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HYPOELLIPTIC STOCHASTIC FITZHUGH–NAGUMO
NEURONAL MODEL: MIXING, UP-CROSSING

AND ESTIMATION OF THE SPIKE RATE

BY JOSÉ R. LEÓN∗,†,‡,§,1 AND ADELINE SAMSON†,2

Universidad de la República∗, Université Grenoble Alpes†,
INRIA project/team AIRSEA‡ and Universidad Central de Venezuela§

The FitzHugh–Nagumo is a well-known neuronal model that describes
the generation of spikes at the intracellular level. We study a stochastic ver-
sion of the model from a probabilistic point of view. The hypoellipticity is
proved, as well as the existence and uniqueness of the stationary distribution.
The bi-dimensional stochastic process is β-mixing. The stationary density
can be estimated with an adaptive nonparametric estimator. Then we focus on
the distribution of the length between successive spikes. Spikes are difficult
to define directly from the continuous stochastic process. We study the distri-
bution of the number of up-crossings. We link it to the stationary distribution
and propose an estimator of its expectation. We finally prove mathematically
that the mean length of inter-up-crossings interval is equal to its up-crossings
rate. We illustrate the proposed estimators on a simulation study. Different
regimes are explored, with no, few or high generation of spikes.

1. Introduction. Neurons are excitable cells that are linked thanks to the
synapses into a huge network. If the electric membrane potential, the voltage, of
a neuron is sufficiently high, the neuron is able to produce an action potential,
also called a spike, which is a stereotype fast and large electric signal. The spikes
allow the neuron to activate its synaptic contacts and to modulate their voltage.
The spikes can be viewed as the basic element of the information traveling from
one neuron to another in the network. It is therefore of tremendous importance to
understand and describe the individual voltage and the generation of spikes.

Neuronal spiking (also called firing) is a complex process that involves interac-
tions between numerous cells. Modeling this mechanism mathematically is there-
fore difficult. Several neuronal models have been developed, the most famous is
the 4 equations dynamical system of [12] that accurately describes the electrical
mechanism of a single neuron. The model has an oscillatory behavior to reproduce
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the alternance of spiking phases and nonspiking phases. To produce such behav-
ior, the differential equations driving the potential (denoted Xt in the following) is
coupled to differential equations related to the fraction of open ion channels of dif-
ferent kinds (conductances); however, this chaotic system is difficult to study from
a mathematical point of view. Several relaxed models have then been proposed,
most of them reducing the dimension of the system. We can cite the Morris–
Lecar model that simplifies the three channel equations of the Hodgkin–Huxley
model into only one nonlinear equation modeling the membrane conductance evo-
lution [20]. Another model is the FitzHugh–Nagumo (FHN) model, which has
a polynomial drift. The FitzHugh–Nagumo and Morris–Lecar models share the
properties of sub-threshold and supra-threshold response, that is, they intrinsi-
cally model the regenerative firing (spiking) mechanism in an excitable neuron.
FitzHugh–Nagumo model is less plausible than conductance-based models: it has
been built as an oscillatory system, not from physical assumptions. It has however
the advantage of being more directly amenable to a mathematical analysis than the
Hodgkin–Huxley or Morris–Lecar models thanks to its polynomial drift. Note that
another class of neuronal models is the class of Leaky-Integrate-Fire (LIF) mod-
els (see [10], for a review), where the voltage is modeled by a one-dimensional
process. Their main drawback is that spikes are not generated automatically and a
(fixed) threshold has to be introduced, which is unrealistic.

Stochastic versions of neuronal models have been proposed to describe vari-
ous sources of randomness [2, 10, 16]. The stochastic noise can be introduced
in the first equation mimicking noisy presynaptic currents (see among others
[10, 18, 25]). In the second class of stochastic models, the noise affects the other
differential equations, describing the randomness of the conductance dynamics,
like random opening and closing of ion channels [16, 17]. This second class of
models can be viewed as a diffusion approximation of ion channels modeled by
point processes (see among others [21]).

In this paper, we focus on the second class of stochastic FitzHugh–Nagumo
(FHN) model. It is defined as follows. Let Xt denote the membrane potential of
the neuron at time t and Ct a recovery variable that models the channel kinet-
ics. We assume that ((Xt ,Ct ), t ≥ 0) is governed by the following Itô stochastic
differential equation (SDE):

(1.1)

{
dXt = 1

ε

(
Xt − X3

t − Ct − s
)
dt,

dCt = (γXt − Ct + β)dt + σ̃ dWt ,

where Wt is a standard Brownian motion, ε is the time scale separation usually
small (X has a faster time scale than C), s is the magnitude of the stimulus current,
σ̃ the diffusion coefficient, β,γ are positive constants that determine the position
of the fixed point and the duration of an excitation. FHN has already been studied
extensively in physical papers (see, among others, [2, 16]). Our objective is to
revisit theoretically some of these results and to propose nonparametric estimators.
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The three objectives of the paper are the following. In Section 2, we study some
probabilistic properties of the FitzHugh–Nagumo model: hypoellipticity, Feller,
invariant probability, mixing property. To prove these results, we take advantage
of the fact that a transformed version of the stochastic FitzHugh–Nagumo model
with noise on the second equation is a generalization of van der Pol equations and
belongs to the class of stochastic damping Hamiltonian systems. One of the main
references is [26] for an overview of the theoretical properties of these models (see
also [4, 13]). We first prove that the properties hold for the transformed stochastic
damping Hamiltonian process and then establish the link between the two pro-
cesses, thus showing the results also apply for the FitzHugh–Nagumo model.

In Section 3, we consider the questions related to the neuronal modeling. As said
previously, spikes are the essential element of information exchange in the neural
network. It is thus very important to understand their distribution. The distribution
of spikes is difficult to study from scratch. Attempts have been proposed using
point processes, but describe only the spike trains and not the neuronal voltage [22,
23]. When using voltage data, the first difficulty is the definition of the spike itself.
In the pioneer work of Lindner and Schimansky-Geier [17], a spike is described as
a “long” excursion on the phase space before returning back into the neighborhood
of the fixed point. The pulse rate is measured by time averaging the number of
pulses during time interval [0, T ] and the mean time between two pulses can also
be estimated. They show that the pulse rate is the inverse of the mean length.
But to our best knowledge, this has not be proven theoretically. Attempts have
been based on Gaussian approximation of the voltage process [8, 25] leading to a
Gaussian stochastic modeling. This Gaussian approximation does however not fit
with real data. In this paper, we propose to study the spike generation through the
modeling of the voltage by the FitzHugh–Nagumo model, avoiding any normal
approximation or a vague definition of a spike. The idea is the following. A spike
occurs when Xt crosses a certain threshold, the spikes having then very similar
shapes. Note that it is known from voltage data that the threshold is not fixed: the
voltage Xt has not always the same value when entering the spiking phases. We
thus focus on the distribution of the process of up-crossings of Xt at a large level u.
If a spike occurs, the distribution of up-crossings should remain the same for any
level value u in a given interval. Finally, the distribution of the length of the interval
between two successive spikes is studied and we prove that its expectation is the
inverse of the up-crossing rate. Note that [3] also study the generation of spikes
for a bi-dimensional FitzHugh–Nagumo model. Their model, although based on
the same deterministic system as ours, has noise in both components. This fact
implies that the solution (Xt ,Ct ) is a classical diffusion (elliptic). Hence, each
coordinate is a continuous but nondifferentiable function. The number of crossings
of such a function is infinity in every bounded interval (allowing for instance the
existence of local time). This prevents defining the spikes via the up-crossings. The
authors define the spikes as large excursions in the space of phases and study their
distributions. Their method is therefore very different from ours.
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In Section 4, we propose a nonparametric estimation of the stationary density
based on a kernel estimator using only the discrete observations of the first coor-
dinate Xt , following [4, 5]. The two-dimensional bandwidth is selected automat-
ically from the data with a Goldenshluger and Lepski’s approach. We deduce an
estimator of the up-crossing rate. These estimators are illustrated on simulations in
different excitation regimes of the neuron. Note that the parameters of the system
could be estimated by minimizing the contrasts proposed in [7, 24].

2. Properties of the FitzHugh–Nagumo model. Model (1.1) follows a non-
linear drift with singular diffusion coefficient (no noise on the first coordinate).
It is not easy to study directly this kind of models because standard probabilistic
tools assume a nondegenerate diffusion coefficient. To take advantage of proba-
bilistic tools that have already been developed for some hypoelliptic systems, we
introduce a change of variable of the second coordinate. This allows us to enter
the class of stochastic damping Hamiltonian systems that have been widely stud-
ied (see among others [4, 13, 26]). We can then prove some useful properties for
this model (hypoellipticity, Feller, existence of a stationary distribution, β-mixing)
and prove them for the FitzHugh–Nagumo model as well. Let us first introduce the
change of variable.

2.1. A stochastic damping Hamiltonian system. The change of variable is the
following. Let Yt = 1

ε
(Xt − X3

t − Ct − s). Applying Itô’s formula, the FitzHugh–
Nagumo system (1.1) can be rewritten:

(2.1)

{
dXt = Yt dt,

dYt = 1
ε

(
Yt

(
1 − ε − 3X2

t

) − Xt(γ − 1) − X3
t − (s + β)

)
dt − σ̃

ε
dWt .

Thanks to this transformation, we can notice that system (2.1) is a stochastic damp-
ing Hamiltonian system. These systems have been introduced to describe the dy-
namics of a particle with Xt referring to its position and Yt to its velocity. The
movement of the particle is guided by a potential V (x) and by a damping force
c(x):

(2.2)
{
dXt = Yt dt,

dYt = −(
c(Xt)Yt + ∂xV (Xt)

)
dt + σ dWt .

Its infinitesimal generator L is

L = σ 2

2
∂yy + y∂x − (

c(x)y + ∂xV (x)
)
∂y.

These models have been studied by [26] under some conditions for V (·), c(·) and
the diffusion coefficient that we recall here:

(H1) The potential V (x) is lower bounded, smooth over R, V and ∇V have
polynomial growth at infinity.
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(H2) The damping coefficient c(x) is continuous, for all N > 0,

sup
|x|≤N

∣∣c(x)
∣∣ < +∞

and for all x ∈ R, c(x) ≥ c.
(H3) There exists σ1 > 0 such that 0 < σ < σ1.

In our case, the damping force is c(x) = 1
ε
(3x2 − 1 + ε), the potential is

V (x) = 1
ε
(x4

4 + γ−1
2 x2 + (s + β)x) and the diffusion coefficient is σ = σ̃

ε
> 0.

One can prove easily that conditions (H1), (H2) and (H3) are fulfilled under weak
assumptions. Indeed:

• The potential V (x) = 1
ε
(x4

4 + γ−1
2 x2 + (s + β)x) is continuous, goes to ∞

when x → ±∞ and is thus lower bounded, smooth over R, V and ∇V = 1
ε
(x3 +

(γ − 1)x + (s + β)) have polynomial growth at infinity. This implies (H1).
• The damping coefficient c(x) = 1

ε
(3x2 −1+ε) is continuous, upper bounded

on sets {|x| ≤ N} and for all x ∈ R, c := 1 − 1
ε

implies (H2).
• (H3) is trivially verified since the diffusion coefficient is constant.

We can also notice that

x · ∇V (x)

|x| → +∞ as |x| → +∞.

This is condition (0.5) of [26]. It can be interpreted as follows: the force −∇V (x)

is “strong enough” for |x| large to ensure a quick return of the system to compact
subsets of R2.

2.2. Hypoellipticity and β-mixing of the transformed process. In this section,
we prove some theoretical properties for the transformed process (Zt ) = (Xt , Yt ):
(Zt ) is strong Feller, hypoelliptic, the existence of a unique invariant probability
and a β-mixing property. The main reference used in all the proofs is [26]. How
these properties also hold for the original FitzHugh–Nagumo model is explained
in Section 2.3.

Hypoellipticity and stationary distribution. We first focus on the hypoelliptic-
ity of (Zt ).

PROPOSITION 2.1 (Hypoellipticity). Let Zt = (Xt , Yt ) be the solution of sys-
tem (2.1). The stochastic process (Zt ) is hypoelliptic and strong Feller.

Hypoellipticity can be interpreted as the fact that the one-dimensional noise
entering the second coordinate propagates to the two-dimensional space. It ensures
that the distribution Pt(z, ·) of the process Zt starting from Z0 = z has a smooth
density, denoted pt(z, ·) in the following.
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PROOF OF PROPOSITION 2.1. We start by proving the hypoellipticity [19].
Let us denote A0, A1 the differential operators

A0 = y∂x − (∇V (x) + c(x)y
)
∂y,

A1 = σ∂y.

Let [A,B] denote the Lie bracket between operators A and B . We have

[A0,A1] = −σ∂x + σc(x)∂y.

Thus

Span
(
A0,A1, [A0,A1]) = Span(∂x, ∂y).

This implies that the system is hypoelliptic.
Second, we prove that the stochastic process (Zt ) is strong Feller. Let us denote

Ptf (z) = Ez(f (Zt )) = ∫
f (u)pt (z, u) du where pt(z, ·) is the transition density

of the system. We want to prove that if f is L∞(R2) then Ptf (x) is continuous.
The coefficients of the infinitesimal generator L are C∞. By Hörmander’s theorem,
this implies that pt(z, u) is C∞. Thus as f is bounded,

∫
f (u)pt (z, u) du = Ptf (z)

is continuous. So finally (Zt ) is strong Feller. �

We now prove the existence and uniqueness of an invariant probability. The
main tool is to exhibit a Lyapounov function. We introduce the following function:

�(x, y) = ef (x,y)−inf
R2 f ,(2.3)

f (x, y) = aH(x, y) + byG(x) + yW ′(x) + bU(x),

where H(x,y) = 1
2y2 + V (x) is the Hamiltonian, the function G(x) is such that

G(x) = �
(|x|) x

|x| for x 
= 0

with � : R+ → R
+ a nondecreasing smooth function equal to zero on a small

neighborhood of 0 and equal to 1 for |x| ≥ 1; the constant a is such that 0 < a <

(1 − 1
ε
) 1

2σ 2 ; the constant b is such that

bG′(x) <
1

8

(
ac − 2σ 2a2);

the function W is of compact support, concave and such that for all x

−W ′′(x) ≥ −1

8

(
ac − 2σ 2a2)

and the function U(x) is such that

U ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

3

ε
x2�

(|x|) if x ≥ 0,

−3

ε
x2�

(|x|) if x ≤ 0.

We can prove the following proposition.
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PROPOSITION 2.2 (Stationary distribution). Let (Xt , Yt ) be the solution of
system (2.1):

1. The function �(x, y) is a Lyapounov function: there exist a compact K ∈ R
2

and constants C, ξ > 0, such that

(2.4) −L�

�
≥ ξ1Kc − C1K,

and the Lyapounov function � is lower bounded by 1.
2. The associated semi-group of the process (Xt , Yt ) is strong Feller. All points

of R2 are accessible. There exists a unique invariant probability measure μ ab-
solutely continuous with respect to the Lebesgue measure, with a smooth density
denoted p(·): μ(dz) = p(z) dz.

3. Moments of any order of μ exist: for all k1, k2 ∈ N,

E
(
X

k1
t Y

k2
t

) =
∫

xk1yk2 dμ(x, y) < +∞.

In the following, we will denote px and py the marginal of p with respect to x

and y.

PROOF OF PROPOSITION 2.2. 1. The choice of the Lyapounov function is
not trivial. Following [26], we choose �(x, y) given by (2.3). With this form of
�(x, y), we have

−L�

�
= −Lf − 1

2
σ 2|∂yf |2.

Let us compute −L�
�

. We have

Lf = a

2
σ 2 − ay2c(x) + y2(

bG′(x) + W ′′(x)
)

− y
(
bc(x)G(x) − bU ′(x) + c(x)W ′(x)

)
− V ′(x)

(
bG(x) + W ′(x)

)
,

1

2
σ 2(

∂yf (x, y)
)2 = 1

2
σ 2(

ay + bG(x) + W ′(x)
)2

.

We can bound 1
2σ 2(∂yf (x, y))2 by

1

2
σ 2(

∂yf (x, y)
)2 ≤ 2σ 2(

a2y2 + (
bG(x) + W ′(x)

)2)
.

Thus

−L�

�
≥ −a

2
σ 2 + y2(

ac(x) − 2σ 2a2 − 2
(
bG′(x) + W ′′(x)

))
+ y

(
b
(
c(x)G(x) − U ′(x)

) + c(x)W ′(x)
)

+ V ′(x)
(
bG(x) + W ′(x)

) − 2σ 2(
bG(x) + W ′(x)

)2
.
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Our choice of functions G(x),U(x),W(x) and constants a, b allows us to con-
trol the term in y2:

(
ac(x) − 2σ 2a2 − 2

(
bG′(x) + W ′′(x)

)) ≥
(
ac − 2σ 2a2 − 1

2

(
ac − 2σ 2a2))

> 0.

Now, we bound the term in y. First, note that by definition of W , there exists a
constant M1 such that

yc(x)W ′(x) ≥ −M1|y|.
The funtion U(x) verifies

sup
x∈R

∣∣c(x)G(x) − U ′(x)
∣∣ < +∞.

Thus, we obtain that there exists a constant M2 such that

y
(
b
(
c(x)G(x) − U ′(x)

) + c(x)W ′(x)
) ≥ −M2|y|.

Now, we want to control the constant term (bG(x) + W ′(x))(V ′(x) − 2σ 2 ×
(bG(x) + W ′(x))). Given the form of function G and V ′(x) = x3 + x(γ − 1) +
(s + β), we have that V ′(x)G(x) → +∞ as |x| → +∞ and that G2(x) → +∞
as |x| → +∞. The function W has compact support thus W ′(x)V ′(x) → 0,
W ′(x)G(x) → 0 and W ′2(x) → 0 as |x| → +∞. So, the constant term is lower
bounded.

Finally,

lim|x|+|y|→∞

(
−L�

�

)
= +∞.

We thus have the existence of a compact such that (2.4) holds.
Then we want to show that � is lower bounded by 1. We can choose for any

fixed δ > 0 the constant a in ] c
2σ 2 − δ

2 , c
2σ 2 [. The Lyapounov function is defined

as �(x, y) = eaH(x,y)+byG(x)+yW ′(x)+bU(x)−inf
R2 F , we can prove that there exists

a constant B such that

� ≥ B exp
((

c

2σ 2 − δ

)
H(x,y)

)
.

Therefore, � ≥ 1.
2. We want to prove that there exists a unique invariant distribution.
First, note that the coefficients of our transformed model are C∞(R2,R). The

hypoellipticity implies that the transition density pt(z, z
′) belongs to C∞(R2,R2)

[4, 26]. Thus the semi-group is strong Feller.
By using the Girsanov formula shown in [26] (Lemma 1.1), the density satisfies

pt(z, z
′) > 0 a.s. with respect to the Lebesgue measure dz′ (see also [26]’s proof

of the Proposition 1.2). Let z ∈ R
2 and let U be an open neighborhood of z. We

define the resolvent operator Rλ as

Rλ(z,U) = λ

∫ ∞
0

e−λtPt (z,U)dt,
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where Pt(z,U) = P z
t (1U) = ∫

U pt(z, z
′) dz′. Using the result mentioned above, it

holds that Pt(z,U) > 0 for all z ∈ R
2. Then for all z we have that Rλ(z,U) > 0;

hence, every point of R2 is accessible.
These two properties (strong Feller and every point accessible) give that the

semi-group is strong Feller and that there exists a unique invariant measure. This
measure is solution in distribution of the equation L∗μ = 0. Using the same cri-
terium of hypoellipticity, we deduce that this distribution is a C∞(R2) function.
Moreover, the semi-group is aperiodic because for any K ⊂ R

2 compact we have
Pt(·,K) > 0.

3. Applying Theorem 2.4 of [26] leads to the fact that μ satisfies
∫

� dμ < +∞.
Given the exponential form of � , this means that μ integrates any polynomial in
(x, y), and thus the existence of any moments. �

Mixing. We now study the mixing property of the stationary distribution. We
first recall the definition.

DEFINITION 2.1. Let {Zt }t∈R+ be a stationary stochastic process. Introducing
the σ -algebra Ft = σ({Zs : s ≤ t}) and F t = σ {Zs : s ≥ t}. We say that Z is β-
mixing, with mixing coefficient βt , if

βt = E
[
sup

{∣∣P(U |Fu) − P(U)
∣∣ : U ∈ Fu+t}]

and βt → 0 when t → ∞.

We can prove that the process Z is β-mixing. Let us denote B� the space of
measurable functions

B� =
{
f :R2 →R : sup

(x,y)

|f (x, y)|
�(x, y)

< ∞
}
,

where � is a Lyapounov function defined by (2.3).

PROPOSITION 2.3 (Mixing). Let (Xt , Yt ) be the solution of system (2.1):

1. There exist constants D > 0 and 0 < ρ < 1 such that for all z, for any func-
tion f ∈ B� :

(2.5)
∣∣∣∣Ptf (z) −

∫
f dμ

∣∣∣∣ ≤ D sup
a

( |f (a) − ∫
f dμ|

�(a)

)
�(z)ρt .

2. The skeleton chain Z̃k = Zkh for h > 0 is exponentially β-mixing with β-
mixing coefficient βkh such that

βkh ≤ D′′‖�‖1ρ
kh.
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PROOF. Let us start with the proof of 1. Theorem 2.4 of [26] shows the exis-
tence of constants D > 0 and 0 < ρ < 1 such that for all z, inequality (2.5) holds.
Then, since the Lyapounov function � is μ integrable and larger than 1, inequal-
ity (2.5) implies that the Markov chain (Zi)i∈N,Z0 ∼ ps(z) dz is exponentially
β-mixing.

Now we prove 2. First, we remark that the Lyapounov function � is integrable
with respect to the invariant measure (see [26]). Property 1 of Proposition 2.3
implies that ∥∥∥∥Pt(f ) −

∫
f dμ

∥∥∥∥
1
≤ ρtD sup

a

( |f (a) − ∫
f dμ|

�(a)

)
‖�‖1,

where ‖ · ‖1 denotes the L
1 norm with respect to the invariant measure. We can

deduce the following inequality in norm of total variation:∥∥Pt(z, ·) − μ
∥∥

TV ≤ D′′�(z)ρt .

One can apply this inequality to the skeleton chain Z̃k = Zkh for a certain h. Let
us denote P̃k the discrete semi-group associated to Z̃. Then we get∥∥P̃k(z, ·) − μ

∥∥
TV ≤ D′′�(z)ρkh.

We can deduce from [9], Chapter 2, Section 2.4, that the β-mixing coefficient βkh

is equal to

βkh =
∫ ∥∥P̃k(z, ·) − μ

∥∥
TV dμ(z) ≤ D′′‖�‖1ρ

kh.

So we have βkh ≤ D′′‖�‖1ρ
kh. Hence, the skeleton chain is exponentially β-

mixing. �

2.3. Stationary distribution and β-mixing of the FitzHugh–Nagumo process.
The previous properties (existence and unicity of the stationary distribution, strong
Feller, β-mixing) are proved for the transformed system (2.1). We now want to
prove them for the original FitzHugh–Nagumo process (1.1). For that purpose, we
establish the relation between the two systems. The function on the phase space
relating the two processes is F : R2 →R

2 defined as

F : (x, c) → (x, y), F (x, c) =
(
x,

1

ε

(
x − x3 − c − s

))
.

This function allows to prove the existence of a stationary distribution.

PROPOSITION 2.4 (Stationary distribution of the FitzHugh–Nagumo process).
Let (Xt ,Ct ) be the solution of system (1.1):

1. The transition density, denoted pF
t (x, c, x′, c′) verifies, for any (x, c, x′, c′) ∈

R
4

pF
t

(
x, c, x′, c′) = 1

ε
pt

(
x, c,F

(
x′, c′)).
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2. The associated semi-group of the process (Xt ,Ct ) is strong Feller.
3. There exists a unique invariant probability measure μF with a smooth den-

sity denoted pF (·) such that for any (x, c) ∈ R
2

(2.6) pF (x, c) = 1

ε
p

(
x,

1

ε

(
x − x3 − c − s

)) = 1

ε
p

(
F(x, c)

)
,

where p(·) is the density of the unique stationary distribution of system (2.1).

PROOF. First, let us compute the differential of the function F :

dF(x, c) =
⎛
⎝ 1 0

1

ε

(
1 − 3x2) −1

ε

⎞
⎠ .

Thus, its Jacobian is JF(x, c) = 1
ε


= 0.

1. We have for any set A ∈ R
2, for any (x, c) ∈ R

2,

E
(x,c)[1A(Xt ,Ct )

] :=
∫
A

pF
t

(
x, c, x′, c′)dx′ dc′ = E

(x,c)[1F(A)(Xt , Yt )
]

=
∫
F(A)

pt

(
x, c, x′, y′)dx′ dy

= 1

ε

∫
A

pt

(
x, c,F

(
x′, c′))dx′ dc′.

Thus, we obtain

pF
t

(
x, c, x′, c′) = 1

ε
pt

(
x, c,F

(
x′, c′)).

2. We define the semi-group associated to the process (Xt ,Ct ) as follows. For
any (x, c) ∈ R

2, and for any bounded measurable function f , we set

P F
t (f )(x, c) =

∫
R2

f
(
x′, c′)pF

t

(
x, c, x′, c′)dx′ dc′

= 1

ε

∫
R2

f
(
x′, c′)pt

(
x, c,F

(
x′, c′))dx′ dc′

= 1

ε

∫
R2

f
(
F−1(

x′, y′))pt

(
x, c, x′, y′) 1

JF(x′, y′)
dx′ dy′

= E
x,c[f ◦ F−1(Xt , Yt )

] = Pt

[
f ◦ F−1]

(x, c).

As the transformed process (Xt , Yt ) is strong Feller, we can deduce that for any
bounded measurable function f , the term Pt [f ◦ F−1](x, c) is a continuous func-
tion. Hence, the original process (Xt ,Ct ) is strong Feller.
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3. For any function f continuous and bounded, the sequence {P F
t (·)|t > 0}

defined above is tight. Using the strong Feller property, the Krylov–Bogolioubov
theorem yields that there exists at least one invariant probability distribution. Now,
note that for any open set U , the strong Feller property implies that P F

t (U) is
strictly positive. This implies the unicity of the invariant distribution.

Let us now prove (2.6). For any function f continuous and bounded, we have
by the ergodic theorem

1

t

∫ t

0
f (Xs,Cs) ds = 1

t

∫ t

0
f

(
F−1(Xs,Ys)

)
ds

→
∫
R2

f
(
F−1(x, y)

)
p(x, y) dx dy.

Setting F−1(x, y) = (x, c) it holds∫
R2

f
(
F−1(x, y)

)
p(x, y) dx dy = 1

ε

∫
R2

f (x, c)p

(
x,

1

ε

(
x − x3 − c − s

))
dx dc.

Hence, we obtain (2.6). �

Now, we can prove that the process (Xt ,Ct ) is also β-mixing.

PROPOSITION 2.5 (Mixing of the FitzHugh–Nagumo process). The solution
(Xt ,Ct ) of the system (1.1) is β-mixing.

PROOF. Let us recall the link between the two processes, solutions of the sys-
tems (1.1) and (2.1):

(Xt ,Ct ) = F−1(Xt , Yt ).

The function F is smooth. We can directly deduce that the property of β-mixing
remains under this very simple transformation. �

3. Number of up-crossings and spike rate. When the voltage is high
enough, the emission of a spike occurs with probability 1. This (high) level of
up-crossing is not unique and fixed and this implies a difficulty to define properly
a spike. In the following, we discuss and recall what have been described as spikes
in the literature and then give a tentative definition through up-crossings.

3.1. Spikes and previous results.

Spiking regime. In the literature, spikes of the FitzHugh–Nagumo model have
been defined as a long excursion in the phase space. One of the main references
is [17]. An example of a phase space is given in Figure 1 for three different sets
of parameters: left: ε = 0.1, middle: ε = 0.4, right: ε = 0.5 (the other parameters



HYPOELLIPTIC FITZHUGH–NAGUMO 2255

FIG. 1. Simulations of the FitzHugh–Nagumo. Voltage variable Xt versus time (top line) and the
corresponding trajectory in phase space Ct versus Xt (bottom line) for s = 0, β = 0.8, σ̃ = 0.3, left:
ε = 0.1 and γ = 1.5, middle: ε = 0.4 and γ = 1.5, right: ε = 0.5 and γ = 0.2.

values are given in the description of the figure). Let us comment first the left plots
(ε = 0.1) that generate automatically some spikes. As explained in [17], the fixed
point is on the left bottom of the phase space. It corresponds to the dynamic of
the potential between two pulses. Then the trajectory reaches the right branch, that
belongs to the excited state: X increases while C remains almost constant. Then
it moves along this branch upwards until it reaches its top, with C that increases.
Then it switches to the left branch that belongs to a refractory phase of the neuron:
X decreases and C stays high. Finally, the trajectory relaxes into the fixed point
with X back to the resting potential and C which decreases. When such a long
excursion occurs, a “spike” or a “pulse” is observed in the voltage variable.

Now, let us comment the right plots of Figure 1 with ε = 0.5. In that case, the
potential stays in the vicinity of the fixed point and no excursion in the excited
state occurs. Finally, let us comment the middle plots of Figure 1 with ε = 0.4. We
can observe excursions on the right branch, as when ε = 0.1, but these excursions
are less large. It is less clear if one should consider these excursions as spikes or
pulses. The definition of a spike is therefore not clear.

Spike rate. Nevertheless, given this definition of a spike, the spike rate has
been studied. We recall some results provided by Lindner and Schimansky-Geier
[17]. Let Nt denote the number of pulses during time interval [0, t]. The spike rate
is defined as

(3.1) ρ := lim
t→∞

Nt

t
.

The process Nt is random and the limit above is to be understood almost surely.
Let us denote Ti the ith interspike interval, that is, the time between the i and i + 1
spikes (or pulses, or long excursions). The mean time 〈T 〉 between two spikes,
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that is, the mean length of interspike intervals, can be defined using the ergodic
theorem as

(3.2) 〈T 〉 = lim
N→∞

1

N

N∑
i=1

Ti.

The spiking times (Ti) are also random and the above limit is in the almost sure
sense. Lindner and Schimansky-Geier [17] state the following relationship be-
tween these two quantities:

(3.3) ρ = 1

〈T 〉 .

Relation (3.3) means that the limit in t is equal to the limit in N of the random
processes (Nt , t ≥ 0) and (Ti, i ≥ 1). This relation is true for a Poisson process.
It is however not straightforward for any point process. Moreover, the two pro-
cesses (Nt , t ≥ 0) and (Ti, i ≥ 1) are difficult to define from the stochastic process
(Xt ,Ct ) or (Xt , Yt ), and consequently it is difficult to prove (3.3).

The objective of the next two subsections is to give a formal mathematical
framework to formula (3.1), (3.2) and (3.3). The starting point is a precise defi-
nition of the objects of study. The spikes are difficult to define from (Xt ,Ct ) or
(Xt , Yt ): should one take the beginning of the spike ? the maximum?

An alternative is to study the number of spikes occurrence through the number
of up-crossing of process Xt at a certain (large) level u. This has the advantage
of defining the occurrence of a spike through a precisely defined random variable
(see below). Hence, theoretical results can be derived. This is the methodology we
consider in this paper.

3.2. Number of up-crossings. The available neuronal data are the measure-
ments of the membrane voltage Xt . We are interested in the process of up-
crossings of this variable Xt . Note that this process can be defined through model
(1.1) or through model (2.1). It is however more natural to use the transformed
model (2.1). Indeed the process Zt = (Xt , Yt ) defines a measure P

z in the space

 := C(R+,R2). This means that Xt is an a.s. continuously differentiable process
and Ẋt = Yt . The number of up-crossings of process X· at level u in [0, t] is thus
naturally defined as

U
X·
t (u) = #{s ≤ t : Xs = u,Ys > 0}.

Heuristic of up-crossing process. Let us first give an intuition why U
X·
t (u) is

a process linked to the generation of spikes. If we forget the boundary effects, the
random variable Nt will be equal to the number of up-crossings U

X·
t (u) at level

u, for a set of large values u. Indeed, when a spike occurs, we expect U
X·
t (u)

to be constant for all values u that correspond to the right branch of the phase
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space (Figure 1), that is, to the (deterministic) increase phase of the potential. Note
that for too large values of u (larger than the maximum of the spikes), U

X·
t (u) is

expected to be zero. We therefore expect the distribution of U
X·
t to be stable for

an interval of values of u and then to decrease abruptly to 0. On the contrary, if a
neuron is not in a spiking regime (when ε is large, e.g., see right plots of Figure 1),
(small) excursions do not correspond to spikes and up-crossings will vary with u.
These two very different behaviors of U

X·
t imply that knowing how process U

X·
t (u)

varies with u gives automatically a definition of a spike and the fact that the neuron
is in a spiking regime or not. Process U

X·
t (u) can therefore be seen as a properly

defined stochastic process that describes the generation of spikes. Note that a spike
occurs the first time the process (Xt , Yt ) hits the half-line {Xs = u,Ys > 0} of R2.

It is therefore important to study the number of up-crossings. In this section,
we first prove the Rice’s formula that links the expectation of U

X·
t (u) with the

stationary density of process Zt = (Xt , Yt ). Then we prove an ergodic theorem for
U

X·
t (u): the expected value of U

X·
t (u) by unit of time converges to an integral with

respect to the stationary density. This limit, which depends on u, will be used in
Section 3.3 to estimate the spike rate.

Rice’s formula. We consider the norm ‖f ‖� = sup(x,y)
|f (x,y)|
�(x,y)

. We first prove
the Rice’s formula on the expectation of the number of up-crossings.

PROPOSITION 3.1 (Rice’s formula). Let Zt = (Xt , Yt ) be the stationary solu-
tion of the FitzHugh–Nagumo system. The Rice’s formula holds true

(3.4) EU
X·
t (u) = t

∫ ∞
0

yp(u, y) dy.

PROOF. The first step is the proof of a technical lemma.

LEMMA 3.1. Let us define the function Gy1(x, y) := |y − y1|. Set z = (x, y).
The semi-group {Pt }t≥0 satisfies

PtGy1(z) → Gy1(x, y) if t → 0

uniformly in x.

The proof of Lemma 3.1 is given in the Appendix. Then, Rice’s formula is
proved using the following result from [1]’s book, that we recall now.

Let {Xt }t∈R+ be a stochastic process and Y its derivative. Let us first introduce
the Rice’s formula. For any u ∈ R and for I an interval of time, where the crossings
are counting, the Rice’s formula is

E
(
UX

t (u)
) =

∫
I

dt

∫ ∞
0

ypXt ,Yt (u, y) dy.

It holds true under the following conditions:
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(C1) Function (t, x) → pXt (x) is continuous for t ∈ I , x in a neighborhood
of u.

(C2) (t, x, y) → pXt ,Yt (x, y) is continuous for t ∈ I and x in a neighborhood
of u and y ∈R.

(C3) Let define A1(t1, t2, x) = ∫
R2 |y1 − y|pXt1 ,Yt1 ,Yt2

(x, y, y1) dy dy1. The
process satisfies condition A41 on page 76 of [1]’s book if A1(t1, t2, x) tends to
zero as t2 − t1 → 0 uniformly, for t1 and t2 in a compact and x in a neighborhood
of u.

We must now verify if conditions (C1), (C2), (C3) hold. Under the station-
ary regime, the two marginal densities, px(x) and py(y), of the invariant density
p(x, y) correspond to the density of Xs and the density of Ys , respectively. They
are both C∞ functions. By stationarity, the density of (Xs,Ys) is p(x, y). Then
(C1)–(C2) hold true.

Consider the vector (X0, Y0,Xs, Ys). It has a density ps(x, y, x1, y1)p(x, y). To
prove (C3), let us observe that for any s > 0, thanks to the stationary regime:

A1(s, x) := A1(0, s, x) =
∫
R2

|y1 − y|
(∫

R

ps(x, y, x1, y1)p(x, y) dx1

)
dy dy1.

Then we can write

A1(s, x) :=
∫
R

(PsGy)(x, y)p(x, y) dy.

Lemma 3.1 implies that Pt(Gỹ)(x, y) → Gỹ(x, y) uniformly in x, where
(x, y) is the point of depart of our process. In the particular case ỹ = y, we get
Pt(Gy)(x, y) → Gy(x, y) = 0. This yields, by using the bounded convergence
theorem, that A1(s, x) → 0 uniformly in x and the Rice’s formula for the first
moment of the number of up-crossings holds true. �

Ergodic theorem. We now prove that the ergodic theorem can be applied.

THEOREM 3.1. Let Zt = (Xt , Yt ) be the stationary solution of the FitzHugh–
Nagumo system. For any u ∈ R,

(3.5)
U

X·
t (u)

t
→

∫ ∞
0

yp(u, y) dy a.s.

This result gives the limit of the expected number of up-crossings by unit of
time. The fact that it is an integral with respect to the invariant density allows us to
estimate this quantity (see Section 4). This limit will also be used in the estimation
of the mean length between two spikes, as explained below.

PROOF OF THEOREM 3.1. We follow [6], Section 11.5. Proposition 2.2 states
that the process (Xt , Yt ) is exponentially ergodic. Let us define the two processes
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of the number of up-crossings in interval (s, s + 1] and in interval (s − 1, s], re-
spectively:

ζ1(s) = U
X·
s+1(u) − UX·

s (u) := U
X·
(s,s+1](u), s ≥ 0,

ζ2(s) = UX·
s (u) − U

X·
s−1(u) := U

X·
(s−1,s](u), s ≥ 1.

These two processes are stationary. Let θ· denote the shift operator for the station-
ary Markov process (Xt , Yt ). It holds ζ1(s) = θs ◦ζ1(0) and ζ2(s) = θs ◦ζ2(1). The
ergodic theorem and Rice’s formula (3.4) assure that

(3.6)
1

t

∫ t

0
ζ1(s) ds →

∫ ∞
0

yp(u, y) dy a.s.

and similarly for ζ2. Let us prove the following chain of inequalities from [6], page
238:

(3.7)
∫ t−1

0
ζ1(s) ds ≤ U

X·
t (u) ≤

∫ t+1

0
ζ2(s) ds

holds. Let us show the left inequality∫ t−1

0
U

X·
(s,s+1](u) ds =

∫ t−1

0

(
U

X·
s+1(u) − UX·

s (u)
)
ds

=
∫ t

1
UX·

s (u) ds −
∫ t−1

0
UX·

s (u) ds

=
∫ t

t−1
UX·

s (u) ds −
∫ 1

0
UX·

s (u) ds ≤ U
X·
t (u),

where we have used that function U
X·
t (u) is nondecreasing. The right inequality

can be proved similarly. Gathering (3.6) and (3.7) implies the theorem. �

3.3. Spike rate. Now we want to link the spike rate ρ with the up-crossing
process. We start by the intuition and some heuristic, and then we formalize this
link.

Heuristic. As explained earlier, the up-crossing process gives a definition of a
spike: if the up-crossing process is constant for any level u in a (large) interval, a
spike occurs. Then, for a given level u in this interval, the number of up-crossing
U

X·
t (u) is equal to the number of spikes. This naturally gives an approximation of

the variable Nt introduced by Lindner and Schimansky-Geier [17]. Let us define
λ(u) the limit of the number of up-crossings at level u:

λ(u) = lim
t→∞

U
X·
t (u)

t
.
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The ergodic theorem (Theorem 3.1) gives an explicit formula of this limit:

(3.8) λ(u) =
∫ ∞

0
yp(u, y) dy.

Finally, we can naturally link the spike rate obtained via the random variable Nt

(excursions rate) and the rate of up-crossings:

(3.9) λ(u) ≈ ρ.

Formal link. This heuristic reasoning may be led by a more formal way. We
want to describe formally the time between successive up-crossings of level u.
Time between successive up-crossings has been studied by [6] (Chapter 11).

The idea is the following. Let C
X·[0,t](u) denote the number of all crossings at

level u on the interval [0, t]. Let us define for all k ∈ N
∗ the set

Hk(τ, t) = P
{
U

X·
(−τ,0)(u) ≥ 1,C

X·
(0,t)(u) ≤ k

}
.

The function of interest for us is when k = 1. Assume an up-crossing occurs at time
τ = 0. Then the trajectory is over level u just after τ . If C

X·
(0,t)(u) = 1, the crossing

is a down-crossing and no up-crossing occurs in interval [0, t]. Thus H1(τ, t) is
the probability to have a up-crossing in the interval (−τ,0) and no up-crossing in
interval [0, t].

To study the interval between two spikes or up-crossings, we are interested in
defining a conditional probability. For that purpose, let us introduce the following
probability:

ω(t) := P
{
there exists at least one up-crossing in time inteval [0, t]}.

We know by using the ergodic theorem that

(3.10) U
X·[0,t](u) = tλ(u) + o(t) when t → ∞.

As the process X is continuous and differentiable, the stream of up-crossings, that
is, the times when the process crosses the level u with positive derivative, is sta-
tionary and regular. This implies that P{UX·[0,t](u) > 1} = o(t). From [6] (page 54),
we can prove that

ω(t) = t�(u) + o(t) when t → 0

for a certain constant �(u). The property of a regular up-crossing process implies
that �(u) = λ(u). This important fact links the ergodic limit (3.10) with the behav-
ior of ω(t) in a neighborhood of zero. This result will be very useful for us.

Then [6] proves that for all k, there exists a finite function �k defined by the
following limit:

(3.11) �k(t) := lim
τ→0

Hk(τ, t)

ω(τ)
.
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This last function represents the conditional probability of no more than k cross-
ings in the interval (0, t), given that an up-crossing occurred “at” time zero. For
k = 1, �1(t) is the conditional probability that no up-crossing occurs in interval
[0, t], given that an up-crossing occurred “at” time zero.

It is then natural to introduce the following function:

(3.12) F2(t) := 1 − �1(t).

The first remarkable fact is that F2(·) is a nondefective distribution function.

PROPOSITION 3.2. The function F2 defined by (3.12) is the cumulative distri-
bution function of a probability measure.

Moreover, it may be regarded as the distribution function of the length of the in-
terval of an arbitrarily chosen up-crossing and the next up-crossing, following [6].

PROOF. It holds easily that 0 ≤ F2(t) ≤ 1.
Then to prove that it is a cumulative distribution function, set u0(t) =

P{UX·
(0,t) = 0}. We have

u0(t) − u0(t + τ) = P
{
U

X·
(0,t)(u) = 0

} − P
{
U

X·
(−τ,t)(u) = 0

}
= P

{
U

X·
(−τ,t)(u) ≥ 1,U

X·
(0,t)(u) = 0

}
= H1(τ, t) + o(τ),

where we use [6] (page 225) for the last equality: “the probability of more than
one crossing in (−τ,0) is o(τ), whereas if the only crossing in (−τ,0) is an up-
crossing, then UX·(0, t) = 0 when (and only when) C

X·
(0,t)(u) = 0”.

Thus

(3.13) lim
τ+→0

u0(t + τ) − u0(t)

τ
= − lim

τ→0

H1(τ, t)

ω(τ)

ω(τ)

τ
= −λ(u)�1(t).

Thus the function u0 has right-hand side derivative: D+u0(t) = −λ(u)�1(t).
Moreover, the Lebesgue theorem gives

u0(T ) − u0(0) =
∫ T

0
D+u0(t) dt.

As u0 is bounded, the derivative D+u0(t) is integrable over (0,∞). This in par-
ticular implies that D+u0(t) → 0 whenever t → ∞, thus limt→∞ �1(t) = 0 and,
therefore, F2(t) → 1 when t → ∞. Finally, as F2 is nondecreasing it is a cumula-
tive distribution function of a probability measure. �

As F2 can be interpreted as the distribution function of the length of an inter-
up-crossings interval (interval between two successive up-crossings), we are inter-
ested in computing its first two moments. Following Cramér and Leadbetter ([6],
page 227), we obtain the following.
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PROPOSITION 3.3. The expectation of the distribution F2, that is, the mean
length of the interval between two successive up-crossings, is given by∫ ∞

0
t dF2(t) = 1

λ(u)
.

The second moment of F2 is

(3.14)
∫ ∞

0
t2 dF2(t) = 2

λ(u)

∫ ∞
0

u0(t) dt,

where u0(t) = P{UX·
(0,t) = 0}.

The expectation of the length of an inter-up-crossings interval is equal to the
inverse of the rate of up-crossings at level u [formula (3.9)], and thus to the spike
rate. This is the principal advantage of our approach. We give a theoretical justifi-
cation to the link between the length of the excursions and the spike rate.

PROOF OF PROPOSITION 3.3. Start with the mean of F2. Given formula
(3.13), one easily obtains∫ ∞

0
t dF2(t) =

∫ ∞
0

[
1 − F2(t)

]
dt = 1

λ(u)

[
u0(0) − u0(∞)

]
.

Then we use that u0(0) = 1 and u0(∞) = 0 to obtain∫ ∞
0

t dF2(t) = 1

λ(u)
.

For the second moment, we simply apply twice an integration by parts to obtain∫ ∞
0

t2 dF2(t) = 2

λ(u)

∫ ∞
0

u0(t) dt. �

Finally, estimating λ(u) gives a direct estimation of the mean length of inter-
spike intervals, as well as its variance. This is detailed in Section 4.

4. Estimation of invariant density and spike rate. The objective is to esti-
mate the spike rate and λ(u). In the neuronal context, the coordinate Yt cannot be
measured and only discrete observations of X at discrete times iδ, i = 1, . . . , n

with discretization step δ are available. It offers the possibility to work rather
through model (1.1) or model (2.1). As shown in the previous section, the spike
rate and λ(u) are easier to define and estimate using model (2.1) and its stationary
density p. We thus start with the invariant density.
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4.1. Invariant density estimation. The density p has no explicit formula.
We therefore use the nonparametric adaptive estimation of p from observations
(X1δ, . . . ,Xnδ), proposed by Comte, Prieur and Samson [5].

Let us detail their estimator. Let K be some kernel C2 function with compact
support A such that its partial derivatives functions ∂K

∂x
and ∂K

∂y
are in L

2(R),∫
K(x,y) dx dy = 1 and

∫
K2(x, y) dx dy < ∞. For any bandwidth b = (b1, b2)

with b1 > 0, b2 > 0, for all (x, y) ∈ R
2, we denote

Kb(x, y) = 1

b1b2
K

(
x

b1
,

y

b2

)
.

When both coordinates are observed, the natural estimator of p for all z =
(x, y) ∈ R

2 is

(4.1) p̃b(z) = p̃b(x, y) := 1

n

n∑
i=1

Kb(x − Xiδ, y − Yiδ) = 1

n

n∑
i=1

Kb(z − Ziδ).

When only X is observed, we replace Y by the increments of X. Indeed, for any
i = 1, . . . , n, when δ is small enough, we have

(4.2) X(i+1)δ − Xiδ =
∫ (i+1)δ

iδ
Yt dt ≈ δYiδ.

Let us thus define the following approximation of Yiδ :

Ȳiδ = X(i+1)δ − Xiδ

δ

and define the two-dimensional kernel estimator by

(4.3) p̂b(x, y) := 1

n

n∑
i=1

Kb(x − Xiδ, y − Ȳiδ).

The bandwidth b = (b1, b2) has to be chosen to realize a trade-off between the
bias of p̂b and its variance. This is automatically achieved using the adaptive es-
timation procedure proposed by [5]. We can apply their procedure because we
have already proved that the invariant density p decreases exponentially and is
β-mixing (Section 2). Their procedure, inspired by [11], is the following. Let
Bn = {(b1,k, b2,�), k, � = 1/

√
n, . . . , c/

√
n} be the set of possible bandwidths. Set

for all z = (x, y) and all b, b′ ∈ Bn

p̂b,b′(z) = Kb′ � p̂b(z) = 1

n

n∑
i=1

Kb′ � Kb(x − Xiδ, y − Ȳiδ).

Now let

A(b) = sup
b′∈Bn

(‖p̂b,b′ − p̂b′‖2 − V
(
b′))

+
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with

V (b) = κ1
1

nb1b2

n−1∑
i=0

β(iδ) + κ2
δ

b1b
3
2

,

where κ1, κ2 are numerical constants and β(iδ) are the β-mixing coefficients. The
selection is then made by setting

(4.4) b̂ = arg min
b∈Bn

(
A(b) + V (b)

)
.

Comte, Prieur and Samson [5] prove an oracle inequality for the final estimator
p̂

b̂
.

THEOREM 4.1 ([5]). Set pb(z) = Kb �p the function that is estimated without
bias by p̂b. We have

E
(‖p̂

b̂
− p‖2) ≤ C inf

b∈Bn

(‖pb − p‖2 + V (b)
) + C

log(n)

nδ
.

As explained in [5], the Goldenshluger and Lepski’s procedure (4.4) is numer-
ically demanding due to the double convolutions p̂b,b′ , especially in the multidi-
mensional case. They propose a simplified procedure inspired on the one proposed
by [15] in the independent observation case, that we also implement in this paper.
The selection of the bandwidth is the following:

(4.5) ˆ̂
b = arg min

b∈Bn

(‖p̂b − p̂bmin‖2 + V (b)
)

with κ1 = 0.1 and κ2 = 0.001 and bmin = (1/
√

n,1/
√

n), as given in [5]. By plug-

ging ˆ̂
b into (4.3), we obtain p̂ := p̂ ˆ̂

b
which is the final estimator of p.

4.2. Spike rate estimation. Equation (3.8) provides a good start to estimate the
spike rate. The quantity that we estimate is λ(u) for a large level u. By plugging
the kernel estimator p̂ of the invariant density, we define the following estimator
of λ(u):

λ̂(u) =
∫ ∞

0
yp̂(u, y) dy.

For some specific choices of kernel K , the estimator λ̂(u) has an explicit ex-
pression. More precisely, let us consider a multiplicative two-dimensional ker-
nel K(x,y) = k(x)k(y), where k is a continuous and bounded kernel, such that∫

k(v) dv = 1. Then we have

p̂(u, y) = 1

nb̂1b̂2

n∑
i=1

k

(
u − Xiδ

b̂1

)
k

(
y − Ȳiδ

b̂2

)
,
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with b̂1, b̂2 the bandwidth estimated adaptively by (4.5). We get

λ̂(u) = 1

nb̂1b̂2

n∑
i=1

k

(
u − Xiδ

b̂1

)∫ ∞
0

yk

(
y − Ȳiδ

b̂2

)
dy

= 1

nb̂1

n∑
i=1

k

(
u − Xiδ

b̂1

)(
b̂2

∫ ∞
− Ȳiδ

b̂2

yk(y) dy + Ȳiδ

∫ ∞
− Ȳiδ

b̂2

k(y) dy

)
.

For a Gaussian centered kernel k, we obtain

(4.6) λ̂(u) = 1

nb̂1

n∑
i=1

k

(
u − Xiδ

b̂1

)(
b̂2√
2π

e
− 1

2 (
Ȳiδ

b̂2
)2

+ Ȳiδ

(
1 − �

(
− Ȳiδ

b̂2

)))
,

where �(·) is the cumulative distribution function of the centered and reduced
normal distribution.

The next step is the estimation of the variance, and more precisely of the second
moment of F2, given by (3.14). First, we need to estimate u0(t) = P{UX·

(0,t) = 0}.
The idea is to link this function with the survival function of the inter-up-crossings
interval.

For a fixed level u, let us assume that one up-crossing occurs at time 0 and let
denote {T u

i , i ≥ 0} the successive times of up-crossings after time 0 with T u
0 = 0.

Thanks to the stationarity of the process, the (T u
i+1 − T u

i , i ≥ 0) are identically
distributed. For any i ≥ 0, we can rewrite u0(t) as follows:

u0(t) = P
(
UX

(0,t) = 0
) = P

(
T u

1 > t
) = P

((
T u

i+1 − T u
i

)
> t

)
.

A natural estimator of u0(t) from observations on interval [0, T ] is

(4.7) ûT
0 (t) = 1

UX
(0,T )

UX
(0,T )∑
i=0

1(T u
i+1−T u

i )>t ,

where UX
(0,T ) is the number of up-crossings in the interval [0, T ].

LEMMA 4.1. Estimator ûT
0 (t) (4.7) based on observations on interval [0, T ]

is a consistent estimator of u0(t) when T goes to infinity.

PROOF. Set [·] for the integer part. Let us rewrite ûT
0 (t) as

ûT
0 (t) = 1

UX
(0,T )

T

1

T

UX
(0,T )∑
i=0

1(T u
i+1−T u

i )>t .
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By the ergodic theorem, we have UX
(0,T ) ∼ T

∫ ∞
0 yp(u, y) dy a.s. We can thus de-

duce that

∣∣∣∣∣ 1

T

(UX
(0,T )∑
i=0

1(T u
i+1−T u

i )>t −
[T ∫ ∞

0 yp(u,y) dy]∑
i=0

1(T u
i+1−T u

i )>t

)∣∣∣∣∣
≤

∣∣∣∣U
X
(0,T )

T
− [T ∫ ∞

0 yp(u, y) dy]
T

∣∣∣∣
Moreover,

lim
T →∞

∣∣∣∣U
X
(0,T )

T
− [T ∫ ∞

0 yp(u, y) dy]
T

∣∣∣∣ = 0.

Thus we have limT →∞ ûT
0 (t) = limT →∞ 1

UX
(0,T )
T

1
T

∑[T ∫ ∞
0 yp(u,y) dy]

i=0 1(T u
i+1−T u

i )>t .

We now focus on studying the RHS. The stationarity and the ergodic theorem
imply that

1

T

[T ∫ ∞
0 yp(u,y) dy]∑

i=0

1(T u
i+1−T u

i )>t →
∫ ∞

0
yp(u, y) dyP

(
T u

1 > t
)

a.s.

So finally we obtain

lim
T →∞ ûT

0 (t) = 1∫ ∞
0 yp(u, y) dy

∫ ∞
0

yp(u, y) dyP
(
T u

1 > t
)

= P
(
T u

1 > t
) = u0(t) a.s.

(4.8)

�

To estimate the second moment of F2, we plug ûT
0 (t) into formula (3.14):

2

λ̂(u)

∫ ∞
0

ûT
0 (t) dt = 2

λ̂(u)

1

UX
(0,T )

UX
(0,T )∑
i=0

(
T u

i+1 − T u
i

) = 2

λ̂(u)

T u

UX
(0,T )

UX
(0,T )

.

The final estimator of the variance of the length between two successive up-
crossings at level u based on observations on the interval [0, T ] is thus

(4.9) V̂ u = 2

λ̂(u)

T u

UX
(0,T )

UX
(0,T )

− 1

λ̂(u)2
.

5. Simulation. Three sets of parameter values of the FitzHugh–Nagumo
model are used in the simulations (same as above). A set that allows spike gen-
eration: ε = 0.1, s = 0, γ = 1.5, β = 0.8, σ = 0.3; a set that generates small
excursions s = 0, β = 0.8, σ̃ = 0.3, ε = 0.4 and γ = 1.5 and a set that does not
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FIG. 2. FitzHugh–Nagumo simulation. Left: coordinate X along time. Middle: coordinate C. Right:
transformed coordinate Y . Simulations are performed with δ = 0.02, n = 2000. Parameters are
ε = 0.1, s = 0, γ = 1.5, β = 0.8, σ = 0.3.

generate spikes s = 0, β = 0.8, σ̃ = 0.3, ε = 0.5 and γ = 0.2. Trajectories are
simulated with time step δ = 0.02 ms, n = 20,000 and a Itô–Taylor scheme of
order 2 of system (1.1). Figure 2 shows an example of such a simulation with tra-
jectories of (Xt ,Ct ) for the first set of parameters that generates spikes (s = 0,
β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5), as well as the transformed coordinate
Yt = 1

ε
(Xt − X3

t − Ct − s) between 0 and 200 ms (n = 1000).
We apply the adaptive estimation procedure (4.5) to estimate the invariant den-

sity p. The true density p has no closed form. To compare the estimator with
the truth, we approximate p by numerically solving the associated hypoelliptic
Fokker–Planck equation. A finite difference method is used to solve the Fokker–
Planck equation [14]. The solver is very stable for the set of parameters that does
not generate spikes (ε = 0.5). This is illustrated in the bottom plots of Figure 3. The
density estimator p̂ (red dotted line) is very closed to the “true” stationary density
p (black plain line). However, the finite difference approximation of stationary
density appears to be unstable for the set of parameters that generates spikes or
even small excursions (see black lines of top and middle plots of Figure 3). We
tried to decrease the step of the discretization grid but the approximation remains
unstable (recall that the PDE is hypoelliptic). We then compare the estimator with
a Monte Carlo approximation of the stationary density. More precisely, 10,000 tra-
jectories have been simulated on an interval [0, T = nδ]. The last point of each
trajectory is stored in a sample of i.i.d. simulation under the stationary regime.
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FIG. 3. Invariant density estimation. Left: marginal in x of the estimation p̂ ˆ̂
b

(red line) and true

density approximated by a finite difference scheme (black line). Right: marginal in y of the estimation
p̂ ˆ̂

b
(red line) and true density approximated by a finite difference scheme (black line). Top line: set of

parameters that generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5). Middle line: set of
parameters that generates few and small excursions (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.4 and γ = 1.5).
Bottom line: set of parameters that does not generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.5 and
γ = 0.2). The finite difference scheme is unstable in the two first cases (black curve is very noisy).
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FIG. 4. Invariant density estimation. Left: marginal in x of the estimation p̂ ˆ̂
b

(red line) and true

density approximated by a Monte Carlo scheme (black line). Right: marginal in y of the estimation
p̂ ˆ̂

b
(red line) and true density approximated by a Monte Carlo scheme (black line). Simulations are

performed with parameters that generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5).

Then a kernel estimation procedure for i.i.d. data has been applied. The compari-
son with our estimation based on only one trajectory of dependent data is shown
on Figure 4. The estimation is very close to the approximation of the stationary
regime. Note also that in the spiking regime, as expected, the estimator of the
marginal density in x (red dotted line) has two bounds, one corresponding to the
subthreshold activity and the other to the spiking activity. To conclude, our esti-
mation procedure is stable whatever the value of ε and fast to compute compared
to the PDE solver or the Monte Carlo approximation.

Then the spike rate is estimated by formula (3.9) for the three sets of parameters
that generate spikes, few spikes or no spikes. The expected number of up-crossings
is estimated for level u between −0.5 and 1.5. The three curves (as functions of u)
are plotted in Figure 5: black plain line for the set of parameters that generate
spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5); red dotted line for the set
of parameters that generates few and small excursions (s = 0, β = 0.8, σ̃ = 0.3,
ε = 0.4 and γ = 1.5); green dashed line for the set of parameters that does not
generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.5 and γ = 0.2). As expected, when
spikes occur, the estimator is stable for u ∈ [0;0.8] (an interval that corresponds
to the amplitude of large excursions) and then suddenly decreases to 0. When no
spike occur, the estimator is null. When only small sub-threshold excursions occur,
the estimator decreases slowly to 0.

We now focus on the two first cases (large or small excursions with ε = 0.1 and
ε = 0.4, resp.). For both cases, we estimate the spike rate with the two approaches
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FIG. 5. Spike rate estimators λ̂(u) and ρ̂ computed as the mean of ρ(0.1), . . . , ρ(0.6). Black plain
curve: evolution of λ̂(u) with u and black plain line ρ̂ for a set of parameters that generate spikes
(s = 0, β = 0.8, σ̃ = 0.3, ε = 0.1 and γ = 1.5). Red dotted curve: evolution of λ̂(u) with u and
red dotted line ρ̂ for a set of parameters that generates few and small excursions (s = 0, β = 0.8,
σ̃ = 0.3, ε = 0.4 and γ = 1.5). Green dashed curve: evolution of λ̂(u) with u for a set of parameters
that does not generate spikes (s = 0, β = 0.8, σ̃ = 0.3, ε = 0.5 and γ = 0.2).

presented in the paper. First, we compute the mean of λ̂(u) for u ∈ [0.1,0.6], this
value is denoted λ̄. Second, we compute ρ defined as the number of spikes divided
by the length of the time interval. As said before, spikes are defined as excursions
in the phase space. Different thresholds v ∈ [0.1,0.7] are used to define excursions
Nt(v). The mean of the corresponding spike rates is denoted ρ̄ and superimposed
on Figure 5 (horizontal lines). Table 1 displays the estimations ρ̄, λ̄, as well as the
estimated mean and standard deviation [estimator (4.9)] of the length of intervals
defined by two successive up-crossings. One can see that the two estimators λ̄ and
ρ̄ are of the same order in both regimes. Therefore, the nonparametric estimation
is a good alternative to the numerical approximation of the solution of the hypoel-
liptic Fokker–Planck equation, especially when the numerical scheme is not stable
for ε small. The up-crossing approach allows to estimate some characteristics of

TABLE 1
FitzHugh–Nagumo simulation for two regimes (ε = 0.1 and

ε = 0.4). Estimation of the spike rate by up-crossings approach (λ̄)
and by number of excursions (ρ̄ ) and estimation of the mean and

standard deviation of the length of intervals defined by two
successive up-crossings

Length of intervals
Regime ρ̄ λ̄ Mean (sd)

ε = 0.1 0.1568 0.1609 6.35 (6.32)

ε = 0.4 0.0115 0.0111 93.13 (82.70)
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the length of the inter-up-crossings intervals (mean and standard deviation). In the
spiking regime, mean and standard deviation are close. This is not the case when
ε increases.

6. Conclusion. The FitzHugh–Nagumo is a neuronal model that describes the
generation of spikes at the intracellular level. In this paper, we study a stochas-
tic version of the model from a probabilistic point of view. A transformed model
is proposed that eases the study of hypoellipticity, as well as the existence and
uniqueness of the stationary distribution. The bi-dimensional stochastic process is
β-mixing. The stationary distribution can be estimated with an adaptive nonpara-
metric estimator. Then we focus on the distribution of the length between suc-
cessive spikes. We propose to study this distribution through the distribution of
the number of up-crossings. The distribution function of the length of the interval
between two successive up-crossings is defined through the stationary distribu-
tion. This allows to propose an estimator of the expectation of this distribution.
We also derive the second moment of this distribution that allows to estimate the
variance.

We illustrate the proposed estimators on a simulation study. Different regimes
are explored, for different values of ε: regime with no, few or high generation of
spikes. The true stationary density has no explicit distribution. It can be approx-
imated numerically by solving the Fokker–Planck equation. We consider a finite
difference scheme, which is however unstable in the spiking regime. At the other
hand, the nonparametric estimation of the stationary distribution reveals to be sta-
ble even in the spiking regime. We also implement the estimator of the mean length
of the interval between two successive up-crossings. This estimator is based on the
estimator of the stationary distribution. It reveals to be close to the mean spiking
rate in the spiking regime.

It would be of interest in the future to apply the same approach to other stochas-
tic intra-cellular neuronal models and to estimate the characteristics of their spik-
ing process.

APPENDIX: PROOF OF LEMMA 3.1

Let F ∈ B� and {Fn} be a sequence of bounded functions such that Fn ↑ F .
Inequality (2.5) gives ‖PtF‖� ≤ (Dρt + 1)‖F‖� < ∞. Moreover, as in [26], let
us introduce the exponential local martingale

Mt = exp
(
− 1

σ

∫ t

0

(
c(Xs,Ys)Ys + ∇xV (Xs)

)
dWs

+ 1

2σ 2

∫ t

0

(
c(Xs,Ys)Ys + ∇xV (Xs)

)2
ds

)
.
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By using monotone convergence theorem first and then the probabilistic represen-
tation as in [26], we get

E
P

0
z

[
MtF

(
σ

∫ t

0
Ws ds, σWt

)]
= lim

n→∞E
P

0
z

[
MtFn

(
σ

∫ t

0
Ws ds, σWt

)]

= lim
n→∞

∫
pt

(
z, z′)Fn

(
z′)dz′

=
∫

pt

(
z, z′)F (

z′)dz′

= PtF (z)

< ∞.

Then we recover the representation PtF (z) = E
P

0
z [MtF(σ

∫ t
0 Ws ds, σWt)]. Now

function Gy1 trivially belongs to B� . Hence, PtGy1(z) = E
P

0
z [Mt |σWt − y1|].

Thus by using the Lévy modulus of continuity of Brownian motion, we get

∣∣PtGy1(z) − |y − y1|
∣∣ ≤ E

P
0
z
[
Mt |σWt − y|]

≤ C

√
t log

1

t
E

z[Mt ]

= O
(
t1/2−ε)

for ε > 0. This proves the lemma. We remark that the convergence is uniform
in z. �
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