes, have at least distance r and satisfy |Ut | ≥ (1 − ε)|K|.
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Fortunately, the sets Ui,j,t are large enough to compensate this small random per-
turbation. The following lemma specifies the resampling procedure.

LEMMA 5.2. Let ε > 0 and I := ⋃N(ε)
i=1
⋃∞

j=j0(ε)
{(i, j)} × T

j
i (ε). There ex-

ists a probability space (�,B(�),P) and random variables X,Xi,j,t : � → �,
(i, j, t) ∈ I , such that for all (i, j, t) ∈ I :

(i) X and Xi,j,t have distribution P,
(ii) X and Xi,j,t agree on Ui,j,t

P-almost surely, and
(iii) the random variables in the set {Xi,j,t ′ }

t ′∈T
j
i (ε)

are P-independent.

PROOF. Theorem A.1 solves the problem of resampling in an abstract set-
ting. We apply the result here as follows. Since we use the canonical proba-
bility space in our construction, we apply Theorem A.1 with (S,S) := (�,A),
X := id�, I := ⋃N(ε)

i=1
⋃∞

j=j0(ε)
{(i, j)} × T

j
i (ε), and Yj ′ := σ(�

Uj ′ ), j ′ ∈ I .
Theorem A.1 provides the following quantities, which we here want to use as
(�,A,P) := (�,A,P), X := X0, and Xi,j,t := Xj ′ for all j ′ = (i, j, t) ∈ I . The
properties (i) and (ii) follow directly from Theorem A.1(i), (ii). With (5.2), Theo-
rem A.1(iv) implies (iii). �

Next, we control the error we introduce by using our independent samples in-
stead of the dependent ones.

LEMMA 5.3. Fix ε > 0, an admissible f and U ⊆ K ∈ F . For ω, ω̃ ∈ � with
ωU = ω̃U , we have∥∥f (ω,K) − f (ω̃,K)

∥∥≤ 2b(K) + 2(2Df + Kf )|K \ U |.
In particular, in the notation from (4.4)–(4.8) and with the corresponding empirical
measure

L
r,ω
i,j (ε) := 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

δ(τtXi,j,t (ω))Ki (ε)
(ω ∈ �),

we have for P-almost all ω ∈ � that∥∥〈f r
i (ε),L

r,X(ω)
i,j (ε) − L

r,ω
i,j (ε)

〉∥∥≤ 2b
(
Kr

i (ε)
)+ 2(2Df + Kf )ε

∣∣Kr
i (ε)
∣∣.

PROOF. The values of ω on U determine f (ω,K) up to∥∥f (ω,K) − f (ω,U)
∥∥

≤ ∥∥f (ω,K) − f (ω,U) − f (ω,K \ U)
∥∥+ ∥∥f (ω,K \ U)

∥∥
≤ b(U) + b(K \ U) + ∥∥f (ω,K \ U)

∥∥
≤ b(U) + (Df + Kf )|K \ U |.
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With the fourth point in (A3), we can continue this estimate with

b(U) ≤ b
(
K \ (K \ U)

)≤ b(K) + b(K \ U) ≤ b(K) + Df |K \ U |.
We now employ the triangle inequality to show the first claim: For ω, ω̃ ∈ � with
ωU = ω̃U , we have∥∥f (ω,K) − f (ω̃,K)

∥∥
≤ ∥∥f (ω,K) − f (ω,U)

∥∥+ ∥∥f (ω̃,U) − f (ω̃,K)
∥∥

≤ 2
(
b(K) + (2Df + Kf )|K \ U |).

This calculation allows us to change ω on K \ U to the independent values pro-
vided by Lemma 5.2. To implement this, observe that for P-almost all ω ∈ � and
all i ∈ {1, . . . ,N(ε)}, j ∈ N, j ≥ j0(ε) and t ∈ T

j
i (ε), the set Ui,j,t from (5.1) ex-

hausts Kr
i (ε)t up to a fraction of ε: |Kr

i (ε)t \ Ui,j,t | ≤ ε|Kr
i (ε)|. By construction,

on Ui,j,t , the colors are preserved: Ui,j,t ⊆ {g ∈ Kr
i (ε)t | Xg(ω) = X

i,j,t
g (ω)}. To-

gether with Lemma 4.2 and the triangle inequality, this immediately implies for
P-almost all ω ∈ � that∥∥〈f r

i (ε),L
r,X(ω)
i,j (ε) − L

r,ω̃
i,j (ε)

〉∥∥
≤ 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

∥∥f (Kr
i (ε)t,ω

)− f
(
Kr

i (ε)t,Xi,j,t (ω)
)∥∥

≤ 2b
(
Kr

i (ε)
)+ 2(2Df + Kf )ε

∣∣Kr
i (ε)
∣∣. �

The empirical measure L
r,X(ω)
i,j formed by independent samples should converge

to

P
r
i (ε) := PKr

i (ε).

The following result makes this notion precise. It is the main result of this section.

PROPOSITION 5.4. Let G be a finitely generated amenable group, let A ∈
B(R) and (� := AG,B(�),P) a probability space such that P satisfies (M1) to
(M3). Moreover, let (�n) and (Qn) be Følner sequences, where (Qn) is nested
and satisfies (4.1). For given ε ∈ (0,1/10), let Ki(ε), i ∈ {1, . . . ,N(ε)}, and j0(ε)

be given by Theorem 3.2. Furthermore, let U be an admissible set of admissible
fields.

Then, for all κ > 0, there exist a(ε, κ,KU ), b(ε, κ,KU ) > 0 such that for all
j ≥ j0(ε), there is an event �j,ε,κ,KU ∈ B(�) with large probability

P(�j,ε,κ,KU ) ≥ 1 − b(ε, κ,KU ) exp
(−a(ε, κ,KU )|�j |)
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and the property that for all ω ∈ �j,ε,κ,KU and f ∈ U , it holds true that∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ 2β(ε) + 2(2Df + Kf )ε + κ.

In particular, there is an event �̃ ∈ B(�) with P(�̃) = 1 such that for all ω ∈ �̃,
we have

lim
ε↘0

sup
f ∈U

∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥= 0.

PROOF. Fix f ∈ U . For ε ∈ (0,1/10), j ∈ N and ω ∈ �, two applications of
the triangle inequality give

�f (ε,ω) :=
∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤
N(ε)∑
i=1

ηi(ε)

|Ki(ε)|
∥∥〈f r

i (ε),L
r,ω
i,j (ε) − P

r
i (ε)
〉∥∥(5.3)

≤ inf
ω∈X−1({ω})

(
N(ε)∑
i=1

ηi(ε)γ1(i, j, ε,ω) +
N(ε)∑
i=1

ηi(ε)γ2(i, j, ε,ω)

)
,

where ω ∈ � extends ω, that is, X(ω) = ω in the notation of Lemma 5.2, and

γ1(i, j, ε,ω) := ‖〈f r
i (ε),L

r,ω
i,j (ε) − L

r,ω
i,j (ε)〉‖

|Ki(ε)| and

γ2(i, j, ε,ω) := ‖〈f r
i (ε),L

r,ω
i,j (ε) − P

r
i (ε)〉‖

|Ki(ε)| .

By Lemma 5.3 and assumption (4.1), we see that for all ω ∈ � with X(ω) = ω

γ1(i, j, ε,ω) ≤ 2b(Kr
i (ε))

|Kr
i (ε)| + 2(2Df + Kf )ε ≤ 2b(Qi)

|Qi | + 2(2Df + Kf )ε.

With Lemma 3.3(a) and (4.3), we yield the deterministic upper bound

N(ε)∑
i=1

ηi(ε)γ1(i, j, ε,ω) ≤ 2β(ε) + 2(2Df + Kf )ε

for all ω ∈ X−1(ω) ⊆ �. By now, our overall inequality (5.3) reads

(5.4) �f (ε,ω) ≤ 2β(ε) + 2(2Df + Kf )ε + inf
ω∈X−1({ω})

N(ε)∑
i=1

ηi(ε)γ2(i, j, ε,ω).



2438 C. SCHUMACHER, F. SCHWARZENBERGER AND I. VESELIĆ

To deal with γ2, recall that the norm on the Banach space B our admissible fields
map into is the sup-norm. We translate the sup-norm into the Glivenko–Cantelli
setting as follows. Let

Mf := {gr
i,E : R|Kr

i (ε)| →R, gr
i,E(ω) := f r

i (ω)(E)/
∣∣Ki(ε)

∣∣ | E ∈ R
}
.

Therefore, we can write

γ2(i, j, ε,ω) = sup
g∈Mf

∣∣〈g,L
r,ω
i,j (ε) − P

r
i (ε)
〉∣∣≤ sup

f ∈U
sup

g∈Mf

∣∣〈g,L
r,ω
i,j (ε) − P

r
i (ε)
〉∣∣.

From (2.5), we see that the fields in MU :=⋃f ∈U Mf are bounded by KU . As
assumed in (A4), the fields in MU are also monotone. By Lemma 5.2(iii), the
samples are independent, also. This is crucial in order to invoke Theorem 5.1.
We thus obtain that, for each κ > 0, ε ∈ (0,1/10), i ∈ {1, . . . ,N(ε)} and j ∈ N,
j ≥ j0(ε), there are ai ≡ a(i, ε, κ,KU ) > 0, bi ≡ b(i, ε, κ,KU ) > 0 and �i,j ≡
�i,j,ε,κ,KU ∈ B(�) such that

P(�i,j ) ≥ 1 − bi exp
(−ai

∣∣T j
i (ε)
∣∣) and sup

ω∈�i,j

γ2(i, j, ε,ω) ≤ κ.

We need this estimate for all i ∈ {1, . . . ,N(ε)} simultaneously and consider

�j ≡ �j,ε,κ,KU :=
N(ε)⋂
i=1

�i,j .

To estimate the probability of �j is the next step. From (3.3) and Lemma 3.3(b),
we note that ∣∣T j

i (ε)
∣∣≥ (ηi(ε) − ε2

N(ε)

) |�j |
|Ki(ε)| ≥ (1 − ε)ε

N(ε)|Ki(ε)| |�j |.
With the definition

a ≡ aε,κ,KU := (1 − ε)ε

N(ε)
min

i∈{1,...,N(ε)}
ai

|Ki(ε)| and b ≡ bε,κ,KU := 2
N(ε)∑
i=1

bi,

we get P(�i,j ) ≥ 1 − bi exp(−a|�j |) and

P(�j ) = 1 − P

(
N(ε)⋃
i=1

� \ �i,j

)
≥ 1 −

N(ε)∑
i=1

P(� \ �i,j ) ≥ 1 − b exp(−a|�j |)
2

.

Next, we should transition from (�,B(�),P) to (�,B(�),P). The set X(�j) ⊆
� seems to be a good candidate, because for all ω ∈ X(�j), there exists ω ∈
X−1({ω}) ∩⋂N(ε)

i=1 �i,j , and thus we can estimate

inf
ω∈X−1({ω})

N(ε)∑
i=1

ηi(ε)γ2(i, j, ε,ω) ≤
N(ε)∑
i=1

ηi(ε)κ ≤ κ.
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Together with (5.4), this inequality shows the claimed bound on �f (ε,ω) for all
ω ∈ X(�j).

Unfortunately, the image of a measurable set under a measurable map is not
necessarily measurable, but only analytic; see [2], Theorem 10.23. At least the
outer measure of our candidate is bounded from below by

P
∗(X(�j)

) := inf
B∈B(�),X(�j )⊆B

P(B)

= inf
B∈B(�),X(�j )⊆B

P(X ∈ B)

≥ inf
B∈B(�),X(�j )⊆B

P(�j )

= P(�j ) ≥ 1 − b exp
(−a|�j |)/2.

From [2], Lemma 10.36, we learn that P∗ is a nice capacity, and the Choquet
capacity theorem [2], Theorem 10.39, states for the analytic set X(�j) that

P
∗(X(�j)

)= sup
K⊆X(�j ) compact

P(K).

Thus, there exists a compact subset �j,ε,κ,KU ⊆ X(�j) with probability at least
1 − b exp(−a|�j |).

We complete the proof with a standard Borel–Cantelli argument to show that �̃

exists as claimed. For all κ > 0, the events

Aκ :=
∞⋃

n=j0(ε)

∞⋂
j=n

�j,ε,κ,KU

have probability 1, since

∞∑
j=j0(ε)

P(� \ �j,ε,κ,KU ) ≤
∞∑

j=j0(ε)

b exp
(−a|�j |)≤ b

∞∑
j=j0(ε)

exp(−a)j < ∞.

Note that by (5.4), β(ε) → 0 and by construction of Ak , for all ω ∈ Aκ , we have

lim
ε↘0

sup
f ∈U

�f (ε,ω) ≤ κ.

Thus, the event �̃ :=⋂k∈N A1/k has full probability P(�̃) = 1, and for all ω ∈ �̃,
we have limε↘0 supf ∈U �f (ε,ω) = 0. �

6. Almost additivity and Cauchy sequences. The following calculations are
devoted to a Cauchy sequence argument to obtain the desired limit function f ∗.



2440 C. SCHUMACHER, F. SCHWARZENBERGER AND I. VESELIĆ

LEMMA 6.1. Let G be a finitely generated amenable group, let A ∈ B(R) and
(� = AG,B(�),P) a probability space such that P satisfies (M1) to (M3). More-
over, let f be an admissible field and (Qn) a nested Følner sequence satisfying
(4.1). Then there exists f ∗ ∈ B with

lim
ε↘0

∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)| − f ∗
∥∥∥∥∥= 0,

where for k ∈ N and ε ∈ (1/(k + 1),1/k) the sets Ki(ε), i ∈ {1, . . . ,N(ε)} are
extracted from the sequence (Qn+k)n via Theorem 3.2. The approximation error is
bounded by∥∥∥∥∥

N(ε)∑
j=1

ηj (ε)
〈f r

j (ε),Pr
j (ε)〉

|Kj(ε)| − f ∗
∥∥∥∥∥≤ (9Kf + 11Df )ε + 5(4 + Kf + Df )β(ε).

PROOF. In order to prove the existence of f ∗, we study for ε, δ ∈ (0,1/10)

the difference

D(ε, δ) :=
∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)
〈f r

j (ε),Pr
j (ε)〉

|Kj(ε)| −
N(δ)∑
i=1

ηi(δ)
〈f r

i (δ),Pr
i (δ)〉

|Ki(δ)|
∥∥∥∥∥.

Our aim is to show limδ↘0 limε↘0 D(ε, δ) = 0. To prove this, we insert terms
which interpolate between the minuend and the subtrahend. These terms will be
given using Theorem 3.2. For each ε ∈ (1/(k + 1),1/k], we apply Theorem 3.2
to choose the sets Kj(ε), j = 1, . . . ,N(ε), from the Følner sequence (Qn+k)n∈N.
The particular choice of the sets Kj(ε), j = 1, . . . ,N(ε), as elements of the se-
quence (Qn+k)n ensures that for given δ > 0 we find ε0 > 0 such that for arbitrary
ε ∈ (0, ε0) each Kj(ε), j = 1, . . . ,N(ε), can be δ-quasi tiled with the elements
Ki(δ), i = 1, . . . ,N(δ). As in Theorem 3.2, we denote the associated center sets
by T

j
i (δ), where we emphasize the dependence on the parameter δ.

For K ∈F , we use the notation

F(K) := 〈fK,PK〉(6.1)

and hence for the tiles Kj(ε), i = 1, . . . ,N(ε), we write F(Kr
i (ε)) := 〈f r

i (ε),

P
r
i (ε)〉. The function F is translation invariant, that is, for all K ∈F and t ∈ G we

have F(Kt) = F(K).
With the convention (6.1) and using the triangle inequality, we obtain D(ε, δ) ≤

D1(ε, δ) +D2(ε, δ), where

D1(ε, δ) :=
∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)
F (Kr

j (ε)) −∑N(δ)
i=1 |T j

i (δ)|F(Kr
i (δ))

|Kj(ε)|
∥∥∥∥∥, and

D2(ε, δ) :=
∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)

∑N(δ)
i=1 |T j

i (δ)|F(Kr
i (δ))

|Kj(ε)| −
N(δ)∑
i=1

ηi(δ)
F (Kr

i (δ))

|Ki(δ)|
∥∥∥∥∥.
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The translation invariance of F and the triangle inequality yield

(6.2) D1(ε, δ) ≤
N(ε)∑
j=1

ηj (ε)

|Kj(ε)|
∥∥∥∥∥F (Kr

j (ε)
)− N(δ)∑

i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)t
)∥∥∥∥∥.

We decompose Kr
j (ε) in the following way:

Kr
j (ε) =

N(δ)⋃
i=1

⋃
t∈T

j
i (δ)

Kr
i (δ)t ∪̇Kr

j (ε) \
N(δ)⋃
i=1

Ki(δ)T
j
i (δ)

∪̇
((

Kr
j (ε)
∖N(δ)⋃

i=1

Kr
i (δ)T

j
i (δ)

)
∩

N(δ)⋃
i=1

(
Ki(δ) ∩ ∂r(Ki(δ)

))
T

j
i (δ)

)

=: α1 ∪̇α2 ∪̇α3.

By definition of the function F , the almost additivity of the admissible field
f inherits to F . Note that δ-disjointness of the sets Kit , t ∈ T

j
i (δ) implies δ-

disjointness of the sets Kr
i t , t ∈ T

j
i (δ). Therefore, applying almost additivity,

Lemma 3.5 and the properties of admissible fields and the boundary term we obtain∥∥∥∥∥F (Kr
j (ε)
)− N(δ)∑

i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)t
)∥∥∥∥∥

≤
∥∥∥∥∥F (Kr

j (ε)
)− 3∑

i=1

F(αi)

∥∥∥∥∥+
∥∥∥∥∥F(α1) −

N(δ)∑
i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)
)∥∥∥∥∥

+ ∥∥F(α2)
∥∥+ ∥∥F(α3)

∥∥
≤

3∑
i=1

b(αi) + δ(3Kf + 9Df )
∣∣Kj(ε)

∣∣

+ 3
N(δ)∑
i=1

∑
t∈T

j
i

b
(
Kr

i (δ)
)+ Kf |α2| + Kf |α3|

≤ δ(3Kf + 9Df )
∣∣Kj(ε)

∣∣
+ 4

N(δ)∑
i=1

∑
t∈T

j
i (δ)

b
(
Kr

i (δ)
)+ (Kf + Df )|α2| + (Kf + Df )|α3|.

Next, we estimate the sizes of α2 and α3. For α3, we drop some of the intersections
in its definition. In order to give a bound on the size of α2, we use that Kr

j (ε) is
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(1 − 2ε)-covered by {Kr
i (δ) | i}, more specifically, part (iii) in Definition 3.1. We

obtain

|α2| ≤ 2δ
∣∣Kj(ε)

∣∣ and |α3| ≤
N(δ)∑
i=1

∣∣T j
i (δ)
∣∣∣∣∂r(Ki(δ)

)∣∣,
and therewith achieve∥∥∥∥∥F (Kr

j (ε)
)− N(δ)∑

i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)t
)∥∥∥∥∥

≤ δ(5Kf + 11Df )
∣∣Kj(ε)

∣∣
+

N(δ)∑
i=1

∣∣T j
i (δ)
∣∣(4b
(
Kr

i (δ)
)+ (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣).

This together with (6.2) and part (a) of Lemma 3.3 yields

D1(ε, δ)

≤
N(ε)∑
j=1

(
δ(5Kf + 11Df )ηj (ε)

+
N(δ)∑
i=1

ηj (ε)|T j
i (δ)|

|Kj(ε)|
(
4b
(
Kr

i (δ)
)+ (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣))

≤ δ(5Kf + 11Df )

+
N(ε)∑
j=1

N(δ)∑
i=1

ηj (ε)|T j
i (δ)|

|Kj(ε)|
(
4b
(
Kr

i (δ)
)+ (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣).

As δ is assumed to be smaller than 1/10, we can apply Corollary 3.4, which gives
for arbitrary i ∈ {1, . . . ,N(δ)} and j ∈ {1, . . . ,N(ε)}

|T j
i (δ)|

|Kj(ε)| ≤ ηi(δ)

|Ki(δ)| + 4
δηi(δ)

|Ki(δ)| ≤ 5
ηi(δ)

|Ki(δ)| .

Inserting this in the last estimate for D1(ε, δ) implies together with part (a) of
Lemma 3.3 that

D1(ε, δ) ≤ δ(5Kf + 11Df )

+
N(δ)∑
i=1

5ηi(δ)

|Ki(δ)|
(
4b
(
Kr

i (δ)
)+ (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣).
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Now, we use the monotonicity assumption in (4.1), which allows to replace the
elements Kr

i (δ) and Ki(δ) by Qr
i and Qi , respectively,

D1(ε, δ) ≤ δ(5Kf + 11Df )

+
N(δ)∑
i=1

5ηi(δ)

|Qi |
(
4b
(
Qr

i

)+ (Kf + Df )
∣∣∂r(Qi)

∣∣).(6.3)

Let us proceed with the estimation of D2(ε, δ):

D2(ε, δ) =
∥∥∥∥∥
N(δ)∑
i=1

F
(
Kr

i (δ)
)(N(ε)∑

j=1

ηj (ε)
|T j

i (δ)|
|Kj(ε)| − ηi(δ)

|Ki(δ)|
)∥∥∥∥∥.(6.4)

With the triangle inequality, Corollary 3.4 and part (a) of Lemma 3.3 we obtain∣∣∣∣∣
N(ε)∑
j=1

ηj (ε)
|T j

i (δ)|
|Kj(ε)| − ηi(δ)

|Ki(δ)|
∣∣∣∣∣

≤
N(ε)∑
j=1

ηj (ε)

∣∣∣∣ |T
j
i (δ)|

|Kj(ε)| − ηi(δ)

|Ki(δ)|
∣∣∣∣+
∣∣∣∣∣
N(ε)∑
j=1

ηj (ε) − 1

∣∣∣∣∣ ηi(δ)

|Ki(δ)|

≤
N(ε)∑
j=1

ηj (ε)
4δηi(δ)

|Ki(δ)| + εηi(δ)

|Ki(δ)| ≤ 4δηi(δ)

|Ki(δ)| + εηi(δ)

|Ki(δ)| .

This together with (6.4) gives the bound

D2(ε, δ) ≤
N(δ)∑
i=1

Kf

∣∣Kr
i (δ)
∣∣(4δηi(δ)

|Ki(δ)| + εηi(δ)

|Ki(δ)|
)

≤ 4Kf δ + Kf ε.(6.5)

Thus, the estimates of D1(ε, δ) and D2(ε, δ) in (6.3) and (6.5) together yield

D(ε, δ) ≤ Kf ε + δ(9Kf + 11Df )

+
N(δ)∑
i=1

5ηi(δ)

|Qi |
(
4b
(
Qr

i

)+ (Kf + Df )
∣∣∂r(Qi)

∣∣)(6.6)

for all δ > 0 and ε ∈ (0, ε0(δ)). Applying part (c) of Lemma 3.3, we see

lim
δ↘0

lim
ε↘0

D(ε, δ) = 0.

Using a Cauchy argument and the fact that B is a Banach space, we obtain that
there exists an element f ∗ ∈ B with

lim
ε↘0

∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)
〈f r

j (ε),Pr
j (ε)〉

|Kj(ε)| − f ∗
∥∥∥∥∥= 0.
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In order to get the error estimate for finite δ > 0, we use (6.6), Lemma 3.3(c) and
(4.1) as follows:∥∥∥∥∥

N(δ)∑
j=1

ηj (δ)
〈f r

j (δ),Pr
j (δ)〉

|Kj(δ)| − f ∗
∥∥∥∥∥

= lim
ε↘0

D(ε, δ)

≤ (9Kf + 11Df )δ +
N(δ)∑
i=1

5ηi(δ)

|Qi |
(
4b
(
Qr

i

)+ (Kf + Df )
∣∣∂r(Qi)

∣∣)
≤ (9Kf + 11Df )δ + 5(4 + Kf + Df )β(δ). �

7. Proof of the main theorem. We will prove a slightly more explicit state-
ment which tracks the geometric error in terms of ε and the probabilistic error in
terms of κ separately. Theorem 2.5 is implied by the choice κ := √

ε. Recall that
B is the Banach space of bounded and right-continuous functions from R to R.

THEOREM 7.1. Let G be a finitely generated amenable group. Further, let
A ∈ B(R) and (� = AG,B(�),P) a probability space such that P satisfies (M1)
to (M3). Finally, let U be an admissible set of admissible fields with common bound
KU ; cf. Definition 2.2.

Then there exists a limit element f ∗ ∈ B with the following properties. For each
Følner sequence (�n), ε ∈ (0,1/10) and κ > 0, there exist j0(ε) ∈ N, which is
independent of κ and KU , and a(ε, κ,KU ), b(ε, κ,KU ) > 0, such that for all j ∈
N, j ≥ j0(ε), there is an event �j,ε,κ,KU ∈ B(�) with the properties

P(�j,ε,κ,KU ) ≥ 1 − b(ε, κ,KU ) exp
(−a(ε, κ,KU )|�j |)

and∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥

≤ (37Kf + 47Df + 46)
√

ε + κ for all ω ∈ �j,ε,κ,KU and all f ∈ U .

PROOF. We follow the path prescribed in the previous chapters and:

• quasi tile �j , j ≥ j0(ε), with Ki(ε), i = 1, . . . ,N(ε) (see Theorem 3.2),
• approximate |�j |−1f (�j ,ω) with the empirical measures L

r,ω
i,j (ε); cf.

(4.8) and Lemma 4.3,
• express the empirical measures by their limiting counterparts P

r
i (ε) with

Lemma 5.4, and
• use the Cauchy property of the remaining terms to obtain a limiting function

f ∗; see Lemma 6.1.
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To confirm the error estimate, we employ the triangle inequality∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥

≤
∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

+
∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥

+
∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)| − f ∗
∥∥∥∥∥=: �(ε, j,ω).

By Lemmas 6.1 and 4.3 and Proposition 5.4, we immediately get that there is an
event �̃ ∈ B(�) with full probability P(�̃) = 1 such that limε↘0 limj→∞ �(ε,

j,ω) = 0 for all ω ∈ �̃. Furthermore, Lemma 5.4 provides the event �j,ε,κ,KU
with probability as large as claimed, and by collecting all the error terms and by
Remark 4.1, we see that for all ε ∈ (0,1/10), j ≥ j0(ε), κ > 0, f ∈ U and ω ∈
�j,ε,κ,KU (see Lemma 5.4),∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥≤ (20Kf + 30Df )ε + (17Kf + 17Df + 46)β(ε) + κ

≤ (37Kf + 47Df + 46)
√

ε + κ.

Note the uniformity of the last inequality for all f ∈ U is also discussed in Re-
mark 4.1.

To see that the limit f ∗ does not depend on the specific choice of (�j ) use the
following argument: Every two Følner sequences can be combined two one Følner
sequence, which yields by our theory a limit f ∗ ∈ B. As the two original sequences
are subsequences, they lead to the same limit function f ∗. �

APPENDIX A: CONDITIONAL RESAMPLING

In Lemma 5.2, we need to remove the dependent parts of samples. We achieve
this by resampling the critical parts of the samples, keeping the large enough al-
ready independent parts. This is done by augmenting the probability space to pro-
vide room for more random variables. The problem of resampling turned out to be
treatable in a much broader setting, so a general tool is provided here.

THEOREM A.1 (Resampling). Let (�,A,P) be a Borel probability space,
(S,S) a Borel space and X : � → S an S-valued random variable with distri-
bution PX := P ◦ X−1 : S → [0,1]. Further, let I be an index set, and for each
j ∈ I , let Yj ⊆ S be a σ -algebra.
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Then there is a probability space (�,A,P), such that for all j ∈ I , maps as
indicated in the following diagram exist and are measure preserving, and all the
diagrams commute almost surely:

This means in particular that �0 is measure preserving, and that, for all j ∈ I :

(i) the random variable Xj has distribution PX ,
(ii) for each measure space (T ,T ) and each Yj -T -measurable map g : (S,

Yj ) → (T ,T ), we have g(X0) = g(Xj ) P-almost surely.

Furthermore, the joint distribution of (Xj )j∈I has the following properties:

(iii) For each finite subset F ⊆ I and AF = Ś

j∈F Aj , where Aj ∈ S , we have
PX-almost surely that

P(XF ∈ AF | X0 = · ) = ∏
j∈F

P(Xj ∈ Aj | X0 = · ) = ∏
j∈F

PX(Aj | Yj ).

In particular, the random variables Xj , j ∈ I , are independent when conditioned
on X0.

(iv) If, for a (not necessarily finite) subset J ⊆ I , the σ -algebras Yj , j ∈ J , are
PX-independent, then the random variables Xj , j ∈ J , are P-independent.

Since �0 is measure preserving, (�,A,P) extends (�,A,P). Property (i) justi-
fies the name resampling. Statement (ii) says that in Xj the information contained
in Yj is preserved throughout the resampling, j ∈ I . Point (iii) states that the new
random variables copied only the information from Yj , j ∈ I , and not more. In
(iv), we learn how to provide independence of the resampling random variables.

PROOF. We define the spaces and maps as follows:

� := � × SI , A := A⊗ S⊗I ,

�0 : � → �, �0
(
ω, (sj )j∈I

) := ω,

X0 : � → S, X0
(
ω, (sj )j∈I

) := X(ω),

Xj : � → S, Xj

(
ω, (sk)k∈I

) := sj .

We now define the measure P via Kolmogorov’s extension theorem; see [4], The-
orem 14.36. We need a consistent family of probability measures. For a more uni-
fying notation, we augment I0 := {0} ∪̇ I . Fix a finite subset F ⊆ I0. If 0 ∈ F , we
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define a probability measure PF : A⊗S⊗F\{0} → [0,1]. In the case 0 /∈ F , we de-
fine a probability measure P

F : S⊗F → [0,1]. If 0 ∈ F , then choose A0 ∈ A; oth-
erwise, let A0 := �. For all j ∈ F \ {0}, we let Aj ∈ S . Now let AF := Ś

j∈F Aj

and

(A.1) P
F (AF ) := E

[
1A0

∏
j∈F\{0}

PX(Aj | Yj ) ◦ X

]
.

Here, E denotes integration with respect to P. By the extension theorem for mea-
sures (see [4], Theorem 1.53), (A.1) defines a probability measure. The family
(PF )F ⊆ I finite is consistent. For example, for finite subsets 0 /∈ F ⊆ J ⊆ I

with the projection �J
F : SJ → SF and AF = Ś

j∈F Aj with Aj ∈ S , we have

(�J
F )−1(AF ) = AF × Ś

j∈J\F S. Thus,

P
J ((�J

F

)−1
(AF )
)= EX

[∏
j∈F

PX(Aj | Yj )
∏

j∈J\F
PX(S | Yj )

]
= P

F (AF ),

where EX is integration with respect to PX . The remaining cases 0 ∈ F ⊆ J , and
0 /∈ F but 0 ∈ J work analogously. By Kolmogorov’s extension theorem, we have
exactly one measure P := lim←−F⊆I

P
F : A → [0,1].

We now verify the properties of P. Let us first check that �0 is measure pre-
serving. Indeed, for A ∈ A, we have

P(�0 ∈ A) = P
{0}(A) = E[1A] = P(A).

Now we already know that X0 = X ◦ �0 is measure preserving, also.

Ad (i): For all j ∈ I and B ∈ S , we have

P(Xj ∈ B) = P
{j}(B) = EX

[
PX(B | Yj )

]= EX[1B] = PX(B).

Ad (ii): Let j ∈ I , (T ,T ) be a measure space and g : S → T be Yj -T -
measurable. We determine the joint distribution of X and Xj . By (A.1), we have,
for B,B ′ ∈ T , that A := g−1(B) ∈ Yj as well as A′ := g−1(B ′) ∈ Yj , and

P
(
g(X0) ∈ B,g(Xj ) ∈ B ′)= P

(
X0 ∈ A,Xj ∈ A′)

= P
{0,j}(X−1(A) × A′)

= E
[
1X−1(A)PX

(
A′ | Yj

) ◦ X
]

= EX[1A1A′ ]
= PX

(
A ∩ A′)

= P
(
X0 ∈ A ∩ A′)

= P
(
g(X0) ∈ B ∩ B ′),

(A.2)
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where in the last line, we used that A ∩ A′ = g−1(B) ∩ g−1(B ′) = g−1(B ∩
B ′). Now, since the rectangles {B × B ′ | B,B ′ ∈ T } are stable under inter-
sections and generate T ⊗ T , equation (A.2) determines the distribution of
(g(X0), g(Xj )) : � → T 2. Note that the measure which is concentrated on the
diagonal {(t, t) | t ∈ T } with both marginals equal to PX ◦g−1 satisfies (A.2), also.
Therefore, P(g(X0) = g(Xj )) = 1.

Ad (iii): Fix a finite subset F ⊆ I and Aj ∈ S for j ∈ F , and let AF :=
Ś

j∈F Aj . For all B ∈ S , we have

E
[
1{X0∈B}P(XF ∈ AF | X0)

]= E
[
1{X0∈B}E[1{XF ∈AF } | X0]]

= E[1{X0∈B}1{XF ∈AF }]
= P[X0 ∈ B,XF ∈ AF ]
= P

{0}∪F (X−1(B) × AF

)
= E

[
1X−1(B)

∏
j∈F

PX(AF | Yj ) ◦ X

]

= E

[
1{X0∈B}

∏
j∈F

PX(AF | Yj ) ◦ X0

]
.

Since σ(X0) = {{X0 ∈ B} | B ∈ S}, this proves

P(XF ∈ AF | X0) = ∏
j∈F

PX(Xj ∈ Aj | Yj ) ◦ X0

P-almost surely. For F = {j}, we get P(Xj ∈ Aj | X0) = PX(Xj ∈ Aj | Yj ), also.
The claim is the factorized version of these statements, which exist because (S,S)

is a Borel space.
Ad (iv): For F ⊆ J finite and AF = Ś

j∈F Aj with Aj ∈ S , we use (iii) to get

P(XF ∈ AF ) = E
[
P(XF ∈ AF | X0)

]
= E

[∏
j∈F

PX(Aj | Yj ) ◦ X0

]

= EX

[∏
j∈F

PX(Aj | Yj )

]
.

The σ -algebras Yj , j ∈ F ⊆ J , are PX-independent. This independence is inher-
ited by Yj -measurable functions like PX(Aj | Yj ). We can therefore continue the
calculation with

P(XF ∈ AF ) = ∏
j∈F

EX

[
PX(Aj | Yj )

]= ∏
j∈F

PX(Aj ) = ∏
j∈F

P(Xj ∈ Aj).

Since the cylinder sets generate S⊗J , this is the claimed P-independence. �
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APPENDIX B: PROOF SUMMARY FOR MONTILABLE AMENABLE
GROUPS

The proofs of [12] concerning the case G = Z
d can be generalized to apply to a

finitely generated amenable group G if it satisfies the tiling property (�).
We list the major changes which are necessary for this purpose:

(a) Instead of defining the set Tm,n using multiples of m (cf. equation (4.1) in
[12]), we employ the grid Tm, namely, we set

Tm,n := {t ∈ Tm | �mt ⊆ �n}(B.1)

Thus, Tm,n contains the elements of Tm which correspond to translates of �m

which are completely contained in �n. Using this definition, the empirical
measures are Lω

m,n and Lω,r
m,n are given accordingly.

(b) One needs to verify the following basic result. Given a tiling Følner sequence
(�n), we have:

(i) for each m ∈N, the sequence (�mTm,n)n∈N is a Følner sequence;
(ii) for each m,n ∈ N, we have �n ⊆ ∂ρ(m)(�n)∪�mTm,n, where ρ(m) =

diam(�m); and
(iii) for each m ∈N we have limn→∞ |�n|/|Tm,n| = |�m|.

(c) Points (a) and (b) allow to prove an equivalent version of Lemma 4.1 of [12] in
the situation of amenable groups with property (�), by following exactly the
steps of the proof presented therein.

(d) Besides Lemma 4.1 in [12], also Lemma 6.1 in [12] needs to be slightly
changed. In fact, again by using (a) and (b) the proof can directly be adapted
to the situation where G is amenable and (�n) is a tiling Følner sequence.

(e) In the end, the proof of the main theorem reduces basically to an application
of the triangle inequality, the new versions of Lemma 4.1 and Lemma 6.1 as
well as Theorem 5.6 in [12]. Note that Theorem 5.6 need not to be adapted as
it is independent of the geometry.
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