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A STOCHASTIC STEFAN-TYPE PROBLEM UNDER FIRST-ORDER
BOUNDARY CONDITIONS

BY MARVIN S. MÜLLER1,2

ETH Zürich

Moving boundary problems allow to model systems with phase transi-
tion at an inner boundary. Motivated by problems in economics and finance,
we set up a price-time continuous model for the limit order book and con-
sider a stochastic and nonlinear extension of the classical Stefan-problem in
one space dimension. Here, the paths of the moving interface might have
unbounded variation, which introduces additional challenges in the analysis.
Working on the distribution space, the Itô–Wentzell formula for SPDEs al-
lows to transform these moving boundary problems into partial differential
equations on fixed domains. Rewriting the equations into the framework of
stochastic evolution equations and stochastic maximal Lp-regularity, we get
existence, uniqueness and regularity of local solutions. Moreover, we observe
that explosion might take place due to the boundary interaction even when the
coefficients of the original problem have linear growths.

Multi-phase systems of partial differential equations have a long history in ap-
plications to various fields in natural science and quantitative finance. Recent de-
velopments in modeling of demand, supply and price formation in financial mar-
kets with high trading frequencies ask for a mathematically rigorous framework
for moving boundary problems with stochastic forcing terms. Motivated by this
application, we consider a class of semilinear two-phase systems in one space
dimension with first-order boundary conditions at the inner interface. While the
deterministic problems have been extensively studied in the second half of the past
century (see, e.g., [30] and references therein), the stochastic equations are much
less understood. In the past decade, several authors have started to study stochastic
extensions of the classical Stefan problem. In 1888, Josef Stefan introduced this
problem as a model for heat diffusion in the polar sea [36]. However, to the best of
the author’s knowledge so far the stochastic perturbations have been limited to the
systems behaviour inside the respective phases or, in the context of Cahn–Hilliard
equations [2], on the boundary. As a step towards more realistic models, we also
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extend the Stefan-type dynamics of the free interface by Brownian noise which
introduces additional challenges in the analysis.

Barbu and da Prato [4] used the so-called enthalpy function in the setting of
the classical Stefan problem with additive noise to transform the free boundary
problem into a stochastic evolution equation of porous media type. In a series of
papers, Kim, C. Mueller, Sowers and Zheng [21, 22, 40] studied a class of linear
stochastic moving boundary problems in one space dimension. After a coordinate
transformation, the resulting SPDEs have been solved directly using heat kernel
estimates. Extending these results, Keller-Ressel and M. S. Müller [20] used clas-
sical estimates from interpolation theory to established a notion of strong solutions
for stochastic moving boundary problems. The framework for existence, regular-
ity and further analysis of the solution is based on the theory of mild and strong
solutions of stochastic evolution equations in the sense of [13]. The change of coor-
dinates was made rigorous by imposing a stochastic chain rule. Unfortunately, this
way is no longer accessible when the path of the moving interface has unbounded
variation or when the solution itself has a discontinuity at the inner boundary. In-
stead, we will switch into the space of generalized functions and use Itô–Wentzell
formula for SPDEs to perform the transformation. It turns out that the terms de-
scribing the evolution of the density close to the boundary are distribution-valued,
which gives the need for an extension of the concepts of solutions. The setting
for analysis of the centered problems will still be based on semigroup theory for
stochastic evolution equations, but can be located at the borderline case for exis-
tence.

Recently, various systems based on both stochastic and deterministic parabolic
partial differential equations have been applied in finance as dynamical models for
demand, supply and price formation; see, for example, [5, 14, 26, 32, 33] which is
just a short list and far away from being complete. For modern financial markets
with high trading frequencies, we introduce a class of continuous models for the
limit order book density with infinitesimal tick size, where the evolution of buy
and sell side is described by a semilinear second-order SPDE and the mid price
process defines a free boundary separating buy and sell side. Based on empirical
observations [10, 28], we assume that average price changes can are determined
by the bid-ask imbalance. Extending the models presented in [20, 40], we allow
the price process to have unbounded variation.

The paper is structured in the following way. In the first section, we intro-
duce the moving boundary problem and the centered SPDE, define the notions
of solutions and present the results on existence and regularity of local solutions
and characterize its explosion times. Equations of this type arise, for instance, in
macroscopical descriptions of demand and supply evolution in nowadays financial
markets. In Section 2, we set up a dynamic model for the density of the so-called
limit order book. We then switch back to the analysis and solve the centered equa-
tion using existence theory for stochastic evolution equations in the framework of
stochastic maximal Lp-regularity in Section 3. This theory was studied in detail on
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a general class of Banach spaces by Weis, Veraar and van Neerven [38, 39]. The
required results, adapted to the Hilbert space setting, are sketched in the Appendix.
In Section 4, we switch to Krylov’s framework of solutions of SPDEs in the sense
of distributions (see [24, 25]), and translate the existence and regularity results for
the equations on the moving frames. In Section 5, we present heuristically a toy
example which illustrates our notion of solutions for stochastic moving boundary
problems.

Without further mentioning, we work on (�,F, (Ft ),P), a filtered probabil-
ity space with the usual conditions. For a stopping time τ , we denote the closed
stochastic interval by [[0, τ ]] := {(t,ω) ∈ [0,∞) × �|t ≤ τ(ω)}. Respectively,
we define [[0, τ [[, ]]0, τ [[ and ]]0, τ ]]. For stochastic processes X and Y , we say
X(t)= Y(t) on [[0, τ [[, if equality holds for almost all ω ∈� and all t ≥ 0 such that
(t,ω) ∈ [[0, τ [[. Given Hilbert spaces E and H , we write E ↪→H when E is con-
tinuously and densely embedded into H . As usual, we denote by Lq the Lebesgue
space, q ≥ 1, and with Hs , s > 0, the Sobolev spaces of order s > 0. Moreover,
�2(E) is the space of E-valued square summable sequences and HS(U ;E), for
separable Hilbert spaces U and E, is the space of Hilbert–Schmidt operators from
U into E. The scalar product on E will be denoted by 〈·, ·〉E . When working on
the distribution space D , we denote the dualization by 〈·, ·〉. We will work only
with real separable Hilbert spaces and implicitly use their complexification when
necessary to apply results from the literature. We typically denote positive con-
stants by K which might change from line to line and might have sub-indices to
indicate dependencies.

1. A stochastic moving boundary problem. We consider the stochastic
moving boundary problem in one space dimension

dv(t, x)=
[
η+

∂2

∂x2 v(t, x)+μ+
(
x − p∗(t),p∗(t), v,

∂

∂x
v

)]
dt

+ σ+
(
x − p∗(t),p∗(t), v

)
dξt (x), x > p∗(t),

dv(t, x)=
[
η−

∂2

∂x2 v(t, x)+μ−
(
x − p∗(t),p∗(t), v,

∂

∂x
v

)]
dt

+ σ−
(
x − p∗(t),p∗(t), v

)
dξt (x), x < p∗(t),

dp∗(t)= �
(
v
(
t, p∗(t)+), v(t, p∗(t)−))dt + σ∗ dBt,

(1.1)

with Robin boundary conditions

∂

∂p
v
(
t, p∗(t)+)= κ+v

(
t, p∗(t)+),

∂

∂p
v
(
t, p∗(t)−)=−κ−v

(
t, p∗(t)−),

(1.2)
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for t > 0, μ± : R4 → R, σ± : R3 → R, η± > 0, σ∗ ≥ 0 and κ+, κ− ∈ [0,∞). On
(�,F, (Ft ),P), B is a real Brownian motion and ξ the spatially colored noise,

(1.3) ξt (x) := TζWt(x), Tζw(x) :=
∫
R

ζ(x, y)w(y)dy, x ∈R, t ≥ 0,

where W is a cylindrical Wiener process W on U := L2(R) with covariance op-
erator Id, independent of B and ζ : R2 → R an integral kernel. It was shown
in [20], that for σ∗ = 0, and κ− = κ+ = ∞, one can shift the equation onto the
fixed domain Ṙ := R \ {0}, and there exists a strong solution of the integral equa-
tion corresponding to (1.1). Following this procedure at least informally, we get
for u(t, x) := v(t, x + p∗(t)), x 
= 0, t > 0,

du(t, x)=
[(

η+ + 1

2
σ 2∗
)

∂2

∂x2 u(t, x)+μ+
(
x,p∗(t), u,

∂

∂x
u

)

+ �
(
u(t,0+), u(t,0−)

) ∂

∂x
u(t, x)

]
dt

+ σ+
(
x,p∗(t), u

)
dξt

(
x + p∗(t)

)+ σ∗
∂

∂x
u(t, x)dBt,

for x > 0,

du(t, x)=
[(

η− + 1

2
σ 2∗
)

∂2

∂x2 u(t, x)+μ−
(
x,p∗(t), u,

∂

∂x
u

)
(1.4)

+ �
(
u(t,0+), u(t,0−)

) ∂

∂x
u(t, x)

]
dt

+ σ−
(
x,p∗(t), u

)
dξt

(
x + p∗(t)

)+ σ∗
∂

∂x
u(t, x)dBt,

for x < 0,

dp∗(t)= �
(
u(t,0+), u(t,0−)

)
dt + σ∗ dBt,

with boundary conditions

(1.5)
∂

∂x
u(t,0+)= κ+u(t,0+),

∂

∂x
u(t,0−)=−κ−u(t,0−).

Problem (1.4) admits several features worth mentioning:

• Even when μ+ = μ− = 0, and σ+, σ− are linear in u, the centered problem has a
nonlinearity, which is nonlocal in space and involving the first-order derivative.

• Due to the additional second-order term the transformation seems to increase
regularity and the equation is parabolic even for η+ = η− = 0 as long as σ∗ > 0.

• When σ∗ > 0, the first derivative appears in the noise term. Recall that the Brow-
nian noise scales differently from time and the equation is the borderline case
where we could hope to get existence. In particular, even linear equations with
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gradient in the noise term can run out of parabolicity; see Remark A.10 and [8].
Moreover, it seems that existence for (1.4) cannot be shown in the present frame-
work, when presuming Dirichlet boundary conditions at x = 0, and replacing u

by ∂
∂x

u in the dynamics of p∗.

We emphasize that the strong transformation procedure used in [20] does not work
in this case, even if σ∗ = 0. However, the behaviour of the solutions should be
quite similar when we restrict to a region away from the free interface p∗. The
only problem appearing is due to the discontinuity of v at p∗. We work around
this problem by switching to the space of generalized functions where we can
apply Krylov’s version of Itô–Wentzell formula [25]. On this way, we obtain a
description of the evolution of v around p∗, which will be part of Definition 1.11.
We now focus on the centered problem (1.4). Recall that (u,p∗, τ ) is called a
local strong solution of (1.4), if (u,p∗) is an L2(R) × R-predictable stochastic
process and τ a predictable stopping time such that (1.4) holds true on [[0, τ [[, in
the sense of an L2(R)⊕R-integral equation, and (1.5) holds true dt ⊗ dP-almost
everywhere. In particular, all the (stochastic) integrals are assumed to exist on
L2(R) and R, respectively. A solution is called maximal, if there exists no solution
on a strictly larger stochastic interval. See also Definition A.1 and Section 3 for a
more detailed formulation.

ASSUMPTION 1.1. � :R2 →R is locally Lipschitz continuous.

ASSUMPTION 1.2. μ+, μ− :R4 →R fulfill (i), (ii) and (iii).

(i) There exist a ∈ L2(R), b ∈ L∞loc(R
2;R) such that for all x, y, z ∈R∣∣μ+(x,p, y, z)

∣∣+ ∣∣μ−(x,p, y, z)
∣∣≤ b(y,p)

(
a(x)+ |y| + |z|).

(ii) For all R > 0 exist LR > 0 and aR ∈ L2(R), such that for all x, y, ỹ, z, z̃,
p ∈R, with |y|, |ỹ|, |p| ≤R, it holds that∣∣μ±(x,p, y, z)−μ±(x,p, ỹ, z̃)

∣∣
≤LR

(
aR(x)+ |z| + |z̃|)|y − ỹ| +LR|z− z̃|.

(iii) For all R > 0 exist aR ∈ L2(R) and bR > 0, such that for all x, y, z, p,
p̃ ∈R, with |y|, |p|, |p̃| ≤R, it holds that∣∣μ±(x,p, y, z)−μ±(x, p̃, y, z)

∣∣≤ (aR(x)+ bR

(|y| + |z|))|p− p̃|.

ASSUMPTION 1.3. Let σ∗ ≥ 0 and for all p ∈ R, σ+(·,p, ·), σ−(·,p, ·) ∈
C1(R2;R). Moreover:

(i) There exist a ∈ L2(R+) and b, b̃ ∈L∞loc(R
2;R+) such that

∣∣σ(x,p, y)
∣∣+ ∣∣∣∣ ∂

∂x
σ(x,p, y)

∣∣∣∣≤ b(y,p)
(
a(x)+ |y|)
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and ∣∣∣∣ ∂

∂y
σ(x,p, y)

∣∣∣∣≤ b̃(y,p).

(ii) For all R ∈N exists LR > 0, such that for all x, y, ỹ, p ∈R, with |y|, |ỹ|,
|p| ≤R, ∣∣σ±(x,p, y)− σ±(x,p, ỹ)

∣∣≤ LR|y − ỹ|,∣∣∣∣ ∂

∂x
σ±(x,p, y)− ∂

∂x
σ±(x,p, ỹ)

∣∣∣∣≤ LR|y − ỹ|,
∣∣∣∣ ∂

∂y
σ±(x,p, y)− ∂

∂y
σ±(x,p, ỹ)

∣∣∣∣≤ LR|y − ỹ|.

(iii) For all R ∈ N exists an aR ∈ L2(R), such that for all x, y, ỹ, p ∈ R, with
|y|, |ỹ|, |p| ≤R, it holds for i ∈ {0,1},∣∣∣∣∂

(i)

∂xi
σ±(x,p, y)− ∂(i)

∂xi
σ±(x, p̃, y)

∣∣∣∣≤ bR

(
aR(x)+ |y|)|p− p̃|

and ∣∣∣∣ ∂

∂y
σ±(x,p, y)− ∂

∂y
σ±(x, p̃, y)

∣∣∣∣≤ b̃R|p− p̃|.

ASSUMPTION 1.4. ζ(·, y) ∈ C2(R) for all y ∈ R and ∂i

∂xi ζ(x, ·) ∈ L2(R) for
all x ∈R, i ∈ {0,1,2}. Moreover,

(1.6) sup
x∈R

∥∥∥∥ ∂i

∂xi
ζ(x, ·)

∥∥∥∥
L2(R)

<∞, i ∈ {0,1,2}.

THEOREM 1.5. Let Assumptions 1.1, 1.2, 1.3 and 1.4 hold true. Then, for all
F0-measurable initial data (u0,p0) ∈H 1(Ṙ)×R, there exists a unique maximal
strong solution (u,p∗, τ ) of (1.4) with paths almost surely in L2([0, τ );H 2(Ṙ))∩
C([0, τ );H 1(Ṙ)).

REMARK 1.6. When imposing stronger assumptions on the initial data, we
would expect also more spatial regularity of the solution. More detailed, when u0

takes almost surely values in the Besov space B
2−2/q
2,q (Ṙ) for some q > 2, then we

would expect u to have almost surely paths in

Lq([0, τ );H 2(Ṙ)
)∩C

([0, τ );B2− 2
q

2,q (Ṙ)
)
.

This indeed follows from results on stochastic maximal Lq -regularity (see [38],
Theorem 3.5), but only in the case when η+ and η− are chosen sufficiently large or
σ∗ is sufficiently small. In this case, the results of this section also hold true when
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the locally bounded function b in Assumption 1.2(i) is in L∞loc(R
3) and depends

on p, y and z. To this end, one has to choose q > 4 so that the Besov space above
is embedded in BUC1(Ṙ). In this case, we need to assume that u0 ∈ B

2−2/q
2,q (Ṙ)

and u0 satisfies (1.2). Unfortunately, exact bounds on η+ and η− or σ∗ have to be
computed in terms of the constants Mq , MW

q in the Appendix. See Lemma 3.11
and Remark A.8 for the issue concerning the impact of these constants.

Let us now consider some examples which might be of interest in applications.

EXAMPLE 1.7. Let ζ(x, y) := ζ(x+y) for ζ ∈H 2(R)∩C2(R). Assume that
κ+ = κ− > 0, �(x, y)= ρ ·(y−x) for some ρ > 0 and σ(x,p, y) := σy for σ 
= 0.
In this case, we can replace v(t,p∗(t)±) in (1.1) by the first derivatives and get an
extension of the stochastic Stefan(-type) problems considered in [20] and [22], but
with Robin instead of Dirichlet boundary conditions.

EXAMPLE 1.8. In the setting of the previous example, let μ(x,p, y, z) :=
y ·z. Then the solution v behaves like a stochastic viscous Burger’s equation inside
of the phases.

EXAMPLE 1.9. With the modifications and limitations mentioned in Re-
mark 1.6, one could also cover nonlinearities of the form μ(x,p, y, z) = z2, or
any other polynomial in y and z.

To handle the randomly moving frames on which the solutions of (1.1) are ex-
pected to live, we define the function spaces, for x ∈R,

(1.7) �1(x) := {v :R→R | v|R\{x} ∈H 1(
R \ {x})}

and

(1.8) �2(x) := {v :R→R | v|R\{x} ∈H 2(
R \ {x}), v(x + ·) satisfies (1.5)

}
.

In the following, we denote the first two spatial weak derivatives on R \ {x} by ∇
and �, respectively.

By Sobolev embeddings, any v ∈ �k(x) can be identified with an element of
BUCk−1(R \ {x}) and, since {x} has mass 0, also of L2(R). For all v ∈ �1(x), it
also holds that ∇v and, if v ∈ �1(x), then �v are elements in L2(R), again. To
shorten the notation, we introduce the functions μ :R5 →R, σ :R3 →R,

(1.9) μ
(
x,p, v, v′, v′′

) :=
{
η+v′′ +μ+

(
x,p, v, v′

)
, x > 0,

η−v′′ +μ−
(
x,p, v, v′

)
, x < 0,

and

(1.10) σ(x,p, v) :=
{
σ+(x,p, v), x > 0,

σ−(x,p, v), x < 0.
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Denote by δx the Dirac distribution with mass at x ∈ R and by δ′x its derivative.
We define the following functions, which take values in the space of distributions,

L1 :
⋃
x∈R

(
�1(x)× {x})→D, (v, x) �→ −(v(x+)− v(x−)

)
δx,

L2 :
⋃
x∈R

(
�2(x)× {x})→D,

(v, x) �→ (
v(x+)− v(x−)

)
δ′x −

(∇v(x+)−∇v(x−)
)
δx.

REMARK 1.10. Given x ∈R, v ∈ �2(x), it holds that

L1(v, x)|R\{x} =L2(v, x)|R\{x} = 0.

Here, for f ∈D and a Borel set I ⊂R we write f |I = 0 when

〈f,φ〉 = 0 ∀φ ∈ C∞(I ).

Transforming (1.4) back into the moving boundary problem, we observe that
the description in (1.1) does not explicitly tell us how t �→ v(t, x) should behave
when p∗(t)= x. Note that, if σ∗ > 0, then for each T ∈ (0,∞) the event p∗(t)= x

occurs either for infinitely many t ∈ [0, T ] or for none. Motivated by the discus-
sion in Section 5, the following definition of notion of a solution for (1.1) is the
“natural” definition, in the sense that L1 and L2 describe the behaviour of v at p∗.
On the other side, Remark 1.10 shows how to recover (1.1).

DEFINITION 1.11. A local solution of the stochastic moving boundary prob-
lem (1.1) with initial data v0 and p0 is an L2(R)×R predictable process (v,p∗),
and a positive and predictable stopping time τ , with

(v,p∗) : [[0, τ [[→ ⋃
x∈R

(
�1(x)× {x})⊆L2(R)×R,

such that v(t, ·) is �2(p∗(t))-valued, and for all φ ∈ C∞
0 (R) on [[0, τ [[,〈

v(t)− v0, φ
〉

=
∫ t

0

〈
μ
(· − p∗(s),p∗(s), v(s),∇v(s),�v(s)

)
, φ
〉
ds

+
∫ t

0

〈
σ
(· − p∗(s),p∗(s), v(s)

)
dξs, φ

〉

+
∫ t

0

〈
L1
(
v(s),p∗(s)

)
, φ
〉
dp∗(s)

+ 1

2

∫ t

0

〈
L2
(
v(s),p∗(s)

)
, φ
〉
d[p∗](s),
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p∗(t)− p0

=
∫ t

0
�
(
v
(
s,p∗(s)+), v(t, p∗(s)−))ds + σ∗Bt .

The solution is called global, if τ =∞ a.s. and the interval [[0, τ [[ is called maxi-
mal if there is no solution of (1.1) on a larger stochastic interval.

REMARK 1.12. The stochastic integral term is defined as

(1.11)
∫ t

0

〈
σ
(·,p∗(s), v(s)

)
dξs, φ

〉 = ∞∑
k=1

∫ t

0

〈
σ
(·,p∗(s), v(s)

)
Tζ ek,φ

〉
dβk

s ,

which is implicitly assumed to exist in L2(�).

REMARK 1.13. The quadratic variation of p∗ is [p∗](t)= σ 2∗ t , t ≥ 0.

REMARK 1.14. This notion of solution is not exactly what one would typi-
cally expect under a weak or distributional solution. In contrast to [22], Defini-
tion 3.2, we require ∇v and �v to exist as L2(R) elements, which assures analyt-
ically strong existence for the centered equations.

THEOREM 1.15. Let Assumptions 1.1, 1.2, 1.3 and 1.4 hold true. Let p0 ∈ R

and v0 ∈ H 1(R \ {p0}) be F0-measurable and (u,p∗, τ ) be the unique maxi-
mal strong solution of (1.4) with initial data (v0(· + p0),p0) and set v(t, x) :=
u(t, x−p∗(t)), t ≥ 0, x ∈R. Then (v,p∗, τ ) is a local solution of (1.1) in the sense
of Definition 1.11 and satisfies v, ∇v ∈ C([0, τ );L2(R)), p∗ ∈ C([0, τ );R) and
�v ∈ L2([0, τ );L2(R)) almost surely. Moreover, (v,p∗, τ ) is unique and maximal
under all such solutions.

REMARK 1.16. In general, we cannot expect x �→ v(t, x) to be continuous
at x = p∗(t), even if this holds true for t = 0. For instance, consider the special
situation where κ+ = κ− = 0 and μ+, μ− ≡ 0, ρ ≡ 0, σ+, σ− ≡ 0, σ∗ > 0 and let
v0 ∈ C(R)∩H 1(R).

Assume that v(t, ·) ∈ C(R), dt ⊗ P almost everywhere. Then by Neumann
boundary conditions at p∗ we have also v(t, ·) ∈ C1(R)∩H 2(R) and

L1
(
v(t ·),p∗(t))= L2

(
v(t, ·),p∗(t))= 0.

Thus, Definition 1.11 implies that v is the weak solution of the (deterministic)
heat equation on R. Since p∗(t) = σ∗Bt and v is independent of p∗(t), we get
from (1.2) that ∂

∂x
v(t, x) = 0 for almost all t > 0 and x ∈ R. Because v(t, ·) ∈

L2(R) this also yields v(t, x)= 0.
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REMARK 1.17. In the deterministic situation, that is, σ+, σ− ≡ 0 and σ∗ = 0,
one can get local classical solutions of the centered problem (1.4), for example, by
standard theory for semi-linear evolution equations [29]. Using time differentia-
bility of u and p∗, the change of coordinates x �→ x + p∗ can then be performed
by chain rule, locally on [0, tx), where

tx := inf
{
t > 0 : p∗(t)= x

}∧ τ, x ∈R.

1.1. Global solutions. Assume that the assumptions of Theorem 1.5 are satis-
fied and let (u,p∗, τ ) be the unique maximal solution of (1.4). Define the stopping
time:

τ0 := lim sup
N→∞

inf
{
t ≥ 0 | t < τ,

∣∣u(t,0+)
∣∣+ ∣∣u(t,0−)

∣∣> N
}
.

Here, we here use the convention that inf∅ :=∞. The following assumption en-
sures that the coefficients involving μ and σ have linear growth, and hence, one
would expect that explosion in (1.4) can be due to the moving inner boundary only.

ASSUMPTION 1.18. Assume that b and b̃ in Assumptions 1.2 and 1.3 are
globally bounded.

THEOREM 1.19. Let the assumptions of Theorem 1.5 be satisfied, and As-
sumption 1.18 hold true. Then, P[τ0 = τ ] = 1, and almost surely on {τ <∞},

lim
t↗τ

∣∣v(t, p∗(t)+)∣∣+ ∣∣v(t, p∗(t)−)∣∣=∞.

THEOREM 1.20. Assume that the assumptions of Theorem 1.5 are satisfied,
that Assumption 1.18 holds true and that � is globally bounded. Then τ = ∞
almost surely. If, moreover, v0, ∇v0 ∈ L2(�× R, dP⊗ dx) and p0 ∈ L2(�;R),
then for all T > 0 there exists a constant K such that

E sup
0≤t≤T

(∣∣p∗(t)∣∣2 +
∫
R

∣∣v(t, x)
∣∣2 + ∣∣∇v(t, x)

∣∣2 dx

)

+E

∫ T

0

∫
R

∣∣�v(t, x)
∣∣2 dx dt(1.12)

≤K
(
1+E

[‖v0‖2
L2 + ‖∇v0‖2

L2 + |p0|2]).
2. Application: Limit order book models. In electronic trading, buy and sell

orders of market participants are matched and cleared, or if there is no counterpart,
accumulated in the order book. Agents can either send market orders, which are
executed “immediately” against the best orders currently available, or trade by
limit orders. Limit buy orders are executed only at a specified price level p at
most and similarly, limit sell orders are executed only for a price p or less. This
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price level p is called limit, and the minimal distance between two limits which
is allowed in the market is called tick size. One can think of the order book as a
collection of buckets, indexed by the limits p and each containing the number of
limit orders active at time t . Actually, the orders in the book might get executed
against incoming market or limit orders but also cancelled, which might happen in
a substantial amount, especially in markets with high frequency trading [9].

Price formation is now an extraction from the current order book state. The
highest limit for which the order book contains buy orders is called bid price and
the smallest limit with sell orders is called ask price. In highly liquid markets, the
difference of both, called spread, is typically rather small and we assume it to be 0
for our model. We stress the fact that the bid and ask prices are actually separating
the buy and sell side of the order book.

To abstract from this point, we understand the order book as a two-phase system
and aim to model the macroscopic behaviour of a highly liquid market under pres-
ence of high frequency trading. For a more detailed introduction and an overview
on various types of models, we refer to the survey [15], but see also [14] for an
approach more related to the present framework.

We denote by v(t, x) the density of the limit buy and sell orders placed at price
x, which is on logarithmic scale. We keep the notion “price” when actually mean-
ing logarithmic price. As a convention, buy orders will have a negative and sell
orders a positive sign. We let the tick size and the time discretization go to 0 and
consider a price-time continuous approximation. Then we expect the evolution of
the order book density to be described by an SPDE, whereas the price process
p∗ is the inner boundary separating the buy and sell side of the order book. For
the density dynamics, Zheng [40] proposed the linear heat equation with additive
space-time white noise ξ and Dirichlet boundary conditions,

dv(t, x)= η+
∂2

∂x2 v(t, x)dt + σ+
(∣∣x − p∗(t)

∣∣)dξt (x), x > p∗(t),

dv(t, x)= η−
∂2

∂x2 v(t, x)dt + σ−
(∣∣x − p∗(t)

∣∣)dξt (x), x < p∗(t),

v
(
t, p∗(t)

)= 0,

and the interaction of price and order book evolution is given by the Stefan condi-
tion

dp∗(t)= ρ ·
(

∂

∂x
v
(
t, p∗(t)−)− ∂

∂x
v
(
t, p∗(t)+)

)
dt.

In order to ensure existence of the right-hand side under the presence of space-
time white noise, it is assumed by Zheng that the volatilities σ+ and σ− vanish
at p∗ faster than linear. To be more precise, σ+, σ− are Lipschitz continuous and
σ± ∼ xα as x → 0, for α > 3

2 which in fact yields that σ± and its derivative van-
ish at the origin. However, empirical observations show that the order flow has
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a maximum at the bid and ask; see, for example, [11, 18]. The assumption on σ

would force us to average out all events at the best bid and ask, in particular effects
coming from market orders.

When introducing spatial correlation in the driving Gaussian field ξ , the as-
sumptions on the decrease of the volatility can be relaxed; see Assumption 1.3 for
instance.

REMARK 2.1. Using empirical data from Paris Bourse (now Euronext),
Bouchaud et al. [7] identified an average order book shape, which turns out to
be symmetric at the price and has its maximum few ticks away from the bid (resp.,
ask) price. Note that it is not surprising that the maximum is not achieved directly;
the bid and ask levels since orders at the bid and ask level have a much higher
probability being executed. As the distance δ from the bid (resp., ask) gets large,
the average shape decreases like δ−β for β ≈ 1.6 [7].

Order book dynamics. We split market participants in two major groups. On
one side, we consider market makers trading at high frequencies and, on the other
hand, low frequency traders such as institutional investors. The reason for this
choice is that their trading behaviour and also their objectives are substantially
different. For instance, market makers and high frequency traders typically do not
accumulate large inventories [23]. In fact, what is typically observed at the end
of each trading day is a rapid increase of the trading volume [6], Figure 2, since
many positions have to be cleared overnight. On the other hand, the objectives
of low frequency traders are based more on long-term strategies. For instance, an
institutional investor has to sell a certain amount of stocks due to exogenous events.

We consider the following dynamics for the evolution of the order book density
v and the price process p∗:

dv(t, x)=
[
η+

∂2

∂x2 v(t, x)+ f+
(∣∣x − p∗(t)

∣∣, v) ∂

∂x
v(t, x)− α+v(t, x)

]
dt

+ g+
(∣∣x − p∗(t)

∣∣)dt + σ+
(∣∣x − p∗(t)

∣∣)v(t, x)dξt (x),

for x > p∗(t),

dv(t, x)=
[
η−

∂2

∂x2 v(t, x)− f−
(∣∣x − p∗(t)

∣∣, v) ∂

∂x
v(t, x)− α−v(t, x)

]
dt

− g−
(∣∣x − p∗(t)

∣∣)dt + σ−
(∣∣x − p∗(t)

∣∣)v(t, x)dξt (x),

for x < p∗(t),

(2.1)

where the noise ξt (x) is white in time but colored in space. Let us motivate the
terms of (2.1) separately. Note that for the effects which are due to market mak-
ers we mainly follow [14] but also include stochastic forcing terms which have
contribution to the total volume:
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• A large amount of transactions due to market makers and high frequency traders
is covered by cancellations or readjustments of orders in the book. On one hand,
the individual adjustments average out and yield diffusive behaviour in the order
book, described by the diffusion coefficients η+ and η−; see also [14].

• On the other hand, following [14], collective readjustments of market par-
ticipants are due to public available information. Here, this happens at rate
f+/−(|x − p∗(t)|, v(t, x)). Assuming that orders are tendentially shifted into
the direction of the mid price, we expect f+, f− ≥ 0.

• α+ and α− are the cancellation rates for buy and sell side, respectively. We as-
sume that cancellation in the order book is proportional to the number of orders
at the respective level.

• The average limit order arrivals of institutional or private investors are mod-
elled by g+ and g−. We assume their contribution is due to external forces and
independent of the order book state; see also [18], Figure 1.

• σ+ and σ− are the volatilities of proportional trading activity which is not av-
eraged out in the model. In particular, σ± is allowed to depend on the distance
to the mid price, and thus, could incorporate higher order submission and can-
cellation rates close to the mid price. On the other hand, the impact of the noise
will vanish far away from the mid price. Moreover, the empirical data in [18]
indicate that volatility in the queues increases with lengths of the queues.

For a detailed explanation of the diffusive drift behaviour, see [14], Appendix 1.

EXAMPLE 2.2 (Burger’s equation). We impose the assumption that market
makers, or high frequency traders, in general, are the more tempted to move their
order, the worse their actual position in the current queue is. Simplifying this,
the rate at which orders are rearranged collectively should be proportional to the
amount of orders in the respective bucket. Mathematically, this corresponds to the
choice f+/−(x, v) := c+/−v, for x, v ∈R, c+ > 0, c− < 0, and we get an extension
of the classical viscous Burger’s equation; see also Example 1.8.

EXAMPLE 2.3. Extending the model, we replace the assumption that collec-
tive readjustments tend into the direction to the mid price by the following. Agents
with a position at the end of the queue aim to get into a better position, and thus
readjust their order to a price level with a shorter queue. To capture this, we make
the sign in front of the rate f+/− dependent on ∂

∂x
v, namely

f+
(
x, v, v′

)= sign
(
v′
)
f̃+(x, v), f−

(
x, v, v′

)= sign
(
v′
)
f̃−(x, v),

for readjustment rates f̃+/−. Equivalently, we replace ∂
∂x

v(t, x) by | ∂
∂x

v(t, x)|
in (2.1). In particular, under sufficient assumptions on f+ and f−, the extended
model still fits into our analytic framework.
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Price dynamics. A commonly used predictor for the next price move is the im-
balance of the order volume in the top level bid and ask queue, which we denote by
VI. Despite empirical evidence (see [28] but also [10] and the references therein),
this mechanism is quite intuitive from a microscopic view point: For instance, if
VI� 0 which means that the volume at the best ask level is small compared to the
best bid queue, then it should be much more likely that these orders are executed
before the limit orders in the bid queue are. In this case, the price moves up. With
the same arguments, we would expect the price to decrease if VI� 0. Translated
to macroscopic scale, this means

(2.2) dp∗(t)≈ �
(
VI(t)

)
dt,

at least on average, cf. [28], Figure 1. Here, � :R→R is a locally Lipschitz func-
tion with �(0)= 0, describing the intensity of this relation. Recalling the conven-
tion that buy orders have negative signs the volume imbalance reads as

VI(t)=−v
(
t, p∗(t)−)− v

(
t, p∗(t)+).

Incorporating also exogenous events affecting price movements, we perturb the
price dynamics by Brownian noise,

(2.3) dp∗(t)= �
(−v

(
t, p∗(t)−)− v

(
t, p∗(t)+))dt + σ∗ dBt, t ≥ 0.

For σ∗ > 0, this can be seen as a (time-inhomogeneous) extension of the classical
Bachelier model. If σ∗ = 0, this is a modification for first-order boundary condi-
tions of the Stefan-type dynamics proposed in [40] and [20]. Note that the addi-
tional noise term here is a significant step in direction of more realistic models.
In fact, the paths of the price processes resulting for σ∗ = 0, also in the literature,
are almost surely C1. Unfortunately, the analysis of the solutions—starting with
existence and uniqueness—gets much more involved.

REMARK 2.4. Prices here are on logarithmic scale. For small tick sizes, this
is a reasonable approximation of the linear tick scale in real markets; cf. [35]. On
the other hand, it is also consistent with asymmetries between larger up and down
moves of the price. In particular, the model assumptions can be chosen symmetric
with respect to the mid price, here.

REMARK 2.5. Recall that the Stefan condition occurred in a model for heat
diffusion in a system of water and ice [36]. Since a certain amount of energy is
required for solidification of water or melting of ice, conservation of mass only
holds for the energy, and the temperature is diffusing only partially between ice
and water. This is quite related to our situation, where only part of the agents
having orders in the best bid bucket are willing to cross the spread and trade with
market instead of limit orders. In particular, ice melts or water solidifies only when
the enthalpy crosses a certain energy level, whereas the price moves only when the
best bid, respectively, ask bucket gets empty.
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3. The centered equations. By reflection, we can rewrite (1.4) into the
stochastic evolution equation on L2 := L2(R+)⊕L2(R+)⊕R,

(3.1) dX(t)= [AX(t)+ B
(
X(t)

)]
dt + C

(
X(t)

)
dWt , X(0)=X0

with coefficients

A =

⎛
⎜⎜⎜⎜⎝

(
η+ + 1

2
σ 2∗
)
�+ 0 0

0
(
η− + 1

2
σ 2∗
)
�− 0

0 0 0

⎞
⎟⎟⎟⎟⎠− cId,(3.2)

B(u)(x) =

⎛
⎜⎜⎜⎜⎝

μ+
(
x,p,u1(x),

∂

∂x
u1(x)

)

μ−
(
−x,p,u2(x),− ∂

∂x
u2(x)

)
0

⎞
⎟⎟⎟⎟⎠+ cId+ �

(
I(u)

)∇u,(3.3)

C(u)[w,b](x) = C1(u)[w,b](x)+ C2(u)[w,b](x)
(3.4)

:=
⎛
⎝ σ+

(
x,p,u1(x)

)
Tζw(p+ x)

σ−
(−x,p,u2(x)

)
Tζw(p− x)

0

⎞
⎠+ σ∗b∇u,

for u = (u1, u2,p) ∈ D(A), b ∈ R,w ∈ U := L2(R), x ≥ 0. We denote the trace
operator by I(u) := (u1(0), u2(0)) and write

(3.5) ∇u :=

⎛
⎜⎜⎜⎜⎝

∂

∂x
u1

− ∂

∂x
u2

1

⎞
⎟⎟⎟⎟⎠ .

The constant c > 0 has to be chosen sufficiently large, as we will see below.
Moreover, W := (W,B) is a cylindrical Wiener process on the Hilbert space
U := U ⊕ R, and �+, �− are the realization of the Laplacian with respective
domains

D(�±) :=
{
u ∈ L2(R+)

∣∣∣ ∂

∂x
u(0)= κ±u(0)

}
.

The domain of A is then given by

D(A)=D(�+)×D(�−)×R⊂ L2,

which is itself a Hilbert space when equipped with the inner product

〈u, v〉A := 〈u, v〉L2 + 〈Au,Av〉L2, u, v ∈D(A).

We also introduce the Sobolev spaces Hk :=Hk(R+)⊕Hk(R+)⊕R, k ∈N. With
the next theorem, we show that under the hypothesis of the previous section, we
get at least locally a unique strong solution in the sense of Definition A.1.
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THEOREM 3.1. Assume that Assumptions 1.1, 1.2, 1.3 and 1.4 hold true and
let c > max{η+κ2+, η−κ2−}. Then, for every F0-measurable initial data X0 ∈ H1,
there exists a unique maximal strong solution (X, τ) with trajectories almost surely
in

L2(0, τ ;D(A)
)∩C

([0, τ );H1).
REMARK 3.2. To translate the theorem into the SPDE framework of Sec-

tion 1, we identify L2 with L2(R)⊕R using the isometric isomorphism

ι : L2 → L2(R)⊕R, (u1, u2,p) �→ (
u11R+ + u2

(−(·))1R−,p
)
.

In fact, (stochastic) integration can be interchanged with linear continuous opera-
tions and we deduce the integral equations for (1.4) by applying ι to (3.1).

REMARK 3.3. Without much effort, one could replace I by any other function
which is Lipschitz on bounded sets from H1 into R

n, and take � :Rn →R locally
Lipschitz. In particular, the drift term of p∗ in (1.1) might depend also on p∗.

3.1. Proof of Theorem 3.1. Theorem 3.1 will follow from Theorem A.7 for
p = 2 and E := L2, so we just have to verify that Assumption A.2, A.5 and A.6
are fulfilled. By diagonal structure, the operator A inherits the regularity properties
of the Laplacian.

LEMMA 3.4. (−A,D(A)) is positive self-adjoint on L2.

Hence, its fractional powers (−A)α can be used to define the inter- and extrap-
olation spaces (see the Appendix), for α ∈R,

(3.6) Eα :=D
(
(−A)α

)
, ‖u‖α :=

∥∥(−A)αu
∥∥
L2, u ∈Eα.

Note that Eα are again Hilbert spaces. We recall the following identities, with
equivalence of norms, for α ∈ [0,1], α 
= 3

4 :

(3.7) Eα =

⎧⎪⎪⎨
⎪⎪⎩
H2α, α <

3

4{
u ∈H2α

∣∣∣ ∂

∂x
u1(0)= κ+u1(0),

∂

∂x
u2(0)= κ−u2(0)

}
,

3

4
< α.

REMARK 3.5. This well-known result was proven by Grisvard in [16]. How-
ever, the proof is only given for bounded domains, but works the same (even
slightly easier) for half-spaces. A very general versions of this result for half-
spaces involving also Sobolev and Besov spaces in infinite dimensions is Theo-
rem 4.9.1 in [1].

LEMMA 3.6. B :H1 → L2 is Lipschitz continuous on bounded sets.
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PROOF. It is well known [27] that the trace operator u �→ u(0) is linear and
continuous from H 1(R+) into R. This translates to I , as a mapping from H1 into
R

2, so that � ◦ I is Lipschitz on bounded sets from H1 into R. Moreover, ∇u is
clearly Lipschitz from H1 into L2, and thus, their product is Lipschitz continuous
on bounded sets.

Let μ := μ+ or μ := μ−(−(·), ·, ·,−(·)). It remains to prove that the Nemytskii
operator

Nμ(u;p) := μ

(
·,p,u(·), ∂

∂x
u(·)

)

is Lipschitz on bounded sets from H 1(R+)⊕ R into L2(R+). Let u ∈ H 1(R+),
p ∈R, then due to Assumption 1.2(i),

∫ ∞
0

μ

(
x,p,u(x),

∂

∂x
u(x)

)2
dx

(3.8)

≤ 3 sup
x∈R

b
(
u(x),p

)2 ∫ ∞
0

∣∣a(x)
∣∣2 + ∣∣u(x)

∣∣2 + ∣∣∣∣ ∂

∂x
u(x)

∣∣∣∣2 dx,

which is finite since u is bounded by Sobolev embeddings. Now, for R > 0 and u,
v ∈H 1(R+), p, q ∈R such that

‖u‖H 1,‖v‖H 1, |p|, |q| ≤R

Assumption 1.2(ii) yields

∥∥Nμ(u;p)−Nμ(v;p)
∥∥2
L2 ≤ 3L2

R

(‖aR‖2
L2+2R2)‖u−v‖2∞+L2

R

∥∥∥∥ ∂

∂x
u− ∂

∂x
v

∥∥∥∥2

L2
.

On the other hand, by Assumption 1.2(iii),∥∥Nμ(v,p)−Nμ(v, q)
∥∥2
L2

≤
(
‖aR‖L2 + |bR|

(
‖u‖L2 +

∥∥∥∥ ∂

∂x
u

∥∥∥∥
L2

))2
|p− q|2

≤ (‖aR‖L2 + 2|bR|R)2|p− q|2.
Combining the latter two equations with (3.8), we get that Nμ is Lipschitz on
bounded sets for μ = μ+ and μ = μ−(−(·), ·, ·, ·), respectively. Here, we again
used the Sobolev embedding H 1 ↪→ BUC. �

LEMMA 3.7. Let � be the Laplacian on L2(R+) with domain

D(�) :=
{
u ∈H 2

∣∣∣ ∂

∂x
u(0)= κu(0)

}
, κ ≥ 0.
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Then, for all η > 0, c > 0 and u ∈H 1(R+) it holds that

(3.9)
∥∥∥∥ ∂

∂x
u

∥∥∥∥
L2(R+)

≤ 1√
η

∥∥(c− η�)
1
2 u
∥∥
L2(R+).

Moreover, if c > ηκ2, then it holds for all u ∈D(�),

(3.10)
∥∥∥∥(c− η�)

1
2

∂

∂x
u

∥∥∥∥
L2(R+)

≤ 1√
η

∥∥(c− η�)u
∥∥
L2(R+).

REMARK 3.8. In the second statement, it is crucial that ∂
∂x

maps D(�) into

D((c−η�)
1
2 ). This does not hold true anymore for Dirichlet boundary conditions.

PROOF. Step I: First, note that D((c − �)
1
2 ) = H 1(R+) due to first-order

boundary conditions. Since � is self adjoint, the same holds true for (c − �)
1
2 ,

so that for all u ∈D(�),

(3.11)
∥∥(c− η�)

1
2 u
∥∥2
L2 = 〈(c− η�)u,u

〉
L2 = c‖u‖2

L2 − η〈�u,u〉L2 .

With integration by parts, we obtain

(3.12)
∥∥(c− η�)

1
2 u
∥∥2
L2 = c‖u‖2

L2 + η

∥∥∥∥ ∂

∂x
u

∥∥∥∥2

L2
+ ηκ

∣∣u(0)
∣∣2.

For the last equality, we just used integration by parts and the fact that u ∈D(�).

Recall that D(�) is dense in D((c−�)
1
2 ), and

D
(
(c− η�)

1
2
)=H 1(R+) ↪→ BUC(R+),

so that (3.12) holds true for all u ∈H 1(R+).
Step II: Now, assume that c > ηκ2. Let u ∈ D(�) and apply (3.12) to ∂

∂x
u. If

κ > 0, this reads as∥∥∥∥(c− η�)
1
2

∂

∂x
u

∥∥∥∥2

L2

= c

∥∥∥∥ ∂

∂x
u

∥∥∥∥2

L2
+ η‖�u‖2

L2 + ηκ

∣∣∣∣ ∂

∂x
u(0)

∣∣∣∣2
(3.13)

=−〈(c− η�)u,�u
〉
L2 +

(
ηκ − c

κ

)∣∣∣∣ ∂

∂x
u(0)

∣∣∣∣2

= 1

η

∥∥(c− η�)u
∥∥2
L2 − c

η

〈
(c− η�)u,u

〉
L2 +

(
ηκ − c

κ

)∣∣∣∣ ∂

∂x
u(0)

∣∣∣∣2.
The second equality follows again by integration by parts. We get (3.10), since
−� is nonnegative self-adjoint and u ∈D(A).
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For κ = 0, (3.12) still holds true and the computation in (3.13) reduces to

(3.14)
∥∥∥∥(c− η�)

1
2

∂

∂x
u

∥∥∥∥2

L2
=−〈(c− η�)u,�u

〉
L2 ≤ 1

η

∥∥(c− η�)u
∥∥2
L2 . �

A direct consequence of fundamental theorem of calculus is (see also [22] or
[31], Appendix A, Proof of Lemma 5.1)

u(x)=
∫ x+1

x
u(y)dy −

∫ x+1

x
(x + 1− y)∇u(y)dy,

for all u ∈H 1(R+), x > 0, which yields

(3.15) sup
x>0

∣∣u(x)
∣∣≤√2‖u‖H 1 .

Thus, the equality in (3.12) implies the following two-sided estimate.

COROLLARY 3.9. With the notation of Lemma 3.7, for all u ∈H 1(R+),
√

c ∧ η‖u‖H 1 ≤ ∥∥(c− η�)
1
2 u
∥∥
L2 ≤ (

√
c ∨ η+√2ηκ)‖u‖H 1 .

REMARK 3.10. When replacing η� by a general uniformly elliptic operator
of second-order A, we still know that there exist constants K0, K1 such that

K0‖u‖H 1 ≤ ∥∥(−A)
1
2 u
∥∥
L2 ≤K1‖u‖H 1

for all u ∈D((−A)
1
2 ). In fact, this question is known as Kato’s square root prob-

lem and was solved by Auscher et al.; see [3], Theorem 6.1. This theory is strongly
based on the bounded H∞-calculus of −A. However, as can be seen in the Ap-
pendix, just to know plain existence of such constants without exact bounds might
not be sufficient for the discussion of existence for stochastic evolution equations.

LEMMA 3.11. (i) C1 : H1 → HS(U;H1) is Lipschitz continuous on bounded
sets.

(ii) C2 is Lipschitz continuous from D(A) into HS(U;E 1
2
). More precisely, there

exists L∗ <
√

2 such that for all u, v ∈D(A),

(3.16)
∥∥C2(u)− C2(v)

∥∥
HS(U;E 1

2
) ≤ L∗

∥∥−A(u− v)
∥∥
L2 .

PROOF. For the first part, we use the results in [20], Appendix A, to get that
u �→Nσ (u;p) := σ(·,p,u(·)) is Lipschitz on bounded sets on H 1(R+), for each
p ∈ R. Here, we let σ := σ+ or σ := σ−(−·, ·, ·). Moreover, the weak derivative
of Nσ (u;p) is

d

dx
Nσ (u;p)(x)= ∂

∂x
σ
(
x,p,u(x)

)+ ∂

∂y
σ
(
x,p,u(x)

) ∂

∂x
u(x),
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and by Assumption 1.3,∥∥∥∥ ∂

∂y
σ
(·,p,u(·))u(·)− ∂

∂y
σ
(·, p̃, u(·))u(·)

∥∥∥∥
L2

≤ ‖u‖L2 sup
x≥0

∣∣∣∣ ∂

∂y
σ
(
x,p,u(x)

)− ∂

∂y
σ
(
x, p̃, u(x)

)∣∣∣∣≤ ‖u‖L2 b̃R|p− p̃|,

where R > 0 is such that max{‖u‖∞,p, p̃} ≤R. Moreover,∥∥Nσ (u;p)−Nσ (u; p̃)
∥∥
L2 ≤ bR

∥∥aR + |u|
∥∥
L2 |p− p̃|,

and the same estimates are valid when replacing σ by ∂
∂x

σ . Hence, we get that
p �→Nσ (u;p) is Lipschitz on bounded sets from R into H 1(R+), so that (u,p) �→
Nσ (u;p) is Lipschitz on bounded sets from H 1(R+)⊕R into H 1(R+).

From the proof of Lemma B.4 in [20], we extract the estimate∥∥Nσ (u;p)Tζ

∥∥
HS(L2(R);H 1)

(3.17)

≤K
∥∥Nσ (u;p)

∥∥
H 1 sup

z∈R

(∥∥ζ(z, ·)∥∥L2(R) +
∥∥∥∥ ∂

∂x
ζ(z, ·)

∥∥∥∥
L2(R)

)
.

Writing ζy(x, ·) := ζ(x + y, ·)− ζ(x, ·), we get for all w ∈ L2(R), x, y, z ∈R,

Tζw(x + y)− Tζw(x + z)= Tζy−zw(x) ∀w ∈ L2(R), x ∈R.

Using Assumption 1.4 and fundamental theorem of calculus, one shows that

sup
z∈R
∥∥ζx(z, ·)

∥∥
L2(R) ≤ |x| sup

z∈R

∥∥∥∥ ∂

∂x
ζ(z, ·)

∥∥∥∥
L2(R)

,

sup
z∈R

∥∥∥∥ ∂

∂x
ζx(z, ·)

∥∥∥∥
L2(R)

≤ |x| sup
z∈R

∥∥∥∥ ∂2

∂x2 ζ(z, ·)
∥∥∥∥
L2(R)

.

See also [20], Lemma B.2, for details. Combining the latter three equations with
the first part on Nσ , we get that C1 is, indeed, Lipschitz on bounded sets.

To prove the second part of the lemma, note that for any CONS (ek)k∈N of
L2(R) the family ((0,1), (e1,0), (e2,0), . . .) is a CONS of U . Hence,∥∥C2(u)− C2(v)

∥∥2
HS(U;E 1

2
) =

∥∥C2(u)[0,1] − C2(v)[0,1]∥∥2
1
2
.

By diagonal structure of A and L2, we have

(−A)
1
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
c−

(
η+ + 1

2
σ 2∗
)
�1

) 1
2

0 0

0
(
c−

(
η− + 1

2
σ 2∗
)
�2

) 1
2

0

0 0 c
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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so that the second part of Lemma 3.7 yields∥∥C2(u)− C2(v)
∥∥

HS(U;E 1
2
) ≤ L∗

∥∥(−A)(u− v)
∥∥
L2,

for L∗ := σ∗((η+ ∧ η−)+ 1
2σ 2∗ )− 1

2 <
√

2. �

Putting things together, we get that Assumptions A.2, A.5 and A.6 are fulfilled.
Moreover, (3.16) and Remark A.8 show that also (A.6) holds true with LB = 0,
LC = L∗ and p = 2. Thus, application of Theorem A.7 completes the proof of
Theorem 3.1. �

3.2. Explosion times. We now formulate and prove Theorem 1.19 and 1.20 in
the framework of stochastic evolution equations on L2; see also Remark 3.2.

THEOREM 3.12. Let (X, τ) be the unique maximal solution of (3.1) on L2

and assume that, in addition to the assumptions of Theorem 3.1 also Assump-
tions 1.18 holds true and � is globally bounded. Then τ =∞ almost surely. If,
moreover, X0 ∈ L2(�;H1), then for all T > 0 there exists a constant K > 0 such
that

E

∫ T

0

∥∥X(s)
∥∥2
A ds +E

[
sup

0≤t≤T

∥∥X(s)
∥∥2
H1

]
≤K

(
1+E

[‖X0‖2
H1

])
.

PROOF. First, since � is globally bounded, we get that

(u1, u2,p) �→ �
(
I(u)

)∇u

has linear growths as a map from H1 into L2. From (3.8), we get the linear growths
bound, for all u ∈H 1(R+), p ∈R,∫ ∞

0

∣∣∣∣μ±
(
±x,p,u(x),

∂

∂x
u(x)

)∣∣∣∣2 dx ≤ 3‖b‖L∞(R2)

(‖a‖2
L2 + ‖u‖2

H 1

)
.

Hence, the Nemytskii-operator Nμ, defined in the proof of Lemma 3.6, has linear
growths from H 1 ⊕R into L2 and B has linear growths from H1 into L2.

With the same arguments, we get linear growths of Nσ from H 1 ⊕ R into L2,
for σ ∈ {σ+, ∂

∂x
σ+, σ−, ∂

∂x
σ−}. Finally, for all p ∈R, u ∈H 1(R+), x > 0, it holds

that ∣∣∣∣ ∂

∂y
σ
(
x,p,u(x)

) ∂

∂x
u(x)

∣∣∣∣≤ ‖b̃‖L∞(R2)

∣∣∣∣ ∂

∂x
u(x)

∣∣∣∣.
The weak derivative of Nσ (u) is given by

∂

∂x
σ(x,p,u(x))+ ∂

∂y
σ(x,p,u(x))

∂

∂x
u(x)
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and, therefore, Nσ has linear growths from H 1⊕R into H 1. Using estimate (3.17)
and the structure of C1, we refer to the proof of part (i) of Lemma 3.11 for details,
we observe linear growths for

C1 :H1 →HS
(
U;H1).

Summarizing, the assumptions of Theorem A.9 with q = 2 are fulfilled and Theo-
rem 3.12 follows. �

PROOF OF THEOREM 1.19. The proof works similar to the proof of [20], The-
orem 4.5. For N ∈ N, let �N : R2 → R be a locally Lipschitz continuous function
such that

�N(x, y)=
{
�(x, y),

∣∣(x, y)
∣∣≤N,

0,
∣∣(x, y)

∣∣> N + 1.

In consistency with Section 1, set

(3.18) τN
0 := inf

{
t ≥ 0 | t < τ,

∣∣I(X(t)
)∣∣> N

}
, τ0 := lim

N→∞ τN
0 ,

using the convention inf∅=∞. By continuity of the trace operator, we have

N ≤ ∣∣I(X(τN
0
))∣∣≤KI

∥∥X(τN
0
)∥∥

H1 on {τ0 <∞}.
In particular, on {τ0 <∞},

lim
N→∞

∥∥X(τN
0
)∥∥

H1 =∞,

which yields, due to H1-continuity of X, that τ0 ≥ τ almost surely.
On the other side, replacing � by �N , the stochastic evolution equation (3.1) ad-

mits a unique global solution XN by Theorem 3.12. By definition of �N , (XN, τN
0 )

is a local solution of the original equation, so that the uniqueness claim of Theo-
rem 3.1 yields X = XN on [[0, τN

0 [[, and τN
0 ≤ τ almost surely, for all N ∈ N.

�

4. Distributional solutions and transformation. The transformation from
the fixed to the moving boundary problem will be performed by Itô–Wentzell for-
mula, in its version proven by Krylov [25]. To this end, we first have to rewrite the
SPDEs considered above into an equation on the distribution space. Recall that the
cylindrical Id–Wiener process W on U = L2(R) can be written as

Wt =
∞∑

k=1

ekβ
k
t , t ≥ 0,

for an orthonormal basis (ek)k∈N of U , and independent Brownian motions βk ,
k ≥ 1. For consistent notation, we set β0 := B .
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We denote by C∞
0 = C∞

0 (R) the space of smooth real functions with com-
pact support and D the space of distributions. Let �2 be the space of real square
summable sequences. We denote by D(�2) the space of �2-valued distributions
on C∞

0 . That is, linear �2-valued functionals such that φ �→ 〈g,φ〉 = (〈gk,φ〉)k is
continuous with respect to the standard convergence of test functions.

For a predictable stopping time τ , there exists an announcing sequence (τn)n∈N.
That is, limn→∞ τn = τ almost surely and τn < τ on {τ > 0}; cf. [19], Re-
mark 2.16. We will use this notation in this section without further mentioning.

REMARK 4.1. Note that HS(U ;E) is isometric isomorphic to �2(E). More
precisely, any element T ∈ HS(U ;E) can be identified with (T ek)k∈N ∈ �2(E),
for a CONS (ek)k∈N of U .

LEMMA 4.2. Let U , Ẽ and E be separable Hilbert spaces with Ẽ ↪→E. Then

HS(U ; Ẽ) ↪→HS(U ;E) and �2(Ẽ) ↪→ �2(E).

PROOF. First, it is clear that for (gk)k∈N ∈ �2(Ẽ) it holds that

∞∑
k=1

∥∥gk
∥∥2
E ≤K2

∞∑
k=1

∥∥gk
∥∥2
Ẽ
.

Hence, we can consider �2(Ẽ) as a subset of �2(E). One can also show that from
density of Ẽ in E it follows density of �2(Ẽ) in �2(E), but we skip the details here.
By identification, the results also hold true for HS. �

From strong continuity of the shift group on L2(R), we get the following basic
result.

LEMMA 4.3. For all x ∈ R, the shift operation u �→ u(· + x) is isometric
isomorphic from Hk(Ṙ) into Hk(R \ {x}), for all k ≥ 0. In addition, the operation

(u, x) �→ u(· + x),

is continuous from L2(R)⊕R into L2(R).

Using the Riesz isomorphism, we consider L2(R) as a subset of D . The follow-
ing lemma is the corresponding result addressing �2.

LEMMA 4.4. By identification,

L2(R)⊂D and �2(L2(R)
)⊂D

(
�2).
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PROOF. Let h= (hk)k≥0 ∈ �2(L2), then

φ �→ (〈h,φ〉k)k≥0 :=
(〈
hk,φ

〉
L2

)
k≥0

defines a continuous linear �2-valued function on C∞
0 , since Cauchy–Schwarz in-

equality yields

(4.1)
∞∑

k=0

∣∣〈hk,φ
〉∣∣2 ≤ ‖h‖2

�2(L2)
‖φ‖2

L2 ∀φ ∈ C∞
0 .

�

4.1. Itô–Wentzell formula.

DEFINITION 4.5. A D -valued stochastic process f = (ft ) is called pre-
dictable, if for all φ ∈ C∞

0 , the real valued stochastic process (〈ft , φ〉)t is pre-
dictable. In the same way, we call a D(�2)-valued stochastic process g = (gt )

predictable, if (〈gt , φ〉)t is �2-predictable for all φ ∈ C∞
0 .

We are now interested in equations on D , of the form

(4.2) du(t, x)= ft (x)dt +
∞∑

k=0

gk
t (x)dβk

t ,

with initial conditions u(0, x) = u0(x), which are assumed to be D -valued and
F0-measurable.

ASSUMPTION 4.6. (i) For a D -valued predictable process f assume that for
all φ ∈ C∞

0 and all R, T > 0 it holds that

∫ T

0
sup
|x|≤R

∣∣〈ft , φ(· − x)
〉∣∣dt <∞, P-almost surely.

(ii) For a D(�2)-valued predictable process g assume that for all φ ∈ C∞
0 and

all R, T > 0 it holds that∫ T

0
sup
|x|≤R

∥∥〈gt , φ(· − x)
〉∥∥2

�2 dt <∞, P-almost surely.

REMARK 4.7. If a D(�2)-valued stochastic process g satisfies part (ii) of As-
sumption 4.6, then for all T > 0, φ ∈ C∞

0 , almost surely

(4.3)
∞∑

k=0

∫ T

0

〈
gk

t , φ
〉2 dt =

∫ T

0

∥∥〈gt , φ〉
∥∥2
�2 dt.
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DEFINITION 4.8. Let f and g be predictable processes on D and D(�2), re-
spectively, and τ be a predictable stopping time such that f and g satisfy Assump-
tion 4.6 on [[0, τn]] for all n ∈ N. Then a D -valued predictable process is called
(local) solution in the sense of distributions of (4.2), if for all φ ∈ C∞

0 it holds on
[[0, τ [[,

〈
u(t), φ

〉= 〈u0, φ〉 +
∫ t

0
〈fs,φ〉ds +

∞∑
k=0

∫ t

0

〈
gk

s , φ
〉
dβk

s .

Our aim is to shift the solutions of SPDEs by a one-dimensional Itô-diffusion.
On its coefficients, we impose the following conditions.

ASSUMPTION 4.9. Assume that the real predictable processes b = (bt )t≥0
and νk = (νk

t )t≥0, k ∈N0 satisfy for all t > 0 almost surely∫ t

0
|bs | +

∥∥(νk
s

)
k∈N0

∥∥2
�2 ds <∞.

The next theorem is a version of [25], Theorem 1.1, reformulated for processes
which exist up to predictable stopping times. In fact, when τ is a predictable stop-
ping time we can apply Krylov’s result on [[0, τn]] for all n ∈N. We denote the first
two distributional derivatives on R by ∂x and ∂xx , respectively.

THEOREM 4.10 (Itô–Wentzell formula). Let τ be a predictable stopping time
with announcing sequence (τn)n∈N. Moreover, let f and g be, respectively, D - and
D(�2)-predictable processes such that f and g satisfy Assumption 4.6 on [[0, τn]],
for all n ∈N and u is a local distributional solution on [[0, τ [[ of

dut (x)= ft (x)dt +
∞∑

k=0

gk
t (x)dβk.

Moreover, consider real predictable processes b= (bt ), (νk
t )t≥0, k ∈N0 such that,

on [[0, τn]], they satisfy Assumption 4.9. Let xt be given on [[0, τ [[ by

dxt = bt dt +
∞∑

k=0

νk
t dβk

t .

Then vt (x) := ut (x + xt ) is a local distributional solution on [[0, τ [[ of

dvt (x)=
[

1

2

∞∑
k=0

∣∣νk
t

∣∣2∂xxvt (x)+ bt∂xvt (x)+
∞∑

k=0

∂xg
k
t (x + xt )ν

k
t

]
dt

+ ft (x + xt )dt +
∞∑

k=0

[
gk

t (x + xt )+ ∂xvt (x)νk
t

]
dβk

t .
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4.2. Proof of Theorem 1.15. Let (X, τ) be the unique maximal strong solution
of (3.1) on L2 and (τn)n∈N and announcing sequence for τ . Define the isometry
(see Remark 3.2),

ι : L2 → L2(R)⊕R, (u1, u2,p) �→ (
u11R+ + u2

(−(·))1R−,p
)

and set (u(t, ·),p∗(t)) := ιX(t) on [[0, τ [[. To recover the notation of (4.2), write

ft (x) := μ̄
(
x,p∗(t), u(t, x),∇u(t, x),�u(t, x)

)
+ σ 2∗

2
�u(t, x)+ �

(
I
(
u(t)

))∇u(t, x),

gk
t (x) := σ̄

(
x,p∗(t), u(t, x)

)
Tζ ek(x), k ≥ 1,

and g0
t (x) := σ∗∇u(t, x). Recall that ∇u and �u denote the first two piece-wise

weak derivatives, which are assumed to exist as elements in L2(R). The functions
μ̄ and σ̄ have been defined, respectively, in (1.9) and (1.10). Note that on [[0, τ [[

ιC
(
X(t)

)[ek,0](x)= (gk
t (x),0

)
and ιC

(
X(t)

)[0,1](x)= (g0
t (x), σ∗

)
.

Obviously, ι is also isometric isomorphic from Hα into Hα(Ṙ)⊕R for all α > 0.
Recall that C(X(t)) ∈HS(U;H1), and thus ιC(X(t)) ∈HS(U;H 1(Ṙ)⊕R) almost
surely. By Lemma 4.2 in combination with Remark 4.1, we get that (gk

t )k≥0 is
�2(L2(R))-continuous on [[0, τ [[. Localizing up to τn, for each n ∈ N, we also
obtain (square) integrability on ft and gt by Cauchy–Schwarz inequality and (4.1),
respectively. Moreover, Lemma 4.2 yields∫ t

0
sup
|x|≤R

∥∥〈gs,φ(· − x)
〉∥∥2

�2 ds ≤ ‖φ‖2
L2(R)

∫ t

0

∥∥C(X(s)
)∥∥2

HS(U;L2) ds,

which is finite on [[0, τn]], for all n ∈N and R > 0. Indeed, since τn < τ on {τ > 0},
X(· ∧ τn) has paths in C([0, τn];H1) almost surely. By Lemma 3.11, C is contin-
uous from H1 into L2 which yields the integrability property of (gt ). Choosing
xt := −p∗(t), we get the remaining integrability claims in a similar way and ob-
tain that all assumptions of Theorem 4.10 are fulfilled.

Since testing against test functions is a continuous linear operation on L2(R), u

is also a solution in the sense of Definition 4.8. For v(t, x) := u(t, x − p∗(t)), we
get by Theorem 4.10:

dv(t, x)= ft (x + xt )dt

+
[
σ 2∗
2

∂xxv(t, x)− �
(
I
(
u(t, ·)))∂xv(t, x)− σ∗∂xg

0
t (x + xt )

]
dt(4.4)

+
∞∑

k=1

gk
t (x + xt )dβk

t +
[
g0

t (x + xt )− σ∗∂xv(t, x)
]
dβ0

t .
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Note that

ft (x + xt )= μ̄
(
x − p∗(t),p∗(t), v(t, x),∇v(t, x),�v(t, x)

)+ σ∗
2

�v(t, x)

+ �
(
v
(
t, p∗(t)+), v(t, p∗(t)−))∇v(t, x),

gk
t (x + xt )= σ̄

(
x − p∗(t),p∗(t), v(t, x)

)
Tζ ek(x), k ≥ 1,

and hence,

dv(t, x)=
[
μ̄
(
x − p∗(t),p∗(t), v(t, x),∇v(t, x),�v(t, x)

)
+ �

(
v
(
t, p∗(t)+), v(t, p∗(t)−))(∇v(t, x)− ∂xv(t, x)

)
+ σ 2∗

2

(
�v(t, x)+ ∂xxv(t, x)− 2∂x∇v(t, x)

)]
dt

+ σ̄
(
x − p∗(t),p∗(t), v(t, x)

)
dξt (x)+ σ∗

(∇v(t, x)− ∂xv(t, x)
)

dβ0
t .

Moreover, for h ∈H 1(R \ {p}), p ∈R, it holds that

∂xh−∇h= (h(p+)− h(p−)
)
δp,

where δp is the Dirac distribution with mass at p. This indeed holds true for all h ∈
H 1(R \ {p})∩BUC1(R \ {p}) and then extends by density to all of H 1(R \ {p}).
Inserting into (4.4) yields

dv(t, x)= μ̄
(
x − p∗(t),p∗(t)v(t, x),∇v(t, x),�v(t, x)

)
dt

+ σ̄
(
x − p∗(t),p∗(t), v(t, x)

)
dξt (x)

+L1
(
v(t, ·),p∗(t))dp∗(t)+ 1

2
L2
(
v(t, ·),p∗(t))d[p∗](t),

where L1 and L2 have been defined in Section 1 as

L1(v,p)=−(v(p+)− v(p−)
)
δp,

L2(v,p)= (v(p+)− v(p−)
)
δ′p −

(∇v(p+)−∇v(p−)
)
δp.

Here, δ′p is the distributional derivative of δp . Finally, we use that the shift opera-
tion (h, x) �→ h(·− x) is continuous on L2(R)⊕R, and hence, the paths of v, ∇v,
�v and p∗ inherit the space-time-regularity which is claimed in Theorem 1.15.

To show uniqueness, let (w,q∗, ς) be another local solution such that, as func-
tions of time, q∗, w and ∇w are continuous and �w is square integrable on L2(R).
Let (ςn) be an announcing sequence for ς and set u(t, ·) :=w(t, · + q∗(t)). From
Lemma 4.3, we get almost surely,

u ∈ C
([0, ς);H 1(Ṙ)

)∩L2([0, ς);H 2(Ṙ)
)
.
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By definition of �2(x), x ∈ R, we get in addition that u(t, ·) fulfills the boundary
conditions (1.5) for almost all t > 0. Now, it suffices to show that (u, ς) is a local
strong solution of (1.4). To this end, set

ft (x) := μ̄
(
x − q∗(t), q∗(t),w(t, x),∇w(t, x),�w(t, x)

)
+ �

(
w
(
t, q∗(t)+),w(t, q∗(t)−))L1

(
w(t, ·), q∗(t))

+ 1

2
σ∗L2

(
w(t, ·), q∗(t)),

gk
t (x) := σ̄

(
x − q∗(t), q∗(t),w(t, x)

)
Tζ ek(x), k ≥ 1,

and g0
t (x) := 0.

Since we know already that u has the path regularity which was asked for, we
can again apply the procedure from the existence part of this proof to get the mea-
surability and integrability properties of gk

t , k ≥ 1, and the the part of ft involv-
ing μ̄.

Moreover, for φ ∈ C∞
0 and R > 0, we get on [[0, ςn]],∫ t

0
sup
|x|<R

∣∣〈L1
(
w(s, ·), q∗(s)), φ(· − x)

〉∣∣2 ds

≤ ‖φ‖2∞
∫ t

0

∣∣u(s,0+)− u(s,0−)
∣∣2 ds

and, similarly,∫ t

0
sup
|x|<R

∣∣〈L2
(
w(s, ·), q∗(s)), φ(· − x)

〉∣∣ds

≤ ‖φ‖C1

(∫ t

0

∣∣u(s,0+)− u(s,0−)
∣∣ds +

∫ t

0

∣∣∇u(s,0+)−∇u(s,0−)
∣∣ds

)
.

By continuity of the trace operator on H 1(Ṙ), and since almost surely u ∈
L2([0, ς);H 2(Ṙ)), we get that all these integrals are finite on [[0, ςn]], for all
n ∈N, and the assumptions of Theorem 4.10 are fulfilled for w and q∗. Hence, Itô–
Wentzell formula yields that u is a solution, in the sense of distributions, of (1.4).

To get to the notion of strong solutions, we switch back to the framework of
Section 3. Set Y(t) := ι−1(u(t), q∗(t)) on [[0, ς[[. Since ι is isometric isomorphic,
we can write Y on [[0, ς[[ as〈

Y (t), φ
〉
L2 − 〈Y(0), φ

〉
L2

(4.5)

=
∫ t

0

〈
AY (s),φ

〉
L2 + 〈B(Y(s)

)
, φ
〉
L2 ds +

∫ t

0

〈
C
(
Y(s)

)
dWs, φ

〉
L2,

for all φ = (φ1, φ2, φ3) ∈C∞
0 (R+)×C∞

0 (R+)×R. By assumptions on w and q∗,
we get that Y has paths in L2(0, ς;D(A)) and in C([0, ς[;H1) almost surely. We
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recall from Section 3, that B : H1 → L2 and C1 : H1 → HS(U ;H1) are Lipschitz
continuous on bounded sets, which yields that B ◦Y is L2-continuous and C1 ◦Y is
HS(U ;L2)-continuous. In particular, both are locally bounded, so that on [[0, ς[[,∫ t

0

∥∥AY(s)
∥∥
L2 + ∥∥B(Y(s)

)∥∥
L2 + ∥∥C1

(
Y(s)

)∥∥2
HS(U ;L2) ds <∞.

Due to global Lipschitz continuity of C2, there exists K > 0 such that on [[0, ς[[,∫ t

0

∥∥C2
(
Y(s)

)∥∥2
HS(R;L2) ds ≤K

∫ t

0
1+ ∥∥Y(s)

∥∥2
A ds <∞.

Consequently, the terms involved are respectively Bochner and stochastically in-
tegrable on L2 and we can interchange the inner product of L2 with integration
in (4.5). By density of C∞

0 (R+) in L2(R+), the equation holds for all φ ∈ L2, and
thus the strong integral equation holds true, that is,

Y(t)= Y(0)+
∫ t

0
AY(s)+B

(
Y(s)

)
ds +

∫ t

0
C
(
Y(s)

)
dWs on [[0, ς[[.

The uniqueness and maximality part of Theorem 3.1 yields that ς ≤ τ and v =w,
p∗ = q∗ on [[0, ς[[. �

5. A short comment on Definition 1.11. The main purpose of this discus-
sion is to give, at least heuristically, a justification for the distribution valued terms
which occur in the dynamics in Definition 1.11. This is linked to the following
question: Given the moving boundary problem in its description on each phases
separately, does there exists a “natural” choice of distributional valued terms which
vanish away from the interface? To be as simple as possible, we consider the fol-
lowing degenerate problem for t > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(t, x)= 0, x 
= p∗(t),
∂

∂x
v
(
t, p∗(t)−)= ∂

∂x
v
(
t, p∗(t)+)= 0,

dp∗(t)= σ∗ dBt,

v0(x)= 1(0,∞)(x), x 
= 0,

p0 = 0.

(5.1)

The only meaningful solution of (5.1) can be

(5.2) v(t, x)= 1(p∗(t),∞)(x), t ≥ 0, x 
= p∗(t).

In fact, let x 
= p∗(t), and consider the first hitting time

τx := inf
{
t ≥ 0|p∗(t)= x

}
.

Then t �→ v(t, x) has to be constant on [0, τx[ and due to Neumann boundary con-
ditions it is clear how to reiterate this procedure, starting at τx and considering t �→
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v(t, y) for y 
= x. On the other hand, let φ ∈ C∞
0 (R) and set �(x) := ∫ x

−∞ φ(y)dy.
Then, by the classical Itô-formula,〈

v(t, ·), φ〉 − 〈v0, φ〉
=�(0)−�

(
p∗(t)

)
=−

∫ t

0
φ
(
p∗(s)

)
dp∗(s)− 1

2

∫ t

0
φ′
(
p∗(s)

)
d[p∗](s)

=−
∫ t

0

(
v
(
s,p∗(s)+)− v

(
s,p∗(s)−))φ(p∗(s))dp∗(s)

− 1

2

∫ t

0

(
v
(
s,p∗(s)+)− v

(
s,p∗(s)−))φ′(p∗(s))d[p∗](s)

=
∫ t

0

〈
L1
(
v(s, ·),p∗(s)), φ〉 dp∗(s)+ 1

2

∫ t

0

〈
L2(v(s, ·),p∗(s)〉 d[p∗](s).

Recall that δ′pφ =−φ′(p). Except from the integrability conditions v is indeed the
solution of (5.1) in the sense of Definition 1.11.

APPENDIX: ABSTRACT SETTING

We now briefly discuss existence and uniqueness results for stochastic evolu-
tion equations based on stochastic maximal Lp-regularity, which are due to van
Neerven, Veraar and Weis [38].

On a separable Hilbert space E, we consider the stochastic evolution equation

(A.1) dX(t)= [AX(t)+B
(
X(t)

)]
dt +C

(
X(t)

)
dWt, t ≥ 0,

with initial condition X(0) = X0, where W is a cylindrical Wiener process with
covariance identity on another separable Hilbert space U .

DEFINITION A.1. An E-predictable stochastic process X is called a local
strong solution of (A.1), up to a predictable stopping time τ , if X(t) is D(A)-
valued for a.a. t > 0, and on [[0, τ [[

X(t)=X0 +
∫ t

0

[
AX(s)+B

(
X(s)

)]
ds +

∫ t

0
C
(
X(s)

)
dWs.

In particular, all the integrals involved are assumed to exist on E, respectively, as
Bochner or stochastic integrals.

ASSUMPTION A.2. (−A,D(A)) is densely defined and positive self-adjoint
on E.

REMARK A.3. It is sufficient to assume that −A has bounded H∞-calculus
of angle < π

2 . On Hilbert spaces, this is equivalent to the property that, after a
possible change to an equivalent Hilbert space norm, A generates an analytic C0-
semigroup of contractions [17], Section 7.3.3.
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For α ∈R, we set

(A.2) Eα :=D
(
(−A)α

)
, ‖u‖α :=

∥∥(−A)αu
∥∥
E, u ∈Eα.

Analogously, we denote the real interpolation spaces, for 1 ≤ p ≤∞, α ∈ (0,1),
by

Eα,p := (E,D(A)
)
α,p,

and its respective norms by ‖·‖α,p . Note that, since A is negative self-adjoint, for
all α ∈ (0,1) (cf. [37], Theorem 1.8.10),

(A.3) Eα =Eα,2 = [E,D(A)
]
α,

with equivalence of norms, where the latter term denotes the complex interpolation
space. Moreover (see [37], Theorem 1.3.3), for 0 < α < α̃ < 1, p, q ∈ [1,∞),

(A.4) E1 ↪→Eα̃,p ↪→Eα,q,

and, if 1≤ p ≤ q <∞, α ∈ (0,1), then

(A.5) Eα,p ↪→Eα,q.

The density of the embeddings follows from [37], Theorem 1.6.2. If q =∞, the
embeddings are still continuous, but not dense; see [37], Rmk 1.18.3.

EXAMPLE A.4. Set E := L2(Rn), A :=�− Id is the Laplacian with domain
D(A) :=H 2(Rn). Then

Eα =H 2α(
R

n) and Eα,p = B2α
2,p

(
R

n),
where Bα

q,p(R) denote the Besov spaces for α ∈ (0,1), 1 ≤ p,q ≤∞; cf. Exam-
ple 1.8 and 1.10 in [31].

ASSUMPTION A.5. B =: B1 + B2, where B1 : E1−1/p,p → E0 is Lipschitz
continuous on bounded sets, and there exist LB and L̃B such that for all u, v ∈E1,∥∥B2(u)−B2(v)

∥∥
0 ≤LB‖u− v‖1 + L̃B‖u− v‖0.

ASSUMPTION A.6. C =: C1 + C2, where C1 : E1−1/p,p → HS(U ;E1/2) is
Lipschitz continuous on bounded sets and there exist LC and L̃C such that for all
u, v ∈E1/2, ∥∥C2(u)−C2(v)

∥∥ 1
2
≤ LC‖u− v‖1 + L̃C‖u− v‖ 1

2
.

For the formulation of the existence theorem, denote by Mp and MW
p the oper-

ator norms of

g �→
∫ .

0
S.−sg(s)ds, G �→

∫ .

0
S.−sG(s)dWs
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as operators respectively from L
p
(Ft )

(R+ × �;E0) into L
p
(Ft )

(R+ × �;E1) and

from L
p
(Ft )

(R+ × �;HS(U ;E 1
2
)) into L

p
(Ft )

(R+ × �;E1). Here, L
p
(Ft )

(R+ ×
�;E) denotes the Lp-space of all Ft -adapted processes with values in E.

THEOREM A.7. Let p ≥ 2 and assume that Assumptions A.2, A.5 and A.6
hold true with

(A.6) MpLB +MW
p LC < 1.

Then, for all F0 measurable initial data X0 ∈ E1−1/p,p there exists an unique
maximal strong solution (X, τ) with values a.s. in

Lp(0, τ ;E1)∩C
([0, τ );E1− 1

p
,p

)
.

Moreover, almost everywhere on {τ <∞},
lim
t↗τ

∥∥X(t)
∥∥

1− 1
p
,p
=∞.

REMARK A.8. It is known that that M2 ≤ 1, MW
2 ≤ 1√

2
, but in general Mp

and MW
p are not explicitly known for p > 2. However, in some cases, like when

LB = 0 and C2 is the generator of a unitary group then the theorem still holds true
provided that LC <

√
2; see [8] for a detailed discussion of condition (A.6).

Because the results in [38] are formulated on Banach spaces, where some addi-
tional difficulties occur, we shortly summarize the the arguments and results from
the reference: Since E is a separable Hilbert space, we get from Theorem 2.5, Re-
mark 4.1(v) and the discussions in Sections 5.2 and 5.3 in [38], that in the situation
of Theorem A.7 all of the assumptions of the existence result [38], Theorem 5.6,
are fulfilled. This gives the unique maximal mild solution X, which is also an
analytically strong solution; see Proposition 4.4 and its proof in [38].

By definition of maximal local solutions in [38], Definition 5.5, we get

lim
t↗τ

∥∥X(t)
∥∥
E

1− 1
p , 1

p

=∞ on {τ <∞}.

The corresponding result for global existence and additional regularity is ex-
tracted from part (ii) and (iii) of Theorem 5.6 in [38].

THEOREM A.9. Assume that for p ≥ 2 the conditions of Theorem A.7 and
linear growths assumptions on B1 and C1 are satisfied. Namely, there exists a
M > 0 such that ∥∥B1(u)

∥∥
0 ≤M

(
1+ ‖u‖1− 1

p
,p

)
,

∥∥C1(u)
∥∥

HS(U ;E 1
2
) ≤M

(
1+ ‖u‖1− 1

p
,p

) ∀u ∈E1− 1
p
,p

.
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Let (X, τ) be the unique maximal solution of (A.1). Then it holds that τ = ∞
almost surely. If, moreover, X0 ∈Lp(�;E1−1/p,p), then, for all T > 0 there exists
a constant K > 0 such that

(A.7) E

∫ T

0

∥∥X(s)
∥∥p

1 ds +E

[
sup

0≤t≤T

∥∥X(s)
∥∥p

1− 1
p
,p

]
≤K

(
1+E

[‖X0‖p

1− 1
p
,p

])
.

REMARK A.10. The assumptions on the statements are indeed optimal in the
following sense. Under the constraints of Assumption A.5, the results cover even
classes of fully-nonlinear equations. For the noise term, da Prato et al. [12] have
shown that for an negative self-adjoint operator A, an element b ∈ E and a real
Brownian motion β , there exists a strong solution of

dX(t)=AX(t)dt + b dβ(t),

if and only if b ∈E1/2; see [12], Theorem 6. For linear equations with multiplica-
tive noise, Brzezniak and Veraar [8] have discussed ill-posedness when (A.6) is
violated.

Acknowledgements. The author also would like to thank Martin Keller-
Ressel and Wilhelm Stannat for comments and discussions and is grateful to Mark
Veraar for pointing out the issue of Remark A.8.
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