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BORDER AGGREGATION MODEL

BY DEBLEENA THACKER AND STANISLAV VOLKOV1

Lund University

Start with a graph with a subset of vertices called the border. A particle
released from the origin performs a random walk on the graph until it comes
to the immediate neighbourhood of the border, at which point it joins this
subset thus increasing the border by one point. Then a new particle is released
from the origin and the process repeats until the origin becomes a part of the
border itself. We are interested in the total number ξ of particles to be released
by this final moment.

We show that this model covers the OK Corral model as well as the ero-
sion model, and obtain distributions and bounds for ξ in cases where the
graph is star graph, regular tree and a d-dimensional lattice.

1. Introduction. Consider a finite connected graph G (for simplicity G will
denote also the set of its vertices) with some designated vertex called origin v0
and some non-empty set of border vertices B. We define recursively set of sticky
vertices Sn ⊆ G, with S0 = B. The process runs as follows: a particle starts some
sort of random walk originated at X0 = v0 on G, and whenever it comes within the
immediate vicinity (i.e., one edge away) from a sticky vertex, random walks stops
and this particle joins the sets of sticky vertices. Then a new particle starts a random
walk at v0 and runs until it stops, and the process restarts again, until v0 becomes
sticky itself, at which point the process stops completely. We are interested in
random quantity ξ = ξ(G), the total number of particles emitted from the origin
during the lifespan of the process, which always satisfies

dist(v0,B) ≤ ξ ≤ |G| − |B|,
where dist(A,C) for A,C ⊆ G is the number of edges in shortest path connecting
A and C, and |G| and |B| denote the number of vertices in G and B , respectively.

Formally, define a sequence of subsets Sn, n ≥ 0, such that S0 = B and Sn =
Sn−1 ∪ {wn} where wn ∈ G is defined as follows: for n ≥ 1 let X

(n)
t , t = 0,1,2, . . .

be a random walk on G such that X
(n)
0 = v0 and

τn = inf
{
t ≥ 0 : dist

(
X

(n)
t , Sn−1

)= 1
}
, vn = X(n)

τn
.
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Then

ξ = inf
{
n ≥ 1 : dist(v0, Sn−1) = 1

}≥ 1.

We call the above model border aggregation model (BA model for short).
We study the BA model on a variety of graphs, namely, the star graph, regular

d-ary trees, and the integer lattice for dimensions d ≥ 2. Incidentally (Yuval Peres,
personal communications; also [18]), the BA model on a finite piece of the integer
line is equivalent to the OK Corral model of [14, 15, 20], where its asymptotic
behaviour has been completely analysed. Note that BA model was called internal
erosion model in [18]; however, we feel that the term “border aggregation model”
is more appropriate. The authors of this paper also guess that on a disk of radius
N in R

2 the number of eroded points, which coincides with the number of emitted
particles in BA model, grows asymptotically at the rate of Nα , α < 2, the conjec-
ture which we partially solve here.

According to [18], the model on Z
d , d ≥ 2, can be viewed as an “inversion” of

the classical diffusion-limited-aggregation model (DLA), in which particles per-
forming random walks are released at infinity, and they stop once they reach some
nearest neighbour of the cluster, which initially consists only of the origin. When
d = 2, Kesten [12] showed that with probability one the maximum radius of the
random cluster is eventually at most of the order n2/3, where n is the number
of accumulated particles; the corresponding order for d ≥ 3 is n2/d . Therefore,
heuristics suggest that releasing N3/2 elements, one can only reach a maximum
distance of N from the origin. This leads to the conjecture that for d = 2 with high
probability the number of emitted particles ξ in the BA model should be at least of
the order N3/2, and for d ≥ 3, at least Nd/2 particles must be emitted. One should
note here that in our proofs (see Section 4) we improve the estimates obtained by
Kesten [12] rather than using the “inversion” directly.

In Section 4, we obtain a slightly worse lower bound of N4/3 for case d = 2. In
Section 5, we show that if d ≥ 3, then ξ must grow at least as Nd/2 with probability
converging to one, which we believe is the correct order.

These results were further improved in [10, 11] where it was proved that the
maximal error for the DLA cluster is O(log t) and O(

√
log t), respectively, for

d = 2, and d ≥ 3; moreover, the fluctuations (appropriately normalized) of the
cluster converge in law to a Gaussian-free field. Similar results were also obtained
independently in [1, 2]. The model has been also studied on the comb lattice in [3],
and similar limiting shape theorems have been obtained.

Another model similar to the BA model has been studied in [16]. The authors
introduce a process where one particle is placed at each location in the interval
[0,N], and at every step a randomly chosen particle from [1,N] is moved to the
left until the whole process coalesce at the origin. The authors show that the ran-
dom time until the coalescence grows asymptotically at the rate of N3/2, and the
variance is upper bounded by N5/2.
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The rest of the paper is organized as follows. In Section 2, we study the BA
model on star graphs. In Section 3, we obtain quite sharp bounds for ξ on regular
trees. In Section 4, we analyse the model on the two-dimensional lattice and a
comb lattice; in Section 5 we obtain the results for higher dimensions. In the latter
two cases, we obtain nontrivial lower bounds only.

Finally, we mention that throughout the paper for any two positive sequences
{aN }N≥1 and {bN }N≥1, aN ∼ bN denote the fact that limN→∞ aN/bN = 1.

2. Star graph.
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K = 5

Let G consist of K ≥ 2 pieces of {0,1,2, . . . ,N + 1} ⊂ Z+ sharing a common
origin v0 = 0, and let B be the K endpoints (N + 1) of each of the segment. Let X

be a simple random walk on G.
If K = 2, then G = {−(N + 1),−N, . . . ,−1,0,1, . . . ,N,N + 1} with v0 = 0

and B = {−N − 1} ∪ {N + 1}. Let X be a simple random walk on G. As it was
mentioned in the Introduction, this model is equivalent to the OK Corral model of
[20] with the initial number of shooters equal to N , so 2N − ξ gives the number
of survivals in the positive or negative group, and it is asymptotic order is N3/4, as
it was shown in [15], where the distribution was found explicitly.

Using the elementary properties of simple random walk it is easy to de-
duce that the border aggregation model on this star graph is equivalent to the
following urn-like model. Let Xi(0) = N , i = 1,2, . . . ,K . Given the vector
X(j) = (X1(j), . . . ,XK(j)), j = 0,1,2, . . ., we independently sample ζ(j) ∈
{1,2, . . . ,K} such that

P
(
ζ(j) = k

)= Xk(j)−1∑K
i=1 Xi(j)−1

and let

X(j + 1) = X(j) − (0,0, . . . ,0, 1︸︷︷︸
ζ(j) place

,0, . . . ,0).

In other words, at each moment of time exactly one of the Xi’s decreases by 1, and
the chances of the kth segment to be picked are inversely proportional to its length.
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Again, in case K = 2 this is exactly the OK Corral model. For K ≥ 3, let SN(K)

be the number of the number of empty sites by the time one of the arms is filled
with sticky points; then SN(K) = NK − ξ . We will show that SN(K) ∼ N3/4 for
any fixed value of K .

The crucial observation here is that we can couple the process with K indepen-
dent continuous time processes in the same fashion as it is done in [15] using the
idea of Rubin’s construction from [6]. Indeed, let Yi(t), i = 1,2, . . . ,K , t ≥ 0, be
K independent pure death process all starting at Yi(0) = N with the death rate at
level k equal to 1/k. Fix K ≥ 2 throughout. Let

τi = inf
{
t : Yi(t) = 0

}
, τ̄ = min

i=1,2,...,K
τi = τi∗, i∗ = arg min τi,

SN(K) =
K∑

i=1

Yi(τ̄ ) =
K∑

i=1,i =i∗
Yi(τ̄ )

(1)

that is, i∗ is the index of the process which dies out first. It is clear from the context
that τ̄ depends on K , but we simply write τ̄ , instead of τ̄ (K), as this does not create
any ambiguity. Then the definition of SN(K) is consistent with the definition given
earlier in this section.

Observe that for any i ≥ 1, there exist independent random variables {ξi,k, k =
1,2,N} such that ξi,k ∼ Exp(1/k), such that

(2) τi =
N∑

k=1

ξi,k.

Then τi satisfies the following central limit theorem (CLT).

THEOREM 1. Let τi be as defined above. Then, as N → ∞,

(3)
τi − N2

2

N
3
2√
3

D−→ N (0,1),

where
D−→ denotes convergence in distribution.

PROOF. It is easy to see from (2)

E[τi] =
N∑

k=1

k = N(N + 1)

2
∼ N2

2
,

Var(τi) =
N∑

k=1

k2 = N(N + 1)(2N + 1)

6
∼ N3

3
.

The rest of the proof now follows from an easy application of the standard CLT
for the sum of independent random variables. �
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THEOREM 2. Let τi be as defined above. Then, as N → ∞,

sup
x∈R

∣∣∣∣P
(

τi − N2

2

N
3
2√
3

≤ x

)
− �(x)

∣∣∣∣≤ (2.75)l3,N = O
(

1√
N

)
,

where

l3,N :=
1
N

∑N
j=1 E|ξ1,j − j |3

( 1
N

∑N
j=1 Var(ξ1,j ))3/2

N−1/2.

PROOF. The proof is an easy application of Theorem 12.4 (Berry–Essen the-
orem) on page 104 in [4]. �

THEOREM 3. Let fN,i(x) denote the density function of

τi − N(N + 1)/2

N3/2/
√

3
= τi

√
3

N3 − zN,

where zN = (N+1)
√

3
2
√

N
= √

3N(1
2 + 1

2N
) and n(x) = exp(−x2/2)√

2π
is the density func-

tion of N (0,1). Then for every ε > 0,

sup
x∈R

∣∣fN,i(x) − n(x)
∣∣= o

(
N−(1/2−ε))

as N → ∞.

The proof of this theorem is similar to the proof of Lemma 2 of [15].

PROOF OF THEOREM 3. By the Fourier inversion formula (e.g., Theo-
rem 3.3.5 in [9]),

(4) fN,i(x) − n(x) = 1

2π

∫ ∞
−∞

e−itx(ϕN(t) − e−t2/2)dt,

where

ϕN(t) := Ee
it

τi−N(N+1)/2

N3/2/
√

3 = Ee
itτi

√
3

N3 −itzN = e−itzN

N∏
k=1

[
1 − ikt

N3/2/
√

3

]−1

is the characteristic function for τi−N(N+1)/2
N3/2/

√
3

, satisfying
∫ |ϕN(t)|dt < ∞ once

N ≥ 2.
For |t | � √

N , using series expansion − ln(1 −α) = α +α2/2 +α3/3 +· · · we
have

itzN + lnϕN(t) = −
N∑

k=1

ln
(

1 − ikt
√

3

N3/2

)
=

N∑
k=1

∞∑
j=1

(itk)j 3j/2

jN3j/2

=
∞∑

j=1

AN,j

(it)j 3j/2

jNj/2−1 ,
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where

AN,j = 1

Nj+1

N∑
k=1

kj =

⎧⎪⎪⎨
⎪⎪⎩

1

2
+ 1

2N
, j = 1,

1

j + 1
+ 1

2N
+O

(
N−2), j ≥ 2,

by interchanging the order of summation. Hence

lnϕN(t) = −itzN +
(

1

2
+ 1

2N

)
it

√
3N

+
∞∑

j=2

[
1

j + 1
+ 1

2N
+O

(
N−2)](it)j 3j/2

jNj/2−1

=
[
− t2

2
− i

√
3

4

t3

N1/2 + 9

20

t4

N
+ 3i

√
3

10

t5

N3/2 + · · ·
]

+O
(
t2/N

)

= − t2

2

{
1 + i

√
3

2

(
t√
N

)
− 9

10

(
t√
N

)2
+ · · ·

}
+O

(
t2/N

)
.

As in the proof of Lemma 2 in [15], we divide the area of integral in (4) into
two parts; [−Nδ,Nδ], where 0 < δ < min(1/2, ε/4) and its complement.∣∣∣∣

∫ Nδ

−Nδ
e−itx(ϕN(t) − e− t2

2
)

dt

∣∣∣∣
≤
∫ Nδ

−Nδ

∣∣e−itx− t2
2
∣∣ · ∣∣e− t2

2 [ i
√

3
4 ( t√

N
)(1+o(1))] − 1

∣∣dt

≤
∫ Nδ

−Nδ

∣∣∣∣ t3
√

3

8
√

N

(
1 + o(1)

)∣∣∣∣dt

=O
(
N−(1/2−4δ)).

(5)

The integral over the complement is also dealt in similar fashion as in Lemma 2 in
[15].

(6)
∣∣∣∣
∫
|t |≥Nδ

e−itx(ϕN(t) − e− t2
2
)

dt

∣∣∣∣≤
∫
|t |≥Nδ

(∣∣ϕN(t)
∣∣+ e− t2

2
)

dt = o
(
N−1),

where the last equality can be obtained by using bounds similar to equations (12)
and (14) of [15], using the fact that

∣∣ϕN(t)
∣∣2 =

N∏
k=1

1

1 + 3k2t2/N3

= 1

1 + t2[1 +O(N−1)] + t4[1/2 +O(N−1)] + · · · .
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Now from (5) and (6) it follows that for all x ∈R,∣∣fN,i(x) − n(x)
∣∣= O

(
N−(1/2−4δ))+ o

(
N−1)= o

(
N−(1/2−ε)). �

The CLT and Theorem 3 implies that τi has the following representation:

τi = N2

2
+ N3/2

√
3

ηi +O(N),

where ηi are i.i.d. normal N(0,1) random variables.
Our first observation is that for each K there exists constants C(ν,K) > 0, such

that

lim sup
N→∞

E[(SN(K))ν]
(N3/4)ν

≤ C(ν,K).

Indeed, for K = 2 we already know the result from [14],

(7) lim
N→∞

E[(SN(2))ν]
(N3/4)ν

= (2/3)ν
(ν

4 + 1
2)

(1/2)
= (2/3)ν

(ν
4 + 1

2)√
π

=: C(ν,2).

We will use this limit to obtain the result for general K ≥ 3. Note that by symmetry
i∗ has a uniform distribution over {1, . . . ,K}.

Let α := (α1, α2, . . . , αK−1) ∈ Z
K−1+ , |α| = α1 + · · · + αK−1 and

(ν
α

) =
ν!

α1!α2!···αK−1! be the multinomial coefficient. Then

E
[(

SN(K)
)ν]= E

[
K∑

i∗=1

(
K∑

i=1,i =i∗
Yi(τ̄ )

)ν]
= KE

[(
K−1∑

i=1,i∗=K

Yi(τ̄ )

)ν]

= ∑
α:|α|=ν

(
ν

α

)
E

[
K−1∏
i=1

Y
αi

i (τ̄ )1{τ̄=τK }
]

= ∑
α:|α|=ν

(
ν

α

)
K−1∏
i=1

E
[
Y

αi

i (τ̄ )1{τ̄=τK }
]

using the symmetry, and the independence of each of Yi(τ̄ ) conditioned on the
event {τ̄ = τK}. It is easy to see that for any i,

(∗) = E
[
Y

αi

1 (τ̄ )1{τ̄=τK }
]= ∫ ∞

0
Y

αi

1 (s)P(τ1 > s) · · ·P(τK−1 > s)fτK
(s)ds

≤
∫ ∞

0
Y

αi

1 (s)P(τ1 > s)fτK
(s)ds,

where fτK
denotes the density of τK . Now note that τ̄ (K) stochastically decreases

in K , therefore, the expression on the RHS is smallest when K = 2, therefore,
assuming K = 2 in the RHS, we get

(∗) ≤
∫ ∞

0
Y

αi

1 (s)P(τ1 > s)fτ2(s)ds = 1

2
E
[(

SN(2)
)αi
]
,
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where the last equality follows from symmetry between Y1 and Y2. Consequently,
using the limit in (7), we have

lim sup
N→∞

E[(SN(K))ν]
(N3/4)ν

≤
(

2

3

)ν/4
π−K−1

2
∑

α:|α|=ν

(
ν

α

)
K−1∏
i=1



(
αi

4
+ 1

2

)
.

COROLLARY 1. The sequence of SN(K)

N3/4 is uniformly bounded in L
ν for every

ν = 1,2, . . . .

Introduce integer-valued function mj : {1,2, . . . ,K − 1} → {1,2, . . . ,K} \ {j}
such that

mj(i) =
{
i if i < j,

i + 1 if i > j,

and let

ζ
(N)
i := Ymi∗ (i)(τ̄ )

N3/4 > 0, i = 1,2, . . . ,K − 1,

where i∗ is defined in (1), be the lengths of the K − 1 rays which have not been
filled in by the time τ̄ .

THEOREM 4. We have

(8) ζ (N) D−→ ζ = (ζ1, ζ2, . . . , ζ(K−1)),

where ζ is a nondegenerate jointly continuous random variable satisfying

P(ζ1 > a1, . . . , ζK−1 > aK−1) = K√
2π

∫ ∞
−∞

K−1∏
i=1

[
1 − �

(√
3

2
a2
i + w

)]
e−w2

2 dw

=: G(a)

for any a = (a1, a2, . . . , aK−1) ∈ R
K−1+ . Moreover, the joint density of ζ is given

by

fζ (a) = a1a2 · · ·aK−1

√
K

[
3

2π

]K−1
exp

{
−3

8

[
K−1∑
i=1

a4
i − 1

K

(
K−1∑
i=1

a2
i

)2]}
.

Therefore,
√

3
2 ζ 2 = (

√
3

2 ζ 2
1 , . . . ,

√
3

2 ζ 2
K−1) has the density

f (b) =
√

K

(2π)K−1 exp

{
−1

2

[
K−1∑
i=1

b2
i − 1

K

(
K−1∑
i=1

bi

)2]}

for b ∈ R
K−1+ , and thus

√
3

2 ζ 2 is some sort of a joint normal distribution, condi-
tioned on all its components being non-negative.
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COROLLARY 2. As N → ∞, we have:

(a) Yi(τ̄ )

N3/4
D−→ η where i = 1,2, . . . ,K and the CDF Fη(x) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
1 − K − 1√

2π

∫ ∞
−∞

[
1 − �

(√
3

2
x2 + w

)][
1 − �(w)

]K−1
e−w2

2 dw if x > 0;
1/K if x = 0;
0 if x < 0,

that is, η is a mixture of an atom at 0 and a continuous distribution on R+;

(b) As N → ∞, we have SN(K)

N3/4
D−→ ∑K−1

i=1 ζi , and moreover, E[SN(K)

N3/4 ]ν →
E[∑K−1

i=1 ζi]ν for any positive integer ν.

PROOF. Part (a) immediately follows from Theorem 4 and the definition of
ζ (N). To show part (b), define the function g : RK−1 → R as g(x) := ∑K−1

i=1 xi

for x = (x1, . . . , xK−1). It is easy to see that g(·) is continuous and g(ζ (N)) =
SN(K)/N3/4. From (8) and the continuous mapping theorem (see [9], Theo-

rem 3.2.4), we have g(ζ (N))
D−→ g(ζ ) =∑K−1

i=1 ζi .
Finally, the statement about convergence of expectations follows from our

Corollary 1 and Corollary on page 348 of [5]. �

PROOF OF THEOREM 4. By symmetry,

P(ζ1 > a1, . . . , ζK−1 > aK−1)

=
K∑

j=1

P
(
ζ1 > a1, . . . , ζK−1 > aK−1, i

∗ = j
)

=
K∑

j=1

P

(
Yi(τ̄ )

N3/4 > a
m−1

j (i)
∀i = j ; i∗ = j

)

= KP

(
Y1(τ̄ )

N3/4 > a1, . . . ,
YK−1(τ̄ )

N3/4 > aK−1, i
∗ = K

)
.

Define the stopping times, τi = τi(a) := inf{t : Yi(t) ≤ aiN
3/4} for i = 1,2, . . . ,K ,

and recall that {i∗ = K} = {τ̄ = τK}. It is easy to see that

P

(
Y1(τ̄ )

N3/4 > a1,
Y2(τ̄ )

N3/4 > a2, . . . ,
Y(K−1)(τ̄ )

N3/4 > aK−1, i
∗ = K

)

=
∫ ∞
−∞

P(τ1 > s)P(τ2 > s) · · ·P(τK−1 > s)fτK
(s)ds

= IN + IIN,

(9)
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where fτK
(·) is the density of the stopping time τK ,

IN :=
∫
AN

P(τ1 > s)P(τ2 > s) · · ·P(τK−1 > s)fτK
(s)ds,

IIN :=
∫
Ac

N

P(τ1 > s)P(τ2 > s) · · ·P(τK−1 > s)fτK
(s)ds and

AN :=
[
N2

2
− N3/2 lnN√

3
,
N2

2
+ N3/2 lnN√

3

]
.

We will now estimate the integral IN . Using the representation of Y with the ex-
ponential random variables ξi,k , we have

E[τi] =
N∑

k=�aiN
3/4�

E[ξi,k] ∼ N(N + 1) − a2
i N

3/2

2
;

Var(τi) =
N∑

k=�aiN
3/4�

Var(ξi,k) ∼ N3 − a3
i N

2.25

3
∼ N3

3
.

Similar to (3), it is easy to see that

(10)
τi,aN,i

− N(N+1)−a2
i N3/2

2
N3/2√

3

D−→ N (0,1).

Applying the change of variables s = N(N+1)
2 + wN3/2√

3
for w ∈ [−t, t] in IN , we

get

IN = N3/2
√

3

∫ lnN

− lnN

[
K−1∏
j=1

P

(
τj,aN,j

>
N(N + 1)

2
+ w

N3/2
√

3

)]

× fτK

(
N(N + 1)

2
+ w

N3/2
√

3

)
dw.

From (10), it follows that

P

(
τj >

N(N + 1)

2
+ w

N3/2
√

3

)
= P

(
τj − N(N+1)−a2

j N3/2

2
N3/2√

3

>

√
3

2
a2
j + w

)

→ 1 − �

(√
3

2
a2
j + w

)
.

Fix a small ε > 0. From Theorem 3, we have

sup
w∈R

∣∣∣∣N3/2
√

3
fτK

(
N(N + 1)

2
+ w

N3/2
√

3

)
− n(w)

∣∣∣∣= o
(
N−(1/2−ε)).



1614 D. THACKER AND S. VOLKOV

By the dominated convergence theorem, we have for all N large enough∣∣∣∣∣IN − 1√
2π

∫ lnN

− lnN

K−1∏
i=1

[
1 − �

(√
3

2
a2
i + w

)]
e−w2

2 dw

∣∣∣∣∣
= o

(
N−(1/2−ε) lnN

)(11)

and at the same time∣∣∣∣∣G(a) − 1√
2π

∫ lnN

− lnN

K−1∏
i=1

[
1 − �

(√
3

2
a2
i + w

)]
e−w2

2 dw

∣∣∣∣∣
≤
∫ ∞

lnN
e−w2

2 dw = o
(
N−1).

(12)

By Theorem 2,

|IIN | ≤
∫
Ac

N

fτK
(s)ds

= P

(
τK ≥ N2

2
+ N

3
2 lnN√

3

)
+ P

(
τK ≤ N2

2
− N

3
2 lnN√

3

)

= 2
(
1 − �(lnN)

)+O
(

1√
N

)
= O

(
1√
N

)
.

(13)

Combining (11), (12) and (13) we get the desired convergence in distribution.
Finally, we need to show that the limiting random variable ζ is jointly contin-

uous and find its density. Since all the partial derivatives of the expression inside
the integral sign in the definition of G(a) are continuous, we can interchange in-
tegration and differentiation by Leibniz integral rule to obtain that ζ has the joint
density

(−1)K−1 ∂K−1G(a)

∂a1 · · · ∂aK−1

= (−1)K−1K√
2π

∫ ∞
−∞

K−1∏
i=1

∂

∂ai

[
1 − �

(√
3

2
a2
i + w

)]
e−w2

2 dw

= a1a2 · · ·aK−1K3
K−1

2

(2π)K/2

∫ ∞
−∞

exp
{
−Kw2 + w

√
3
∑

i a
2
i + 3

4
∑

i a
4
i

2

}
dw

= a1a2 · · ·aK−1
√

K

(2π/3)(K−1)/2 exp
{
−3

8

[∑
i

a4
i − 1

K

(∑
i

a2
i

)2]}
,

where the sum is taken over i = 1,2, . . . ,K − 1. �
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3. Binary tree (and other regular trees).
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B

K = 4

Let G = Gd,K be a regular d-ary tree (d ≥ 2) with root v0 truncated at level K ,
that is, it is v0 and all the vertices of distance no more than K from the origin; thus
|G| = 1 + d + d2 + · · · + dK . We assume that all dK most remote vertices are the
border, and the random walk moves only upwards (away from the root) with equal
probability.

Let us now assume that d = 2 and for the rest of this section deal only with
the binary rooted tree, unless said otherwise. Let ξK denote the total number of
emitted particles on G2,K until v0 becomes a part of the border. Then

ξ1 = 1, ξ2 = 2, ξ3 =
{

3 with probability 1/2,

4 with probability 1/2

and in general

(14) ξK+1 = 1 + η
(
ξ ′
K, ξ ′′

K

)
,

where ξ ′
K and ξ ′′

K are two independent copies of ξK and η(a, b) is the number of
tosses of a fair coin required to reach either a heads or b tails, whichever comes
first. The recursion (14) comes from the fact that the root of one of the two sub-
trees, parented by v0, has to become sticky in order for the process to stop on the
next step, and the paths of the process on these two sub-trees are independent of
each other.

Note that min{a, b} ≤ η(a, b) ≤ a + b − 1 and

P
(
η(a, b) = �, a heads expired

)=
(
� − 1

� − a

)
1

2�
, a ≤ � ≤ a + b − 1;

P
(
η(a, b) = �, b tails expired

)=
(
� − 1

� − b

)
1

2�
, b ≤ � ≤ a + b − 1

yielding

P
(
η(a, b) = �

)= [(
� − 1

� − b

)
+
(
� − 1

� − a

)]
1

2�
, min{a, b} ≤ � ≤ a + b − 1,

with the convention
(x
y

)= 0 if y < 0.
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FIG. 1. Distribution of ξ8.

TABLE 1
Distribution of ξ4

k 4 5 6 7 8

P(ξ4 = k) 1
8

1
4

5
16

15
64

5
64

TABLE 2
Distribution of ξ5

k 5 6 7 8 9 10 11 12 13 14 15 16

P(ξ5 = k) 1
64

3
64

45
512

535
4096

1335
8192

355
2048

5115
32,768

30,525
262,144

9075
131,072

32,175
1,048,576

75,075
8,388,608

10,725
8,388,608

Using (14), we can, in principle, get the distribution of ξK for any positive
integer K . For example, the distributions of ξ4 and ξ5 are given in Tables 1 and 2.

For ξ8, the distribution is shown on Figure 1. We have also computed

Eξ3 = 3.5, Eξ4 = 5.89 . . . , Eξ5 ≈ 9.82,

Eξ6 ≈ 16.4, Eξ7 ≈ 27.6, Eξ8 ≈ 46.8.

Our guess is that ξK , appropriately scaled, is asymptotically normal for large K .
Unfortunately, we do not have a proof of this fact, and leave this as a conjecture.
One can also generalize the recursion (14) for regular d-ary trees with d ≥ 3, but
the formula quickly becomes quite messy and not so useful.

3.1. Lower and upper bounds for ξK . Here, we deal with a regular d-ary tree
again, dropping the restriction d = 2. Observe that the number of particles which
get stuck on level i, i = 1,2, . . . ,K − 1 (i.e., distance i from the root), is at most
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di−1, since whenever a vertex v becomes sticky, none of its sisters on the tree can
be reached (if a new particle reaches the parent of v, it stops and becomes sticky).
Therefore, since initially all the points on level K are border points, a nonrandom
upper bound on ξK is given by

(15) ξK ≤ [
dK−2 + dK−3 + · · · + d + 1

]+ 1 ≤ dK−1
[

1

d − 1
+ d−(K−1)

]
,

where the last term “+1” corresponds to the very last particle emitted at v0 which
immediately becomes sticky. The trivial lower bound for ξK is K , but we will show
that with a high probability ξK is in fact much larger.

Let |v| = dist(v, v0) be the height of the particles on a tree, and let Levi = {v :
|v| = i} be the set of di vertices on level i. Let ηi be the index of the particle
which was first to get stuck on level i, that is, ηi = inf{n ≥ 1 : vn ∈ Levi}. Trivially,
ηK−1 = 1; we will show that ηK−m is quite large for m ≥ 2. This will allow us to
get the necessary bound as

ηK−1 < ηK−2 < · · · < η1 < η0 ≡ ξK − 1.

Fix some m ≥ 2. Observe that for a vertex in LevK−m to become sticky, at least
m particles of random walk should pass through it on their way up. Since each
vertex at level LevK−m is equally likely to be visited by the random walk (until
there is at least one sticky particle at this level), the quantity ηK−m is stochasti-
cally larger than ζ = ζK,m, the number of independent trials of a discrete uniform
random variable with A = dK−m equally likely outcomes required to reach one of
the A outcomes at least m times. Note that for m = 2 and A = 365, this is exactly
the famous birthday problem; therefore,

P(ζK,2 > t) =
t−1∏
i=1

(
1 − i

dK−2

)
∼ exp

{
− t2

2dK−2

}

and in particular if t (K) is any positive function such that t (K)

dK/2 ↓ 0 then

P
(
ξK > t(K)

)≥ P
(
ηK−2 > t(K)

)≥ P
(
ζK,2 > t(K)

)→ 1 as K → ∞.

For larger m, we do the following estimation. We have

P(ζK,m ≤ t) = P(one of A outcomes is reached ≥ m times during t trials)

≤ A · P(outcome “1” reached at least m times during t trials
)

= A ·
t∑

i=m

(
t

i

)
1

Ai

(
1 − 1

A

)t−i

≤
t∑

i=m

(
t

i

)
1

Ai−1 ∼
(

t

m

)
1 + o(1)

Am−1

= tm + o(tm)

m!Am−1

(16)
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if t � A and m � t . By Stirling’s formula, the logarithm of the RHS of (16) is
approximately

m ln t − (
m lnm − m +O(lnm)

)− (K − m)(m − 1) lnd

= m ln t − K(m − 1) lnd + m2 lnd +O(m lnm).
(17)

We want this quantity to be negative and to go to −∞, but preferably slowly.
Equating the RHS of (17) [but the O(·) term] to 0 gives

t = dK(1−1/m)−m = dK−[m+K
m

]

and substituting this into the LHS of (17) we get

−m(lnm + lnd − 1) +O(lnm).

Since we want t to be as large as possible, we choose an integer m = √
K + z such

that |z| ≤ 1/2. Then, indeed, t = dK−K/m−m � A = dK−m and m � t ; moreover,
the RHS of (17) becomes −(1

2 + o(1))
√

K ln(K) → −∞ as K → ∞. Hence,
taking into account that m + K

m
≤ 2

√
K +O(1/

√
K), we get

(18) P
(
ζK,m > dK−2

√
K−O(K−1/2))→ 1 as K → ∞.

Since ηK > ζK,m, combining with (15), we have the following statement.

THEOREM 5. With probability at least 1 − K−( 1
2 +o(1))

√
K , we have for d ≥ 2,

1 + ln(d − 1)

lnd
− o(1) ≤ K − logd ξK ≤ 2

√
K +O

(
K−1/2).

4. Two-dimension aggregation on Z
2. Let the graph G be a box [−N, . . . ,

N ]2 ⊂ Z
2 with the origin v0 = (0,0). We can define the model in two alternatives

ways:

(a) (box model) B = {(x, y) ∈ G : |x| = N or |y| = N} is the border of the box
[−N, . . . ,N]2;

(b) (disc model) B = {(x, y) ∈ G :
√

x2 + y2 ≥ N −1}, that is, G can be viewed
as the disc of radius N and the “sticky border” is the circumference.

Figure 2 shows the aggregation process at the time when the process has stopped,
compare with illustrations in [18]. In what follows, we study only case (b).

Let ξN , as before, denote the number of emitted particles until the origin be-
comes part of the border. It is trivial that N ≤ ξN ≤ N2, however, we want to get a
finer asymptotic of ξN ; we conjecture that ξN ∼ Nα where α ≈ 1.7 (see also [18]);
however, we believe it is a very hard problem. We have managed, though, to show
that ξN is at least of higher order than N4/3−ε; please see Theorem 6 below.
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(a) (b)

FIG. 2. Aggregation process on Z
2 with square (a) and circle (b) borders.

4.1. Lower bound for the BA model on a disc.

THEOREM 6. For every ε > 0, we have

P
(
ξN < N

4
3 −ε)→ 0

as N → ∞.

The proof will be based on obtaining detailed bounds for the DLA of [12, 13]
via strengthening of the result of the main theorem in [12]. In accordance with
notation of these papers, let B ⊂ Z

2 be a finite connected subset, ∂B be the set of
points adjacent to B , Sn is a simple symmetric random walk on Z

2 with S0 = x,
τ = inf{n : Sn ∈ B} the a.s. finite hitting time of B , and Sτ is the point where the
walk hits B for the first time. Let also for x /∈ B ,

H(x,y) = Px(Sτ = y), μ(y) = lim|x|→∞H(x,y).

The latter limit exists and satisfies
∑

y∈B μ(y) = 1 according to [19], Theo-
rem 14.1. Suppose that B contains the origin. Let r = rB = maxx∈B |x| be the
“radius” of B . Kesten [13] showed that

μ(y) ≤ const√
rB

,

where the constant does not depend on B . We want first to generalize this result
for finite starting point x.
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PROPOSITION 1. There is a constant C > 0 not depending on anything, such
that

H(x,y) ≤ C√
rB

for all B containing the origin and x satisfying |x| ≥ r
3/2
B ln rB .

PROOF. Throughout the proof, we fix the set B and will write r = rB for
simplicity. In accordance with the notation in [19], let Pn(x, y) denote the n-step
transition probability from x to y for a SRW on Z

2,

Gn(x, y) =
n∑

k=0

Pk(x, y), A(x, y) = lim
n→∞

[
Gn(0,0) − Gn(x, y)

]
,

that is, Gn(x, y) is the n−step Green function (see [19] Definitions 1.4 and 11.1).
We use the representation for H(x,y) from [19], formula (14.1) and the proof of
Theorem 14.1 there which states that

H(x,y) − μ(y) =∑
t∈B

A(x, t)
[
�(t, y) − 1t=y

]
=∑

t∈B

[
A(x, t) − A(x,0)

]
�(t, y) − [

A(x, y) − A(x,0)
]
,

where �(t, y) ≥ 0 denotes the probability that the first hit into B starting from
t will be at point y ∈ B and satisfies

∑
t∈B �(t, y) = 1 by Lemma 11.2 in [19].

Hence∣∣H(x,y) − μ(y)
∣∣≤ ∣∣A(x, y) − A(x,0)

∣∣+∑
t∈B

∣∣A(x, t) − A(x,0)
∣∣�(t, y)

≤ max
t∈B

∣∣A(x, t) − A(x,0)
∣∣(1 +∑

t∈B

�(t, y)

)

= 2 max
t∈B

∣∣A(x, t) − A(x,0)
∣∣.

(19)

Next, we need to estimate how quickly the difference between A(x, t) and
A(x,0) converges to 0. From the proof of Proposition 12.2 in [19] and the transla-
tion invariance of the walk, it follows that

A(x, t) − A(x,0) = lim
n→∞Gn(x,0) − Gn(x, t)

= lim
n→∞Gn(x,0) − Gn(x − t,0)

= a(x − t) − a(x) = 1

(2π)2

∫ π

−π

∫ π

−π
Q · R dθ1 dθ2 =: (∗),
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where

Q = ei(x1θ1+x2θ2), R = 1 − e−i(t1θ1+t2θ2)

1 − ϕ
and ϕ = cos(θ1) + cos(θ2)

2

is the characteristic function of the walk. While it follows from [19] that the in-
tegral (∗) → 0 as |x| → ∞, we still have to estimate the speed of this conver-
gence. Assume w.l.o.g. that |x2| ≥ |x1| so that |x2| ≥ |x|/2. Split the area of inte-
gration [−π,π ]2 into two parts: where |θ1| < ε and the remaining part, and write
(∗) = (I)+ (II) where (I) is the integral over the first area and (II) is the integral of
the remaining area.

First, we obtain two useful inequalities:

∣∣1 − e−i(t1θ1+t2θ2)
∣∣= 2

∣∣∣∣sin
(

t1θ1 + t2θ2

2

)∣∣∣∣≤ |t1θ1 + t2θ2|

≤ √
2 max

(|t1|, |t2|)√θ2
1 + θ2

2 ≤ 2r

√
θ2

1 + θ2
2

and if |u| ≤ π then

1 − cos(u) ≥ u2

5
=⇒ 2 − cos(θ1) − cos(θ2) ≥ 1

5

(
θ2

1 + θ2
2
)
.

Integrating Q · R by parts w.r.t. θ2 for |θ1| > ε, we get

(I) = 1

(2π)2

∫
ε<|θ1|<π

dθ1

∫ π

−π
dθ2Q · R

= 1

(2π)2

∫
ε<|θ1|<π

dθ1

[
R · ei(x1θ1+x2θ2)

ix2

∣∣∣∣π
θ2=−π

−
∫ π

−π

ei(x1θ1+x2θ2)

ix2

∂R

∂θ2
dθ2

]

= i

(2π)2x2

∫
ε<|θ1|<π

dθ1

∫ π

−π
Q

∂R

∂θ2
dθ2

using the fact that eiπx2 = e−iπx2 = 0 as x2 ∈ Z. Since

∂R

∂θ2
= it2e

−i(θ1t1+θ2t2)[2 − cos θ1 − cos θ2] + [e−i(θ1t1+θ2t2) − 1] sin θ2

(2 − cos θ1 − cos θ2)2

and | sin θ2| ≤ |θ2| we conclude that

(2π)2x2
∣∣(I)∣∣≤ ∫

ε<|θ1|<π
dθ1

∫ π

−π

4|t2|
2 − cos θ1 − cos θ2

dθ2

+
∫
ε<|θ1|<π

dθ1

∫ π

−π

2r|θ2|
√

θ2
1 + θ2

2

(2 − cos θ1 − cos θ2)2 dθ2 = (Ia) + (Ib).
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Let us write r = rB to simplify the notation. Since |t2| ≤ r , we have

(Ia) ≤ 20r

∫
ε<|θ1|<π

dθ1

∫ π

−π

dθ2

θ2
1 + θ2

2

< 20r

∫∫
ε2<θ2

1 +θ2
2 <4π2

dθ1 dθ2

θ2
1 + θ2

2

= 20r

∫ 2π

ε

dρ

ρ

∫ π

−π
dϕ = 40πr ln

(
2πε−1)

by switching to polar coordinates. Similarly,

(Ib) ≤ 50r

∫
ε<|θ1|<π

dθ1

∫ π

−π

|θ2|dθ2

(θ2
1 + θ2

2 )3/2

= 200r

∫ π

ε

1

θ1
− 1√

π2 + θ2
1

dθ1

= 200r
(
1 + o(1)

)
ln
(
ε−1).

Consequently,∣∣(I)∣∣≤ ∣∣∣∣(Ia) + (Ib)

4π2x2

∣∣∣∣≤ 50 + 10π + o(1)

π2 · 2r

|x| · ln
(
ε−1).

On the other hand, for |θ1| ≤ ε we have

∣∣(II)∣∣≤ 2

(2π)2

∫ ∫
|θ1|≤ε

|1 − e−i(t1θ1+t2θ2)|
2 − cos(θ1) − cos(θ2)

dθ

≤ 5r

π2

∫ ∫
|θ1|≤ε

√
θ2

1 + θ2
2

θ2
1 + θ2

2

dθ

= 5r

π2

[
4π ln

(
ε

π
+
√

1 + ε2

π2

)
+ 2ε ln

(√
π2 + ε2 + π√
π2 + ε2 − π

)]

= 20r

π2

[
ln(2πe) + ln

(
ε−1)] · ε +O

(
ε3)=O

(
rε ln

(
ε−1)).

Therefore, by setting ε = 1
r3/2(ln r)2 we get

∣∣A(x, t) − A(x,0)
∣∣= ∣∣(∗)

∣∣≤ ∣∣(I)∣∣+ ∣∣(II)∣∣≤ const
[
r ln(ε−1)

|x| + rε ln
(
ε−1)]

= const
[
r ln(r3/2(ln r)2)

|x| + ln(r3/2(ln r)2)

(ln r)2
√

r

]

= const

2

[
r

3 ln r + 4 ln ln r

|x| + 3 ln r + 4 ln ln r

(ln r)2
√

r

]

≤ 3 · const

2
· 1√

r
+ o

(
1√
r

)
.
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Now the result follows from (19), Theorem from [13], and the condition of our
theorem about |x|. �

Next, we want to strengthen Kesten’s result from [12], where he studied the
following model. Suppose that the initial sticky particle is located at the origin
0 ∈ Z

2, and the particles emitted at infinity (for a more rigorous definition, please
see [12]). Let r(n) be the diameter of the aggregate An of n particles. Kesten in
[12] showed that a.s. r(n) ≤ C2n

2/3 for a fixed constant C2 > 0 and all but finitely
many n. We will get a more precise estimate for all n even in the case where the
particles are emitted not at the infinity but at some point, sufficiently remote from
the origin.

PROPOSITION 2 (Strengthening Kesten’s theorem for Z
2). Consider the

above model with the exception that the particles are emitted from a fixed finite
point z ∈ Z

2. Then there are constants C4,C5, n0 > 0 not depending on anything,
such that for all n ≥ n0 satisfying n3/2 lnn ≤ |z|, we have

P
(
r(n) > C4n

2/3)≤ e−C5
√

n.

PROOF. We assume that n = ni = 22i for some positive integer i; if this is not
the case, then we can always find such i that ni−1 ≤ n < ni and since ni/4 ≤ n ≤ ni

and An ⊆ Ani
the result will follow.

For
√

n = 2i , we have a trivial bound r(2i ) ≤ 2i . Now for k = i, i + 1, . . . ,2i

we repeat Kesten’s argument. Note here that our Proposition 1 together with the
trivial bound r(An) ≤ n imply that the inequality (8) from [12] still holds, possibly
with a different constant; that is, the probability that the particle gets adsorbed at a
specific point of An is bounded by C6/16√

r(n)
for some C6 > 0. Then the collection of

inequalities (9) in [12], that is,

(20) r
(
2k+1)− r(l) ≤ C62k

√
r(l)

+ 2k/2 for all 2k ≤ l ≤ 2k+1

holds with probability at least 1 − ν(k) where

ν(k) = 4π22k+1
(

e

4

)2k/2

× 2k ≤ γ 2k/2

for some γ < 1 and all k larger than some nonrandom k0 (see equation (18) in
[12]).

From now on, assume that i > k0, that is, n ≥ 4k0 . Then (20) holds for all k =
i, i + 1, . . . ,2i − 1 with probability exceeding

(21) 1 −
2i∑

k=i

γ 2k/2
> 1 −

∞∑
m=2i/2

γ m = 1 − γ 2i/2

1 − γ
= 1 − γ

√
n

1 − γ
.
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Next, suppose that inequalities (20) indeed hold for 2k ≤ l ≤ 2k+1. If for l = 2k ,
we have r(l) ≥ (C62k)2/3 then

r
(
2k+1)− r

(
2k)≤ (

C62k)2/3 + 2k/2.

If the above inequality does not hold, then either for all l ∈ [2k,2k+1] we have
r(l) < (C62k)2/3, and thus r(2k+1) < (C62k)2/3 as well, or there is some l∗ ∈
[2k,2k+1] such that |r(l∗) − (C62k)2/3| ≤ 1. In the latter case,

r
(
2k+1)≤ r(l∗) + C62k

√
r(l∗)

+ 2k/2

≤ [(
C62k)2/3 + 1

]+ C62k√
(C62k)2/3 − 1

+ 2k/2

≤ 3
(
C62k)2/3 + 2k/2.

Combining the inequalities involving r(2k+1), we conclude that

r
(
2k+1)≤ 3C

2/3
6 2

2k
3 + 2

k
2 + r

(
2k)≤ 4C

2/3
6 2

2k
3 + r

(
2k)

if k is not too small. Summing this up for k = i, i + 1, . . . ,2i − 1, we finally get

r(n) = r
(
22i)≤ r

(
2i)+ 4C

2/3
6

2i−1∑
k=i

2
2k
3

≤ 2i + 4C
2/3
6

1 − 22/3 2
4i
3 ≤ C42

4i
3 = C4 · n 2

3

with probability exceeding the quantity in the RHS of (21). �

COROLLARY 3. Let α > 0 be small. Consider again the model from Proposi-
tion 2, with the same z. Then there are constants C4,C5, n0 > 0 depending only
on α, such that for all n ≥ n0 satisfying n ≤ |z|1−α we have

P
(
r(n) > C4n

2/3)≤ e−C5
√

n.

PROOF. The crucial point in the proof of Proposition 2 where we used the
fact that |z| ≥ n3/2 lnn was that we can apply Proposition 1 only as long as the
set B containing the origin has the radius r = r(B) satisfying r3/2 ln r ≤ |z|. The
estimate r(An) ≤ n which we used in the beginning of the proof of Proposition 2
is, however, too crude, as we know that An does not grow that fast with very high
probability. Therefore, one can repeat the arguments of this proposition almost
verbatim, estimating the probabilities conditioned on the past behaviour of the
adsorption process not to grow faster then s2/3 by time s for s ≤ n, so that in
particular r(n) ≤ C4n

2/3, and thus r(n)3/2 ln r(n) ≤ O(n lnn) � |z| as it would be
required by the conditions of Proposition 2. �
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Now we present the proof of the main result, based on estimation of crossing
times of the sequence of rings separating the border from the origin.

PROOF OF THEOREM 6. Let B(R) = {v ∈ Z2 : |v| ≤ R} be the set of points
in Z

2 inside the circle of radius R; fix some very small positive δ such that

(22)
δ

18 − 6δ
<

ε

2

and let rk = k3−δ , k ∈ Z+, and for now assume that N = rz for some positive
integer z. Consider the rings Rk = B(rk) \ B(rk−1). Observe that the width of Rk

is ∼= (3 − δ)k2−δ , and thus it is larger than wk := k2−δ .
The Nnext step is to show that with high probability the number of particles ζk

required to cross Rk and come to the next ring Rk−1 (even if there is more than
one “arm”, that is, a connected component of stuck particles) is at least of order

w
3/2
k = k3− 3

2 δ with high probability.
Consider our adsorption process from the moment when some particle gets ad-

sorbed in Rk for the first time. Let ∂B(rk) be the set of vertices where this could
have happened, namely

∂B(rk) = {
v ∈ B(rk) : ∃u /∈ B(rk), u ∼ v

}
“the internal border” of B(rk). Note that card(∂B(rk)) ≤ 8rk .

Let us arbitrarily index points of ∂B(rk) as vj , j = 1,2, . . . , card(∂B(rk)). For
each vj ∈ ∂B(rk), construct the corresponding “DLA arm” Aj ⊆ Rk as follows.
Initially, all Aj are empty sets. Whenever a particle gets adsorbed in a point vj ∈
∂B(rk), set Aj = {vj }. If a particle gets adsorbed at some previously empty point
v ∈ Rk \∂B(rk), then for every u such that u ∼ v and every j such that u ∈ Aj with
u ∼ v, attach v to Aj , that is, Aj → Aj ∪ {v} (observe that as a result point v ∈ Rk

can simultaneously join a number of different “arms”.) Finally, if the particle gets
adsorbed outside of Rk , do not change any of the arms.

Formally, let t be the index of the particle emitted from the origin counting from
the first time a particle got adsorbed in Rk at some point v ∈ ∂B(rk). Then

A
j
1 = ∅ for all but one i for which Ai

1 = {v}.
Now recursively define A

j
t , t = 2,3, . . . , as follows: for each j ,

A
j
t+1 =

{
A

j
t ∪ {v} if the t + 1st particle got adsorbed at v such that v ∼ A

j
t ,

A
j
t otherwise.

It is clear from the construction that for any arm Aj , the probability to get adsorbed
near any of its points is smaller than the corresponding probability for the process
described in Proposition 2 in particular, the number of particles in Aj might grow
slower than the number of emitted from the origin particles, that is, card(A

j
t ) ≤ t

[unlike the Kesten’s DLA model where card(A(t)) = t].
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Set n = nk = (wk/C4)
3/2 = k3−1.5δC−1.5

4 . Then

n = C−1.5
4

[
k3−δ]1− δ

6−2δ = O
(
r

1− δ
6−2δ

k−1

)
so we can apply Corollary 3 with α ∈ (0, δ

6−2δ
) to show that after n particles were

adsorbed inside of Rk , for each arm Aj we have

P
(
r
(
Aj

n

)
> wk

)= P
(
r
(
Aj

n

)
> C4n

2/3)≤ e−C5
√

n,

where r(A
j
n) denotes the diameter of the arm A

j
n. For a path of sticky particles

to cross the ring Rk , it is necessary that the diameter of at least one of the arms
exceeds wk . The probability that it took no more than the nk particle to cross Rk is

P(ζk ≤ nk) ≤ P

(⋃
j

{
r
(
Aj )> wk

})≤∑
j

P
(
r
(
Aj )> wk

)

≤ 8rke
−C5

√
nk = 8k3−δe

−C5

√
k3−1.5δC−1.5

4 ≤ e−k

(since there are at most 8rk such arms) for all k large enough.
Fix an arbitrary ε′ > 0 and choose k0 so large that

∑∞
k=k0

e−k < ε′. As a result,
with probability

1 −
z∑

k=k0

e−k > 1 − ε′

the number of particles required to form a path that crosses all the rings
Rz,Rz−1, . . . ,Rk0+1,Rk0 is no less than

z∑
k=k0

nk = 1

C1.5
4

z∑
k=k0

k3−1.5δ ≥ z4−1.5δ

5C1.5
4

= N
4
3 − δ

18−6δ

5C1.5
4

≥ N
4
3 − ε

2

5C1.5
4

≥ N
4
3 −ε

[see (22)] provided z ≥ 2k0 and N is sufficiently large. This implies that

P
(
ξN ≤ N

4
3 −ε)≤ ε′.

Finally, if N = z3−δ for an integer z, we can always find N ′ such that N ′ = z3−δ

and N/2 < N ′ ≤ N and apply the argument for the rings starting with N ′. �

4.2. Comb lattice. The comb lattice G is the graph whose vertices coincides
with the vertices of Z2; however, all the horizontal edges are removed except those
lying on the horizontal axes. Thus, a simple random walk located at point (x, y) ∈
Z

2 goes only up or down (y ± 1) with probability 1
2 , unless y = 0 in which case

either of the coordinates can decrease or increase, all with probability 1
4 .

Suppose the origin is v0 = (0,0) and the initial sticky border consists of two hor-
izontal lines located at distance N from the horizontal axes, that is, B = {(x, y) ∈
G : |y| = N}. As before, let ξ = ξN denote the number of particles to be emitted
from the origin before the origin becomes sticky.
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Comb lattice, N = 3

v0

B

B

THEOREM 7. For some 0 < c1 < c2,

P
(
c1N

3/2 ≤ ξN ≤ c2N
3/2)→ 1

as N → ∞.

REMARK 1. Simulations strongly suggests that E[ ξN

N3/2 ] ≈ 1.5 for large
enough N . This leads us to believe that ξN

N3/2 should be very close to 1.5 for all N

large enough with high probability.

The proof of Theorem 7 will immediately follow from Lemmas 2 and 3 below.
Consider the column j , j ∈ Z, that is, the set of points Kj = K+

j ∪ K−
j where

K+
j = {

(j, y), y = 0,1, . . . ,N
}
,

K−
j = {

(j, y), y = 0,−1, . . . ,−N
}
.

The columns are gradually getting filled with sticky particles (it should be noted
that many columns will not be completely filled); let h+

j (m) be the distance from

(j,0) to the closest sticky particle in K+
j at the time when the mth particle is being

emitted from the origin; similarly, define h−
j (m) for K−

j .

Suppose that when the mth particle is emitted, all h±
j (m) ≥ N/2 for all j ∈ Z.

Consider the embedded random walk restricted to the horizontal axes (y = 0),
and denote it by Wn ∈ Z, W0 = 0. Eventually, the particle gets stuck during an
excursion to one of the columns when it reaches the sticky border there; thus this
walk is defined only until some random stopping time τ = τ(m), and the column
in which it gets stuck is either K+

x(m) or K−
x(m) where x(m) = Wτ(m). We shall say

then that the walk Wn “dies” at time τ(m).
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It is easy to see that up to time τ the process Wn is essentially a simple random
walk on Z

1. From elementary calculations, given that Wn = j , the probability the
walk dies before ever visiting j ± 1 again (which means it reaches a sticky border
in either K±

j before departing for j − 1 or j + 1) is given by

(23) qj,n = qj,n(m) := 1/2

1/2 + 1
1/h++1/h−

= h+ + h−

2h+h− + h+ + h− ,

where we omitted the subscript j for simplicity (one can use, e.g., the electrical
networks method, see [8]). Consequently, if all h±

j ≥ N/2 (and by the initial con-

ditions we know that h±
j ≤ N − 1) then

(24)
1

N
≤ qj,n ≤ 2

N + 2
<

2

N
.

Under the above assumption minj h±
j (j) ≥ N/2, we can compute the probability

that the mth particle eventually gets stuck at point j by

pj (m) :=
∞∑

s=0

∑
l∈Ls,j

1

2s
· (1 − ql1,1)(1 − ql2,2) · · · (1 − qls−1,s−1) · qls ,s,

where Ls,j is the set of all paths l = (0,±1,∗, . . . ,∗, j ± 1, j) of SRW on Z
1 of

length s ending at point j . Using (24), we get that

(25)
1

2
pj ;2/N ≤ pj (m) ≤ 2pj ;1/N ,

where pj ;γ is the corresponding probability for the process which gets killed with
a constant rate γ ∈ (0,1). This quantity, however, we can compute.

LEMMA 1.

pj ;γ =
√

γ

2 − γ
·
[

1 − √
γ (2 − γ )

1 − γ

]|j |
.

In particular, if γ = a
N

where N is large and a = O(1),

pj ;γ ∼
√

a

2N
·
[
1 −

√
2a√
N

]|j |
.

PROOF. Let qi = q
(j)
i denote the probability that the random walk gets killed

at j , provided it starts at point i ∈ Z
1. We have the following easy recursion:

qi =
⎧⎪⎨
⎪⎩

(1 − γ )
qi−1 + qi+1

2
if i = j ;

γ + (1 − γ )
qi−1 + qi+1

2
if i = j.
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The characteristic equation λ2 − 2
1−γ

λ + 1 = 0 has the roots

λ1 = 1 + √
γ (2 − γ )

1 − γ
> 1, λ2 = 1 − √

γ (2 − γ )

1 − γ
= 1

λ1
< 1.

We have different solutions for i ≥ j and i ≤ j ; moreover, qj must go to 0 as
j → ±∞; these solutions have to be symmetric around j . Therefore, we must
have qi = Cλ

|i−j |
2 . Using the recursion at j = i, we obtain C = γ + (1 − γ )Cλ2

yielding C = γ
1−(1−γ )λ2

=
√

γ
2−γ

. Consequently, pj ;γ = q0 =
√

γ
2−γ

·λ|j |
2 . The rest

is a simple calculus. �

LEMMA 2.

P

(
ξN <

1

8
N3/2

)
= o(1)

for N large.

PROOF. As long as h±
j ≥ N/2, we know from the RHS of (25) and Lemma 1

(with a = 1) that

pj (m) ≤ 2√
N

[
1 − 1√

N/2

]|j |
.

Therefore, the probability that there will be at least one particle among the first
N3/2 ones which gets stuck at column K±

j for |j | ≥ N/2 is smaller than

N
3
2
∑

|j |≥N
2

2√
N

[
1 −

√
2

N

]|j |
∼ 4N

∫ ∞
N
2

e
−x

√
2
N dx

= 4N

∫ ∞
1

e
−y

√
N
2 dy

= 4
√

2Ne
−
√

N
2 = o(1).

For the columns with j from −N/2 till +N/2, this probability is at most 2√
N

. We

can thus couple our process with independent Bernoulli trials conducted 1
8N3/2

times, which has the average 1
4N . Hence, by the large deviation principle (see,

e.g., [7]), the probability that amongst particles with indices m = 1,2, . . . , 1
8N3/2

more than 1
3N get stuck at a particular column j is bounded above by e−const·√N ,

and hence the probability that at least one h±
j , j < |N/2|, becomes smaller than

N − 1
3N is less than N ·e−const·√N = o(1). Consequently, all the h±

j indeed remain
higher than N/2 for the first 1

8N3/2 emitted particles. The statement has been
proved. �
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LEMMA 3.

P
(
ξN > 20N3/2)= o(1)

for N large.

PROOF. Consider the SRW Wn during the first N steps, assuming it is not
killed earlier. We have by the reflection principle

P

(
max

n=1,...,N
|Wn| >

√
N
)

≤ P

(
max
n≤N

Wn >
√

N
)

+ P

(
min
n≤N

Wn < −√
N
)

= 2P
(
max
n≤N

Wn >
√

N
)

= 4P(WN >
√

N)

= 4
[
1 − �(1)

]= 0.63 . . .

and hence with probability at least ≈ 0.36 . . . the walk stays within [−√
N,+√

N ]
for the first N steps. At the same time, the walk is killed at each step with proba-
bility at least 1/N , hence it does not survive until N + 1 with probability at least
1 − (1 − 1/N)N ≈ 1 − e−1 = 0.63 . . . , that is, the particle gets stuck in one of the
columns K±

j with |j | < √
N .

Consequently, each particle emitted at the origin with probability at least 0.36 ·
0.63 = 0.2268 gets stuck at point inside

A := {
(x, y) ∈ Z

2 : |y| < N, |x| ≤ √
N
}

independently of the past. Since |A| ≤ 4N3/2, and 20 × 0.2268 > 4, by the large
deviation principle with probability converging to one, 20N3/2 points should suf-
fice to fill up A, and hence make the origin sticky. �

5. Aggregation on Z
d , d ≥ 3. Assume d ≥ 3 and let G = [−N, . . . ,N]3 ⊂

Z
d be a cube of the d-dimensional lattice with the sticky border B = {x ∈ G : |x| ≥

N −1}. Let ξN be the number of particles emitted before the origin v0 = 0 becomes
sticky. Trivially, N ≤ ξN ≤ (2N)d .

In the analogy with Section 4.1, we will prove the following lower bound for
ξN (compare this with [12] for the case d ≥ 3).

THEOREM 8. There exists a cd > 0 such that P(ξN > cdNd/2) → 1 as N →
∞.

PROOF. Recall that the Green function in dimension d

g(0,y) ∼ const

‖y‖d−2

(see, e.g., [17], Theorem 4.3.1) gives the average lifetime number of visits to y of
the SRW on Z

d starting from point 0. Since the probability of return to y of a SRW
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starting at y is a constant smaller than 1 independent of y (due to the transience of
the walk on Z

d , d ≥ 3), conditioned on the first visit to y, the number of visits to
y starting from x has a geometric distribution with the same finite mean for all y;
therefore, if Xn denotes a SRW on Z

d then

(26) P(Xn = y for some n ≥ 1 | X0 = 0) ≤ c

‖y‖d−2

for some constant c > 0 and sufficiently large y.
Recall that B(k) = {x ∈ G : |x| ≤ k} is the ball of radius k distance around the

origin and let

R(k) = B(k + 1) \ B(k)

be the “shell” of radius k. Let νk be the index of the first particle to get stuck on
R(k).

Denote by pk(n) the probability of a particle getting stuck in R(k) for the first
time, given there are already n sticky points y1, . . . ,yn in R(k + 1). In order for
this event to happen, we need at least that a SRW starting from 0 hits a point of
R(k) adjacent to one of yi ’s before reaching the boundary B; denote these points
y1

′, . . . ,y′
n′ ∈ R(k). Obviously, n′ ≤ dn due to the fact that yi

′ must be adjacent to
some yj and at the same time |yi

′| < |yj |.
It immediately follows from (26) that

pk(n) ≤ P
(
SRW starting at 0 ever reaches the set

{
y′

1, . . . ,y′
n′
})

≤ n′ min
y′∈R(k)

P
(
SRW starting at 0 ever reaches y′)

≤ c · dn

kd−2 .

Suppose the particle with index νk+1 is the first particle to become sticky on
R(k + 1). If the next (n − 1) particles do not get stuck at R(k), the number of
particles at R(k+1) becomes at most n. Therefore, the probability that νk −νk+1 >

n, which is equivalent to the event that none of the particles with index νk+1 + �,
� = 1,2, . . . , n gets stuck at R(k), is at least

n∏
�=1

(
1 − c�

kd−2

)
≥ 1 − cdn(n + 1)

2kd−2 .

Plugging n = c1
√

kd−2 for a suitable constant c1 > 0, we get

P
(
νk − νk+1 > c1

√
kd−2 | Fνk+1

)
>

1

3
,

where Fνk+1 is the history of the process up to the time νk+1. Consequently, the
random variables (νk −νk+1) for k = N/2, . . . ,N can be coupled with independent



1632 D. THACKER AND S. VOLKOV

random variables ηk taking value c1

√
(N/2)d−2 =: c2N

d/2−1 with probability 1/3,
and 0 otherwise, such that νk − νk+1 ≥ ηk . This in turn yields

P
(
ξN ≤ cdNd/2)≤ P

(
νN/2 − νN ≤ cdNd/2)

≤ P

(
N∑

�=N/2

η� ≤ cdNd/2

)
= o(1)

as long as cd < c2/6 by the standard Chernoff bound. �
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