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ORDERED AND SIZE-BIASED FREQUENCIES IN GEM
AND GIBBS’ MODELS FOR SPECIES SAMPLING

BY JIM PITMAN AND YURI YAKUBOVICH

University of California, Berkeley and St. Petersburg University

We describe the distribution of frequencies ordered by sample values in a
random sample of size n from the two parameter GEM(α, θ) random discrete
distribution on the positive integers. These frequencies are a (size-α)-biased
random permutation of the sample frequencies in either ranked order, or in
the order of appearance of values in the sampling process. This generalizes a
well-known identity in distribution due to Donnelly and Tavaré [Adv. in Appl.
Probab. 18 (1986) 1–19] for α = 0 to the case 0 ≤ α < 1. This description
extends to sampling from Gibbs(α) frequencies obtained by suitable condi-
tioning of the GEM(α, θ) model, and yields a value-ordered version of the
Chinese restaurant construction of GEM(α, θ) and Gibbs(α) frequencies in
the more usual size-biased order of their appearance. The proofs are based
on a general construction of a finite sample (X1, . . . ,Xn) from any random
frequencies in size-biased order from the associated exchangeable random
partition �∞ of N which they generate.

1. Introduction. We are interested in various natural orderings of clusters of
common values, in sampling from random discrete distributions. The recent review
by Crane [9, 10] presents some of the widespread applications of these models
of random partitions, in the contexts of population genetics, ecology, Bayesian
nonparametrics, combinatorial stochastic processes and inductive inference. Let
P• := (P1,P2, . . .) denote a random discrete distribution on the positive integers,
to be thought of as a model for population frequencies of various species in a
large population of individuals classified by species, or otherwise partitioned by
type in some way. We take these population frequencies to be represented in the
stick-breaking form [25, 39],

(1) P1 := H1, P2 = (1 − H1)H2, P3 := (1 − H1)(1 − H2)H3, . . .

for some sequence of random variables Hi with values in (0,1) such that Pi > 0
for all i and

∑∞
i=1 Pi = 1 almost surely. We call this model for population frequen-

cies a residual allocation model (RAM) to indicate the Hi are independent, though
not necessarily identically distributed. Let X1, . . . ,Xn denote a sample of size n

from population frequencies P•, that is, the first n terms of a sequence X1,X2, . . .
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which conditionally given P• is i.i.d. according to P•. We are most interested in
settings where the possible sample values 1,2, . . . have a clear meaning in the
context of some larger population model, such as the age-ranks of alleles in the
infinitely-many-neutral-alleles diffusion model [15]. This model involves P• with
GEM(0, θ) distribution, while other models of current interest ([8, 33]) involve
ranked frequencies derived from the GEM(α, θ) distribution, in which Hi has the
beta(1 − α, θ + iα) density on (0,1). Here, 0 ≤ α < 1 and θ > −α are real pa-
rameters, and beta(a, b) is the probability distribution on (0,1) with probability
density proportional to ua−1(1 −u)b−1 at 0 < u < 1; see [17, 37] for further back-
ground on GEM distributions. As discussed further in the following sections, a
special property of GEM(α, θ), important in many contexts, is that the GEM(α, θ)

frequencies P• are in a size-biased random order. It is also known ([18, 35]) that

(2)
the only RAMs with frequencies in size-biased order are the
GEM(α, θ) models.

Combined with the fact that the large n asymptotics of GEM(α, θ) samples exhibit
a variety of logarithmic and power law behaviors as (α, θ) varies [37], this draws
attention to the GEM(α, θ) family as a tractable and versatile family of models for
use in applications.

A basic problem is to describe the distribution of the partition of n determined
by the size-ordered or ranked sample frequencies, meaning the list of sizes of clus-
ters of equal values in a sample from a random discrete distribution P•, in de-
creasing order of size. As recalled in Section 2, that problem has been solved for
both GEM(α, θ) and for RAMs with i.i.d. factors, hand-in-hand with a description
of the distribution of the appearance-ordered sample frequencies, that is, the list
of sizes of clusters of equal values in the order in which these values appeared in
the random sampling process. It is well known that in a sample from any random
discrete distribution P•, the appearance-ordered sample frequencies are a size-
biased permutation of the partition of n. A more difficult problem is to provide
a corresponding description of the value-ordered sample frequencies which can
be obtained by ordering the sample in (weakly) increasing order and then reading
counts of equal values, so that the number of times the minimal value in the sam-
ple is attained comes first, and the frequency of the maximal sample value comes
last. See a discussion and an example in Section 2.1 below that should clarify these
notions.

For the GEM(0, θ), with i.i.d. beta(1, θ) factors Hi , a remarkably simple de-
scription of the value-ordered sample frequencies was provided by Donnelly and
Tavaré [14]:

in sampling from GEM(0, θ), there is no difference in distribution
between the value-ordered frequencies and the appearance-ordered
frequencies: they are both in a size-biased random order.

For sampling from a RAM with i.i.d. factors, a more complicated description of the
distribution of value-ordered frequencies was found in Gnedin and Pitman [20],



ORDERED AND SIZE-BIASED FREQUENCIES 1795

Section 11. But there seems to be a gap in the literature regarding the distribution
of value-ordered frequencies for a GEM(α, θ) sample for 0 < α < 1. Our main
result is that this problem has a surprisingly simple solution, almost as simple as
the Donnelly and Tavaré result for α = 0. Compared to the case α = 0, the only
difference is that the usual notion of size-biased permutation of a composition
(n1, . . . , nk) of n needs to be replaced by the notion of a (size-α)-biased random
permutation, defined as follows:

• for each 1 ≤ i ≤ k, the first component is set equal to ni with probability
ni−α
n−kα

,
• given k > 1 and that the ith component was chosen to be the first, for each

j �= i the second component is set equal to nj with probability nj−α

n−ni−(k−1)α

and so on, as discussed more carefully in Section 2.2 and also in Appendix A.

THEOREM 1. For each n ≥ 1, in a random sample of size n from GEM(α, θ),
the value-ordered sample frequencies are (size-α)-biased.

Because sample frequencies in appearance order are size-biased in the usual
way, this theorem shows that the Donnelly–Tavaré identity in distribution between
value-ordered and appearance-ordered frequencies is very special to GEM(0, θ).
It does not extend to GEM(α, θ) for 0 < α < 1 without extending the notion of
size-biasing to (size-α)-biasing. Hence the theorem dispels the tempting but false
idea that value-ordered and appearance-ordered sample frequencies might be iden-
tically distributed in any model with value-ordered population frequencies in size-
biased order. For except in trivial cases of equality between counts, for 0 < α < 1
a (size-α)-biased permutation is not the same in distribution as simple size-biased
permutation.

Our proof of Theorem 1 in Section 3 shows much more: according to Theo-
rem 5, the conclusion of Theorem 1 holds also for sampling from the size-biased
presentation of frequencies of any Gibbs(α) partition, that is, for P• derived as
the limits of relative frequencies in order of appearance of any random partition
(�n) of positive integers with the conditional distribution of �n given Kn = k that
is shared by all GEM(α, θ) partitions [37], Theorem 4.6, [21], described in more
detail in Section 2.3 below. This leads us to speculate that there is a converse to
Theorem 5: if in sampling from P• the value-ordered clusters are (size-α)-biased,
then P• is the size-biased presentation of some Gibbs(α) frequencies. But we do
not have any proof of this.

The case α = 0 of Theorem 1, due to Donnelly and Tavaré [14], was a cul-
mination of earlier work by Watterson and others ([40–42]) on random sampling
from models of limit populations in genetics with random frequencies governed
by GEM(0, θ) when listed in order of age-rank, meaning the frequencies of the
oldest, second-oldest, third-oldest, . . . alleles in the population. The age-ranked
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frequencies in these models are in size-biased random order, and the ith sample
value Xi in this setting is then the age rank in the large population of the allelic
types of the ith individual to be sampled. Thus it reasonable to study samples from
more general frequencies in size-biased order thinking of the sample value as of
the age-rank in an infinite idealized population. A natural question in this setting,
is given that the allelic composition of a sample is (n1, . . . , nk), what is the prob-
ability that a particular allele with ni representatives is the oldest in the sample?
According a result of Watterson and Guess [42], Theorem 3, under assumptions
that are known [13] to imply GEM(0, θ) frequencies by age-rank in the limit popu-
lation, the allele with ni representatives is the oldest in the sample with probability
ni/n. Theorem 5 extends this result as follows.

COROLLARY 2. In sampling from a limit population with frequencies by age-
rank which are in a size-biased random order, and distributed according either to
GEM(α, θ), or to the size-biased presentation of frequencies in a Gibbs(α) model,
the allele with ni representatives in the sample composition (n1, . . . , nk) is the
oldest in the sample with probability (ni − α)/(n − kα).

There is a combinatorial construction of the Gibbs(α) sample frequencies in
size-biased appearance order known as the Chinese restaurant process (CRP) [37],
Section 3.1. Our proof of Theorem 5 and its corollary Theorem 1 involves the
Ordered Chinese restaurant process (OCRP), which produces value-ordered sam-
ple frequencies, as considered in [27] and [20], Section 11, and discussed further
in Section 3. In comparing the prescriptions for appearance-ordered and value-
ordered frequencies in sampling from a Gibbs(α) model, while there are obvious
similarities between the two schemes, there are also subtle differences. Observe
first that if you are given both the appearance-ordered and the value-ordered fre-
quencies, by exchangeability the appearance-ordering is just a size-biased random
ordering of the value-ordered frequencies. So the value-ordered frequencies serve
as a sufficient statistic for predictions about the next sample value Xn+1. It is a
subtle point of the prediction rule given the value-ordered frequencies, spelled out
in Corollary 3 below, that the value-ordered frequencies provide no more informa-
tion than the appearance-ordered frequencies, so far as predicting whether Xn+1
will be a new value or not: all that matters is the number of existing clusters k

and the sample size n: the probability that the next observation is a new value de-
pends only on n and k, no matter what the appearance-ordered or value-ordered
frequencies of the k clusters. This is a very special property of Gibbs(α) mod-
els, closely associated with the Markov property of Kn for these models. What
is even more interesting, considering that the probability of a new value is unaf-
fected by the value-ordered frequencies, is that the value-ordered frequencies do
affect the probabilities that the new observation equals one of the clusters of pre-
vious observations, as is plain from comparison of the two formulas (19) and (25)



ORDERED AND SIZE-BIASED FREQUENCIES 1797

below. The sequential scheme for selecting a value is the same in both cases, ex-
cept that the scheme given value-ordered frequencies puts weight n1 + 1 − α on
the lowest-valued cluster and weight n − n1 − (k − 1)α on the rest, whereas the
scheme given appearance-ordered frequencies puts lesser weight n1 − α on the
first cluster to appear, and the same weight n − n1 − (k − 1)α on the rest. So the
value-ordered frequency data changes the prediction of the next observation given
it is one of those previously observed, always pushing it to be more likely to be the
lowest previous value observed n1 times, no matter what the previously observed
frequencies in value-order n1, . . . , nk .

COROLLARY 3. In sampling from the limit frequencies of any Gibbs(α) model
in size-biased order, conditionally given the number Kn of distinct values in the
sample, the event Xn+1 /∈ {X1, . . . ,Xn} of a new value at time n+1 is independent
of the value-ordered frequencies of the sample X1, . . . ,Xn. In other words, the
conditional probability of this event given value-ordered frequencies (n1, . . . , nk)

in a sample with Kn = k depends only on n and k and does not depend otherwise
on (n1, . . . , nk).

The rest of this article is organized as follows. In the next section, we introduce
the notation and recall some notions we use. In Section 3, we formulate and prove
our main result, Theorem 5, and also discuss the OCRP which produces value-
ordered sample frequencies step by step. In Section 4, we present an alternative
computational proof of Theorem 1 and also derive some consequences from the
OCRP description of Corollary 7. This allows us to reproduce well-known results
for the GEM(0, θ) model with this new approach, thus providing an additional
check for it. Finally, in the Appendices we collect some basic facts about a gener-
alization of the (size-α)-biasing procedure, and compare the value-ordering used
in this paper with the regenerative ordering of [20].

2. Background and notation.

2.1. Partitions generated by random samples. Let �n denote the random par-
tition of n generated by the sample values X1, . . . ,Xn, that is, if there are say
Kn = k distinct sample values X1, . . . ,Xn, the partition of the set [n] := {1, . . . , n}
is

(3) �n := {C1, . . . ,Ck}
with C1 := {i ≤ n : Xi = XM(1)}, where M(1) = 1 is the least element of both [n]
and C1, and if k ≥ 2 then C2 := {i ≤ n : Xi = XM(2)}, where M(2) is the least
element of both [n] \ C1 and of C2, and so on. These clusters Ci generated by the
sample, are listed here in their order of appearance. We are interested in various
orderings of these clusters. Each ordering of clusters induces a list of their sizes
in that order, which is a random sequence of strictly positive integers with sum n,
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called a random composition of n. The value of cluster Ci is the common value of
Xj for every j ∈ Ci . We are particularly concerned with:

• The cluster sizes in appearance-order: N∗•:n := (n1, . . . , nk) if cluster Cj as
above has nj members for each 1 ≤ j ≤ k.

• The clusters in value-order define a random ordered partition of [n] ([20],
Section 11, [27], Section 5.2.1)

(4) �̃n := (C̃1, . . . , C̃k) := (Cπ(1:n),Cπ(2:n), . . . ,Cπ(k:n))

for some permutation π(• : n) of [k], which encodes the additional value-order
structure. Explicitly:

(5) C̃1 :=
{
i ∈ [n] : Xi = min

j∈[n]Xj

}
and if C̃1 �= [n], then

(6) C̃2 :=
{
i ∈ [n] : i /∈ C̃1,Xi = min

j∈[n]\C̃1

Xj

}
and so on. Notice that for �̃n with Kn clusters the permutation π(• : n) of [Kn]
is encoded in the state �̃n: the inverse of π(• : n) is obtained by rearranging the
clusters (C̃1, . . . , C̃k) in order of their least elements.

• The cluster sizes in value-order: N
X↑•:n with N

X↑
i:n = #C̃i = nπ(i:n) for 1 ≤ i ≤

Kn. This is the sequence of sizes of clusters in increasing order of their common
X-values. For instance,

N
X↑
1:n is the number of j such that Xj = min

1≤i≤n
Xi,

N
X↑
Kn:n is the number of j such that Xj = max

1≤i≤n
Xi.

• The partition of n generated by the sample: N
↓•:n is the weakly decreasing

rearrangement of either N∗•:n or N
X↑•:n .

We illustrate these definitions by an adaptation of Kingman’s paintbox model
[29] for generating random partitions. Let (Ij ) be the interval partition of [0,1]
defined by

(7) I1 = (0,P1), I2 = (P1,P1 + P2), I3 = (P1 + P2,P1 + P2 + P3)

and so on. Define the sample values by Xi = j if Ui ∈ Ij where Ui is a sequence
of i.i.d. uniform[0,1] variables. In the following, display a particular realization of
the successive partial sums of probabilities P1,P1 + P2, . . . is marked by a series
of vertical bars | in a unit interval [0,1]. Then n = 6 sample points Ui picked from
[0,1] landed between the bars as indicated:

(8)
[
0︸ ︷︷ ︸

1

| ︸ ︷︷ ︸
2

|U6 U5︸ ︷︷ ︸
3

| ︸ ︷︷ ︸
4

| U3︸︷︷︸
5

| ︸ ︷︷ ︸
6

| ︸ ︷︷ ︸
7

|U2 U1 U4︸ ︷︷ ︸
8

| ︸︷︷︸
9 . . .

|||||| . . .1
]

Regarding the bars as separators between interval boxes with labels 1,2,3, . . .

shown under the braces, various quantities under consideration are in this in-
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stance:

• the sample from P• is (X1, . . . ,X6) = (8,8,5,8,3,3);
• the partition of [6] is �6 = {{1,2,4}, {3}, {5,6}};
• the clusters in appearance-order are (C1,C2,C3) = ({1,2,4}, {3}, {5,6});
• the cluster sizes in appearance-order are N∗•:6 = (3,1,2);
• the clusters in value-order are (C̃1, C̃2, C̃3) = (C3,C2,C1) = ({5,6}, {3},

{1,2,4});
• the cluster sizes in value-order are N

X↑
•:6 = (2,1,3), corresponding to num-

bers of repeated values in the increasing rearrangement (3,3,5,8,8,8) of the
sample;

• the partition of 6 defined by the cluster sizes is N
↓
•:6 = (3,2,1).

For any partition {C1, . . . ,Ck} of [n], the probability of the basic event (3) that
this particular partition is generated by an exchangeable sample X1, . . . ,Xn de-
pends just on cluster sizes ni = #Ci , so defines a function p(n1, . . . , nk) of com-
positions (n1, . . . , nk) of n. Following [37], Section 2.2, this function of compo-
sitions of n is called the exchangeable partition probability function (EPPF) of
�n. For each fixed k, the EPPF is a symmetric function of k positive integer ar-
guments. As n varies, the EPPF satisfies an addition rule [37], (2.9), reflecting the
consistency property of the random partitions, that �m is the restriction to [m] of
�n for each m < n. However, one can also consider the EPPF for a fixed n, as we
do in Lemmas 10 and 11 in Appendix A.

Similarly, for an ordered partition (C1, . . . ,Ck) of [n] in some order, with
ni = #Ci , the probability p̃(n1, . . . , nk) of the event that this particular ordered
partition is obtained by some ordered partition construction from an exchangeable
sample is called an ordered exchangeable partition probability function (OEPPF).
This function may no longer be symmetric in (n1, . . . , nk). The term exchangeable
means only that the probability of achieving the ordered partition (C1, . . . ,Ck)

depends only on sizes (n1, . . . , nk) of clusters of the partition. As n varies, the
OEPPF will also satisfy some consistency relations; see [20], equations (2), (3).

It is a well-known consequence of exchangeability of �n, that no matter what
P•
(9) N∗•:n is a size-biased random permutation of N

↓•:n, as well as of N
X↑•:n .

As the sample size n → ∞, it follows easily from the strong law of large num-
bers and (9) that no matter what the distribution of P•, there is the almost sure
convergence of relative cluster sizes

(10) n−1NX↑•:n → P• and n−1N∗•:n → P ∗• almost surely,

where P ∗• is a size-biased random permutation of P•. Consequently,

(11) if P• is in a size-biased random order, then P• d= P ∗• .

Such a random discrete distribution P• is said to be invariant under size-biased
permutation (ISBP). This condition plays a central role in the theory of partitions
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generated by random sampling, for a number of reasons. One reason is that if P•
is ISBP, there is a simple general formula [34], [37], (3.4), for the probability of
the basic event (3) for any particular partition {C1, . . . ,Ck} of [n], in terms of
multivariate moments of P•. Another reason is that distributions that are ISBP are
precisely the distributions of frequencies of species in appearance-order in any
exchangeable species sampling model with proper frequencies [37]. Especially
in contexts where there is no a priori natural ordering of frequencies by positive
integers, for instance in the setting of population genetics where different alleles
might be identified only by some biochemical tag, or in the theory of interval
partitions generated by the zeros of stochastic processes [37], one may as well use
the size-biased ordering whenever that is tractable, because of its close connection
to partition probabilities.

2.2. Pseudo-size biased random order. It was mentioned in the Introduction
that the value-ordering of clusters of �n involves the procedure of (size-α)-biased
random permutation of component sizes. We treat the (size-α)-biased permutation
an instance of a more general notion of an s-biased permutation [32], where s is
some strictly positive function of a cluster size called pseudo-size. For a partition
�n = {C1, . . . ,Ck} of [n], with #Ci = ni for i ∈ [k], and such a function s, an
s-biased pick is a randomly chosen cluster of �n, which given �n equals cluster
Ci with probability s(ni)/(s(n1)+ · · ·+ s(nk)). An s-biased permutation is a ran-
dom permutation of clusters in order of an exhaustive process of sampling without
replacement by a sequence of s-biased picks. The usual size-biased permutation
of �n is just its s-biased permutation for the choice of the pseudo-size s(m) := m

to be just the ordinary size.
With the pseudo-size function s, we associate the probability

(12) s̃(n1, . . . , nk) :=
k∏

i=1

s(ni)

s(ni) + · · · + s(nk)

that an ordered collection of clusters (C1, . . . ,Ck) of sizes (n1, . . . , nk) stays ex-
actly in the same order after s-biased permutation. Notice that this is not the prob-
ability that after s-biased permutation of clusters their sizes will be (n1, . . . , nk).
That probability is s̃(n1, . . . , nk) multiplied by an appropriate combinatorial coef-
ficient. We shall need the following result which we prove in Appendix A.

LEMMA 4. Let �n be an exchangeable random partition of [n] with EPPF p.
Consider a strictly positive size function s(m) of positive integers m ≤ n, and as-
sociate with it a function s̃ of compositions of n as in (12).

(i) If N•:n is a listing of sizes of clusters of an s-biased permutation of �n,
then the probability function of N•:n on compositions of n is

(13) P
[
N•:n = (n1, . . . , nk)

] =
(

n

n1, . . . , nk

)
s̃(n1, . . . , nk)p(n1, . . . , nk).
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(ii) Conversely, if the probability function of a random composition N•:n is
given by (13) for all compositions of n, for some symmetric function p of com-
positions, then p is an EPPF, and N•:n has the same distribution as an s-biased
random ordering of component sizes of �n with EPPF p.

2.3. Gibbs’ partitions. We are particularly interested in the EPPFs which can
be represented in the Gibbs’ form

(14) p(n1, . . . , nk) = Vk:n
k∏

i=1

w(ni), where n =
k∑

i=1

ni,

for some positive weights Vk:n, 1 ≤ k ≤ n and w(1),w(2), . . . . It is known [37],
Theorem 4.6, [21] that the only EPPFs of this form which are produced by sam-
pling from some frequencies Pj that are strictly positive for all j are those obtained
by taking

(15) w(n) = (1 − α)n−1 for some 0 ≤ α < 1,

with (x)n := �(x + n)/�(x) the rising factorial. For such weights w(·), it is easy
to see [21] that Vk:n must satisfy the consistency relation

(16) Vk:n = (n − kα)Vk:n+1 + Vk+1:n+1 (1 ≤ k ≤ n < ∞).

Following [21], Definition 3, we call an exchangeable partition of positive integers
with EPPF of form (14) with w weights given by (15) and V weights subject
to (16) a Gibbs (α) partition. For a given α ∈ [0,1), the collection of all arrays
of nonnegative weights Vk:n satisfying (16) is a convex set [37], Theorem 4.6,
[21]. For each α, there is a one-parameter family of extreme weights. These are
indexed by θ ≥ 0 for α = 0, and 0 < α < 1 by another parameter � ≥ 0, called the
α-diversity of the associated random partition in [37]. In both cases, by general
convex analysis, every consistent family of weights Vk:n admits a unique integral
representation over this one-parameter family of extreme weight arrays.

For each α ∈ [0,1) and θ > −α, there is the distinguished family of weights

(17) Vk:n(α, θ) := 1

(1 + θ)n−1

k−1∏
i=1

(θ + iα).

It is easily checked that (16) holds for these special weights Vk:n = Vk:n(α, θ), so
(17) provides an instance of Gibbs(α) exchangeable partition. It is known [28] that
such Vk:n are the only weights of form Vk/cn for some positive sequences V• and
c•, and that the weights (17) produce the EPPF of a random partition of positive
integers whose frequencies in order of appearance have the GEM(α, θ) distribution
described in the Introduction [37].

Gibbs partitions were introduced in [36] and further developed in [21], and re-
ceived much attention in recent probabilistic and statistical literature. A wide range
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of Gibbs EPPF in terms of special functions can be found in [26]. Not trying to
provide a full review of the literature, we mention papers [3–7, 11, 16, 30] which
deal with various statistical applications of Gibbs-type priors. Interpretations of
Gibbs’ partitions in terms of records were developed in [24]. Some features of the
construction we use in Section 4 are interpreted in terms of Bayesian inference for
species sampling in [31] and [2].

2.4. The Chinese restaurant process. The Chinese restaurant process (CRP)
[37], Section 3.1, provides an intuitive expression of various notions in sampling
from random discrete distributions, with its metaphorical customers arriving to be
seated at tables in the restaurant, with interpretations in various contexts, of

• customers corresponding to individuals/tokens/elements;
• tables corresponding to values/alleles/species/types/cycles/clusters/blocks/

intervals.

In the basic CRP as described in [37], Section 3.1, an exchangeable random parti-
tion of positive integers is constructed sequentially. Starting from a first customer
assigned to table 1, after n customers have been assigned to some k tables labeled
by 1,2, . . . , k in appearance-order, with say ni customers seated at table i, for
1 ≤ i ≤ k, there is a probabilistic rule for assigning customer n + 1 either to one
of the k tables already occupied or to a new table. In the ecological context of
species sampling, the customers are individuals and assigning a new customer to
one of previously occupied tables corresponds to observing an individual of some
previously seen species, while introducing a new table corresponds to sampling an
individual of some species previously unseen. In this basic CRP, the relative fre-
quencies of customers occupying the tables in order of appearance converge back
to P ∗• , the size-biased permutation of population frequencies, as in (10).

In the context of Gibbs(α) partitions with EPPF (14), given appearance-ordered
frequencies (n1, . . . , nk) in a sample of size n, the appearance-ordered frequencies
in a sample of size n + 1 are obtained by:

• either adding the frequency nk+1 = 1 (discovering a new species) with prob-
ability

(18) pk:n := p(n1, . . . , nk,1)

p(n1, . . . , nk)
= Vk+1:n+1

Vk:n
(1 ≤ k ≤ n);

• or, for some i ∈ [k], incrementing ni by 1 (new observation is the ith species
in order of appearance) with probability

p(n1, . . . , ni + 1, . . . , nk)

p(n1, . . . , nk)
= (1 − pk:n)

ni − α

n − kα
(19)

= (1 − pk:n)hα(ni, . . . , nk)

i−1∏
j=1

[
1 − hα(nj , . . . , nk)

]
,
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where for a composition (n1, . . . , nk) of n

(20) hα(n1, . . . , nk) := n1 − α

n1 − α + · · · + nk − α
= n1 − α

n − kα

is the probability of choosing the first cluster in a (size-α)-biased pick from k

distinct clusters of sizes n1, . . . , nk .

The consistency relation (16) ensures that these probabilities sum to 1. The sec-
ond, product form in (19) emphasizes the idea that a single cluster can be chosen
from the existing clusters of sizes (n1, . . . , nk), in a (size-α)-biased fashion, by a
succession of (size-α)-biased choices, the first to decide if it is the first cluster or
not, if not whether it is the second cluster, and so on. In particular, for GEM(α, θ)

frequencies defined by (17) one has

(21) pk:n = θ + kα

θ + n
and

p(n1, . . . , ni + 1, . . . , nk)

p(n1, . . . , nk)
= ni − α

θ + n
.

Applying this procedure step by step leads to appearance-ordered tables, with rel-
ative frequencies converging to size-biased permutation of the Gibbs(α) probabil-
ities, as in (10), which have the same distribution as the original frequencies just
in the ISBP GEM(α, θ) case.

3. Main results. Our central result is the following more refined version of
Theorem 1.

THEOREM 5. Fix 0 ≤ α < 1. Suppose that X1, . . . ,Xn is a random sample
from P• which is the size-biased presentation of limit frequencies of a Gibbs(α)

partition of positive integers. Let p be the EPPF, as in (14)–(15), corresponding to
(17) for P• with GEM(α, θ) distribution. Then the composition probability function
of N

X↑•:n , the sequence of sizes of clusters of X-values in increasing order of those
values, is given by the formula

P
[
NX↑•:n = (n1, . . . , nk)

] =
(

n

n1, . . . , nk

)(
k∏

i=1

ni − α

ni − α + · · · + nk − α

)

× p(n1, . . . , nk)

(22)

for each composition (n1, . . . , nk) of n. Moreover,

(23) N
X↑•:n is a (size-α)-biased permutation of N∗•:n,

where the composition probability function of N∗•:n is given by the right-hand side
of (22) with the (size-α)-biasing product replaced by the ordinary size-biasing
product with every α replaced by 0, as in the known formula (48).

Our proof of this result makes use of the following key lemma.
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LEMMA 6 ([38], Proposition 3.1). Consider an exchangeable random parti-
tion �∞ := (�n) of the set N of positive integers, with proper frequencies, mean-
ing that all clusters of �∞ are infinite almost surely. Fix n ≥ 1. Let C1 be the
cluster of �∞ containing n + 1, and for k ≥ 1, given that

⋃k
i=1 Ci �= N, let Ck+1

be the cluster of �∞ containing the least m > n + 1 with m /∈ ⋃k
i=1 Ci . Define

P• by setting Pk equal to the almost sure limiting relative frequency of Ck , and let
Xi := j iff i ∈ Cj . Then:

• P• is a size-biased ordering of frequencies of �∞;
• (X1, . . . ,Xn) is a sample of size n from P•;
• the partition of [n] generated by (X1, . . . ,Xn) is �n.

This key lemma has a “now you see it, now you don’t” quality, depending on
what metaphor is used for the intuitive description of �∞. Here is one way to see
that the construction works. Regard the exchangeable partition �∞ as being gen-
erated by Kingman’s paintbox construction, using random frequencies to create an
interval partition of [0,1] into component intervals whose lengths in size-biased
random order have the required distribution of P•. Let U be a sequence of i.i.d.
uniform [0,1] random variables independent of the interval partition, and let �∞
be the random partition of N whose clusters are the equivalence classes for the
random equivalence relation i ∼ j iff either i = j or Ui and Uj fall in the same
component of the interval partition. Use the order in which Un+1,Un+2, . . . dis-
cover the component intervals to label them by 1,2, . . . , and define P• by this
labeling of interval lengths. Finally, let Xi for i ∈ [n] be the numerical label of the
interval component containing Ui . Then the conclusions of the lemma should be
intuitively clear.

Our proof of Theorem 5 will be expressed in terms of another metaphor for
exchangeable random partitions, the Chinese restaurant construction of �∞. Call
the first n customers to enter the restaurant the primary customers and customers
n + 1, n + 2, . . . the secondary customers. Then C1, C2, . . . is the list of clusters
of �∞ in order of their discovery by secondary customers, and P• is the listing
of frequencies of these clusters of �∞ in that order of discovery by secondary
customers. Compared to the usual listing of clusters in order of appearance, this is
just a relabeling of tables. Each table in the restaurant is assigned a new label, with
label 1 for the table at which customer n + 1 is seated, label 2 for the next table
discovered by one of the secondary customers, and so on. By some almost surely
finite random time, the first Kn tables at which the primary customers were seated
will all have been discovered by secondary customers. At that random time, the
values X1, . . . ,Xn are assigned to the primary customers, with Xi = j if customer
i is seated at the j th table in order of discovery by the secondary customers. With
this metaphor, the fact that X1, . . . ,Xn generates �n, the partition of [n] defined
by the original seating plan in the Chinese restaurant, is completely obvious. That
X1, . . . ,Xn is a sample of size n from P• is less obvious, but nonetheless true.
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PROOF OF THEOREM 5. It is enough to show (23) for any particular represen-
tation of a sample X1, . . . ,Xn from P•. For this purpose, we take X1, . . . ,Xn to be
constructed as in Lemma 6, and use the Chinese restaurant metaphor. According
to (19), in a Gibbs(α) CRP at any stage m > n in the process of rediscovery of
the initial tables by secondary customers, given that N∗•:n = (n1, . . . , nk) say, and
given that up to stage m some nonempty subset of tables S ⊆ [k] remains undis-
covered, and given also that individual m+1 sits at one of these tables, that table is
table i ∈ S with probability (ni − α)/

∑
s∈S(ns − α). That is just a (size-α)-biased

assignment of customer m + 1 to one of the remaining tables. The conditional dis-
tribution of N

X↑•:n given N∗•:n = (n1, . . . , nk) is therefore that of a (size-α)-biased
random permutation of (n1, . . . , nk). This proves (23), and the sampling formula
(22) is read from Lemma 4. �

The simplicity of these descriptions of value-ordered frequencies in sampling
from GEM(α, θ), and Gibbs(α) models in general, suggests there should be
some embellishment of the CRP generating appearance-ordered frequencies as de-
scribed in Section 2.4, in which both the appearance-order and value-order of the
sample are generated sequentially, in an entirely combinatorial way, that is distri-
butionally equivalent to the model of sampling from an infinite list of frequencies.
Such additional structure of sampling in an environment with totally ordered clus-
ters, treated in [13, 20, 22], and developed here in Corollary 7, is well accommo-
dated by an ordered Chinese restaurant process (OCRP). This is the usual CRP,
with a sequentially developing total order of tables, as proposed in [27]. Here, the
order of tables is taken to be the value-order, although any other order of tables
can be treated in a similar fashion. It is assumed inductively that after n customers
have arrived they are seated at some k tables which are placed from left to right
by order of values in the sample, and a new customer is seated either to some pre-
viously occupied table or to a new table which is placed in one of k + 1 possible
places relative to the old tables. Technically, the state of the restaurant after n cus-
tomers have been seated represents an ordered partition of the set of n customers
labeled by [n]. Customer n + 1 arrives with a value Xn+1 and occupies the table
where previous customers with the same value were seated, if any, or a new ta-
ble if this value appears for the first time, and this new table is placed between
tables with lower and higher values than Xn+1, or at the appropriate end of the
line of tables if the value Xn+1 is extreme compared to the values of previous cus-
tomers. Implicit then in the state is the ordering of tables by appearance which can
be restored by sorting the tables in order of the least customer number. If just the
value-ordered frequencies of the occupied tables are given instead of the ordered
partition of the set [n], then this information is lost. But due to exchangeability, the
conditional distribution of the appearance order given value-ordered frequencies is
a size-biased permutation of these frequencies.

It turns out that the above procedure specialized to Gibbs(α) partitions with
value-ordered frequencies can be described in a way quite similar to the basic CRP
explained in Section 2.4. We summarize it in the following corollary of Theorem 5.
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COROLLARY 7. In sampling from the limit frequencies of any Gibbs(α) model
in size-biased order, with associated discovery probabilities pk:n as in (18), the
sequential development of value-ordered sampling frequencies is as follows. Given
frequencies (n1, . . . , nk) in value-order in a sample of size n, the value-ordered
frequencies in the sample of size n + 1 are obtained by:

• either, for some j ∈ [k + 1], putting a 1 into (n1, . . . , nk) at the j th of
k + 1 possible places (new value not present previously and of rank j in the
updated value order), to create frequencies (1, n1, . . . , nk), (n1,1, . . . , nk), . . . ,
(n1, . . . , nk,1) as the case may be, with probabilities

(24) pk:nhα(1, nj , . . . , nk)

j−1∏
i=1

[
1 − hα(1, ni, . . . , nk)

];
• or, for some j ∈ [k], incrementing nj by 1 (new value of rank j both in the

previous and in the updated value ordering) with probabilities

(25) (1 − pk:n)hα(nj + 1, nj+1, . . . , nk)

j−1∏
i=1

[
1 − hα(ni + 1, ni+1, . . . , nk)

]
for hα(n1, . . . , nm) := (n1 − α)/(n1 − α + · · · + nm − α) as in (20).

This corollary is much simpler than similar descriptions of the development
of value-ordered sampling frequencies for a RAM with i.i.d. factors provided
by Gnedin and Pitman [20] and James [27], even in the case of sampling from
GEM(0, θ), when it can be checked that Corollary 7 is consistent with results in
these sources. What is remarkable and unexpected about these results is that it
seems extremely difficult to provide any comparably simple descriptions of the
value-ordered frequencies in sampling from a more general RAM with indepen-
dent but not identically distributed factors. Our arguments make essential use of
both the assumed size-biased order of the Gibbs(α) frequencies, and the sequen-
tial description of Gibbs(α) sampling frequencies in appearance order, discussed
above.

PROOF OF COROLLARY 7. Suppose that after n ≥ 1 steps of the OCRP the
value-ordered frequencies are (n1, . . . , nk), with n = ∑k

i=1 ni . Given that event,
according to (22) and Lemmas 11 and 4 the probability that a new customer occu-
pies some new table which is placed in j th of k + 1 possible positions is

p̃(n1, . . . , nj−1,1, nj , . . . , nk)

p̃(n1, . . . , nk)
= s̃(n1, . . . , nj−1,1, nj , . . . , nk)

s̃(n1, . . . , nk)

Vk+1:n+1

Vk:n
for s̃ associated with the pseudo-size function s(n) = n − α as in (12), where the
second fraction on the right is the ratio of EPPFs (14), because products of w

weights (15) cancel. By (18), this second fraction is exactly pk:n for the Gibbs(α)
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partitions. Hence it remains to notice that the ratio of s̃ functions can be written
down in the stick-breaking form (24).

Similarly, given the frequencies (n1, . . . , nk) in value-order after n steps, a new
customer is seated at the existing table j with probability

p̂(n1, . . . , nj + 1, . . . , nk)

p̂(n1, . . . , nk)
= s̃(n1, . . . , nj + 1, . . . , nk)

s̃(n1, . . . , nk)

Vk:n+1w(nj + 1)

Vk:nw(nj )
.

From (15), (16), (18) and (12), it follows that
Vk:n+1w(nj + 1)

Vk:nw(nj )
= nj − α

n − kα
(1 − pk:n),

s̃(n1, . . . , nj + 1, . . . , nk)

s̃(n1, . . . , nk)
= nj + 1 − α

nj − α

j∏
i=1

ni − α + · · · + nk − α

ni − α + · · · + nk − α + 1

and the stick-breaking representation (25) is just a rearrangement of the product of
the right-hand sides above. �

Two comments on the above argument include:
• Once the Bayes ratios have been calculated as indicated, the conditional in-

dependence asserted in Corollary 3 is obvious by inspection of the formulas. But
this conditional independence does not seem at all obvious otherwise. Especially
because the Bayes calculations show that the value-ordered frequencies do affect
the probabilities of adding to old clusters, it does not seem at all clear why they
might not also affect the probability of discovering a new species, in some way
more complex than just through the total number of clusters. Even for sampling
from GEM(0, θ) this does not seem obvious.

• The elementary algebra of cancellation in the Bayes’ calculations used to
prove Corollary 7 can be easily used to show that the OCRP defined by that Corol-
lary 7 gives an ordered exchangeable partition of positive integers, without any as-
sumption that it is derived by the value-orders in successive sampling. In view of
the general representation theorem for such an exchangeable OCRP due to Gnedin
[22], it follows that this OCRP must in fact be derived from value-order generated
by some exchangeable sequence X1,X2, . . . , which is a sample from some random
discrete distribution F on the line, whose size-biased atoms have the Gibbs(α)

distribution determined by the discovery probabilities, because the distribution of
partitions of n is built into the dynamics of the restaurant. Even for GEM(α, θ) it
seems far from obvious from this approach why the atoms of F are simply those of
Gibbs(α) in their usual order, which is at the heart of what Theorems 1 and 5 are
saying. But this approach might be used in combination with some other means of
identifying F to provide an alternate proof of Theorem 1.

4. Related calculations.

4.1. Inductive proof of Theorem 1. For a general RAM, a decomposition over
the minimal value m of the sample, which is repeated n1 times if the value-ordered
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counts are (n1, . . . , nk), leads to the following recursive formula:1 for k ≥ 2,

P
[
NX↑•:n = (n1, . . . , nk)

] =
(

n

n1

) ∞∑
m=1

E

[
Hn1

m (1 − Hm)n−n1

m−1∏
i=1

(1 − Hi)
n

]

× P
(m)[NX↑•:n = (n2, . . . , nk)

]
,

(26)

where P
(m) refers to the probability in a generally different RAM, that is one gen-

erated by (Hm+1,Hm+2, . . . ) instead of (H1,H2, . . . ) in (1). So only for RAMs
with i.i.d. factors Hi , this is indeed a recursion, but for GEM(α, θ) (26) connects
the probabilities of value-ordered counts for different parameters:

Pα,θ

[
NX↑•:n = (n1, . . . , nk)

] =
(

n

n1

) ∞∑
m=1

E

[
Hn1

m (1 − Hm)n−n1

m−1∏
i=1

(1 − Hi)
n

]

× Pα,θ+mα

[
NX↑•:n = (n2, . . . , nk)

]
.

(27)

This leads to a direct proof of Theorem 1 by induction on the number k of distinct
values in the sample, which is outlined below.

We need to show that, with n = n1 + · · · + nk ,

Pα,θ

[
NX↑•:n = (n1, . . . , nk)

]
= n!( θ

α
+ 1)k−1α

k−1

(θ + 1)n−1

k∏
�=1

(1 − α)n�

n�!(n� + · · · + nk − (k − � + 1)α)

(28)

which is (22) for the GEM(α, θ) EPPF p given by (14) with w weights (15) and V

weights (17). Comparing it to the well-known formula [37], (3.6),

(29) Pα,θ

[
N∗•:n = (n1, . . . , nk)

] = n!( θ
α

+ 1)k−1α
k−1

(θ + 1)n−1

k∏
�=1

(1 − α)n�−1

n�!
shows that N

X↑•:n is a (size-α)-biased permutation of N∗•:n.
In order to evaluate (27), note that

(30) Eα,θH
r
i (1 − Hi)

s = B(1 − α + r, θ + iα + s)

B(1 − α, θ + iα)
= (1 − α)r(θ + iα)s

(θ + (i − 1)α + 1)r+s

.

For samples with just one value repeated n times, it is well known and easy to
calculate using (30) that

Pα,θ

[
NX↑•:n = (n)

] =
∞∑

m=1

Eα,θP
n
m

=
∞∑

m=1

Eα,θH
n
m

m−1∏
i=1

Eα,θ (1 − Hi)
n

1We thank the anonymous referee for this observation.
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=
∞∑

m=1

(1 − α)n

(θ + (m − 1)α + 1)n

m−1∏
i=1

(θ + iα)n

(θ + (i − 1)α + 1)n

= (1 − α)n

(θ + 1)n

∞∑
m=1

m−1∏
i=1

θ + iα

θ + iα + n
.

The sum in the last line is the evaluation of the hypergeometric function
2F1(1, θ+α

α
; θ+α+n

α
;1), and since for b > a + 1 one has [43], Section 14.11,

(31)
∞∑

j=0

(a)j

(b)j
= 2F1(1, a;b;1) = b − 1

b − a − 1

it finally gives

(32) Pα,θ

[
NX↑•:n = (n)

] = (1 − α)n−1

(θ + 1)n−1

in accordance with (28). This is the induction base.
Now suppose that (28) is true for some k and check that it is also true with

k + 1 instead of k. Let n = n1 + · · · + nk+1, then by (27), (30) and the induction
assumption (28)

Pα,θ

[
NX↑•:n = (n1, . . . , nk+1)

]
=

(
n

n1

) ∞∑
m=1

E

[
Hn1

m (1 − Hm)n−n1

m−1∏
i=1

(1 − Hi)
n

]

× Pα,θ+mα

[
N

X↑
•:n−n1

= (n2, . . . , nk)
]

= n!
n1!

∞∑
m=1

(1 − α)n1(θ + mα)n−n1

(θ + (m − 1)α + 1)n

m−1∏
i=1

(θ + iα)n

(θ + (i − 1)α + 1)n

× ( θ+mα
α

+ 1)k−1α
k−1

(θ + mα + 1)n−n1−1

k+1∏
�=2

(1 − α)n�

n�!(n� + · · · + nk+1 − (k − � + 2)α)

= n!(n − (k + 1)α)αk

(θ + 1)n

k+1∏
�=1

(1 − α)n�

n�!(n� + · · · + nk+1 − (k − � + 2)α)

×
∞∑

m=1

( θ
α

+ 1)k+m−1

( θ+n
α

+ 1)m−1
.

Writing ( θ
α

+1)k+m−1 = ( θ
α

+1)k(
θ
α

+k+1)m−1 and using (31) allows to calculate
∞∑

m=1

( θ
α

+ 1)k+m−1

( θ+n
α

+ 1)m−1
=

(
θ
α

+ 1
)

k

θ + n

n − (k + 1)α

which gives (28) with k replaced by k + 1, as desired.
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4.2. Some checks on Corollary 7. As the result of Corollary 7 is a new and not
obvious property of Gibbs(α) partitions, even in the heavily studied case α = 0 of
a GEM(0, θ) partition, this section offers some checks on the result by different
approaches. We are able to do this for α = 0, but providing any significant checks
on the result for 0 < α < 1 remains a challenging problem.

We start with some general identity in distribution which is a consequence of
Lemma 6. Let (X1,X2, . . . ) be a sample from random discrete distribution P•,
and consider the sequence of indicators �n and Ln where �n := Kn −Kn−1 is the
indicator of discovery of a new value at step n, and Ln is the indicator of placement
at the extreme left, that is, the new value is less than all previous values. Obviously,
0 ≤ Ln ≤ �n.

Let the new values be discovered in the random times

(33) {1 = M1 < M2 < · · · } := {n ≥ 1 : �n = 1}.
Let X be the index in this sequence of the time value 1 first appears in the sample,
that is,

(34) MX = min{m : Xm = 1}.
COROLLARY 8. Suppose that frequencies P• are in size-biased random order.

Then X has the same distribution as the first sample X1.

PROOF. We can think of sampling from any realization of frequencies P•.
Consider Kingman’s paintbox construction of Section 2.1 and suppose that U1 hits
some interval I . Take P• as in Lemma 6 with n = 1, then they are in size-biased
random order, and X1 as defined in the lemma is the number of clusters in �∞
restricted to {2, . . . ,L}, where L is the random time when the sequence U2,U3, . . .

hits I . On the other hand, suppose that M1,M2, . . . and X are produced from the

sample from P ∗•
d= P•, where P ∗

1 is the size-biased pick defined as the length of I .
Then the order of other frequencies of P ∗• is irrelevant to the definition of X, and
X = X1 almost surely, hence the result. �

For the Gibbs(α) partition, Corollary 7 gives us a very different way to compute
the law of X.

COROLLARY 9. For the Gibbs(α) partition generated by a sample X1,X2, . . .

from Gibbs(α) frequencies P• in size-biased order, let

pα(n, k) := 1 − α

n − kα
= P(Ln = 1 | Mk = n) = P

(
Xn = min

1≤i≤n
Xi

∣∣ Mk = n
)

which is the common conditional probability in every such Gibbs(α) model that a
new minimal value is discovered at time n, given that the kth new value is discov-
ered at time n. Then for each k = 1,2, . . .

(35) E(Pk) = P(X = k) = E

[
pα(Mk, k)

∞∏
j=k+1

(
1 − pα(Mj , j)

)]
.
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PROOF. The value of the common conditional probability declared above is
read from Corollary 7, with n instead of n + 1 and k − 1 instead of k, as is the
fact that given the entire sequence M1,M2, . . . the events of new minima at these
times are conditionally independent with probabilities pα(Mj , j) for j ≥ 1. The
event (X = k) is the event that the kth new value to occur in the sample is minimal
value of the whole sample, so all new values discovered later are not minimal. The
second equality in (35) follows by conditioning on this sequence. The first equality
in (35) is Corollary 8. �

It is hard to imagine how this formula (35) could be checked in any other way for
a general Gibbs(α) partition, though Griffiths and Spanò [24] offer a deep study of
the sequence (M1,M2, . . .) derived from a Gibbs(α) partition which might provide
an alternate approach. For GEM(α, θ), there is at least a simple product formula
for Eα,θPk . But the expected product seems very difficult to check, because there
is no independence to work with. For GEM(0, θ), the product is quite manageable,
however. Then it is well known [1] that the indicators �n are independent, with
P0,θ (�n = 1) = θ/(θ + n − 1) for n ≥ 1. It follows easily that for k ≥ 1 the P0,θ

distribution of Mk is given by the formula

(36) P0,θ (Mk = n) = Cn−1,k−1θ
k/(θ)n, n ≥ 1,

where Cn,k = (−1)n+kSn,k is the unsigned Stirling number of the first kind giving
the number of permutations of [n] with k cycles. We observe that the evaluation,
with (x)r := �(x + r)/�(x),

(37) E0,θ

[
1

(Mk + θ)r

]
= θk−1

(θ + r)k(θ + 1)r−1
, r > −θ,

is an elementary consequence of the fact that these probabilities in (36) sum to 1
for each θ > 0. This neat formula for inverse Pochhammer moments of Mk does
not seem to be well known. We only noticed it after needing the case r = 1 to
complete the check indicated below.

For α = 0, the probability p0(n, k) = 1/n does not depend on k, and the identity
(35) reduces easily to

(38)
θk−1

(1 + θ)k
= E0,θ

[
1

Mk

∞∏
m=Mk+1

(
1 − �m

m

)]
.

Using independence of the �n, we can compute

E0,θ

[ ∞∏
m=Mk+1

(
1 − �m

m

) ∣∣∣ Mk = n

]
= E0,θ

[ ∞∏
m=n+1

(
1 − �m

m

)]

=
∞∏

m=n+1

(
1 − θ

(θ + m − 1)m

)

= n

n + θ

(39)
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by the factorization

1 − θ

(θ + m − 1)m
= (m − 1)

m

(m + θ)

m − 1 + θ

which telescopes the product. Plugging this into (38) reduces it to (37) for r = 1.
In the same vein, conditioning on P1 gives access to MX = min{n ≥ 1 :

Xn = 1} = max{n : Ln = 1}:
Pα,θ (MX > n) = Eα,θ (1 − P1)

n = (α + θ)n

(1 + θ)n

which reduces to θ/(θ + n) for α = 0. In that case, differencing gives

(40) P0,θ (MX = n) = θ

(θ + n)(θ + n − 1)
.

On the other hand, from the description with Ln, the usual (0, θ) restaurant model,
and the fact mentioned above that if the nth customer goes to a new table, this table
is placed to the extreme left with probability 1/n,

P0,θ (MX = n) = P0,θ (�n = 1,Ln = 1,Lm = 0 for all m > n)

= θ

(n − 1 + θ)

1

n

∞∏
�=n+1

(
1 − θ

(� − 1 + θ)

1

�

)
,

(41)

and this is again a telescoping product which reduces to (40). It is not obvious how
to perform the same check for general α, because the �n are no longer indepen-
dent.

APPENDIX A: PSEUDO-SIZE-BIASED ORDERINGS

We need to extend a well-known notion of a size-biased permutation of a finite
or countably infinite index set I , or of a collection of clusters or components of
some kind Ci, i ∈ I that is indexed by I , for some notion of sizes s(Ci) of the
clusters involved [12, 35]. Typically, s(Ci) is some kind of measure of Ci . But
other pseudo-size functions s may also be considered, subject to the requirements
that s(Ci) > 0 for all i and that 	 := ∑

i s(Ci) < ∞, which need only be met
almost surely. Given some collection of random components (Ci, i ∈ I ), and a
pseudo-size function s, an s-biased pick from these components is Cπ(1), where
π(1) ∈ I is a random index with

(42) P
(
π(1) = h | Ci, i ∈ I

) = s(Ch)/	 (h ∈ I ).

An s-biased random permutation of (Ci, i ∈ I ) is an exhaustive random indexing
of components Cπ(j) defined by a sequence of s-biased picks without replacement
from these components, indexed by j ∈ [k] if there are a finite number k of compo-
nents, or by j ∈ N if there are an infinite number of them. So, conditionally given
(Ci, i ∈ I ):
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• Cπ(1) is an s-biased pick from (Ci, i ∈ I );
• given also π(1) and there is more than one component, π(2) is an s-biased

pick from (Ci, i ∈ I \ {π(1)});
• given also π(2) and there are more than two components, π(3) is an s-biased

pick from (Ci, i ∈ I \ {π(1),π(2)}), and so on.

By a size-biased permutation, one usually means the s-biased permutation as de-
fined above, for the specific choice of the size function s(Ci) equal to the number
of elements for a finite set Ci , or some measure such as length for infinite sets Ci

like intervals.
Intuitively, think in terms of a bag of balls Ci with pseudo-sizes s(Ci) reflecting

the ease with which they are drawn relative to other balls. Then a s-biased random
permutation of the Ci is a listing of the balls in the order they are drawn in an
exhaustive process of sampling without replacement.

We need this notion just for components which are blocks of a random set par-
tition. If the pseudo-size function depends just on the size of a component, then
the pseudo-size-biased permutation of an exchangeable random set partition will
be an exchangeable ordered set partition. The following lemma presents some ele-
mentary facts about this construction for a general pseudo-size function depending
just on the real size.

LEMMA 10. Let s be a strictly positive function of positive integers m ≤ n, for
some fixed n. As in (12), define an associated function of compositions of n by

(43) s̃(n1, . . . , nk) :=
k∏

i=1

s(ni)

s(ni) + · · · + s(nk)
.

Suppose that (n1, . . . , nk) is the list of ordinary sizes of components (C1, . . . ,Ck)

of a fixed ordered partition of [n]. Let (Cπ(1), . . . ,Cπ(k)) be an s-biased random
permutation of (C1, . . . ,Ck), for Ci assigned pseudo-size s(#Ci) = s(ni). Then:

(i) (nπ(1), . . . , nπ(k)) is an s-biased random permutation of (n1, . . . , nk).
(ii) For π the random permutation of [k] so defined, (43) gives the probability

that π is the identity, meaning the components are selected in their original order.
(iii) For each σ in the set Sk of all permutations of [k],

(44) P(π = σ) = s̃(nσ(1), . . . , nσ(k)).

(iv) For every composition (n1, . . . , nk) and every pseudo-size function s, there
is the identity

(45)
∑

σ∈Sk

s̃(nσ(1), . . . , nσ(k)) = 1.
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PROOF. Part (i) follows easily from the definition of an s-biased permutation,
as does (44) and its special case stated in (ii), by multiplication of successive con-
ditional probabilities. Finally, (iv) follows from (iii) by the law of total probability.

�

The operation of s-biasing is one easy way to turn an exchangeable random
partition of [n] into an ordered exchangeable random partition of [n]. After s-
biasing we are dealing with an ordered exchangeable random partition of [n]. The
notions of the EPPF of an exchangeable random partition and the OEPPF of an
ordered exchangeable random partition were introduced in Section 2.1. The fol-
lowing lemma records a fundamental relation between the EPPF of �n and the
OEPPF of its s-biased random permutation �̃n.

LEMMA 11. Let �̃n be the ordered exchangeable random partition of [n] ob-
tained from an exchangeable random partition �n of [n] by putting its components
in an s-biased random order. Then the OEPPF p̃ of �̃n and the EPPF p of �n are
related by

(46) p̃(n1, . . . , nk) = s̃(n1, . . . , nk)p(n1, . . . , nk),

where s̃ is defined by (43).

PROOF. For any particular ordered partition (C1, . . . ,Ck) of [n] with com-
ponents of sizes (n1, . . . , nk), the s-biased permutation of components of �n

equals (C1, . . . ,Ck) iff �n equals {C1, . . . ,Ck}, which happens with probability
p(n1, . . . , nk), and given that event the s-biased permutation puts these compo-
nents in exactly the desired order, which according to (44) happens with probabil-
ity s̃(n1, . . . , nk). �

PROOF OF LEMMA 4. It does not change the distribution of N•:n to assume
that the s-biased random ordering is made at the level of clusters say {C1, . . . ,Ck}
of �n. Formula (13) can then be understood as follows. According to the previous
lemma, the right-hand side without the multinomial coefficient gives the probabil-
ity that the s-biased permutation of clusters of �n results in any particular ordered
partition (C1, . . . ,Ck) with clusters of these sizes. But the number of such ordered
partitions of [n] with the given cluster sizes is the multinomial coefficient, and the
cases are equiprobable, so the conclusion follows.

As for the converse, for a general random composition N•:n with probability
function q(n1, . . . , nk) = P[N•:n = (n1, . . . , nk)], it is known [20], (4), by argu-
ments much as above, that the EPPF say p̂(n1, . . . , nk) of the exchangeable ran-
dom partition of [n] with the same distribution of ranked component sizes as those
of N•:n is determined by a summation of q(nσ(1), . . . , nσ(k)) over all permutations
σ of [k], weighted by the inverse of the multinomial coefficient appearing in (13).
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In the present context, assuming that q(n1, . . . , nk) is given by the right-hand side
of (13), the multinomial coefficient cancels its inverse, and the general formula for
p̂ becomes

(47) p̂(n1, . . . , nk) = ∑
σ∈Sk

s̃(nσ(1), . . . , nσ(k))p(nσ(1), . . . , nσ(k)).

If p is symmetric, then p(nσ(1), . . . , nσ(k)) ≡ p(n1, . . . , nk) can be factored out of
the sum, and the remaining sum is 1 by (45). So p̂ = p. �

Some instances of Lemma 4 are as follows:

• The case s(m) := m is ordinary size-biasing. Then the coefficient of
p(n1, . . . , nk) on the right-hand side of (13) becomes(

n

n1, . . . , nk

)(
k∏

i=1

ni

ni + · · · + nk

)

= n!
(n1 − 1)! · · · (nk − 1)!

(
k∏

i=1

1

ni + · · · + nk

)
.

(48)

This instance of formula (13) was given in [34] and [37], (2.6), for the ordinary
size-biasing involved when N•:n := N∗•:n is the sequence of cluster sizes of �n

in order of appearance. In this case, the coefficient of p(n1, . . . , nk) displayed
in (48) is a positive integer, the number of partitions of [n] with k clusters of
sizes n1, . . . , nk in order of appearance, as indicated by Donnelly and Tavaré in
connection with their case α = 0 of Theorem 1.

• If s(m) ≡ 1, then s̃(n1, . . . , nk) = 1/k!. Then (13) gives the probability func-
tion of the component sizes of �n presented in a random order which given Kn = k

is uniform on all permutations of [k]. This formula appears in [37], (2.7). It is of
particular interest for sampling from GEM(α,α), when it gives the distribution of
the composition of n derived by uniform sampling from the interval partition gen-
erated by excursions away from 0 of a standard Brownian bridge for α = 1/2,
and by a standard Bessel bridge of dimension 2 − 2α for 0 < α < 1. See [37],
Section 4.5.

• The pseudo-size function s(m) := m − α is involved in Theorems 1 and 5.

APPENDIX B: THE REGENERATIVE ORDERING
OF A GEM(α, θ) SAMPLE

This appendix compares and contrasts:

• the value-ordered cluster sizes N
X↑•:n in a sample X1, . . . ,Xn from a

GEM(α, θ) distribution on {1,2, . . .},
which is the primary concern of this article, and
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• the value-ordered cluster sizes N
Y↑•:n in a sample Y1, . . . , Yn from a particular

random discrete distribution Fα,θ on (0,∞) constructed in [20], with a regenera-
tive property, whose atoms in size-biased order have GEM(α, θ) distribution.

See also [23] for a nice review of these and related concepts. Recall from [20] that
a sequence of random compositions (N•:n, n = 1,2, . . .) is called regenerative if
deletion of the first component of N•:n of some given size n1 < n produces a copy
of N•:n−n1 :

(N2:n,N3:n, . . . | N1:n = n1)

d= (N1:n−n1,N2:n−n1, . . .) for each 1 ≤ n1 < n.
(49)

It was shown in [19] that if in sampling from a random discrete distribution on
the line, the value-ordered sample frequencies from various sample sizes n are
regenerative in this sense, then the distribution of these value-ordered sample fre-
quencies is uniquely determined by that of the size-ordered frequencies (King-
man’s partition structure), or equally by that of the appearance-ordered frequen-
cies, which are in distribution just a size-biased rearrangement of the size-ordered
sample frequencies. So a random discrete distribution P•, or its associated partition
structure, is called regenerative iff there exists such a regenerative rearrangement
of its frequencies. The study of such regenerative composition structures was mo-
tivated by the appearance of these structures in the interval partitions generated by
the excursions of a Brownian motion or other Markov process whose zero set is
the range of a stable subordinator of index α ∈ (0,1).

For any random interval partition of [0,1], defined by some sequence of in-
terval components (Ij ), say Ij = (Gj ,Dj ) with lengths Pj := Dj − Gj , there
is a canonical construction of a random discrete distribution F on [0,1] which
puts mass Pj at the right end of Ij . The sample Y1, Y2, . . . from F is then con-
structed from an i.i.d. uniform [0,1] random sample U1,U2, . . . by setting Yi = Dj

if Ui ∈ (Gj ,Dj ). The value-ordered clusters in the sample Y1, . . . , Yn then reflect
the order structure of the intervals (Ij ) to the extent it is revealed by the intervals
discovered by the uniform sampling points Ui .

First, we emphasize the similarity between these two models of value-ordered
cluster sizes N

X↑•:n and N
Y↑•:n considered above. The cluster sizes in order of ap-

pearance in the two sampling schemes are identically distributed, as GEM(α, θ). If
α = 0, the F0,θ mentioned above simply puts probability Pj at 1 − ∏j

i=1(1 − Hi)

where the Hi are the i.i.d. beta(1, θ) factors driving the stick-breaking construction
(1) of the GEM(0, θ) frequencies. The order structure of these possible values is
identical to that of their positive integer labels j = 1,2, . . . . So the value-ordered
cluster sizes N

X↑•:n and N
Y↑•:n are identically distributed.

And now the big difference is the following. For 0 < α < 1, the random discrete
distribution Fα,θ involved in the regenerative ordering of GEM(α, θ) frequencies
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cannot have its atoms listed in increasing order like this. Consequently, the value-
ordered sample frequencies N

X↑•:n and N
Y↑•:n cannot be identically distributed for

all n. There is some flexibility in the definition of Fα,θ , corresponding to change
of variables from Yn to g(Yn) by a continuous and strictly increasing function g.
But that has no effect on the distribution of value-ordered sample frequencies N

Y↑•:n .
According to the results of [20] for 0 < α < 1, in any representation of the regener-
ative composition structure associated with GEM(α, θ) by value-ordered samples
from a random discrete distribution Fα,θ on the line, the atoms of Fα,θ must with
probability one accumulate at the left end of the support of Fα,θ , corresponding the
fact that as the compositions of n grow, with probability one new singleton clusters
are added infinitely often at the extreme left end of the sample values. For large
n, the initial components of N

Y↑•:n are all small, with convergence in distribution to
(1,1, . . .) as n → ∞, which is not very interesting. On the other hand, the initial
component N

X↑
1:n has limiting relative frequency n−1N

X↑
1:n → P1 > 0 almost surely.

While the limiting behavior of these differently ordered sampling compositions
derived from GEM(α, θ) is very different for 0 < α < 1, the stochastic mecha-
nism by which they can be described turns out to be very similar. This involves
just a slight extension of the notion of pseudo-size-biased random ordering as in
Lemma 4.

The definition of an s-biased random permutation proposed in Section 2.2 and
treated further in Appendix A admits an obvious generalization in which a strictly
positive function s(m) of a single integer variable m with 1 ≤ m ≤ n is replaced
by strictly positive function s(n′, n′′) of positive integer variables 1 ≤ n′′ ≤ n′ ≤ n

which for each fixed n′ gives the pseudo-size to be assigned to each component of
size n′′ ≤ n′ in making a pseudo-size-biased pick from clusters of sizes n′′

1, . . . , n
′′
j

with
∑j

i=1 n′′
i = n′. Then we can formulate the following straightforward extension

of Lemmas 10 and 4.

LEMMA 12. Let s = s(n′, n′′) be some arbitrary strictly positive pseudo-size
function of positive integers 1 ≤ n′′ ≤ n′ ≤ n for some fixed positive integer n.
Extend the definition (12) in Lemma 10 to

s̃(n1, . . . , nk)

:=
k∏

i=1

s(νi, ni)

s(νi, ni) + · · · + s(νi, nk)
where νi := ni + · · · + nk.

(50)

Then all four parts of Lemma 10 remain valid, as does the sampling formula of
Lemma 4 for the probability function of an s-biased random ordering of the cluster
sizes of an exchangeable random partition �n with EPPF p.

According to [20], Theorem 8.1, for 0 ≤ α < 1 and θ ≥ 0, in sampling from
the regenerative arrangement of GEM(α, θ) frequencies, the probability function
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of the value-ordered frequencies is given by a simple product formula, which in
association with the simple product formula for the (α, θ) EPPF, which can be
read from the formulas (14)–(15)–(17), is an expression of the fact [20], Corol-
lary 8.2, that these value-ordered frequencies are in an s-biased random order for
the pseudo-size function

(51) sα,θ

(
n′, n′′) = α

(
n′ − n′′) + θn′′

which satisfies the strict positivity requirement only for 0 ≤ α < 1 and θ ≥ 0. For
α > 0, this is quite a strange notion pseudo-size: a linear combination of the usual
size n′′ of a component, and the size n′ − n′′ of its complement in a universe
of size n′. For α = 0, s0,θ (n

′, n′′) = θn′′, the constant factor θ has no effect, the
pseudo-size-biasing reduces to ordinary size-biasing, and we recover the case α =
0 of Theorem 1 due to Donnelly and Tavaré. These results of [20] can now be seen
in a broader context of descriptions of random compositions of n derived from each
other, or from random partitions of n, by various schemes of pseudo-size-biased
sampling. This operation of pseudo-size-biased sampling is a particularly tractable
case of the more general notion of a deletion kernel for recursive sampling of parts
of a partition of n, as treated further in [19]. The present approach of working with
ordered partitions of the set [n], as in the proof of Lemma 4, and in some passages
of [20], seems to be technically easier than the formalism of unordered partitions
of n adopted in [19].

Acknowledgment. Thanks to Matthias Winkel for comments on an earlier
version of this article and to the anonymous referee for helpful comments.
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