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LIMIT THEOREMS FOR INTEGRATED LOCAL EMPIRICAL
CHARACTERISTIC EXPONENTS FROM NOISY
HIGH-FREQUENCY DATA WITH APPLICATION

TO VOLATILITY AND JUMP ACTIVITY ESTIMATION

BY JEAN JACOD AND VIKTOR TODOROV1

UPMC (Université Paris-6) and Northwestern University

We derive limit theorems for functionals of local empirical characteristic
functions constructed from high-frequency observations of Itô semimartin-
gales contaminated with noise. In a first step, we average locally the data
to mitigate the effect of the noise, and then in a second step, we form lo-
cal empirical characteristic functions from the pre-averaged data. The final
statistics are formed by summing the local empirical characteristic exponents
over the observation interval. The limit behavior of the statistics is governed
by the observation noise, the diffusion coefficient of the Itô semimartingale
and the behavior of its jump compensator around zero. Different choices for
the block sizes for pre-averaging and formation of the local empirical char-
acteristic function as well as for the argument of the characteristic function
make the asymptotic role of the diffusion, the jumps and the noise differ. The
derived limit results can be used in a wide range of applications and in par-
ticular for doing the following in a noisy setting: (1) efficient estimation of
the time-integrated diffusion coefficient in presence of jumps of arbitrary ac-
tivity, and (2) efficient estimation of the jump activity (Blumenthal–Getoor)
index.
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1. Introduction. In this paper we study the limit behavior of statistics based
on empirical characteristic functions formed from discrete irregularly-sampled ob-
servations of an Itô semimartingale contaminated with observation noise. The
asymptotic setting of the paper is one of fixed time span and mesh of the ob-
servation grid going to zero. The limit results derived here are rather general and
can be applied for making inference regarding various quantities associated with
the diffusion coefficient of the semimartingale and its jump component.

The statistics of interest are constructed as follows. We first average locally the
data in order to mitigate the effect of the observation noise. This is done using the
so-called pre-averaging technique of [9] and [18]. We then construct the real part of
the empirical characteristic function (ecf) of the first-difference of the pre-averaged
increments on local windows of asymptotically shrinking length. In a final step, we
aggregate the local characteristic exponents over the observation interval.

By constructing the ecf over blocks of increments with sufficiently fast shrink-
ing time span, the time variation of the characteristics of the semimartingale and
that of the variance of the noise has an asymptotically negligible effect on our
statistics. Therefore, the analysis of the real part of the ecf over the blocks can be
performed as if the observed process is Lévy (i.e., one with constant character-
istics) plus i.i.d. noise. Using the Lévy–Khintchine formula, the ecf of the incre-
ments of a Lévy process observed with i.i.d. noise over a shrinking time interval
is determined by the diffusion coefficient, the behavior of the Lévy measure of the
jumps around zero as well as the variance of the noise.

By deriving the limit in probability of our statistics for different values of the
argument of the characteristic function used in their construction, we can sepa-
rately identify the diffusive and the jump part of the semimartingale as well as the
variance of the observation noise. In particular, we can consistently estimate the
diffusion coefficient and quantities pertaining to the jump compensator. We further
derive associated Central Limit Theorem (CLT) results. By varying the asymptotic
order of the argument of the characteristic function as well as that of the two local
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windows, used for pre-averaging and calculation of the ecf, we get a wide range of
limit results depending on whether the diffusion, the jumps and/or noise dominate
the asymptotic variance of the limit. In addition, we derive higher-order CLT when
analyzing the limit behavior of differences of the statistics for different values of
the argument of the characteristic function used in their construction.

Our results have a wide range of applications. First, using the proposed statis-
tics we can construct efficient estimates of the integrated diffusion coefficient in
the simultaneous presence of jumps of arbitrary activity (but of locally mixture-of-
stable type), observation noise and irregular sampling. The problem of estimating
the diffusion coefficient from high-frequency data has received a lot of attention.
Barndorff-Nielsen and Shephard [3], Barndorff-Nielsen, Shephard and Winkel [4]
and Mancini [17] propose jump-robust estimators in a setting of no noise. The rate
of convergence of these estimators, however, drops when the jumps are of infi-
nite variation. Jacod and Todorov [11, 12] propose an alternative estimator, again
in the no-noise setting, which allows for efficient estimation even when jumps
are of infinite variation (provided they are of locally mixture-of-stable type). An-
other strand of the literature has developed noise-robust estimators of the diffu-
sion coefficient. Examples include [2, 5, 9, 15, 18] and [23]. These papers either
do not allow for jumps in the underlying process or restrict its activity. The pro-
posed estimator in this paper can work in the simultaneous presence of noise and
jumps of arbitrary activity and it remains rate-efficient even when the latter are of
infinite variation. To the best of our knowledge, this has not been done in prior
work.

Second, using the limit results of the current paper, we can develop estimates
of the jump activity (Blumenthal–Getoor) index of the semimartingale in a noisy
setting, both when the diffusive part of the semimartingale is present or not. Esti-
mation of the jump activity index has been studied extensively in earlier work, with
different methods of estimation and different setups affecting the rates of conver-
gence of the estimation. In the no-noise setting and when the diffusion coefficient
is present, [1, 6] and [14] use truncation based estimators. In the no-noise and no-
diffusion setting, [20] and [22] use power variations and [19] uses local empirical
characteristic functions. Finally, [13] adopt some of the above-mentioned no-noise
estimators to noisy setting by doing initial pre-averaging of the raw data. The es-
timators that we propose here are more efficient than the ones based on truncated
power variations considered in [13], and unlike [13], we derive the rate of con-
vergence and a CLT for our estimators when the underlying process contains a
diffusion.

The paper is organized as follows. In Section 2, we present our setting regarding
the underlying process, the observation scheme and the noise. In Section 3, we
construct our statistics from the high frequency data. Section 4 contains our limit
results. All proofs are given in Section 5.
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2. The setting. Our setting contains three basic ingredients:

1. an underlying one-dimensional process X;
2. at each stage n, a strictly increasing sequence of observation times 0 =

T (n,0) < T (n,1) < · · · ;
3. at each stage n, a sequence of variables (χn

i : i ≥ 0) which represents the
observation noise; that is, at time T (n, i) one does not observe directly XT (n,i), but
instead XT (n,i) + χn

i , to account for the so-called microstructure noise in financial
data.

All these objects are defined on a probability space (�,F,P), and we now describe
the assumptions for each of the three ingredients.

2.1. The underlying process. We start with the underlying process. The pro-
cess X is a one-dimensional Itô semimartingale, relative to some càdlàg filtration
(Ft )t≥0, and it takes the form

(2.1) Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + δ ∗ (p= − q= )t + δ′ ∗ p= t ,

where W is a Brownian motion, p= is a Poisson measure on R+ × E with deter-
ministic compensator q= (dt, dz) = dt ⊗ η(dz). Here, E is a Polish space and η is
a σ -finite measure on E. For a function φ on � ×R+ × E and a random measure
ν on R+ × E, the notation φ ∗ νt stands for the double (ordinary or stochastic)
integral

∫ t
0
∫
E φ(s, z)ν(ds, dz). The process b is optional, the process σ is càdlàg

adapted, the functions δ and δ′ on � × R+ × E are predictable and such that the
integrals in (2.1) make sense (this will be implied by our assumptions below).

We also assume that the volatility process σ is itself an Itô semimartingale,
which can thus be written as

(2.2)
σt = σ0 +

∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s

+ δσ ∗ (p= − q= )t + δ′σ ∗ p= t ,

with bσ , Hσ , H ′σ optional and δσ , δ′σ predictable. Choosing the same Poisson
measure p= to drive both X and σ is not a restriction, and we use W and W ′ in (2.2)
to allow for general dependence between the diffusion components of X and σ .

The Itô semimartingale assumption for σ is satisfied in many applications, for
example, when σ is modeled as Lévy-driven SDE. Such an assumption, however,
rules out models in which σ is driven by a fractional Brownian motion; see, for ex-
ample, [7] and [8]. We conjecture that our results can be extended to such settings
(with possibly different—worse or better depending on the Hurst parameter—rates
of convergence) but we leave such an extension for future work.

For the assumptions, we need to introduce two properties relative to a generic
(Ft )-optional process V , with some q, q ′ > 0 and where K is a constant depending
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on V :

E
(

sup
s∈[T ,S]

|Vs − VT |q ′)≤ KE
(
(S − T )q

)
for any two finite stopping times T ≤ S,

(2.3)

∣∣E(VS − VT )
∣∣≤ KE

(
(S − T )q

)
for any two finite stopping times T ≤ S.

(2.4)

We will denote the first property above as (2.3)q,q ′ , and the second one as (2.4)q .
If V is a bounded Itô semimartingale with bounded characteristics, then it satisfies
(2.3)2,1 and (2.4)1. If in addition V is of finite variation, (2.3)1,1 holds as well.

We also recall that the process X = δ ∗ (p= − q= ) has a jump measure μ whose
(Ft )-predictable compensator ν factorizes as ν(dt, dx) = dt ⊗Ft(dx), where Ft =
Ft,ω, called the “spot Lévy measure,” is the restriction to R \ {0} of the image of
the measure λ by the map z �→ δ(ω, t, z).

For an arbitrary positive measure F on R, we consider the “tail function” de-
fined for x > 0 by F(x) = F((−∞,−x)) + F((x,∞)). Further, F̆ denotes the
measure defined by F̆ (A) = 1

2(F (A) + F(−A)) and where −A = {x : −x ∈ A}.
When F is a signed measure, we denote by |F | its “absolute value” (the smallest
positive measure such that |F | − F is also a positive measure), and by |F | the tail
function of |F |.

With this notation, we next state our assumption for X.

ASSUMPTION (H). We have (2.1) and (2.2), an integer M ≥ 1, numbers r , r ′,
β1, . . . , βM such that 0 ≤ r < βM < · · · < β2 < β1 ≤ 2 and nonnegative adapted
càdlàg processes a1, . . . , aM , with the following properties: for each r ′ ∈ (β1,2)

we have a sequence τn of stopping times increasing to infinity, a sequence Jn of
[0,1]-valued Borel functions on E with

∫
Jn(z)η(dz) < ∞ and a sequence n of

numbers such that, with the notation

(2.5) F ′
t (dx) = F̆t (dx) −

M∑
m=1

βmam
t

|x|1+βm
1{0<|x|≤1} dx,

we have

(2.6) t < τn =⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|bt |, |σt |,

∣∣bσ
t

∣∣, ∣∣Hσ
t

∣∣, ∣∣H ′σ
t

∣∣, am
t ≤ n,∣∣δ(t, z)∣∣r ′

,
∣∣δσ (t, z)

∣∣2,1{δ′σ (t,z) �=0},1{δ′(t,z) �=0} ≤ Jn(z),

x > 0 ⇒ ∣∣F ′
t

∣∣(x) ≤ n

xr
.

Moreover:

(i) the processes bt∧τn , Hσ
t∧τn

and δ(t ∧τn, z)/Jn(z)
1/r ′

for all z satisfy (2.3)2,1
with K = n,
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(ii) the processes (am
t∧τn

)1/βm for m = 1, . . . ,M satisfy (2.3)2,1 and (2.4)1 with
K = n.

We note that if (H) holds with some r it also holds for any r ∈ (r, βM). Since
we allow the processes am

t to be identically 0, we can always add another index β

in (r,2) with the associated process at identically 0: this is of course immaterial
and it looks a priori strange. However, we use the above formulation for a unified
representation, which nests also the case where M = 1 and a1

t (ω) = 0 identically.
In this case, (2.5) reduces to F ′

t = F̆t , and the last condition in (2.6) becomes
F t(x) ≤ n/x

r .
Assumption (H) restricts the behavior of the Lévy measure of X, but only

around zero (and only when at least one of am
t is not identically zero). We note in

that respect that the measures F ′
t in (2.5) are a priori signed measures. The restric-

tion of the Lévy measure around zero is to be like that of a sum of time-changed
stable processes. The parameter r controls the degree of deviation of Ft from that
of the mixture of time-changed stable processes. In many parametric jump spec-
ifications, (H) will be satisfied with M = 1 and r < β1/2. In the Lévy case, for
example, this will hold when Ft(dx) = f (x) dx and f (x)/x−1−β1 converges to a
positive constant as x → 0 and has a bounded first derivative in a neighborhood of
zero. This is the case for many parametric jump models, for example, the tempered
stable and the generalized hyperbolic.

Assumption (H) is satisfied for the class of time-changed Lévy processes with
absolute continuous time change (the drift, diffusion and jumps can have separate
time changes), provided the jump part of the Lévy process behaves around zero
like that of a sum of stable processes. Although less obvious, (H) is also satisfied
for the class of Lévy-driven stochastic differential equations [provided (H′) below
holds], that is, when X takes the form

(2.7) Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

M∑
m=1

∫ t

0
σm

s− dZm
s + δ′ ∗ p= t ,

with b, σ , δ′ and W , p= as above, and where the processes σm
t are càdlàg adapted

and the processes Zm are independent Lévy processes with no drift and no Gaus-
sian part, and also independent of W and p= . We denote by Fm the Lévy measure
of Zm, so the “no drift and no Gaussian part” means that the characteristic function
of Zm

t is

(2.8) E
(
eiuZm

t
)= exp

(
t

∫
R

(
eiux − 1 − iux1{|x|≤1}

)
Fm(dx)

)
.

Accordingly, we replace (2.2) by

(2.9)

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s

+
M∑

m=1

∫ 1

0
H

σ,m
s− dZm

s + δσ ∗ (p= − q= )t + δ′σ ∗ p= t ,
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where each Hσ,m is càdlàg adapted. The next assumption implies in particular that
the Blumenthal–Getoor index of each Zm is βm.

ASSUMPTION (H′). We have (2.7) and (2.9), and also numbers 2 > β1 >

· · · > βM > r ≥ 0, and bt , σt , bσ
t , Hσ

t , H ′σ
t , δ′(t, z), δσ (t, z), δ′σ (t, z) satisfy the

same conditions as in (H). Moreover, we have a sequence τn of stopping times in-
creasing to infinity and a sequence n of numbers such that, for all m = 1, . . . ,M :

(i) if t < τn then |σm
t | ≤ n and |Hσ,m

t | ≤ n;
(ii) the processes |σm

t∧τn
| satisfy (2.3)2,1 and (2.4)1 with K = n;

(iii) for some constant αm,α′
m > 0 the signed measures F ′m(dx) = F̆ m(dx) −

αm

|x|1+βm
1{0<|x|≤1} dx [where F̆ m(A) = 1

2(Fm(A) + Fm(−A)), as in (2.5)] satisfy

|F ′
m|(x) ≤ α′

m/xr for all x > 0.

As proved below (see Lemma 8), any process satisfying (H′) also satisfies (H).
Therefore, henceforth, we always use the more general formulation (2.1).

2.2. The observation scheme. We next describe how observations take place.
At stage n, that is, for a given frequency of observations, the successive observa-
tions occur at times 0 = T (n,0) < T (n,1) < · · · for a sequence T (n, i) of (pos-
sibly random) finite times. We will assume a rather special form for the sampling
scheme, which involves a positive process λt and a double sequence (�n

i : i, n ≥ 1)

of positive random variables, and at each stage n, the sampling times T (n, i) are
defined recursively in i, starting with T (n,0) = 0 and using the formulae

�(n, i + 1) = �nλT (n,i)�
n
i+1,

T (n, i + 1) = T (n, i) + �(n, i + 1).
(2.10)

Here, �n → 0 is a nonrandom sequence which plays the role of an “average mesh
size” of the observation grid at stage n. Note, however, that the sampling times
T (n, i) and the inter-observation lags �(n, i) are observed up to the time horizon
t , whereas �n is a nonobservable mathematical abstraction, which should not enter
the various statistics constructed by the statistician.

We assume the following for the process λt and the sequence �n
i .

ASSUMPTION (O). There are a sequence (τm) of (Ft )-stopping times increas-
ing to ∞ and constants m,(p) such that:

(i) the process λt is càdlàg adapted with 1/m ≤ λt ≤ m for all t < τm;
(ii) the stopped processes λt∧τm satisfy (2.3)1,1 with K = m;

(iii) for each n the variables (�n
i : i = 0,1, . . .) are mutually independent and

independent of F∞ and, for all p > 0:

(2.11) E
(
�n

i+1
)= 1, E

((
�n

i+1
)p)≤ (p).
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The number of observations up to time t is Nn
t + 1, where

(2.12) Nn
t =∑

i≥1

1{T (n,i)≤t},

and we prove in Section 5 that the process 1/λt is like the “density” of observa-
tions, in the sense that

(2.13) �nN
n
t

u.c.p.=⇒ �t :=
∫ t

0

1

λs

ds.

Part (ii) of (O) is somewhat restrictive. It is possible to assume only that each
V = λt∧τm satisfies (2.3)q,1 for some q ∈ (1,2). This is at the expense of more
complicated proofs and slower rates of convergence in some of the cases below,
and the case q = 2 is unfortunately excluded.

A regular scheme �(n, i) = �n obviously satisfies (O) with λt = 1. A Poisson
scheme, for which the counting process Nn is Poisson with parameter 1/�n and
independent of X, also satisfies (O) with λt = 1. This happens when we take �n

i

to be exponential with parameter 1. More generally, assumption (O) allows the
FT (n,i)-conditional law of �(n, i + 1) to vary over time.

2.3. The observation noise. At stage n we do not observe XT (n,i) for i =
0,1, . . . , but rather Yn

i = XT (n,i) + χn
i , where χn

i is “noise.” The typical situation
considered in the literature is when, for each n, the (χn

i )i≥0 are i.i.d. centered and
independent of X and of the sampling times. Here, we want to relax this assump-
tion significantly, while keeping the property that the variables χn

i are centered and
mutually independent as i varies, conditionally on the σ -field Hn∞ = F∞ ∨ Kn∞
with Kn

i = σ(�n
j : 0 ≤ j ≤ i). We also denote by (Hn

t ) the smallest filtration con-
taining (Ft ) and with respect to which T (n, i) is a stopping time for all i ≥ 0.

It is obviously no restriction to “standardize” the noise by singling out a pos-
sible modulation via an (Ft )-adapted process, times a new noise which has Hn∞-
conditional variance of 1. Therefore, we assume that, for a suitable (Ft )-adapted
process γ ′

t , the ith observation at stage n is

(2.14) Yn
i = XT (n,i) + χn

i = XT (n,i) + γ ′
T (n,i)ε

n
i .

We will use two different assumptions for the noise, which we state next.

ASSUMPTION (N-1). We have (2.14), a sequence τm of (Ft )-stopping times
increasing to ∞, and for each integer p ≥ 1 a càdlàg (Ft )-adapted process γ

(p)
t

and constants (p)m such that:

(i) The stopped processes γ ′
t∧τm

and γ
(p)
t∧τm

satisfy (2.3)2,1 with K = m.
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(ii) We have γ
(1)
t = 0 and γ

(2)
t = 1.

(iii) For all n the variables εn
i are independent as i varies, conditionally on Hn∞,

and satisfy for all integers p ≥ 1 and all Borel subset B of R:

(2.15) E
((

εn
i

)p | Hn∞
)= γ

(p)
T (n,i), P

(
εn
i ∈ B | Hn∞

)= P
(
εn
i ∈ B |Hn

T (n,i)

)
.

ASSUMPTION (N-0). We have (2.14), a sequence τm of (Ft )-stopping times
increasing to ∞, and constants (p) and m, such that:

(i) The stopped processes γ ′
t∧τm

satisfy (2.3)2,1 and (2.4)1 with K = m.
(ii) For each n the sequence (εn

i )i≥0 is independent of the σ -field Hn∞ and i.i.d.
as i varies and satisfies for all p > 0

(2.16) E
(
εn
i

)= 0, E
((

εn
i

)2)= 1, E
(∣∣εn

i

∣∣p)< ∞.

Henceforth, we will use the notation γt = (γ ′
t )

2 for the (Hn∞-conditional) vari-
ance process of the noise. We note that the last part of (2.15) is equivalent to saying
that εn

i = f n
i (ω, εn

i ), where f n
i is an Hn

T (n,i) ⊗ R-measurable function on � × R

and εn
i is a variable which is independent of Hn∞.

Assumption (N-0) implies (N-1) with γ
(p)
t identically equal to a constant for all

p ∈ N. (N-0) is satisfied in the case of a white noise independent of X. (N-0) also
holds in the case of a “modulated” white noise, that is, when the Hn∞-conditional
moments of the noise are time-varying. In particular, this allows for dependence
between the observation noise and the unobservable X.

For financial applications where X is an asset price, there is typically a rounding
effect, that is, the observed price is integer-valued (prices can move only by mul-
tiples of ticks), and this effect is nonnegligible if one is sampling the price very
finely. The presence of rounding is basically incompatible with an Itô semimartin-
gale plus a white noise (even a modulated one), that is, assumption (N-0).

This is why we introduce the weaker assumption (N-1), which accommodates
some kind of “additive noise plus rounding.” Many versions are possible, the
simplest one being as follows. For any x ∈ R, we denote by [x] = max(n ∈ N :
n ≤ x) its integer part and by {x} = x − [x] its fractional part. At each stage
n, we have an i.i.d. sequence (ζ n

i : i ≥ 0), independent of Hn∞, with the density
α
2 1(−1,0) + α

2 1(1,2) + (1 − α)1(0,1) for some α ∈ [0,1). The observation at time
T (n, i) is

Yn
i = [XT (n,i) + ζ n

i

]
.

With the notation Zt = {Xt }(1 − {Xt }) and Z(p)t = (1 − {Xt })p − (−{Xt })p , a
computation shows us that (2.14) and (2.15) are satisfied with, for each integer
p ≥ 1,

γ ′
t =√α + Zt,
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γ
(p)
t = 1

(α + Zt)p/2

(
α1{p≥2} + ZtZ(p − 1)t

+ α

[(p−1)/2]∑
j=1

p!
(2j)!(p − 2j)!ZtZ(p − 2j − 1)t

)
,

hence (ii), (iii) of (N-1) holds. Moreover, (H) implies that, up to a localization,
X satisfies (2.3)2,1, which in turn implies that (again up to a localization) Zt and
Z(p)t satisfy (2.3)2,1 as well. Then, as soon as α > 0, one obtains that (i) of (N-1)
holds. So, we have (N-1). However, although X also satisfies (2.4)1 (up to a local-
ization once more), the process Zt does not satisfy (2.4)1, so (i) of (N-0) cannot
be true and this example cannot satisfy (N-0), even if we were to appropriately
weaken (ii) of (N-0).

3. Construction of the statistics. In what follows, it is convenient to single
out some special cases, and toward this aim we introduce the following additional
notation:

(3.1)

κ1 =
{

0 if σt ≡ 0,

1 otherwise,
β =

{
β1 if σt ≡ 0,

2 otherwise,

κ2 =
{

0 under (N-0),

1 under (N-1).

Our ecf-based statistics are constructed in two steps. We first “de-noise” the
observations, and then we compute local empirical characteristic functions. The
first step needs a window of size hn while the second step needs another window
of size kn and a sequence un > 0 of reals (both hn and kn are positive integers). We
will specify later the conditions on these tuning parameters, but in any case they
should always satisfy the following, for some ε > 0:

kn�
ε
n,hn�

ε
n,un�

ε
n, k

2
nh

2
n�n → ∞,

k2
nhn�n,h

3
n�

2
n,

u2
n

hn

,uβ
nhn�n,u

2
n(hn�n)

3�−ε
n → 0.

(3.2)

3.1. Pre-averaging. The first step in the construction of our statistics is to
effectively “de-noise” the data which we do via pre-averaging [9, 18]. The pre-
averaging method amounts to average the data over a window of hn successive
increments, with the help of a weight (or, kernel) function g on R, which satisfies

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,

s /∈ (0,1) ⇒ g(s) = 0,

∫ 1

0
g(s)2 ds > 0.
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With g and the sequence hn and β ∈ [1,2) we associate the numbers (indexed by
n ≥ 1 and i, j ∈ Z)

gn
i = g(i/hn), gn

i = gn
i+1 − gn

i ,

φn = 1

hn

∑
i∈Z

(
gn

i

)2
, φn = hn

∑
i∈Z

(
gn

i

)2
, φ̃(β)

n = 1

hn

∑
i∈Z

∣∣gn
i

∣∣β,

which satisfy, as n → ∞,

(3.3)
φn → φ :=

∫
g(u)2 du, φn → φ :=

∫
g′(u)2 du,

φ̃(β)
n → φ̃(β) :=

∫ ∣∣g(u)
∣∣β du.

Recall that we observe Yn
i , as given by (2.14). More generally, for any process

V we write V n
i = VT (n,i), and also �n

i V = V n
i − V n

i−1, for example, �n
i X is the

ith increment and �n
i Y = Yn

i − Yn
i−1 is the ith observed (noisy) increment. If V n

i

is any array of variables, we set

Ṽ n
i =

hn−1∑
j=1

gn
j �n

i+jV = −
hn−1∑
j=0

gn
jV

n
i+j .

We note that the variable Ṽ n
i implicitly depends on hn and g. When hn = 2, we

simply have Ṽ n
i = g(1/2)�n

i+1V . The effect of the pre-averaging on the noise
is to reduce its asymptotic order of magnitude by a factor of

√
hn while at the

same time the order of magnitude of the pre-averaged Itô semimartingale remains
unchanged. Thus the asymptotic size of the noise relative to the Itô semimartingale
after pre-averaging shrinks.

3.2. Local empirical characteristic functions. Below, we use the pre-averaged
variables Ỹ n

i , and we set wn = 2hnkn. For any y ∈ R \ {0}, we denote

(3.4) L(y)ni = 1

kn

kn−1∑
l=0

cos
(
uny
(
Ỹ n

i+2lhn
− Ỹ n

i+(2l+1)hn

))
,

which is the real part of the empirical characteristic function from a block of pre-
averaged increments. In the no-noise setting, integrals over time of this statistic
have been used by [21] for recovering the Laplace transform of the volatility pro-
cess. Here, we will work with the characteristic exponent, that is, we transform
L(y)ni as follows:

ĉ(y)ni = − log
(
L(y)ni ∨ 1

hn

)
.



522 J. JACOD AND V. TODOROV

For bias correction, we will need further an estimate for the (locally integrated)
variance of the noise, and for this we set

(3.5) Ŷ n
i = 1

wn

wn∑
l=1

(
�n

i+lY
n)2,

and, with f (x, y) = 1
2(e2x−y + e2x − 2), we denote

(3.6)

Ĉ(y)nt =
[Nn

t /wn]−1∑
j=0

(
ĉ(y)njwn

− 1

2kn

f
(
ĉ(y)njwn

, ĉ(2y)njwn

)
− 1

2hn

φny
2u2

nŶ
n
jwn

)
.

The last two terms on the right-hand side of (3.6) are bias corrections which are
needed because of the nonlinear transformation of the local ecf and the presence
of observation noise.

The above statistic can be viewed as the noise-robust analogue of the statis-
tic proposed by [11, 12] for efficient volatility estimation ([16] use also the latter
statistic for the purposes of testing for presence of diffusion in a no-noise setting).
As we show later, Ĉ(y)nt can be used not only for efficient estimation of the diffu-
sion coefficient but also for estimating quantities associated with the jumps of X.

We conclude this section with introducing some additional notation. For γ ∈
(0,2), we set

χ(γ ) =
∫ ∞

0

siny

yγ
dy,

which is a convergent integral for all γ > 0, but absolutely convergent when γ > 1
only. We also set

ct = (σt )
2, Ct =

∫ t

0
cs ds, Am

t =
∫ t

0
am
s ds,

ψβ

(
y, y′)= 2|y|β + 2

∣∣y′∣∣β − ∣∣y + y′∣∣β − ∣∣y − y′∣∣β,

ψβ

(
y, y′)= ψβ

(
y, y′)+ y2y′2ψβ(1,1) − y2ψβ

(
1, y′)− y′2ψβ(y,1).

(3.7)

Our key theorems in the next section describe the behavior of the centered pro-
cesses

(3.8) Z(y)nt = Ĉ(y)nt − y2u2
nφn

2kn

Ct − 2

kn

M∑
m=1

|y|βmuβm
n φ̃βm

n χ(βm)Am
t .

The centering terms in Z(y)nt are scaled versions of Ct and {Am
t }m≥1, with the

asymptotic magnitude of the scales depending on the order of magnitude of un and
kn. Since un → ∞, the centering term involving Ct is asymptotically the largest,
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followed by the term involving A1
t , etc. We note that in the centering of Ĉ(y)nt

above there is no term due to the noise. This is because we have already performed
bias correction for the noise in the construction of Ĉ(y)nt [the last summand in
(3.6)].

4. Limit behavior of the statistics.

4.1. Convergence in probability. We start first with establishing convergence
in probability of vnZ(y)nt toward 0 for an appropriate normalizing sequence vn.
The next theorem states the general result.

THEOREM 1. Assume (H), (O), and (N-0) or (N-1). For any t ≥ 0 and y �= 0,

we have vnZ(y)nt
P−→ 0 if the tuning parameters hn, kn, un and the sequence vn

of positive numbers satisfy (3.2) and, for some ε > 0 (as small as wanted) and all
m = 1, . . . ,M ,

v2
n

k2
n

(
k2
n + u2r

n + uβ1+ε
n + u4

n

h3
n�n

+ u8
n

k3
nh

6
n�

2
n

+ u2
nhn�n

+ u5
n

h2
n

+ u
2β1
n

k3
n

+ u2βm
n (knhn�n)

βm

)
→ 0,

κ1 = 1 ⇒ v2
n

k2
n

(
u4

nhn�n + u8
n(hn�n)

2

k3
n

)
→ 0,

κ2 = 1 ⇒ v2
nu

4
n

knh3
n�n

→ 0.

(4.1)

This is a general “abstract” type of consistency result. It will allow us to esti-
mate in a consistent way the integrated volatility Ct , the biggest index β1 and the
associated A1

t . We will illustrate this in Section 4.3. In addition, it should be also
possible to use the above result to estimate the next indices β2, β3, . . . (and the
associated A2

t ,A
3
t , . . .), but for simplicity we will not discuss this in this paper.

4.2. Central limit theorems. We continue with a CLT associated with the con-
vergence in probability result in Theorem 1. By this, we mean a result stating that,
for a suitable sequence vn, the variables vnZ(y)nt do not go to 0 but converge in law
to a nontrivial limit. Depending on the choice of the tuning parameters and whether
the underlying process X contains a diffusion, the CLT can be determined by the
diffusion component of X, the jumps, the noise, or any combination of them. In ad-
dition, in some of the cases, the CLT for the difference Z(y)nt − y2Z(1)nt becomes
degenerate and we derive a higher-order CLT (joint with the CLT for Z(y)nt ). We
summarize these limit results in two different theorems, corresponding to the cases
κ1 = 0 and κ1 = 1.
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Before stating them, let us recall that a sequence Un of Rq -valued variables on
(�,F,P) converges F∞-stably in law to a limit U if the variable U is defined on
an extension (�̃, F̃, P̃) of (�,F,P) (i.e., �̃ = � × �′ and F̃ = F ⊗F ′ for some
extra measurable space (�′,F ′), and P̃ is a probability measure on (�̃, F̃) such
that P̃(A × �′) = P(A) for all A ∈ F ), and if E(f (Un)Y ) → Ẽ(f (U)Y ) for any
bounded continuous function f on Rq and any bounded F∞-measurable Y .

Concerning the tuning parameters, we need a set of conditions in the spirit of
(4.1), which has the following form, for a sequence vn as described in the theorems
below, and for some ε > 0 (arbitrarily small), some integer P (arbitrarily large) and
all m = 1, . . . ,M :

v2
n

k2
n

(
k2
n + u2r

n + u2
n(hn�n)

2−β1−ε

β1
∧1 + u

(4+β1+ε)∨5
n

h2
n

)
→ 0,

v2
n

k2
n

(
u8

n

h5
n�n

+ u8
n

k3
nh

6
n�

2
n

+ u
2β1
n

k3
n

+ u2βm
n (knhn�n)

βm + u2P
n

hP+1
n �n

)
→ 0,

κ1 = 1 ⇒ v2
n

k2
n

(
u8

n(hn�n)
3 + u8

n(hn�n)
2

k3
n

+ u8
n�n

hn

+ u(2+β1+ε)∨3
n hn�n + u12

n �2
n

hn

)
→ 0,

κ2 = 1 ⇒ v2
nu

4
n

knh3
n�n

→ 0.

(4.2)

Finally, Y below is a fixed finite subset of (0,∞) with cardinal q . We start with a
CLT for the case when X does not contain a diffusion.

THEOREM 2. Assume (H) with κ1 = 0, (O) and (N-0) or (N-1), and also (3.2),

(4.3)
u

β1
n h3

n�n

u
β1
n h3

n�n + u4
n

→ η,

and (4.2) with vn = vn given by

(4.4) vn = kn

√√√√ h3
n�n

u4
n + u

β1
n h3

n�n

.

Then for any t > 0 the q-dimensional variables (vnZ(y)nt ))y∈Y converge F∞-
stably in law to a variable (Z(y)t )y∈Y defined on an extension (�̃, F̃, P̃)

of (�,F,P), which conditionally on F is centered Gaussian with variance-
covariance given by [recall (3.7) for ψβ(y, y′)]

(4.5)

Ẽ
(
Z(y)tZ

(
y′)

t | F)
=
∫ t

0

(
ηψβ1

(
y, y′)φ̃(β1)χ(β1)a

1
s λs + (1 − η)y2y′2ψ2

γ 2
s

) 1

λs

ds.
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When η = 0, the above CLT is driven by the noise, when η = 1, the CLT is
determined by the jump component of X, and when η ∈ (0,1), both the jumps and
the noise drive the limit.

The above theorem gives a CLT for the differences Z(y)nt − y2Z(1)nt , with a
nondegenerate limit as soon as η > 0 in (4.3). On the other hand, if η = 0 the limit

for this differences is degenerate and the proper rate should be vn = kn

√
h5

n�n

u8
n

.

However, in this case (4.2) cannot be fulfilled. Therefore, it is not clear whether in
this case a genuine CLT for the differences Z(y)nt − y2Z(1)nt does exist.

We next state a CLT for the case when X can contain a diffusion. To state the
result, we introduce the two rates

(4.6) vn = kn

√√√√ h3
n�n

u4
n(1 + h2

n�n)2 + u
β1
n h3

n�n

, v′
n = kn

u
β1/2
n

.

Clearly, vn/v
′
n ≤ K , so (4.2) with vn = v′

n implies (4.2) with vn = vn.

THEOREM 3. Assume (H) with κ1 = 1, (O) and (N-0) or (N-1), and also (3.2)
and

(4.7)
u

β1
n h3

n�n

u
β1
n h3

n�n + u4
n(1 + h2

n�n)2
→ η,

h2
n�n

1 + h2
n�n

→ η′.

(a) Under (4.2) with vn = vn, for any t > 0 the q-dimensional variables
(vnZ(y)nt )y∈Y converge F∞-stably in law to a variable (Z(y)t )y∈Y defined on an
extension (�̃, F̃, P̃), which conditionally on F is centered Gaussian with variance-
covariance given by

(4.8)

Ẽ
(
Z(y)tZ

(
y′)

t | F)= ∫ t

0

(
ηψβ1

(
y, y′)φ̃(β1)χ(β1)a

1
s λs

+ (1 − η)y2y′2(η′φcsλs + (1 − η′)φγs

)2) 1

λs

ds.

(b) Under (4.2) with vn = v′
n plus

(4.9) u8−β1
n

(
1

h5
n�n

+ (hn�n)
3
)

→ 0,

for any t > 0 the q + 1-dimensional variables (vnZ(1)nt , (v
′
n(Z(y)nt −

y2Z(1)nt ))y∈Y) converge F∞-stably in law to (Z(1)t , (Z(y)′t )y∈Y), where Z(1)t
and (Z′(y)t )y∈Y are defined on an extension (�̃, F̃, P̃) and are, conditionally on
F , two independent centered Gaussian variables with variances given by (4.8) for
Z(1)t and by

(4.10) Ẽ
(
Z′(y)tZ

′(y′)
t |F)= ψβ1

(
y, y′)φ̃(β1)χ(β1)A

1
t .
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Part (a) of the theorem shows that the CLT for (vnZ(y)nt )y∈Y) can be determined
by the diffusion component of X, the jumps and the observation noise (their role
in the asymptotic variance is controlled by η and η′). In part (b) of Theorem 3,
we present a joint limit result for (vnZ(1)nt , (v

′
n(Z(y)nt − y2Z(1)nt ))y∈Y). For this

result, we need the condition in (4.9) which guarantees that the jump component
of X is the leading term for the difference (v′

n(Z(y)nt − y2Z(1)nt )), that is, the dif-
fusion component of X and the noise play only an asymptotically negligible role.
When this is not the case, similar to Theorem 2, there is no choice of the tuning
parameters satisfying (4.2) with vn = v′

n and a sequence v′
n ensuring a nontrivial

limit in part (b) of Theorem 3.
Finally, as for the convergence in probability result in Theorem 1, we have a

wide range of choices for our tuning parameter that satisfy Theorems 2 and 3.
The choice of the tuning parameters can be optimized according to the specific
application in mind as we will show in the next section.

4.3. Applications. We now illustrate some applications of the developed limit
theory. We will focus attention on the estimation of the integrated volatility Ct and
the leading jump activity index β1. These problems have received a lot of attention
in recent work. Our theory will allow estimation of Ct and β1 in more general
settings than previously considered and in many of the cases we will be also able
to achieve faster rates of convergence than those of existing estimators and even
rate efficiency.

We will develop the estimators, derive their rate of convergence, and provide a
CLT for them. To make the inference feasible, one will need consistent estimates
of the asymptotic variances of the estimators. Such estimates are relatively easy to
derive using Theorem 1 (and consistent estimators for the variance of the noise),
and for brevity we will not provide explicit expressions for them. In addition, the
optimal choice for the tuning parameters un, hn, kn in many cases will depend
on the unknown jump activity index β1. Therefore, for a feasible estimation, one
will need a preliminary estimator of β1 based on an initial part of the sample of
shrinking time span. Again, for brevity we will not further discuss this here, leaving
instead the details pertaining to these issues for future applied work based on the
theoretical results of the current paper.

4.3.1. Estimation of β1. We start with the estimation of β1. For the general
case when X can contain a diffusion, we first set for y > 0

(4.11)

Ĉ′(y)nt = Ĉ(y)nt − y2Ĉ(1)nt

= Z(y)nt − y2Z(1)nt + 2

kn

M∑
m=1

(
yβm − y2)uβm

n φ̃βm
n χ(βm)Am

t .



LIMIT THEOREMS FOR LOCAL CHARACTERISTIC EXPONENTS 527

Then, observing that the function f (x) = 4x−16
2x−4 is C∞ on the interval (0,2), with

a C∞ reciprocal function f −1, a natural estimator for β1 is, for example,

(4.12) β̂
n,1
t = f −1

(
Ĉ′(4)nt

Ĉ′(2)nt

)
.

An easy computation shows the consistency β̂
n,1
t

P−→ β1 in restriction to the set
{A1

t > 0} on which the “component” with index β1 is present, as soon as we have
(4.1) with the sequence vn = kn/u

β1
n . Therefore, we obtain consistent estimators

for β1 on the set {A1
t > 0} as soon as the tuning parameters hn, kn, un satisfy (3.2)

and

kn

u
β1
n

+ u
4−2β1
n

h3
n�n

+ u
8−2β1
n

k3
nh

6
n�

2
n

+ u
8−2β1
n

h8
n�

2
n

+ u2−2β1
n hn�n → 0,

κ1 = 1 ⇒ u4−2β1
n hn�n + u

8−2β1
n (hn�n)

2

k3
n

→ 0,

κ2 = 1 ⇒ knu
4−2β1
n

h3
n�n

→ 0.

(4.13)

There is a wide range of tuning parameters achieving the above condition, pro-
vided we know that β1 is strictly bigger than some known number α ∈ (0,1].
For example, one may choose the integers hn in such a way that h11

n �8
n → 0 and

infn h2
n�n > 0, and then un = (h3

n�n)
1/8 and kn = [uα

n]. With this choice, we have
consistency, and a single tuning parameter, regardless of whether κ1 and κ2 equal
0 or 1.

If we further know that κ1 = 0, that is, that X does not contain a diffusion, we
do not need to use the differences Ĉ′(y)nt but rather we can use directly Ĉ(y)nt . In
particular, in this case, another sequence of estimators, which are consistent on the
set {A1

t > 0}, is naturally given by

(4.14) β̂
′n,1
t = 1

log 2
log
(

Ĉ(2)nt

Ĉ(1)nt

)
.

We note that given the above estimates of β1, we readily get an estimate of A1
t

using Ĉ′(y)nt or Ĉ(y)nt . Hence the analysis of the estimation of A1
t is similar to

that of the estimation of β1 and for brevity is not discussed further.
We turn next to the rate of convergence of the estimation of β1 and an associated

CLT that can allow quantifying estimation uncertainty. For simplicity, we restrict
attention to the typical case of M = 1 and r < β1/2 (or, equivalently for what
follows, M ≥ 2 and β2 < β1/2).

Concerning the estimator in (4.14), which works only when κ1 = 0, the joint
convergence of vnZ(y)nt for y = 1,2 to a nondegenerate limit is enough: we can
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apply Theorem 2 and the rate of convergence is u
β1/2
n (this explains the restrictions

r < β1/2 or β2 < β1/2), so we need to “maximize” un, of course within the con-
straints (3.2), (4.3) and (4.2). Actually, we cannot really achieve “best” rate, but
only the best one up to some arbitrarily small ε > 0, as exhibited in the next result,
which readily follows from Theorem 2 upon using the Delta method, and in which
(4.3) gives us η = 1. Below, an � bn means that both sequence an/bn and bn/an

are bounded.

THEOREM 4. Assume (O) and (H) with κ1 = 0 and either M = 1 and r <

β1/2 or M ≥ 2 and β2 < β1/2. Let t > 0 and also ε ∈ (0,1/5) be arbitrarily
small. Assume also either one of the following two hypotheses:

(i) we have (N-0) (so κ2 = 0) and the tuning parameters satisfy

β1 ≥ 3

2
⇒ hn � �

− 2
2+β1

n , un � �
− 1−ε

2+β1
n ,

kn � �
− β1

6+3β1
n ,

3

4
≤ β1 ≤ 3

2
⇒ hn � �

− 15−2β1
21

n , un � �
− 2(1−ε)

7
n ,

kn � �
− 2β1

21
n ,

β1 ≤ 3

4
⇒ hn � �

− 3−β1
5−2β1

n , un � �
− 1−ε

5−2β1
n ,

kn � �
− β1

15−6β1
n ;

(4.15)

(ii) we have (N-1) (so κ2 = 1) and the tuning parameters satisfy

β1 ≥ 3

2
⇒ hn � �

− 12+β1
12+7β1

n , un � �
− 6(1−ε)

12+7β1
n ,

kn � �
− 2β1

12+7β1
n ,

3

4
≤ β1 ≤ 3

2
⇒ hn � �

− 15−β1
21+β1

n , un � �
− 6(1−ε)

21+β1
n ,

kn � �
− 2β1

21+β1
n ,

β1 ≤ 3

4
⇒ hn � �

− 18−5β1
30−11β1

n , un � �
− 6(1−ε)

30−11β1
n ,

kn � �
− 2β1

30−11β1
n .

(4.16)
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Then the sequence u
β1/2
n (β̂

′n,1
t − β1) converges stably in law, in restriction to the

set {A1
t > 0}, to a variable which is defined on an extension of the probability space

and which, conditionally on F , is centered Gaussian with variance

(4.17)
16 + 28 · 2β1 + 16 · 3β1 − 17 · 4β1

4(log 2)2φ̃(β1)χ(β1)A
1
t

.

We turn next to the case when X can contain a diffusion, so we use the estimator
(4.12) and Theorem 3, and the rate is again u

β1/2
n . Exactly as before, we cannot

fully achieve the best possible rate. Using again the Delta method, we arrive at the
following result [in case (i) below we have η′ ∈ (0,1) and η = 0, and we use part
(b) of Theorem 3; in case (ii) we have η′ = η = 1 and, therefore, we use part (a) of
Theorem 3].

THEOREM 5. Assume (O) and (H) with κ1 = 1 and either M = 1 and r <

β1/2 or M ≥ 2 and β2 < β1/2. Let t > 0. Assume also either one of the following
two hypotheses:

(i) we have (N-0) (so κ2 = 0) and for some ε ∈ (0, 1
8 − β1 ∧ (2 − β1))) the

tuning parameters satisfy

β1 ≥ 16

11
⇒ hn � 1√

�n

, un � �
− 3(1−ε)

16−2β1
n , kn � �

− 3β1(1−2ε)

32−4β1
n ,

β1 ≤ 16

11
⇒ hn � 1√

�n

, un � �
− 2(1−ε)

16−5β1
n , kn � �

− β1(1−2ε)

16−5β1
n ;

(4.18)

(ii) we have (N-1) (so κ2 = 1) and for some ε ∈ (0,1/5) the tuning parameters
satisfy

(4.19) hn � �
− 24−5β1

48−11β1
n , un � �

− 6(1−ε)
48−11β1

n , kn � �
− 2β1

48−11β1
n .

Then the sequence u
β1/2
n (β̂

n,1
t −β1) converges stably in law, in restriction to the set

{A1
t > 0}, to a variable which is defined on an extension of the probability space

and which, conditionally on F , is centered Gaussian with variance

(4.20)

1

41+β1(log 2)2φ̃(β1)χ(β1)A
1
t

×
(

ψβ1
(4,4)

(16 − 4β1)2 + ψβ1
(2,2)

(4 − 2β1)2 − 2ψβ1
(2,4)

(16 − 4β1)(4 − 2β1)

)
.

These two theorems are not directly applicable for three reasons. One is that we
need consistent estimators for the conditional variances, and this could easily be
taken care of. The second reason is somewhat more important: the choice of the
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tuning parameters in the various sets of conditions above depends on �n which is
not observable, so we will need to replace �n by 1/Nn

t [making use of (2.13)].
The third reason is that those conditions also depend on the unknown value β1,
and hence a preliminary estimate for it is needed. As mentioned before, we leave
these practical considerations for a follow-up work.

We finish this section with a brief discussion of the achievable rates of conver-
gence for estimating β1. We start with the case of no diffusion (κ1 = 0, so Theo-
rem 4 applies) and the stronger assumption (N-0) for the noise. As a benchmark,
we note that in a parametric model where X is a β1-symmetric stable process and
the noise is i.i.d. Gaussian, using empirical characteristic function, we can esti-

mate β1 at the rate �
− β1(1−ε)

4+2β1
n . Our estimator can achieve this parametric rate when

β1 ≥ 3/2. For lower values of β1, the achievable rate in our nonparametric setting
drops. This is due to the effect from the presence of the drift term in X, the varia-
tion of the characteristics of X as well as the generality of our sampling scheme.
Comparing the cases κ2 = 1 and κ2 = 0, when there is no diffusion, we notice that
the weaker assumption for the noise slows down the rate of convergence. This ef-
fect is pretty small for high levels of β1 (less than 10% loss in rate of convergence
for β1 ≥ 3/2) and more significant for low values of β1. Finally, we can compare
the rate of convergence of our estimator of β1 in the no diffusion setting with the
one based on power variations in [13]. The rate of convergence for the latter is

derived for β1 >
√

2 and the best possible is �
− β1(1−ε)

(2β1+8)

n . This is much slower than
the one achievable for our estimator β̂

′n,1
t .

Turning to the case when X can contain a diffusion, we can see that, as expected,
the rate of convergence of the estimator drops. Focusing on the case of κ2 = 0, we
note that the loss of rate efficiency compared to the no diffusion case is relatively
small for high levels of β1: it is 19% for β1 = 3/2 and it approaches 0% for β1
approaching 2. To the best of our knowledge, the rate of convergence of estimators
of β1 in the simultaneous presence of diffusion and noise have not been analyzed
thus far.

4.3.2. Estimation of Ct . We continue with the estimation of Ct and of course
we assume κ1 = 1. Consistent estimators of Ct are easy to construct. We take, for
example, y = 1, and rewrite (3.8) as

Ĉn
t = Ct + Rn

t + Sn
t

where Ĉn
t = 2kn

u2
nφn

Ĉ(1)t ,

Rn
t =

M∑
m=1

uβm−2
n

4φ̃
βm
n χ(βm)

φn

Am
t ,

Sn
t = 2kn

u2
nφn

Z(1)nt .

(4.21)
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Since un → ∞, we have Rn
t

P−→ 0, hence as soon as Sn
t

P−→ 0 the statistics Ĉn
t

above are consistent estimators for Ct . In view of Theorem 1, this holds as soon as
the sequence vn = kn/u

2
n satisfies (4.1). Therefore, we have consistency as soon as

the tuning parameters hn, kn, un satisfy (3.2) and

(4.22)
kn

u2
n

+ 1

h3
n�n

+ u4
n

k3
nh

6
n�

2
n

→ 0, κ2 = 1 ⇒ kn

h3
n�n

→ 0.

There is a wide range of tuning parameters achieving this. For example, we may
choose the integers hn in such a way that h3

n�
2
n → 0 and h5

n�
2
n → ∞, and then

un = h
1/4
n and kn = [un]. This way we have consistency while using a single tuning

parameter.
Concerning rates of convergence and an associated CLT, things are different. Let

us first mention that, when X is continuous and the noise is an additive Gaussian
white noise and sampling is regular, we know that the optimal rate for estimating
Ct is 1/�

1/4
n : so this rate is a natural benchmark.

This optimal rate is achieved by the estimator Ĉn
t only when β1 < 1 (which

implies that the bias term Rn
t in (4.21) is negligible at this rate) and κ2 = 0. In the

case when β1 < 1 but κ2 = 1, that is, when the weaker assumption for the noise
holds only, the rate of convergence of Ĉn

t drops slightly. This result is a trivial
application of Theorem 3(a), with η = 0 and η′ = 1/2 in case (a) and η = 0 and
η′ = 1 in case (b) and is given in the following theorem.

THEOREM 6. Assume (O) and (H) with κ1 = 1 and β1 < 1.

(a) If (N-0) holds (so κ2 = 0) and if the tuning parameters satisfy for some
ε ∈ (0,1/12] and all ε′ > 0

(4.23)
hn � 1√

�n

, un = u′
n

�
1/4
n

with u′
n → 0, u′

n�
−ε′
n → ∞,

�
− 1

6 −ε
n ≤ kn ≤ �

− 1
4 +ε

n ,

the sequence �
−1/4
n (Ĉn

t −Ct) converges stably in law to a variable which is defined
on an extension of the probability space and which, conditionally on F , is centered
Gaussian with variance

(4.24) 4
∫ t

0

(
csλs + φ

φ
γs

)2 1

λs

ds.

(b) If (N-1) holds (so κ2 = 1) and if the tuning parameters satisfy for some
ε ∈ (0,2(β1 ∧ (1 − β1)))

(4.25) hn � �
− 12−5β1+ε

24−11β1
n , un = �

− 3
24−11β1

n , kn � �
− 2β1+ε

24−11β1
n ,
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the sequence �
− 12−6β1−ε

48−22β1
n (Ĉn

t −Ct) converges stably in law, in restriction to the set
{A1

t > 0}, to a variable which is defined on an extension of the probability space
and which, conditionally on F , is centered Gaussian with variance

(4.26)
4φ

2

φ2

∫ t

0
γ 2
s

1

λs

ds.

In part (b) above, the rate is always faster than �
−3/13
n , and approaches the op-

timal rate �
−1/4
n as β1 becomes close to 0. Therefore, the loss of efficiency due to

the weaker assumption for the noise is at most 8% in terms of rate of convergence.
We can also observe that we have exactly the rate �

−3/13
n , irrespective of the value

of β1 in (0,1), if instead of (4.25) we take

(4.27) hn � �
− 7

13
n , un = �

− 3
13

n , kn � �
− 2

13
n .

Now we turn to the case β1 ≥ 1. In this situation, the bias term Rn
t in (4.21) is

no longer negligible and we need to de-bias our estimators. We will restrict our
attention to the case M = 1 and, similar to [11], we can use

(4.28) Ĉ′n
t = 2kn

u2
nφn

(
Ĉ(1)nt − (Ĉ(2)nt − 4Ĉ(1)nt )

2

Ĉ(4)nt − 8Ĉ(2)nt + 16Ĉ(1)nt

)
.

Then we need to use part (b) of Theorem 3, with η′ = 1/2 in case (a) and η′ = 0 in
case (b) below, and always η = 0.

THEOREM 7. Assume (O) and (H) with κ1 = 1 and r < β1/2 and either M =
1 or β2 < β1/2.

(a) Under assumption (i) of Theorem 5, the sequence �
−1/4
n (Ĉ′n

t − Ct) con-
verges stably in law to a variable which is defined on an extension of the probabil-
ity space and which, conditionally on F , is centered Gaussian with variance given
by (4.24).

(b) Under assumption (ii) of Theorem 5, the sequence �
− 24−6β1

96−22β1
n (Ĉn

t −Ct) con-
verges stably in law to a variable which is defined on an extension of the probability
space and which, conditionally on F , is centered Gaussian with variance given by
(4.26).

The results of the above theorem hold irrespective of whether β1 is smaller or
bigger than 1, and the rate in case (b) of Theorem 7 is faster than the rate for
Ĉn

t in part (b) of Theorem 6 when β1 < 1, but of course we need the additional
assumptions r < β1/2 and either M = 1 or β2 < β1/2 for Theorem 7. Note also
that under (N-1) and upon making the choice (4.27) for the tuning parameter, we
also have the convergence of �

−3/13
n (Ĉ′n

t −Ct) to exactly the same limit as above.
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5. Proofs. We begin with the following lemma.

LEMMA 8. If X satisfies (H′), it also satisfies (H).

PROOF. We assume (H′). Observe that (H′)(iii) implies that βm is the
Blumenthal–Getoor index of Fm, and

∫
(|x|r ′ ∧ 1)Fm(dx) < ∞ for any r ′ > βm.

Let p=
m be the jump measure of the Lévy process Zm. This is a Poisson random

measure with compensator q=
m(dt, dx) = dt ⊗Fm(dx), and by hypothesis the p=

m

are independent when m varies, and also independent of W and p= . We aggregate
the measures p= and the p=

m’s as follows: we replace the space E by the union E

of E and M copies E1, . . . ,EM of R \ {0} (another Polish space), and set p= (A) =
p= (A∩E)+∑m

m=1 p=
m(A∩Em) for any Borel subset A of E. This is a new Poisson

random measure, with compensator q= (dt, dz) = dt ⊗ η(dz), where η(A) = η(A)

when A ⊂ E and η(A) = Fm(A) when A ⊂ Em for some m.
We consider the functions fm and f ′

m on E defined by

fm(z) =
{

0 if z /∈ Em,

x1{|x|≤1} if z = x ∈ Em,

f ′
m(z) =

{
0 if z /∈ Em,

x1{|x|>1} if z = x ∈ Em.

By virtue of (2.8), each Zm has the representation

Zm
t = (x1{|x|≤1}) ∗ (p= m − q=

m)
t + (x1{|x|>1}) ∗ p=

m
t = fm ∗ (p= − q= )t + f ′

m ∗ p= t .

Therefore, the processes X and σ of (2.7) and (2.9) can also be written as

(5.1)

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + δ ∗ (p= − q= )t + δ

′ ∗ p= t ,

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
Hσ

s dWs +
∫ t

0
H ′σ

s dW ′
s

+ δ
σ ∗ (p= − q= )t + δ

σ ∗ p= t ,

where

δ(t, z) =
{

0 if z = z ∈ E,

σm
t−fm(z) if z ∈ Em,

δ
′
(t, z) =

{
δ′(t, z) if z = z ∈ E,

σm
t−f ′

m(z) if z ∈ Em,

δ
σ
(t, z) =

{
δσ (t, z) if z = z ∈ E,

H
σ,m
t− fm(z) if z ∈ Em,

δ
′σ

(t, z) =
{
δ′σ (t, z) if z = z ∈ E,

H
σ,m
t− f ′

m(z) if z ∈ Em.
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Letting Jn be an η-integrable bounded function such that (2.6) holds for δ′, δσ ,
δ′σ , it is clear that δ, δ

′
, δ

σ
, δ

′σ
satisfy the same for the η-integrable function Jn

defined by

J n(z) =
{
Jn(z) if z = z ∈ E,

αn

(|x|r ′ ∧ 1
)

if z = x ∈ Em

for a constant αn depending on the bounds on σm
t ,H

σ,m
t when t < τn [recall that

here r ′ is arbitrary in (β1,2), implying
∫
(|x|r ′ ∧ 1)Fm(dx) < ∞ for all m]. It is

also obvious that δ satisfies (H)(i).
It remains to prove the existence of a decomposition (2.5), such that F ′

t and am

satisfy (2.6) and (H)(ii). The spot Lévy measure Ft of δ ∗ (p= − q= ) is given by, for
any Borel subset A of R \ {0},

Ft(A) =
M∑

m=1

∫
{|x|≤1}

1A

(
σm

t x
)
Fm(dx),

hence the symmetrized measures F̆t and F̆m satisfy the same relationship. Then
(2.5) holds with

am
t = αm

βm

∣∣σm
t

∣∣βm,

F ′
t (dx) =

M∑
m=1

(∫
1A

(
σm

t x
)
F ′m(dx) +

∫
{1<|x|≤1/|σm

t |}
βmam

t

|x|1+βm
dx

−
∫
{1/|σm

t |<|x|≤1}
βmam

t

|x|1+βm
dx

)
.

Our hypothesis on σm
t implies that each am

t is càdlàg adapted satisfying (2.6) and
(H)(ii). Moreover, when t < τn we have |σm

t | ≤ n and |F ′m|(x) ≤ n/|x|r for
x > 0, hence after a simple calculation

∣∣F ′
t

∣∣(x) ≤
M∑

m=1

(
n

|σm
t |r
xr

+ 2
(
1 + ∣∣σm

t

∣∣βm
)(

1{x≤1} + 1

xβm
1{x>1}

))
≤ ′

n

xr
,

for a suitable constant ′
n depending on r,n,M only. So, we have the last part of

(2.6). This completes the proof. �

5.1. Strengthening the assumptions. Below, we take r̃ ′ = 1 when β1 < 1, and
r̃ ′ = r ′ otherwise, so in all cases r̃ ′ can be used in place of r ′ in (H), and can be
chosen arbitrarily close to β1 when β1 ≥ 1. The finite set Y is fixed throughout,
and y and y′ are always in Y . It is also not a restriction to assume that �n ≤ 1

2 for
all n.

We introduce the following strengthened assumption [recall κ2 as defined in
(3.1)]:
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ASSUMPTION (SHON). There is a constant  such that:

(i) We have (H), (O) and (N-κ2) with τ1 ≡ ∞, we write J = J1, and moreover,
we have |δ′(·, z)| ≤ J(z) and |δσ (·, z)|2 ≤ J(z) (so δ′, δσ are bounded) and
δ′σ ≡ 0.

(ii) We have for all t

(5.2) �nN
n
t ≤ 1 + t.

LEMMA 9. If Theorems 1 or 2 or 3 hold under (SHON), they also hold under
(H), (O) and (N-κ2).

PROOF. (1) According to the classical localization procedure, based on stop-
ping (Ft )-adapted processes such as X, σ , λ,γ at or strictly before (Ft )-stopping
times, it is enough to prove Theorems 1 or 2 or 3 under the Assumption (i) of
(SHON). So below we assume (SHON)(i), which in particular implies γt ≥ 1/

for a constant .
(2) In this step, we construct another sequence �′n

i , with the associated sampling
scheme (T ′(n, i)) and counting processes N ′n

t by (2.10) and (2.12), in such a way
that we have:

(5.3)

(i) this scheme satisfies (O) and (5.2),

(ii) P
(
Bn

t

)→ 1

for all t,where Bn
t = {T ′(n, i) = T (n, i) for all i with T (n, i) ≤ t

}
.

The construction of �′n
i is as follows:

�′n
i =

{
�n

i if i ≤ �n,

1 if i > �n,
where �n = inf

(
j ≥ 1 : Sn

j ≤ j�n − 1
)
,

Sn
j = �n

j∑
i=1

�n
i .

Observing that �n is a stopping time for the discrete-time filtration (Kn
i )i≥0, it is

clear that �′n
i satisfies (2.11), with the same constants (p), relative to Kn

i , hence
a fortiori relative to K′n

i = σ(�′n
j : j ≤ i).

Recall that λt ≥ 1/. Then T (n, i) = T ′(n, i) ≥ (i�n −1)/ for i < �n, hence
T ′(n, �n) = T (n, �n) ≥ ((�n − 1)�n − 1)/, whereas T ′(n, �n + j)− T ′(n, �n) ≥
j�n/. We then deduce that T ′(n, j) ≥ ((j − 1)�n − 1)/ for all j ≥ 0. Since
T ′(n, k+1) > t implies N ′n

t ≤ k, we deduce that indeed N ′n
t ≤ k as soon as k�n >

t + 1: so indeed (5.3)(i) holds.
We now turn to (5.3)(ii). Since T ′(n, i) = T (n, i) when i ≤ �n, whereas

T (n, i) ≥ Sn
i /, this is implied by the property

(5.4) t > 0 ⇒ P
(
Sn

�n
≥ t
)→ 1.
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Observe that Sn[t/�n] − t = �n

∑[t/�n]
i=1 (�n

i − 1) + (�n[t/�n] − t). (2.11) implies

E(�n
i −1 | Kn

i−1) = 0 and E((�n
i −1)2 | Kn

i−1) ≤ K for some constant K , whereas
�n

i is Kn
i -measurable, hence a classical argument yields

E
((

Sn[t/�n] − t
)2)≤ 2�n + �2

nE

([t/�n]∑
i=1

(
�n

i − 1
)2)≤ 2�2

n + Kt�n.

We deduce that Sn[t/�n]
P−→ t , hence Sn[t/�n]

u.c.p.=⇒ t as well, and thus θn = inf(t :
Sn[t/�n] ≤ t −1) satisfies P(θn ≤ t) → 0 for any t > 0. Clearly, θn = �n�n, whereas
Sn

�n
≥ Sn

�n−1 > θn − 1 − �n > θn − 2. Then P(Sn
�n

≤ t) ≤ P(θn ≤ t + 2) → 0. We
thus have (5.4), and (5.3) is proved.

(3) In the previous setting, we also construct a new noise process as fol-
lows. Let (ρi)i≥1 be a sequence of i.i.d. N (0,1) variables, independent of all
T (n, i), T ′(n, i), εn

i and of F∞. Then we set ε′n
i = εn

i if T ′(n, i) = T (n, i) and
ε′n
i = ρi otherwise, and also Y ′n

i = XT ′(n,i) + γ ′
T ′(n,i)ε

′n
i . We have Y ′n

i = Yn
i if

T ′(n, i) = T (n, i), and otherwise Y ′n
i is a fictitious observation. However, the fam-

ily (Y ′n
i ) satisfies (SHON)(i) and (5.3), hence also (SHON). Thus, by our hypoth-

esis the variables Z′(y)nt constructed in the same way as Z(y)nt , on the basis of the
sequence Y ′n

i and the sampling scheme T ′(n, i), satisfy the claims of Theorems 1
or 2 or 3 for any given t .

Since obviously Z(y)nt = Z′(y)nt for all y ∈ Y , in restriction to the set Bn
t ,

whereas P(Bn
t ) → 1, we readily deduce that indeed the variables Z(y)nt also sat-

isfy these claims: this completes the proof. �

Below, (SHON) is in force. Recalling γt = γ ′2
t , this implies for some constants

 ≥ 1 [big enough to have (5.2)] and (p) and all p we have [recall that if a
process V satisfies (2.3)q,q ′ or (2.4)q then 1/V satisfies the same, as soon as both
V and 1/V are bounded]:

|bt |, |σt |, am
t ,
∣∣bσ

t

∣∣, ∣∣Hσ
t

∣∣, ∣∣H ′σ
t

∣∣, γt , γ
′
t , γ

′′
t , λt ,1/λt ≤ ,∣∣γ (p)

t

∣∣≤ (p),∣∣δ(t, z)∣∣r ′ ≤ J (z),
∣∣δσ (t, z)

∣∣2 ≤ J (z),∣∣δ′(t, z)
∣∣≤ J(z), 1{δ′(t,z) �=0} ≤ J(z),

Xt , σt , λt ,1/λt ,
(
am
t

)1/βm, and γt , γ
′
t if κ2 = 0, satisfy (2.4)1,

Xt , bt , σt ,H
σ
t ,

δ(t, z)

J (z)1/r ′ , γt , γ
′
t , γ

(3)
t , λt ,1/λt ,

(
am
t

)1/βm satisfy (2.3)2,1,

λt and 1/λt satisfy (2.3)1,1,

F t (x) ≤ 

xβ1
,

∣∣F ′
t

∣∣(x) ≤ 

xr
.

(5.5)
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Below, K is a generic constant, changing from line to line, and possibly depend-
ing on r , r ′, M , βm, , and sometimes on some extra parameter q such as a power
or on the set Y , but never on n and the various indices i, j, . . . or variables u,y, . . .

which may occur. Analogously, if Un = Un(i, y, . . .) and U ′
n(i, y, . . .) are two se-

quences of variables possibly depending on y ∈ Y ′ and on indices i, . . . , we write
Un = O(U ′

n), respectively, = o(U ′
n), if U ′

n = 0 implies Un = 0 and Un/U ′
n (with

the convention 0/0 = 0) is bounded uniformly in n, i, y, . . . , respectively goes to
0 uniformly in i, y, . . . as n → ∞.

We end this subsection with a general consequence of the properties (2.3) and
(2.4) relative to an arbitrary filtration (Lt ).

LEMMA 10. Suppose that a (Lt )-adapted càdlàg process V satisfies (2.3)q,q ′ ,
respectively, (2.4)q , with some constant K for all finite (Lt )-stopping times T ≤ S.
Then we also have (5.6)q,q ′ , respectively, (5.7)q , below, with the same constant K ,
for any pair S, T as above:

E
(

sup
s∈[T ,S]

|VS − VT |q ′ ∣∣ LT

)
≤ KE

(
(S − T )q | LT

)
,(5.6)

∣∣E(VS − VT | LT )
∣∣≤ KE

(
(S − T )q | LT

)
.(5.7)

PROOF. We prove that (2.3)q,q ′ implies (5.6)q,q ′ only, the other case being
analogous. We fix two (Lt )-stopping times T ≤ S and let Y = E(sups∈[T ,S] |VS −
VT |q ′ | LT ) and U = E((S − T )q | LT ). We need to prove that the two LT -
measurable sets B+ = {Y > KU} and B− = {−Y > KU} have a vanishing proba-
bility. Define another stopping time T ′+ ≤ S by setting T ′+ = T on B+ and T ′+ = S

on the complement Bc+. Observe that E(sup∈[T ′+,S] |VS − VT ′+ |q ′ | LT ) vanishes on
Bc+ and equals Y on B+, hence as soon as P(B+) > 0 we have

E
(

sup
s∈[T ′+,S]

|VS − VT ′+ |q ′)= E(Y1B+) > KE(U1B+)

= KE
(
(S − T )q1B+

)= KE
((

S − T ′+
)q)

,

which contradicts (2.3)q ′,q . Therefore, P(B+) = 0, and P(B−) = 0 is proved anal-
ogously. �

5.2. Properties of the sampling scheme. We first prove (2.13):

LEMMA 11. We have the convergence (2.13).

PROOF. We use the variables Sn
j of the proof of Lemma 9, in which S

n

t :=
Sn[t�n]

u.c.p.=⇒ t was proved, and we set

�n
t = �nN

n
t , Hn

t = T
(
n, [t/�n])= �n

[t/�n]∑
i=1

λn
i−1�

n
i .
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By the subsequence principle, it is enough to prove that any infinite sequence

nk contains a subsequence n′
k such that �

n′
k

t → �t for all t , for all ω outside a null
set. Note also that, from any subsequence one can extract a further subsequence
such that the convergence S

n

t → t holds, outside a null set again, locally uniformly
in time. In other words, it is enough to show that if S

n

t (ω) → t locally uniformly in
t for some given ω, then we have �n

t (ω) → �t(ω) for all t (then the convergence
is automatically locally uniform).

Therefore, below we assume S
n

t (ω) → t locally uniformly, and omit to men-
tion ω in Sn and also in λ and Hn. The definitions of Hn and S

n
imply Hn

t =∫ t
0 λHn

s− dS
n

s . (5.5) yields Hn
t+s − Hn

t ≤ K(S
n

t+s − S
n

t ), hence by Ascoli’s theo-
rem, from any subsequence we can extract a further subsequence n′ such that Hn′

converges locally uniformly to a continuous nondecreasing limit H . Picking any
ε > 0, we denote by t1 < t2 < · · · the times at which t �→ λt has a jump of size
bigger than ε, and set At = [0, t] \ (

⋃
i≥1(ti − ε, ti + ε]). The modulus of continu-

ity wt(ρ) of λε
s = λs −∑i≥1 �λti 1{ti≤s} on [0, t] satisfies lim supρ→0 wt(ρ) ≤ ε,

whereas Hn′
s → Hs locally uniformly, so lim supn′ sups∈At

|λ
Hn′

s−
−λHs | ≤ ε. Thus,

for n′ large enough, |Hn′
t − ∫ t

0 λHs dS
n′
s | ≤ 2εS

n′
t + K

∫
At

dS
n′
s , which in turn goes

to 2εt +K
∫
At

ds ≤ Kε. Since ε is arbitrarily small, we get Hn′
t −∫ t

0 λHs dS
n′
s → 0.

Another application of S
n

s → s for all s yields
∫ t

0 λHs dS
n′
s → ∫ t

0 λHs ds. Thus
Ht = ∫ t

0 λHs ds, so H is continuous strictly increasing and its inverse H−1 is �, as
defined by (2.13). Therefore, H is uniquely determined and the original sequence
Hn converges to H = �−1.

Now, the definitions of �n
t and Hn

t imply that they are right-continuous inverses
one from the other, hence �n

t → H−1
t = �t , and the proof is complete. �

We already introduced (Hn
t ), the smallest filtration containing (Ft ) and with

respect to which T (n, i) is a stopping time for all i ≥ 0, and the σ -field Kn∞ gen-
erated by the variables (�n

i : i ≥ 1). We will also need the filtration (Hn

t ) which
is the smallest one containing (Ft ) and such that Kn∞ ⊂ Hn

0 (below we prove the
intuitively obvious fact that Hn

t is bigger than Hn
t ).

Unless it vanishes identically, the noise is not measurable with respect to the
previous filtration. To accommodate the noise, we define the following σ -fields:

(5.8)

Gn
i = Hn

T (n,i) ∨ σ
(
εn
j : j < i

)
,

Gn

i = Hn

T (n,i) ∨ σ
(
εn
j : j < i

)
,

Ĝn
i = Hn∞ ∨ σ

(
εn
j : j < i

)
,

with the conventions Gn
0 = F0 and Gn

0 = Hn

0 and Ĝn
0 = Hn

∞. Note that the pre-
averaged variable Ỹ n

i is Gn
i+hn

-measurable.
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LEMMA 12. (a) We have Hn
t ⊂ Hn

t and Hn∞ =Hn

∞.
(b) Any càdlàg (Ft )-adapted process satisfying (2.3)q,q ′ , or (2.4)q for all finite

(Ft )-stopping times T ≤ S satisfies the same for all finite (Hn

t )-stopping times
T ≤ S.

(c) Any (Ft )-martingale is a (Hn

t )-martingale, hence a (Hn
t )-martingale as

well.
(d) Any integrable Hn∞-measurable variable Y satisfies

(5.9) E
(
Y | Gn

i

)= E
(
Y | Hn

T (n,i)

)
.

PROOF. First, (c) is a well-known result because (Hn

t ) is the initial enlarge-
ment of (Ft ) by the independent σ -field Kn∞, and it is also a trivial consequence
of (b).

For (a), we first prove by induction on i that each T (n, i) is a (Hn

t )-stopping
time. This is obvious when i = 0, and we have (recalling αt ≥ 1/){

T (n, i + 1) ≤ t
}= {T (n, i) ≤ t

}∩ A

with A = {�n
i+1 ≤ (t − T (n, i)

)
/(�nλT (n,i))

}
.

If T (n, i) is a (Hn

t )-stopping time, and since �n
i+1 is Hn

0-measurable, we have

A ∈ Hn

T (n,i), and thus {T (n, i + 1) ≤ t} ∈ Hn

t . This, being true for all t , implies

that T (n, i +1) is also a (Hn

t )-stopping time. Therefore, Hn
t ⊂ Hn

t for all t , includ-
ing t = ∞. On the other hand, Hn

∞ = F∞ ∨ Kn∞ is obvious, and �n
i is Hn

T (n,i)-

measurable by (2.10), so Kn∞ ⊂ Hn∞. This yields Hn∞ = Hn

∞, and (a) is proved.
Before showing (b), we give a description of the (Hn

t )-stopping times S. We
consider �

n = (�n
i )i≥0 as an E-valued random variable, with the Polish space

E = RN∗
+ and its Borel σ -field E . Since Hn

t = Ft ∨ Kn∞, we have {S > t} =
{(ω,�

n
(ω)) ∈ Bt } for some Ft ⊗ E-measurable subset Bt of � × E. Setting

S′(ω,φ) = inf(s ∈ Q+ : (ω,φ) /∈ Bs), so {ω : S′(ω,φ) ≥ t} = ⋂s∈Q∩[0,t){ω :
(ω,φ) ∈ Bs} belongs to Ft for all t , and we readily deduce that

(5.10)

S(ω) = S′(ω,�
n
(ω)
)

where

{
(i) S′ is F ⊗ E-measurable on � × E,

(ii) S′(·, φ) is an (Ft )-stopping time for each φ ∈ E.

At this stage, we can prove (b), say in the case of (2.3)q,q ′ , the other case being
analogous. Let T ≤ S be two finite (Hn

t )-stopping times, with which we associate
S′ and T ′ as in (5.10). Upon replacing T ′ by T ′ ∧ S′, we can assume T ′ ≤ S′
identically. Let μ be the law of �

n
[a probability measure on (E,E)]. By the
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independence in Assumption (O), we have

E
(

sup
s∈[T ,S]

|VS − VT |q ′)=
∫

E
(

sup
sN [T ′(·,φ),S′(·,φ)]

|Vs − VT ′(·,φ)|q
′)

μ(dφ)

≤ K

∫
E
(∣∣S′(·, φ) − T ′(·, φ)

∣∣q)μ(dφ) = KE
(|S − T |q),

where the inequality above follows from (2.3)q,q ′ , applied with the (Ft )-stopping
times S′(·, φ) and T ′(·, φ). This proves the claim.

For (d), let Y ′ and Y ′′ be the left- and right-hand sides of (5.9). It is enough
to prove that E(Y ′ZZ′) = E(Y ′′ZZ′) for any bounded Hn

T (n,i)-measurable Z

and σ(εn
j : j < i)-measurable Z′. When Z′ = ∏i−1

j=1 fj (ε
n
j ) for bounded Borel

functions fj , we have E(Z′ | Hn∞) = ∏i−1
j=1 E(fj (ε

n
i ) | Hn∞) by (N), and each

E(fj (ε
n
i ) | Hn∞) is Hn

T (n,i)-measurable [use the last part of (2.15)], hence E(Z′ |
Hn∞) as well. By a density argument, it follows that E(Z′ | Hn∞) is Hn

T (n,i)-
measurable for any σ(εn

j : j < i)-measurable Z′. Therefore,

E
(
Y ′ZZ′)= E

(
YZZ′)= E

(
YZE

(
Z′ | F∞

))
= E
(
Y ′ZE

(
Z′ | Hn∞

))= E
(
Y ′ZZ′),

and the claim follows. �

This lemma will be used very often, typically without special mention. Its claim
(c), for example, implies that X and σ are semimartingales satisfying (2.1) and
(2.2), relative to the filtration (Hn

t ), with W,W ′ being (Hn

t )-Brownian motion and
q= still being the (Hn

t )-compensator of p= , and the same if Hn

t is substituted with
Hn

t . Another application is the following estimate, easily deduced from (2.11) if we
condition with respect to Hn

T (n,i), hence true as well if we condition with respect
to Gn

i : for all integers j ≥ 1 and all p > 0 we have

(5.11) E
((

T (n, i + j) − T (n, i)
)p | Gn

i

)≤ Kp(j�n)
p.

In particular, in combination with Lemma 10, this yields that, for any càdlàg (Ft )-
adapted process V , we have for all j = 1, . . . ,2knhn (so j�n ≤ K) and p ≥ q ′,

(5.12)

E
(

sup
s∈[T (n,i),T (n,i+j)]

|Vs − VT (n,i)|p
∣∣ Gn

i

)
≤ K(j�n)

q if V satisfies (2.3)q ′,q ,∣∣E(V(T (n,i)+s)∧T (n,i+j) − VT (n,i) | Gn
i

)∣∣
≤ K(j�n)

q if V satisfies (2.4)q .

This and (5.5) imply the following estimate, uniform in z ∈ E:

(5.13) E
(

sup
s∈[T (n,i),T (n,i+j)]

∣∣δ(z, s) − δ
(
z, T (n, i)

)∣∣2 ∣∣ Gn
i

)
≤ KJ(z)2/r ′

j�n.
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Moreover, when x, y ≥ 0, we have xβm − yβm = βmyβm−1(x − y) + O(|x − y|βm)

if βm ≥ 1 and xβm − yβm = O(|x − y| + |x − y|βm) if βm < 1. Therefore, using
(5.5) again, we deduce for p ≥ 2

(5.14)
E
(

sup
s∈[T (n,i),T (n,i+j)]

∣∣am
s − am

T (n,i)

∣∣p ∣∣ Gn
i

)
≤ K(j�n)

(pβm/2)∧1,

∣∣E(am
(T (n,i)+s)∧T (n,i+j) − am

T (n,i) | Gn
i

)∣∣≤ K(j�n)
βm/2.

5.3. Estimates—1. The estimates (5.12) will not be enough for our purposes,
and we proceed to complement them. The setting is somewhat complicated (be-
cause of our future needs), and to obtain notation and statements as simple as pos-
sible we fix n and i, but it is important to keep in mind that the (varying) constants
K or Kp below do not depend on n, i.

We have a bounded sequence θn
j of numbers with which we associate the pro-

cess

�t =
2hn−1∑
j=1

θn
j 1(T (n,i+j−1),T (n,i+j)](t).

We denote by An
i the set of all càdlàg (Hn

t )-adapted processes V satisfying Vt = 0
for t ≤ T (n, i). If V ∈ An

i and U is a (Hn
t )-local martingale we define the pro-

cesses (all in An
i )

(5.15)
L(V )t =

∫ t

0
�sVs ds, L′(V ,U)t =

∫ t

0
�sVs dUs,

L′′(V )t =
∫ t

0
�s

(∫ s

0
�vVv dv

)
ds,

and also (for 0 ≤ j ≤ �) the variables

V j,� = V
n,i

j,� = sup
s∈[T (n,i+j),T (n,i+j+�)]

|Vs − VT (n,i+j)|.

Suppose that we are given nonnegative Hn
T (n,i)-measurable variables �̂ and �

and Hn
T (n,i+j)-measurable variables �j for j = 1,2, . . . . We let P(�), P̂(�̂),

P(�j ) be the sets of all V ∈ An
i such that, for all 0 ≤ j ≤ 2hn and all reals z ≥ 0

and constants Kz with K1 = 1, we have

(5.16)

for P(�):
∣∣E(VT (n,i+j) − VT (n,i) | Hn

T (n,i)

)∣∣
≤ �, j = 1, . . . ,2hn,

for P̂(�̂): E
(
(V 0,2hn)

2 | Hn
T (n,i)

)≤ �̂,

for P(�j ): E
(
�(n, i + j + 1)z|V j,j+1|2 | Hn

T (n,i+j)

)
≤ Kz�j�

z
n, j = 1, . . . ,2hn.
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These classes should indeed be indexed by i and n, as well as the process defined
just below, but as already written we omit these indices.

There is of course a connection between �̂ and the �j ’s, expressed in the fol-
lowing lemma:

LEMMA 13. If V ∈ An
i , we have for all p ≥ 2

(5.17) E
(
(V 0,2hn)

p | Hn
T (n,i)

)≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kphp/2−1
n

2hn−1∑
j=0

E
(|V j,j+1|p | Hn

T (n,i)

)
if V is a

(
Hn

t

)
-local martingale,

hp−1
n

2hn−1∑
j=0

E
(|V j,j+1|p | Hn

T (n,i)

)
otherwise.

Hence if V ∈ P(�j ), we have V ∈ P̂(�̂) with

(5.18)

• �̂ =
2hn−1∑
j=0

E
(
�j | Hn

T (n,i)

)
,

• �̂ = K

2hn−1∑
j=0

E
(
�j | Hn

T (n,i)

)
if V is a

(
Hn

t

)
-local martingale.

PROOF. The second part of (5.17) follows from V 0,2hn ≤∑2hn−1
j=0 V j,j+1 and

Hölder’s inequality. When V is a (Hn
t )-martingale, the Burkholder–Gundy in-

equality for the discrete-time local martingale (VT (n,i+j))j≥0 and Hölder’s in-
equality imply

E
(

sup
0≤j≤2hn−1

|VT (n,i+j)|p
∣∣Hn

T (n,i)

)
≤ E

((2hn−1∑
j=0

(V j,j+1)
2

)p/2 ∣∣∣Hn
T (n,i)

)

≤ Kphp/2−1
n

2hn−1∑
j=0

E
(|V j,j+1|p | Hn

T (n,i)

)
,

whereas V 0,2hn ≤ sup0≤j≤2hn−1(|VT (n,i+j)| + V j,j+1), hence

(V 0,2hn)
p ≤ 2p−1 sup

0≤j≤2hn−1
|VT (n,i+j)|p + 2p−1

2hn−1∑
j=0

(V j,j+1)
p,

and the first part of (5.17) follows. The last claim is obvious (take p = 2 above).
�

Next, we give some criteria for a process V ∈An
i to belong to these classes.
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LEMMA 14. (a) If V ′ is càdlàg (Ft )-adapted and satisfies (2.3)2,q ′ , then
Vt = V ′

t − V ′
t∧T (n,i) belongs to P̂(�̂) ∩ P(�j ), with �̂ = K(hn�n)

q and �j =
K(�n)

q .
(b) If V ′ is càdlàg (Ft )-adapted and satisfies (2.4)q , then Vt = V ′

t − V ′
t∧T (n,i)

belongs to P(�), with � = K(hn�n)
q .

(c) For w = 1,2, let Yw ∈ An
i be a square-integrable martingale for the fil-

tration (Hn
T (n,i) ∨ Ft ), with predictable brackets 〈Yw,Yw〉t = ∫ t

0 αw
s ds with αw

s

bounded. Then if Mw
t = ∫ t

0 �w
s dYw

s , where �1
t = �t and �2

t = �′
t , the product

V = M1M2 belongs to P̂(�̂) ∩P(�j ) with

(5.19) �̂ = K(hn�n)
2, �j = K�n

(∣∣M1
0,j

∣∣2 + ∣∣M2
0,j

∣∣2 + �n

)
.

PROOF. (b) and the claim V ∈ P̂(�̂) in (a) readily follow from (5.12) for V ′.
In view of (2.10), �(n, i + j + 1) is Hn

T (n,i+j)-measurable, so by Lemmas 10 and

12 (5.12) for V ′ implies E(V
2
j,j+1 | Hn

T (n,i+j)) ≤ K�(n, i + j + 1)q in the case
of (a). It follows that V ∈P(�j ) with �j = K(�n)

q .
Now we start the proof of (c). Observe that, under a regular version of the

Hn
T (n,i)-conditional probability, the new sampling scheme T ′(n, i) = T (n, i + j)

for j ≥ 0 satisfies (O) for the filtration F ′
t = Hn

T (n,i) ∨FT (n,i)+t . Thus Lemma 12
implies that Yw

T (n,i)+t is a square-integrable martingale for (Hn
T (n,i)+t ) and for

(Hn

T (n,i)+t ). Since Yw
t = 0 when t ≤ T (n, i), it follows that Yw , hence Mw as

well, are square-integrable martingales for (Hn
t ) and for (Hn

t ). By Itô’s formula,

Vt = V (1)t + V (2)t + V (3)t , V (1)t =
∫ t

0
M1

s dM2
s ,

V (2)t =
∫ t

0
M2

s dM1
s , V (3)t = 〈M1,M2〉

t ,

and it suffices to prove the result for each V (k). This is obvious for V (3), be-
cause this process is absolutely continuous with a bounded density, so V (3)j,k ≤
K(T (n, i + k) − T (n, i + j)) for j < k and because of (5.11).

Next, Doob’s inequality and the boundedness of αw
t and �w

t and (5.11) im-
ply first that E((M

w

j,k)
2 | Hn

T (n,i+j)) ≤ K(k − j)�n for any j < k, and also that

E((M
w

j,j+1)
2 | Hn

T (n,i+j)) ≤ K�(n, i + j + 1). The same arguments also yield

E
(
V (1)

2
j,j+1 | Hn

T (n,i+j)

)
≤ 4θ ′2

j+1E

(∫ T (n,i+j+1)

T (n,i+j)

(
M1

s

)2
α2

s ds
∣∣∣Hn

T (n,i+j)

)
≤ K�(n, i + j + 1)

((
M

1
0,j

)2 +E
((

M
1
j,j+1

)2 | Hn

T (n,i+j)

))
≤ K�(n, i + j + 1)

(
M

1
0,j

)2 + K�(n, i + j + 1)2.
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Then, by conditioning on Hn
T (n,i+j), we see that V (1) ∈ P(�j ) with �j given

by (5.19) and, since V (1) is an (Hn
t )-martingale, it also belongs to P̂(�̂) with

�̂ = K(hn�n)
2 by the second part of (5.18). The same obviously holds for V (2),

and the proof is complete. �

LEMMA 15. Let V ∈ An
i and U be a square-integrable martingale for the fil-

tration (Hn
T (n,i)∨Ft ) with predictable bracket 〈U,U〉t = ∫ t

0 αs ds with αs bounded
(note that U = W satisfies this).

(a) If V ∈P(�j ) ∩ P̂(�̂) we have L(V ) ∈ P(� ′
j ) ∩ P̂(�̂ ′), where

(5.20)

� ′
j = K

(
�j + (V 0,j )

2)�2
n,

�̂ ′ = K(hn�n)
2

(
�̂ + 1

hn

2hn−1∑
j=0

E
(
�j | Hn

T (n,i)

))
.

(b) If V ∈ P(�j ) ∩ P̂(�̂), the process L′(V ,U) is a local martingale relative
to (Hn

t ) and (Hn

t ), and L′(V ,U) ∈ P(� ′
j ) ∩ P̂(�̂ ′), where

(5.21)

� ′
j = K

(
�j + (V 0,j )

2)�n,

�̂ ′ = Khn�n

(
�̂ + 1

hn

2hn−1∑
j=0

E
(
�j | Hn

T (n,i)

))
.

If further V is bounded and U = W , we also have for all p ≥ 2

(5.22)

E
(∣∣L′(V ,W)T (i+2hn)

∣∣p | Hn
T (n,i)

)
≤ Kp(hn�n)

p/2

(
�̂ + 1

hn

2hn−1∑
j=0

E
(
�j | Hn

T (n,i)

))
.

(c) If V ∈P(�j ) ∩P(�) ∩ P̂(�̂) we have

(5.23)

∣∣E(L(V )T (n,i+2hn) |Hn
T (n,i)

)∣∣
≤ K

(
hn�n� + (hn�n)

3/2
√

�̂ + �n

2hn−1∑
j=0

E
(√

�j | Hn
T (n,i)

))
,

∣∣E(L′′(V )T (n,i+2hn) | Hn
T (n,i)

)∣∣
≤ Khn�n

(
hn�n� + ((hn�n)

3/2 + �n

)√
�̂

+ �n

2hn−1∑
j=0

E
(√

�j | Hn
T (n,i)

))
.
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PROOF. (a) The process V ′ = L(V ) is continuous and belongs to An
i . We

have, uniformly in t ∈ [T (n, i + j), T (n, i + j + 1)],

V ′
t − V ′

T (n,i+j) = θj+1

∫ t

T (n,i+j)
Vs ds = O

(
V 0,j+1�(n, i + j + 1)

)
,

hence V
′
j,j+1 ≤ K(V 0,j +V j,j+1)�(n, i + j + 1). Thus, since V 0,j is Hn

T (n,i+j)-
measurable, we have V ′ ∈ P(� ′

j ) with � ′
j given by (5.20). Then (5.18) applied

to V ′ yields V ′ ∈ P̂(�̂ ′′) with �̂ ′′ = hn

∑2hn−1
j=0 E(� ′

j | Hn
T (n,i)), which is smaller

than � ′ as given by (5.20), and the proof is complete.
(b) Exactly as in (b) of the previous proof, U is a square-integrable martingale

for the two filtrations (Hn
t ) and (Hn

t ), so the process V ′ = L′(V ,U) is a local
martingale for these two filtrations as well, and it vanishes for t ≤ T (n, i). The
same argument as in (b) of the previous lemma again yields for all p ≥ 2 if U = W

and for p = 2 otherwise, and upon using the Burkholder–Gundy inequality,

E
((

V
′
j,j+1

)p | Hn

T (n,i+j)

)
≤ Kpθ

p
j+1E

((∫ T (n,i+j+1)

T (n,i+j)
αs(Vs)

2 ds

)p/2 ∣∣∣Hn

T (n,i+j)

)
≤ Kp�(n, i + j + 1)p/2((V 0,j )

p +E
(
(V j,j+1)

p | Hn

T (n,i+j)

))
.

Using this with p = 2 gives us V ′ ∈ P(� ′
j ) for � ′

j as stated. The proof that V ′ ∈
P̂(�̂ ′) with �̂ ′ as stated is the same as in Step (a), upon using now the second part
of (5.18) for V ′.

Assume further V bounded and U = W . Then obviously (V j,j+1)
p ≤

Kp(V j,j+1)
2 and (V 0,j )

p ≤ Kp(V 0,j )
2, hence E((V

′
j,j+1)

p | Hn
T (n,i)) ≤

Kp�
p/2
n (E(�j | Hn

T (n,i)) + �̂). Applying the first part of (5.17) to the (Hn
t )-

martingale V ′, we readily get (5.22).
(c) (2.10) yields the decomposition

L(V )T (n,2hn) =
2hn−1∑
j=0

θn
j+1
(
ζ n
j + ζ ′n

j + ζ ′′n
j

)
,

where

ζ n
j = �nλT (n,i)VT (n,i+j)�

n
i+j+1,

ζ ′n
j = �nVT (n,i+j)(λT (n,i+j) − λT (n,i))�

n
i+j+1,

ζ ′′n
j =

∫ T (n,i+j+1)

T (n,i+j)
(Vs − VT (n,i+j)) ds.
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(O)(ii) yields E(ζ n
j | Hn

T (n,i+j)) = �nVT (n,i+j)λT (n,i) and a similar property for

ζ ′n
j . Then |E(ζ n

j | Hn
T (n,i))| ≤ K�n� , and (5.5) applied to λt and the Cauchy–

Schwarz inequality yield |E(ζ ′n
j | Hn

T (n,i))| ≤ Kh
1/2
n �

3/2
n �̂1/2, whereas |E(ζ ′′n

j |
Hn

T (n,i))| ≤ K�nE((�j )
1/2 | Hn

T (n,i)) is obvious. The first part of (5.23) follows.

In the same way, we have L′′(V )T (n,2hn) =∑2hn−1
j=0 θn

j+1
∑5

w=1 ζ
n,w
j , where

ζ
n,1
j = �2

n

2hn−1∑
k=j+1

θn
k+1λ

2
T (n,i)VT (n,i+j)�

n
i+j+1�

n
i+k+1,

ζ
n,2
j = �2

n

2hn−1∑
k=j+1

θn
k+1
(
λ2

T (n,i+j) − λ2
T (n,i)

)
VT (n,i+j)�

n
i+j+1�

n
i+k+1,

ζ
n,3
j = �n

2hn−1∑
k=j+1

θn
k+1(λT (n,i+k) − λT (n,i+j))VT (n,i+j)�(n, i + j + 1)�n

i+k+1,

ζ
n,4
j = θn

j+1VT (n,i+j)

∫ T (n,i+j+1)

T (n,i+j)

(
T (n, i + j + 1) − s

)
ds,

ζ
n,5
j = θn

j+1

∫ T (n,i+j+1)

T (n,i+j)
(Vs − VT (n,i+j))

(
T (n, i + j + 1) − s

)
ds

+
2hn−1∑
k=j+1

θn
k+1�(n, i + k + 1)

∫ T (n,i+j+1)

T (n,i+j)
(Vs − VT (n,i+j)) ds.

By successive conditioning and the same arguments as above, we see that
|E(ζ

n,1
j | Hn

T (n,i))| ≤ Khn�
2
n� , and also that |E(ζ

n,w
j | Hn

T (n,i))| is smaller than

Kh
3/2
n �

5/2
n �̂1/2 if w = 2,3, than K�2

n�̂
1/2 if w = 4, and than Khn�

2
nE((�j )

1/2 |
Hn

T (n,i)) if w = 5. Since hn�n → 0, All these estimates give us the second part of
(5.23). �

After these general technical results, we introduce some processes more specif-
ically related to our problem. For any y > 0, we set

(5.24)

U(y)nt = e−ϒ(y)nt , ϒ(y)nt = c(y)nt λt + a(y)nt λt + γ (y)nt

with c(y)nt = y2u2
nhn�nφnct ,

γ (y)nt = y2u2
nh

−1
n φnγt ,

a(y)nt = 4
M∑

m=1

|y|βmuβm
n hn�nφ̃

βm
n χ(βm)am

t ,
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and also

V #(y, y′)n
t = U

(
y + y′)n

t + U
(∣∣y − y′∣∣)n

t − 2U(y)nt U
(
y′)n

t ,

V
(
y, y′)n

t = V #(y, y′)nt
2U(y)nt U(y′)nt

, Ṽ (y)nt = V (y,1)nt − y2V (1,1)nt ,

V
(
y, y′)n

t = V
(
y, y′)n

t + y2y′2V (1,1)nt − y′2V (y,1)nt − y2V
(
y′,1

)n
t .

Upon increasing  if necessary, we have

(5.25)
1


≤ U(y)nt ≤ 1.

In view of (5.5), (5.12) and (5.14), for Un = U(y)n hence for Un = V #(y, y′)n,
Un = V (y, y′)n and Un = V (y, y)n as well [upon using (5.25)], we have for j =
1, . . . ,wn = 2hnkn and p ≥ 2∣∣E(Un

T (n,i+j) − Un
T (n,i) | Gn

i

)∣∣≤ Kχn,j ,

E
(∣∣U(y)nT (n,i+j) − U(y)nT (n,i)

∣∣p | Gn
i

)≤ Kχ(p)n,j ,

χn,j = u2
nh

−1
n j�n + κ2u

2
nh

−1
n (j�n)

1/2

+ hn�n

(
κ1u

2
nj�n +

M∑
m=1

uβm
n (j�n)

βm/2

)
,

χ(p)n,j = u2p
n h−p

n j�n

+ (hn�n)
p

(
κ1u

2p
n j�n +

M∑
m=1

upβm
n (j�n)

1∧(pβm/2)

)
.

(5.26)

Moreover, an expansion of the exponential function gives us

V #(y, y′)n
t = O

(
uβ1

n hn�n + u4
n

h2
n

+ κ1u
4
n(hn�n)

2
)
,

V
(
y, y′)n

t = 2uβ1
n hn�nψβ1

(
y, y′)φ̃(β1)

n χ(β1)a
1
t λt

+ 2y2y′2u4
n

(
hn�nφnctλt + 1

hn

φnγt

)2

+ 2

3
y4y′4u8

n

(
hn�nφnctλt + 1

hn

φnγt

)4

+ o
(
uβ1

n hn�n + u8
n

h4
n

+ κ1u
8
n(hn�n)

4
)
,(5.27)

Ṽ (y)nt = O
(
uβ1

n hn�n + u8
n

h4
n

+ κ1u
8
n(hn�n)

4
)
,
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V
(
y, y′)n

t = 2hn�nu
β1
n ψβ1

(
y, y′)φ̃(β1)

n χ(β1)a
1
t λt

+ 2

3
y2y′2(y2 − 1

)(
y′2 − 1

)
u8

n

(
hn�nφnctλt + 1

hn

φnγt

)4

+ o
(
uβ1

n hn�n + u8
n

h4
n

+ κ1u
8
n(hn�n)

4
)
.

5.4. Estimates—2. In this subsection, we prove various estimates for a number
of arrays of variables, which we presently define. Since we take differences of two
successive pre-averaged values, it is convenient to introduce the following:

g′n
j = −gn

j , g′n
j = −gn

j if 1 ≤ j ≤ hn − 1,

g′n
j = gn

j−hn
, g′n

j = gn
j−hn

if hn ≤ j ≤ 2hn − 1,
(5.28)

so that Ṽ n
i+hn

− Ṽ n
i =∑2hn−1

j=1 g′n
j �n

i+jV . Recalling γ n
i = γT (n,i) and σn

i = σT (n,i)

and writing δn
i (z) = δ(T (n, i), z), we set

ψ
n,i
t =

2hn−1∑
j=1

g′n
j 1(T (n,i+j−1),T (n,i+j)](t), ρ

n,1
i = unσ

n
i

∫ ∞
0

ψn,i
s dWs,

ρ
n,2
i = un

∫ ∞
0

∫
E

δn
i (z)ψn,i

s (p= − q= )(dt, dz), ρ
n,3
i = unγ

′n
i

2hn−1∑
j=1

g′n
j εn

i+j ,

ρn
i = ρ

n,1
i + ρ

n,2
i + ρ

n,3
i , ρn

i = un

(
Ỹ n

i − Ỹ n
i+hn

)
and

ξ(y)
w,n
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

kn

kn−1∑
l=0

(
cos
(
yρn

2hn(jkn+l)

)− U(y)nT (n,2hn(jkn+l))

)
if w = 1,

1

kn

kn−1∑
l=0

(
cos
(
yρn

2hn(jkn+l)

)− cos
(
yρn

2hn(jkn+l)

))
if w = 2,

1

kn

kn−1∑
l=0

(
U(y)nT (n,2hn(jkn+l)) − U(y)nT (n,jwn)

)
if w = 3,

ξ(y)nj = 1

U(y)nT (n,jwn)

3∑
w=1

ξ(y)
w,n
j ,

�(y)n,t = ⋂
0≤j<[Nn

t /wn]

{∣∣ξ(y)nj
∣∣≤ 1

2

}
,

�n,t = ⋂
y∈Y

(
�(y)n,t ∩ �(2y)n,t

)
.
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We also introduce a (long) list of numerical sequences which all go to 0 by (3.2),
and where P is an arbitrarily large integer,

α1
n = hn�n + un(hn�n)

1/2+1/̃r ′ + u2+r̃ ′/2
n �n

+ uP+1
n h−P/2

n �1/2
n + κ2u

2
nh

−1/2
n �1/2

n

+ κ1
(
u1+r̃ ′/2

n (hn�n)
3/2 + u5

nh
−1
n �n + u6

nh
1/2
n �2

n

+ u6
n(hn�n)

7/2 + u4
nh

2
n�

5/2
n

)
,

α2
n = hn�n + u2

n(hn�n)
3 + ur̃ ′

n (hn�n)
1+r̃ ′/2,

α3
n = ur

nhn�n + κ2u
3
nh

−3/2
n �1/2

n + u4
nh

−3
n ,

α4
n = uβ1

n hn�n + κ2u
3
nh

−3/2
n �1/2

n + u4
nh

−2
n + κ1u

4
n(hn�n)

2,

α5
n = u2

nkn�n + κ2u
2
nk

1/2
n h−1/2

n �1/2
n

+
M∑

m=1

uβm
n kβm/2

n (hn�n)
1+βm/2 + κ1u

2
nkn(hn�n)

2,

α(p)n = (α3
n

)p + α4
nk

−p/2
n ,

α̂(p)n = (α1
n

)p + α2
nk

−p/2
n + u2p

n knh
1−p
n �n + κ1u

2p
n kn(hn�n)

p+1

+
M∑

m=1

upβm
n k1∧(pβm/2)

n (hn�n)
p+1∧(pβm/2).

LEMMA 16. For all p ≥ 2 and y ∈ Y , we have

(5.29)

∣∣E(cos
(
yρn

i

)− cos
(
yρn

i

) | Gn
i

)∣∣≤ Kα1
n,

E
(∣∣cos

(
yρn

i

)− cos
(
yρn

i

)∣∣p | Gn
i

)≤ Kα2
n.

PROOF. (1) Since
∫∞

0 ψ
n,i
t dt = 0, we have yρn

i = θ(6)ni , where θ(k)ni =∑k
j=1 θ(j)ni and

θ(1)ni = yρn
i ,

θ(2)ni = yun

∫ ∞
0

(
σs − σn

i

)
ψn,i

s dWs,

θ(3)ni = yun

2hn−1∑
j=0

g′n
j

(
γ ′n
i+j − γ ′n

i

)
εn
i+j ,

θ(4)ni = yun

∫ ∞
0

∫
E

(
δ(s, z) − δn

i (z)
)
ψn,i

s (p= − q= )(ds, dz),
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θ(5)ni = yun

∫ ∞
0

(
bs − bn

i

)
ψn,i

s ds,

θ(6)ni = yun

∫ ∞
0

∫
E

δ′(s, z)ψn,i
s p= (ds, dz).

(2) This step is devoted to proving the following estimates, for any a ≥ r̃ ′ and
p ≥ 2,

E
(∣∣ρn,1

i

∣∣p | Gn
i

)≤ Kpκ1u
p
n(hn�n)

p/2,

E
(∣∣ρn,2

i

∣∣a | Gn
i

)≤ Kau
a
nhn�n,

E
(∣∣θ(2)ni

∣∣p | Gn
i

)≤ Kpκ1u
p
n(hn�n)

1+p/2,

E
(∣∣θ(4)ni

∣∣̃r ′ | Gn
i

)≤ Kur̃ ′
n (hn�n)

1+r̃ ′/2,

E
(∣∣θ(5)ni

∣∣2 | Gn
i

)≤ Ku2
n(hn�n)

3,

P
(
θ(6)ni �= 0 | Gn

i

)≤ Khn�n.

(5.30)

By virtue of Lemma 12(d) we can always condition on Hn
T (n,i) instead of Gn

i .

The claim for ρ
n,1
i follows from Burkholder–Gundy inequality and |σn

i ψ
n,i
t | ≤ K ,

plus (5.11). A trivial reformulation of Lemma 2.1.5 of [10] entails that, for any
predictable function on � ×R+ × E with |δ′′(t, z)|r ′ ≤ KJ(z) and any two (Hn

t )-
stopping times T ≤ S, we have for a ≥ r̃ ′ and Z = δ′′ ∗ (p= − q= )

E
(|ZS − ZT |a | Hn

T

)≤ KE

(∫
(S,T ]×E

∣∣δ′′(t, z)
∣∣a dtη(dz)

+
(∫

(S,T ]×E

∣∣δ′′(t, z)
∣∣a∧2

dtη(dz)

)(a∨2)/2 ∣∣∣Hn
T

)
,

since J is bounded and η-integrable, J a/r ′
is also η-integrable. This with δ′′(t, z) =

δn
i (z)ψ

n,i
t and (5.11) yield (5.30) for ρ

n,2
i . If δ′′(t, z) = (δ(t, z) − δn

i (z))ψ
n,i
t and

V z
t = δ(t, z)/J (z)1/r ′

it also implies with a = r̃ ′ and T = T (n, i) and S = T (n, i +
2hn) and η′ is the finite measure η′(dz)J (z)2/r ′

η(dz):

E
(|ZS − ZT |p | Hn

T

)≤ K

∫
E
E

(∫ T

S

∣∣V z
t − V z

T

∣∣̃r ′
dtη′(dz)

∣∣∣Hn
T

)
η′(dz).

Then (5.30) for θ(4)ni readily follows from (5.11) and (5.12) (and the sentence
which follows it) applied with each V z, plus Hölder’s inequality. Next, (5.5) and∫

J (z)η(dz) < ∞ yield

P
(
θ(6)ni �= 0 | Gn

i

)≤ 1


E

(∫
R+×E

J (z)
∣∣ψn,i

s

∣∣p= (ds, dz)
∣∣∣ Gn

i

)
≤ KE

(
T (n, i + 2hn) − T (n, i) | Gn

i

)
,

and hence (5.30) for θ(6)ni by (5.11).
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Next, we apply (a) of Lemma 14 with V ′ = b, hence Vt = bt − bt∧T (n,i), and
(5.20) to obtain the claim for θ(5)ni which is equal to yunL(V )2hn [with the nota-
tion (5.15) and θn

j = g′n
j ].

Analogously, Lemma 14(a) with V ′ = σ , hence Vt = σt − σt∧T (n,i), and (5.22)
yields the claim for θ(2)ni , which is equal to yunL

′(V ,W)2hn .

(3) We turn to estimates for ρ
n,3
i and θ(3)ni . First, we have for all p ≥ 2

(5.31)
E
(∣∣ρn,3

i

∣∣p | Ĝn
i

)≤ Kpup
nh−p/2

n ,

E
(∣∣θ(3)ni

∣∣p | Gn
i

)≤ Kpup
nh1−p/2

n �n.

The first part above follows from Burkholder–Gundy inequality and |g′n
j | ≤ K/hn,

because the (εn
j : j ≥ i) are independent and centered with bounded moments,

conditionally on Hn∞. Analogously,

E
(∣∣θ(3)ni

∣∣p | Ĝn
i

)≤ K
u

p
n

h
1+p/2
n

2hn−1∑
j=1

∣∣γ ′n
i+j − γ ′n

i

∣∣p/2
.

Then the second part of (5.31) follows from the last part of (5.12) applied with
V = γ ′.

However, (5.31) is not quite enough for us, and we need some further estimates,
here and later on. For any integer w ≥ 1, we denote by Jw the family of all w-
uplet j = (j1, . . . , jw) of integer between 1 and 2hn − 1. Within Jw we single out
the subset J ′

w of those j’s for which at least one jm is different from all others,
and J ′′

w = Jw \ J ′
w . When j ∈ Jw , the integers jm for m = 1, . . . ,w take � = �(j)

distinct values j1, . . . , j � and for each m there are sm ≥ 1 integers jk equal to jm,
and further sm ≥ 2 and l ≤ w/2 when j ∈ J ′′

w , whereas sm = 1 for at least one m

when j ∈ J ′
w .

With this notation, we set

D
n,w,y
i = E

((
yρ

n,3
i

)w | Hn∞
)
,

D
′n,w,y
i = E

(
θ(3)ni

(
yρ

n,3
i

)w | Hn∞
)
,

D
n,w,y

i = ywuw
n

(
γ ′n
i

)w ∑
j∈J ′′

w

l∏
m=1

(
g′n

jm

)sm(γ (sm))n
i .

(5.32)

Recalling the properties of the noise, and in particular γ
(0)
t = 0, we see that

D
n,w,y
i = ywuw

n

(
γ ′n
i

)w ∑
j∈J ′′

w

l∏
m=1

(
g′n

jm

)sm(γ (sm))n
i+jm

,

D
′n,w,y
i = yw+1uw+1

n

(
γ ′n
i

)w
× ∑

j∈J ′′
w+1

((
γ ′n
i+jw+1

− γ ′n
i

) l∏
m=1

(
g′n

jm

)sm(γ (sm))n
i+jm

)
.

(5.33)
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Recall |g′n
j | ≤ K/hn, whereas #J ′′

w ≤ Kwh
w−[(w+1)/2]
n . We have γ

(2)
t = 1 and, for

q ≥ 3, the process γ
(q)
t equals a constant when κ2 = 0 and satisfies the last part

of (5.12) and is bounded when κ2 = 1, and γ ′
t satisfies the same in all cases, plus

the first part of (5.12) when κ2 = 0. Then a simple calculation shows us that, for
p = 2,4,

∣∣Dn,w,y
i

∣∣+ ∣∣Dn,w,y

i

∣∣≤ Kw1{w≥2}
uw

n

h
[(w+1)/2]
n

,

E
(∣∣Dn,w,y

i − D
n,w,y

i

∣∣p | Gn
i

)≤ Kwκ21{w≥3}
u

pw
n hn�n

h
p[(w+1)/2]
n

,

∣∣E(D′n,w,y
i | Gn

i

)∣∣≤ Kw

uw+1
n hn�n

h
[w/2]+1
n

+ κ2Kw

uw+1
n (hn�n)

1/2

h
[w/2]+1
n

,

E
(∣∣D′n,w,y

i

∣∣2 | Gn
i

)≤ Kw

u2w+2
n hn�n

h
2[w/2]+2
n

.

(5.34)

(4) Since | cos(u + v) − cos(u)| ≤ K(1 ∧ |v|) and | cos(u + v) − cos(u) −
v sin(u)| ≤ Kv2, we deduce from (3.2) and (5.30) and 1/̃r ′ < 1 that

E
(∣∣cos

(
yρn

i

)− cos
(
yρn

i

)∣∣2 | Gn
i

)≤ Kα2
n,

E
(
cos
(
yρn

i

)− cos
(
θ(3)ni

) | Gn
i

)
≤ K

(
hn�n + un(hn�n)

1/2+1/̃r ′)
,

E
(
cos
(
θ(3)ni

)− cos
(
θ(2)ni

)− θ(3)ni sin
(
θ(2)ni

) | Gn
i

)
≤ Ku2

n�n ≤ Khn�n,

E
(
cos
(
θ(2)ni

)− cos
(
yρn

i

)− θ(2)ni sin
(
yρn

i

) | Gn
i

)
≤ Kκ1u

2
n(hn�n)

2 ≤ Khn�n.

(5.35)

The first estimate above yields the second part of (5.29) for p = 2, hence for all
p ≥ 2 as well.

Next, we evaluate E(θ(3)ni sin(θ(2)ni ) | Gn
i ). Set θ̂ n

i = θ(2)ni − yρ
n,3
i . A Taylor

expansion of the function f (x) = sinx around θ̂ n
i and the fact that the derivatives

f (w) of f are all bounded by 1 yield, for any even integer P ≥ 2,

θ(3)ni sin
(
θ(2)ni

)= P−1∑
w=0

1

w!f
(w)(θ̂ n

i

)(
yρ

n,3
i

)w
θ(3)ni

+ O
(∣∣yρn,3

i

∣∣P ∣∣θ(3)ni
∣∣).
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Since E(θ(3)ni | Hn∞) = 0, we have E(θ(3)ni sin(θ(2)ni ) | Gn
i ) = ∑P

w=1
1
w!η

n,w
i ,

where [with aw = (−1)[w/2]]

η
n,w
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

awE
(
D

′n,w,y
i cos

(
yθ̂n

i

) | Gn
i

)
= O

(
E
(
D

′n,w,y
i + ∣∣D′n,w,y

i

∣∣((θ̂ n
i

)2 ∧ 1
) | Gn

i

))
if w < P is odd,

awE
(
D

′n,w,y
i sin

(
yθ̂n

i

) | Gn
i

)
= O

(
E
(∣∣D′n,w,y

i θ̂n
i

∣∣ | Gn
i

))
if w < P is even,

O
(
E
(∣∣D′n,P,y

i

∣∣ | Gn
i

))
if w = P.

We have θ̂ n
i = θ(2)ni + yρ

n,1
i + yρ

n,2
i , hence if we combine (5.30) and (5.34) plus

the Cauchy–Schwarz inequality and u2
n ≤ Khn and (5.31) for the last estimate

below, we see that

η
n,w
i ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Kw

(
hn�n + u2+r̃ ′/2

n �n

+ κ1u
4
nh

1/2
n �3/2

n + κ2u
2
nh

−1/2
n �1/2

n

)
if w < P is odd,

Kwhn�n if w < P is even,

KuP+1
n h−P/2

n �1/2
n if w = P.

Then we end up with

(5.36)

∣∣E(θ(3)ni sin
(
θ(2)ni

) | Gn
i

)∣∣≤ K

(
hn�n + u2+r̃ ′/2

n �n + κ1u
4
nh

1/2
n �3/2

n

+ uP+1
n �

1/2
n

h
P/2
n

+ κ2
u2

n�
1/2
n

h
1/2
n

)
.

(5) Now we estimate E(θ(2)ni sin(yρn
i ) | Gn

i ), assuming κ1 = 1, otherwise this

vanishes identically. First, | sin(yρn
i )− sin(yρ

n,1
i +yρ

n,3
i )|2 ≤ K|ρn,2

i |̃r ′
and (5.30)

and (5.31) yield

(5.37)
∣∣E(θ(2)ni

(
sin
(
yρn

i

)− sin
(
yρ

n,1
i + yρ

n,3
i

)) | Gn
i

)∣∣≤ Ku1+r̃ ′/2
n (hn�n)

3/2.

Next, expand f (x) = sin(x) around yρ
n,1
i and use (5.30) and (5.31) to get

E
(
θ(2)ni sin

(
yρ

n,1
i + yρ

n,3
i

) | Gn
i

)= 3∑
w=0

1

w!v
n,w
i + O

(
u5

n�n/hn

)
,

where

v
n,w
i =

⎧⎪⎪⎨⎪⎪⎩
E
(
θ(2)ni sin

(
yρ

n,1
i

) | Gn
i

)
if w = 0,

E
(
θ(2)ni f

(w)(yρn,1
i

)(
yρ

n,3
i

)w | Gn
i

)
= E
(
θ(2)ni f

(w)(yρn,1
i

)
D

n,w,y
i | Gn

i

)
if w ≥ 1.

Then (5.30) and (5.34) yield

v
n,1
i = 0,

w = 2,3 ⇒ ∣∣vn,w
i

∣∣≤ Kuw
n h−[(w+1)/2]

n

∣∣E(θ(2)ni f
(w)(yρn,1

i

) | Gn
i

)∣∣.
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Thus |vn,3
i | ≤ Ku4

n�n/hn ≤ Khn�n by (5.30), whereas f (2) = −f yields |vn,2
i | ≤

K|vn,0
i |, hence

∣∣E(θ(2)ni sin
(
yρ

n,1
i + yρ

n,3
i

) | Gn
i

)∣∣≤ K
∣∣vn,0

i

∣∣+ K

(
hn�n + u5

n�n

hn

)
.

Another expansion of the function f , around 0 this time, yields v
n,0
i = v

n,1
i +

v
n,3
i + vn

i , where

v
n,w
i = yw

w!E
(
θ(2)ni

(
ρ

n,1
i

)w | Gn
i

)
,∣∣vn

i

∣∣ ≤ E
(∣∣θ(2)ni

∣∣∣∣ρn,1
i

∣∣5 | Gn
i

)≤ Ku6
n(hn�n)

7/2

[use (5.30) again], so we deduce

(5.38)

∣∣E(θ(2)ni sin
(
yρ

n,1
i + yρ

n,3
i

) | Gn
i

)∣∣
≤ K

(∣∣vn,1
i

∣∣+ ∣∣vn,3
i

∣∣+ hn�n + u6
n(hn�n)

7/2

+ u5
n�n

hn

+ u6
nh

1/2
n �2

n

)
.

(6) It remains to evaluate v
n,w
i for w = 1,3. Omitting the indices n, i we write

S = T (n, i), T = T (n, i + 2hn), Mt =
∫ t

t∧S
ψn,i

s dWs,

Yt = Hσ
S (Wt − Wt∧S) +

∫ t

t∧S
H ′σ

s dW ′
s +
∫ t

t∧S

∫
E

δσ (s, z)(p= − q= )(ds, dz),

M ′
t =
∫ t

t∧S
ψn,i

s Ys dWs.

Observe that

ρ
n,1
i = unσ

n
i MT , θ(2)ni = yun

(
μ(1)ni + μ(2)ni + μ(3)ni

)
,

where

μ(1)ni = M ′
T , μ(2)ni =

∫ T

S
ψn,i

s

(∫ s

S
bσ
t dt

)
dWs,

μ(3)ni =
∫ T

S
ψn,i

s

(∫ s

S

(
Hσ

t − Hσ
S

)
dWt

)
dWs.

Then

(5.39)
∣∣vn,w

i

∣∣≤ Kuw+1
n

3∑
k=1

|vw,k| where vw,k = E
(
μ(k)ni (MT )w | Gn

i

)
.
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Since | ∫ s
S bσ

t dt | ≤ K(s − S), Doob’s inequality and (5.11) yield E((μ(2)ni )
2 |

Gn
i ) ≤ K(hn�n)

3. For the case k = 3, we first apply Lemma 14 to V ′ = Hσ , then
(5.22) with V , which gives estimates for the process V ′′ = L′(V ,W) (with θn

j = 1),
and finally (5.22) again to the process V ′′ (with θn

j = g′n
i ). Upon observing that

μ(3)ni = L′(V ′′)T , and after some calculations, we end up with E((μ(3)ni )
2 | Gn

i ) ≤
K(hn�n)

3. Using the first estimate in (5.30) and u2
nhn�n → 0 (since κ1 = 1 here),

we thus get

(5.40) k = 2,3 ⇒ ∣∣uw+1
n vw,k

∣∣≤ Khn�n.

Since Y , M , M ′ are martingales for (Hn
t ) with integrable powers of any order,

and moreover 〈M,Y 〉t = Hσ
S

∫ t
0 ψn,i

s ds (recall that W and W ′ are orthogonal), we
have by a repeated use of Itô’s formula

v1,1 = E
(
ζ1 | Gn

i

)
, v3,1 =

6∑
k=2

E
(
ζk | Gn

i

)
,

where

ζ1 =
∫ T

S

(
ψn,i

s

)2
Ys ds,

ζ2 = (3 + 12Hσ
S

) ∫ T

S

(
ψn,i

s

)2(∫ s

S
ψ

n,i
t MtYt dWt

)
ds,

ζ3 = 3
∫ T

S

(
ψn,i

s

)2(∫ s

S
ψ

n,i
t M ′

t dWt

)
ds,

ζ4 = 6Hσ
S

∫ T

S

(
ψn,i

s

)2(∫ s

S
M2

t dYt

)
ds,

ζ5 = (3 + 6Hσ
S

) ∫ T

S

(
ψn,i

s

)2(∫ s

S

(
ψ

n,i
t

)2
Yt dt

)
ds,

ζ6 = 12Hσ
S

∫ T

S

(
ψn,i

s

)2(∫ s

S

(
ψ

n,i
t

)2
Mt dt

)
ds.

First, Lemma 14(a) implies Y ∈ P(�j ) ∩ P̂(�̂) with ψj = K�n and �̂ =
Khn�n. With the notation (5.15), we have ζ1 = L(Y ) (with θn

i = (g′n
i )2, hence

(5.23) yields

(5.41)
∣∣u2

nv1,1
∣∣≤ Ku2

n

(
(hn�n)

2 + hn�
3/2
n

)≤ K
(
hn�n + u2

nhn�
3/2
n

)
.

Next, Lemma 14(c) implies MY ∈P(�j )∩P̂(�̂) with ψj = K(�2
n+�(M0,j )

2 +
�(Y 0,j )

2) and �̂ = K(hn�n)
2; then (5.21) with θn

j = g′n
j yields that V =

L′(MY,W) belong to P(�j ) ∩ P̂(�̂) with �̂ = K(hn�n)
3 and �j = K�n(�

2
n +

�nM
2
0,j + �nM

2
0,j + M

2
0,jM

2
0,j ), whereas ζ2 = L(V )T (with θn

j = (g′n
j )2), hence

(5.23) yields for k = 2

(5.42)
∣∣E(ζk | Gn

i

)∣∣≤ K(hn�n)
3.
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Note that U = Y satisfies the assumptions of Lemma 15 and M ′ (resp., M2) be-
longs to MY ∈ P(�j ) ∩ P̂(�̂) with �̂ = K(hn�n)

2 and with ψj = K(�2
n +

�(Y 0,j )
2) (resp., ψj = K(�2

n +�(M0,j )
2)) (for the case of M ′ we first use (5.21)

and the fact that M ′ = L(Y,W) with θn
j = g′n

j ). Then the same argument shows
that (5.42) holds for k = 3,4. Furthermore, ζ5 = L′′(Y ) and ζ6 = L′′(M) with
θn
j = (g′n

j )2, so upon using (5.23) we get |E(ζk | Gn
i )| ≤ K(hn�n)

2(hn�n +√
�n)

for k = 5,6. Summarizing, we deduce∣∣u4
nv3,1

∣∣≤ K
(
hn�n + u4

nh
2
n�

5/2
n

)
,

and upon using (5.37), (5.38), (5.39), (5.40) and (5.41), we end up with∣∣E(θ(2)ni sin
(
yρn

i

) | Gn
i

)∣∣≤ Kκ1
(
hn�n + u2

nhn�
3/2
n

+ u4
nh

2
n�

5/2
n + u6

nh
1/2
n �2

n + u6
n(hn�n)

7/2

+ u5
nh

−1
n �n + u1+r̃ ′/2

n (hn�n)
3/2).

In turn, this combined with (5.35) and (5.36) gives us the first part of (5.29). �

We can in fact cut the ρ
n,w
i for w = 1,2 into pieces corresponding to sub-

intervals [T (n, i + j), T (n, i + j + l)] of [T (n, i), T (n, i + 2hn)] when 0 ≤ j <

l ≤ 2hn, as follows:

ρ
n,1
i,j,l = unσ

n
i

∫ T (n,i+l)

T (n,i+j)
ψn,i

s dWs,

ρ
n,2
i,j,l = un

∫ T (n,i+l)

T (n,i+j)

∫
E

δn
i (z)ψn,i

s (p= − q= )(ds, dz),

ρ̂n
i,j,l = ρ

n,1
i,j,l + ρ

n,2
i,j,l,

(5.43)

so ρ̂n
i,0,2hn

= ρ
n,1
i + ρ

n,2
i . In all the sequel, since i is an index, we write ι = √−1.

LEMMA 17. There are Gn
i -measurable real-valued variables B(y)ni,q and

B ′(y)ni,q satisfying∣∣∣∣∣B(y)ni,q − 1

2
y2(g′n

q

)2
u2

n�nc
n
i − 2

M∑
m=1

|y|βmuβm
n �n

∣∣g′n
j

∣∣βmχ(βm)am
T (n,i)

∣∣∣∣∣
≤ Kur

n�n,∣∣B ′(y)ni,q
∣∣≤ Kuβ1

n �n, 1 ≤ q ≤ hn ⇒ B ′(y)ni,q = −B ′(y)ni,q+hn
,

(5.44)

for 0 ≤ g ≤ 2hn, and such that, if B(y)ni,j,l =∑l
q=j+1 B(y)ni,q and B

′
(y)ni,j,l =∑l

q=j+1 B ′(y)ni,q , we have, for all 0 ≤ j < l ≤ 2hn,

(5.45) E
(
e
ιyρ̂n

i,j,l | Gn
i+j

)= e
−λn

i+j (B(y)ni,j,l+ιB
′
(y)ni,j,l ) + O

(
uβ

n(l − j)�2
n

)
.



LIMIT THEOREMS FOR LOCAL CHARACTERISTIC EXPONENTS 557

PROOF. (1) Set vn,q = yung
′n
q (so |vn,q | ≤ Kun) and V n = (δn

i 1(T (n,i),∞)) ∗
(p= − q= ). We have

yρ̂n
i,j,l =

l∑
q=j+1

μn
q, μn

q = vn,q

(
σn

i �n
i+qW + �n

i+qV
n).

We also consider the two functions of v ∈ R:

Gn
i (v) =

∫
R

(
1 − cos(vx)

)
FT (n,i)(dx),

Hn
i (u) =

∫
R

(
ux − sin(vx)

)
FT (n,i)(dx),

which satisfy Gn
i (v) + |Hn

i (v)| ≤ K(v2 ∧ |v|β1) because F t(1) = 0 and F t(z) ≤
K/zβ1 . Observe that, conditionally on Gn

i+q−1, the process σn
i (WT (n,i+q−1)+t −

WT (n,i+q−1))+V n
T (n,i+q−1)+t −V n

T (n,i+q−1) for t ≥ 0 is a Lévy process with Lévy
measure FT (n,i) and variance cn

i for the Gaussian part, independent of the variable
�n

i+j . Then

(5.46)
ζ n
q := E

(
eιμn

q | Gn
i+q−1

)= E
(
e
−λn

i+q−1�
n
i+q�n

q | Gn
i+q−1

)
where �n

q = �n

(
1

2
v2

n,qcn
i + Gn

i (vn,q) + ιHn
i (vn,q)

)
.

Note that |�n
q | ≤ Ku

β
n�n and �n

q is Gn
i -measurable. The moment properties of

�n
i+q imply |E(e

z�n
i+q | Gn

i+q−1) − ez| ≤ K|z|2, uniformly in z ∈ C with Re(z) ≤
0, yielding

(5.47)
∣∣ζ n

q − e
−λn

i+q−1�
n
q
∣∣≤ K

(
�n

q

)2 ≤ Ku2β
n �2

n.

The variables �′n
q =∑l

m=q �n
m satisfy |�′n

q | ≤ Ku
β
n(l −q +1)�n for q = 1, . . . , l,

so (5.12) yields

(5.48)
E
(∣∣e−λn

i+q�′n
q+1 − e

−λn
i+q−1�

′n
q+1
∣∣ | Gn

i+q−1
)

≤ K
∣∣�′n

q+1

∣∣E(∣∣λn
i+q − λn

i+q−1

∣∣ | Gn
i+q−1

)≤ Kuβ
n�2

n.

Now, with the notation n
q = exp(ι

∑l
m=q μn

m), we will prove that

(5.49)
∣∣E(n

q | Gn
i+q−1

)− e
−λn

i+q−1�
′n
q
∣∣≤ 2Cuβ

n(l − q + 1)�2
n,

for q = 1, . . . , l, by downward induction on q , and where C is a constant ay
least as big as the constants K showing in (5.47) and (5.48). When q = l, this
readily follows from (5.46) and (5.47). Now, applying successively (5.49) for
q + 1, (5.48) and (5.47), and using also the Gn

i+q -measurability of μn
q and the
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Gn
i+q−1-measurability of λn

i+q−1�
′n
q+1, we get with an,... = O1(bn,...) meaning

|an,...| ≤ |bn,...|:
E
(
n

q | Gn
i+q−1

)= E
(
n

q+1e
ιμn

q | Gn
i+q−1

)
= E
(
eιμn

q e
−λn

i+q�′n
q+1 | Gn

i+j−1
)+ 2CO1

(
(l − q)uβ

n�2
n

)
= E
(
eιμn

q e
−λn

i+q−1�
′n
q+1 | Gn

i+q−1
)+ 2CO1

((
l − q + 1

2

)
uβ

n�2
n

)
= ζ n

q e
−λn

i+q−1�
′n
q+1 + 2CO1

((
l − q + 1

2

)
uβ

n�2
n

)
= e

−λn
i+q−1�

′n
q + 2CO1

(
(l − q + 1)uβ

n�2
n

)
.

Then (5.49) is proved and, applied with q = j + 1, it yields

E
(
e
ιyρ̂n

i,j,l | Gn
i+j

)= e
−λn

i �′n
j+1 + O

(
uβ

n(l − j)�2
n

)
.

This is (5.45), upon taking

(5.50) B(y)ni,q = �n

(
1

2
v2

n,qc
n
i + Gn

i (vn,q)

)
, B ′(y)ni,q = Hn

i (vn,q).

(2) It remains to prove (5.43). The function Hn
i is odd with |Hn

i (u)| ≤ Kuβ1 ,
whereas vn,j = −vn,hn+j when 0 ≤ j < hn, hence the second part of the claim.
For the first part, we first observe that, recalling that F̆t is the symmetrized version
of the measure Ft and since the cosine function is even, we have

Gn
i (u) =

∫
R

(
1 − cos(ux)

)
F̆T (n,i)(dx).

Then, recalling (2.5), for simplicity, we write M = |F ′
T (n,i)|, with its tail function

M , and also T = T (n, i). The last part of (5.5) yields Gn
i (v) =∑M

m=1 Am(v) +
O(A′(v)), where

Am(v) =
∫
{|x|≤1}

βmam
T

1 − cos(vx)

|x|1+βm
dx,

A′(v) =
∫
{|x|≤1}

(
1 − cos(vx)

)
M(dx).

First, by symmetry, change of variable and integration by parts, and for v > 1,

Am(v) = 2βmvβmam
T

∫ v

0

1 − cosx

x1+βm
dx

= 2βmvβmam
T

∫ ∞
0

1 − cosx

x1+βm
dx + O(1)

= 2am
T vβmχ(βm) + O(1).
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Second, 1 − cos(vx) ≤ |vx|2 ∧ 2 and Fubini’s theorem yield

A′(v) = 2M(1/v) + v2
∫ 1/v

0
xM(x)dx ≤ K

(
vr + v2

∫ 1/v

0
x1−r dx

)
≤ Kvr.

Therefore, we get Gn
i (v) = 2

∑M
m=1 am

T vβmχ(βm) + O(vr) as v → ∞, hence by
substituting v with vn,j and using (5.50), we have the first part of (5.43). �

LEMMA 18. We have for any p ≥ 2∣∣E(cos
(
yρn

i

)− U(y)nT (n,i) | Gn
i

)∣∣≤ Kα3
n,

E
((

cos
(
yρn

i

)− U(y)nT (n,i)

)(
cos
(
y′ρn

i

)− U
(
y′)n

T (n,i)

) | Gn
i

)
= 1

2
V #(y, y′)

T (n,i) + O
(
α3

n

)
,

E
(∣∣cos

(
yρn

i

)− U(y)nT (n,i)

∣∣p | Gn
i

)≤ Kpα4
n.

(5.51)

PROOF. (1) In a first step, we compute the variable E(eιyρ
n,3
i | Ĝn

i ), and for this
we set for v ∈ R

�n
j (v) = E

(
e
ιvεn

j | Ĝn
i

)
.

The properties (2.15) or (2.16) yield |�n
j (v) − 1 + v2/2 + ιv3(γ (3))nj /6| ≤ Kv4,

hence also, with the notation wn,j = yung
′n
j γ ′n

i (so |wn,j | ≤ Kun/hn),

E
(
eιyρ

n,3
i | Ĝn

i

)= 2hn−1∏
j=0

�n
(i+j)�n

= An + O
(
u4

n/h3
n

)
,

An =
2hn−1∏
j=0

(
1 − w2

n,j

2
− ι

6
w3

n,j

(
γ (3))n

i+j

)
.

We can go further and compare An with the variable

A′
n =

2hn−1∏
j=0

(
1 − w2

n,j

2
− ιw3

n,j

6

(
γ (3))n

i

)

=
hn−1∏
j=0

((
1 − w2

n,j

2

)2
+ w6

n,j

36

((
γ (3))n

i

)2)
,

where the last equality comes from wn,j+hn = −wn,j for 0 ≤ j < hn. Since
each factor in the definition of An has an absolute value smaller than 1 for all

n large enough, we have |An − A′
n| ≤ K

∑2hn−1
j=1

u3
n

h3
n
|(γ (3))ni+j − (γ (3))ni |. Since

E(|(γ (3))ni+j − (γ (3))ni | | Gn
i ) ≤ Kκ2

√
j�n by (5.5), we deduce

E
(∣∣An − A′

n

∣∣ | Gn
i

)≤ Kκ2u
3
n�

1/2
n /h3/2

n .
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Moreover, |A′
n − exp(−∑hn−1

j=0 w2
n,j )| ≤ Ku4

n/h3
n and

∑hn−1
j=0 w2

n,j = u2
nφn/hn,

hence

(5.52) E
(∣∣E(eιyρ

n,3
i | Ĝn

i

)− e
−γ (y)nT (n,i)

∣∣ | Gn
i

)≤ K
(
κ2u

3
nh

−3/2
n �1/2

n + u4
nh

−3
n

)
.

(2) We complement (5.24) with (for some fixed y)

U ′n
t = e−c(y)nt λt−a(y)nt λt , U ′′n

t = e−γ (y)nt ,

so U(y)nt = U ′n
t U ′′n

t . Observe that

E
(
eιyρn

i | Gn
i

)= E
(
eιyρ

n,1
i +ιyρ

n,2
i E
(
eιyρ

n,3
i | Ĝn

i

) | Gn
i

)
,

so (5.52) gives us∣∣E(eιyρn
i − U(y)nT (n,i) | Gn

i

)∣∣
≤ ∣∣E(eιyρ̂n

i,0,2hn − U ′n
T (n,i) | Gn

i

)∣∣+ K
(
κ2u

3
nh

−3/2
n �1/2

n + u4
nh

−3
n

)
.

(5.44) yields |B(y)ni,0,2hn
−c(y)nT (n,i)−a(y)nT (n,i)| ≤ Kur

nhn�n and B
′
(y)ni,0,2hn

=
0, so (5.45) implies∣∣E(eιyρ̂n

i,0,2hn − U ′n
T (n,i) | Gn

i

)∣∣≤ K
(
ur

nhn�n + uβ
nhn�

2
n

)≤ Kur
nhn�n.

Taking the real part above, we deduce the first part of (5.51). Upon using
cos(x) cos(x′) = 1

2(cos(x + x′)+ cos(x − x′)), the second part of (5.51) is a trivial
consequence of the first part, plus the definition of V #(y, y′)nt . For the last part,
since the integrand is bounded, it suffices to show it when p = 2, in which case it
follows from the second part with y′ = y and (5.27). �

LEMMA 19. For all p ≥ 2, we have

E
(
ξ(y)

1,n
j | Gn

jwn

)= O
(
α3

n

)
,

E
(
ξ(y)

1,n
j ξ
(
y′)1,n

j | Gn
jwn

)= 1

2kn

V #(y, y′)n
T (n,jwn) + O

(
α3

n + α5
n

kn

)
,(5.53)

E
(∣∣ξ(y)

1,n
j

∣∣p | Gn
jwn

)= O
(
α(p)n

)
,

E
(
ξ(y)

2,n
j | Gn

jwn

)= O
(
α1

n

)
,E
(∣∣ξ(y)

2,n
j

∣∣p | Gn
jwn

)= O
(
α̂(p)n

)
,(5.54)

E
(
ξ(y)

3,n
j | Gn

jwn

)= O
(
α5

n

)
,E
(∣∣ξ(y)

3,n
j

∣∣p | Gn
jwn

)= O
(
α̂(p)n

)
.(5.55)

PROOF. We have ξ(y)
w,n
j = 1

kn

∑kn−1
l=0 ζ(y)wl , where ζ(y)wl is the lth sum-

mand in the definition of ξ(y)
w,n
j . When w = 1,2, we also set ζ(y)′wl = E(ζ(y)wl |

G2hn(jkn+l)) and ζ(y)′′wl = ζ(y)wl − ζ(y)′wl .
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(1) (5.51) yields |ζ(y)′1k | ≤ Kα3
n, and the first part of (5.53) follows. Next,

ξ(y)
1,n
j ξ(y′)1,n

j is the sum of the k2
n terms al,l′ = ζ(y)1

l ζ(y′)1
l′/k2

n. For the off-

diagonal terms, say when l < l′, we have E(al,l′ | Gn
2hn(jkn+l′)) = ζ(y)1

l ζ(y′)′1l′ /k2
n,

whereas |ζ(y)1
l | ≤ K : hence the Gn

jwn
-conditional expectation of the total con-

tribution of those off-diagonal terms is O(α3
n). (5.51) again gives us E(al,l |

Gn
2hn(jkn+l)) = 1

2k2
n
V #(y, y′)nT (n,2hn(jkn+l)) + O(α3

n/k2
n). In view of (5.26) for

V #(y, y′)n, we deduce E(al,l | Gn
jwn

) = 1
2k2

n
(V #(y, y′)nT (n,jwn) + O(α3

n + α5
n)), and

the second part of (5.53) follows.
Finally, ξ(y)

1,n
j = A′ + A′′, where A′ = 1

kn

∑kn−1
l=0 ζ(y)′1l and A′′ = 1

kn
×∑kn−1

l=0 ζ(y)′′1l . We have seen |A′| ≤ Kα3
n and, by the Burkholder–Gundy and

Hölder’s inequalities, we have for all p ≥ 2

E
(∣∣A′′∣∣p | Gn

jwn

)≤ Kp

1

k
p
n

E

((
kn−1∑
l=0

(
ζ(y)′′1l

)2)p/2 ∣∣∣ Gn
jwn

)

≤ Kp

1

k
p/2
n

kn−1∑
l=0

E
((

ζ(y)1
l

)p | Gn
jwn

)
,

which is smaller than Kpα4
n/k

p/2
n by (5.26). The third estimate in (5.53) follows.

(2) For (5.54), we argue in exactly the same way, except that we now use (5.29)
(the proof is in fact quite simpler). For (5.55), the first estimate directly follows
from (5.26), and the second one from the same and Hölder’s inequality. �

LEMMA 20. For all p ≥ 2 and j < [t/wn], we have

E
(
ξ(y)nj | Gn

jwn

)= O
(
α1

n + α3
n + α5

n

)
,

E
(
ξ(y)nj ξ

(
y′)n

j | Gn
jwn

)= 1

kn

V
(
y, y′)n

jwn

+ O
(
α3

n + α5
n

kn

+ α̂(2)n +√α(2)nα̂(2)n

)
,

E
(∣∣ξ(y)nj

∣∣p | Gn
jwn

)= O
(
α(p)n + α̂(p)n

)
.

(5.56)

PROOF. In view of (5.25) and of the previous lemma, the first and last parts of
(5.56) are obvious. For the second part, in view of (5.53) it is enough to prove that

∣∣E(ξ(y)
z,n
j ξ
(
y′)w,n

j | Gn
jwn

)∣∣≤ K

(
α3

n + α5
n

kn

+ α̂(2)n +√α(2)nα̂(2)n

)
,

for all z,w = 1,2,3 but z = w = 1. These properties follow from the Cauchy–
Schwarz inequality and (5.55) with q = 2. �
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We also need some estimates on the variables Ŷ n
j of (3.5).

LEMMA 21. For all p ≥ 2 and all integers j < [t/wn] and k ≥ 2, we have

E
(
Ŷ n

j | Gn
jwn

)= 2γT (n,jwn) + O(knhn�n + κ2
√

knhn�n),

E
((

Ŷ n
j

)k | Gn
jwn

)= (2γT (n,jwn))
k + O

(
knhn�n + κ2

√
knhn�n + 1

knhn

)
,

E
(((

Ŷ n
j

)k − (2γT (n,jwn))
k)2 | Gn

jwn

)
= O

(
knhn�n + κ2

√
knhn�n + 1

knhn

)
.

(5.57)

PROOF. The properties of the noise and (5.12) with V = X and V = γ imply
for all p > 0

E
((

�n
i Y

n)2 | Gn
i

)= E
((

�n
i X
)2 + γ n

i + γ n
i+1 | Gn

i

)
= 2γ n

i + O(�n + κ2
√

�n),

E
(∣∣�n

i Y
n
∣∣p | Gn

i

)≤ K.

Then (5.12) with V = γ again yields the first part of (5.57).
Next, let i ≤ j1 < · · · < jk ≤ i +wn ≤ [t/wn] with jl > jl−1 +1. The properties

of the noise and successive conditioning allow us to write

E

(
k∏

l=1

(
�n

jl
Y n)2 ∣∣∣ Gn

i

)
= E

(
2γ n

jk

k−1∏
l=1

(
�n

jl
Y n)2 ∣∣∣ Gn

i

)

+ O(�n + κ2
√

�n)

= E

(
2γ n

jk−1+2

k−1∏
l=1

(
�n

jl
Y n)2 ∣∣∣ Gn

i

)

+ O(knhn�n + κ2
√

knhn�n)

= E

(
2γ n

jk−1

k−1∏
l=1

(
�n

jl
Y n)2 ∣∣∣ Gn

i

)

+ O(knhn�n + κ2
√

knhn�n +√�n),

and we deduce by induction that

E

(
k∏

l=1

(
�n

jl
Y n)2 ∣∣∣ Gn

i

)
= (2γ n

i

)k + O(knhn�n + κ2
√

knhn�n +√�n).

In the expansion of (Ŷ n
i )k as a sum of wk

n terms of the form
∏k

l=1(�
n
jl
Y n)2, the

number of terms for which |jl − jr | ≤ 1 for at least one pair (l, r) is less than
Kwk−1

n , so the second part of (5.57) follows (notice that
√

�n ≤ knhn�n +1/knhn
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always). This, upon expanding the square ((Ŷ n
j )k −(2γT (n,jwn))

k)2, yields the third
part. �

5.5. Reducing the problem. Below, we basically reproduce Section 6.2 of
[11], with a few changes. Observe that

f
(
ϒ(y)nt ,ϒ(2y)nt

)= V (y, y)nt ,

and the two arguments of f above go to 0 as n → ∞, uniformly in y ∈ Y and t ≥ 0.
We have logU(y)nt = −ϒ(y)nt and, by construction, L(y)nj = U(y)nT (n,jwn)(1 +
ξ(y)nj ). Moreover, U(y)nt ≥ 1/ by (5.25) and there is a nonrandom integer n0

such that hn ≥ 2 for n ≥ n0, implying L(y)nj ≥ 1/hn whenever 1 + ξ(y)nj ≥ 1
2 .

Hence we deduce that, if j ≤ [Nn
t /wn],

n ≥ n0, ω ∈ �n,t =⇒ ĉ(y)nj = ϒ(y)nT (n,jwn) − log
(
1 + ξ(y)nj

)
,

and in particular |̂c(y)nj | ≤ K . Again on the set �n,t and for n ≥ n0, we can expand
log(1+x) around 0 and f around the pair (ϒ(y)nT (n,jwn),ϒ(2y)nT (n,jwn)) to obtain
(since |ξ(y)ni | ≤ 1/2, and with ρ(y)nj being suitable Gn

jwn
-measurable variables

with |ρ(y)nj | ≤ K)

ĉ(y)nj = ϒ(y)nT (n,jwn) − ξ(y)nj + 1

2

∣∣ξ(y)nj
∣∣2 + O

(∣∣ξ(y)nj
∣∣3),

f
(
ĉ(y)nj , ĉ(2y)nj

)= V (y, y)nT (n,jwn) + ρ(y)nj ξ(y)nj + ρ(2y)nj ξ(2y)nj

+ O
(∣∣ξ(y)nj

∣∣2 + ∣∣ξ(2y)nj
∣∣2).

In turn, this yields on the set �n,t and for n ≥ n0 again,

(5.58)

ĉ(y)nj − ϒ(y)nT (n,jwn) − 1

2kn

f
(
ĉ(y)nj , ĉ(2y)nj

)
= −ξ(y)nj − 1

2kn

(
ρ(y)nj ξ(y)nj + ρ(2y)nj ξ(2y)nj

)
+ 1

2

∣∣ξ(y)nj
∣∣2 − 1

2kn

V (y, y)nT (n,jwn)

+ O
( |ξ(y)nj |2 + |ξ(2y)nj |2

kn

+ ∣∣ξ(y)nj
∣∣3).

Recall wn = 2knhn and set N ′n
t = [Nn

t /wn]. Observe that Z(y)nt = Ṽ
n,y
t +∑2

l=1 V
n,y,l
t , where

V
n,y,1
t = −

(
ĉ(y)n

N ′n
t

− 1

2kn

f
(
ĉ(y)n

N ′n
t
, ĉ(2y)n

N ′n
t

)− 1

2hn

y2φnu
2
nŶ

n
wnN ′n

t

)
,

V
n,y,2
t =

N ′n
t∑

j=0

(
ϒ(y)nT (n,jwn) − 1

2hn

φny
2u2

nŶ
n
jwn

)
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− y2u2
nφn

2kn

Ct − 2

kn

M∑
m=1

|y|βmuβm
n φ̃βm

n χ(βm)Am
t ,

Ṽ
n,y
t =

N ′n
t∑

j=0

(
ĉ(y)nj − ϒ(y)nT (n,jwn) − 1

2kn

f
(
ĉ(y)nj , ĉ(2y)nj

))
.

The reason for summing up to N ′n
t , instead of N ′n

t − 1, is that the j th summands
above are measurable with respect to Gn

(j+1)wn
and, in order to apply classical

results for triangular arrays we need that, for any n, the sum over j is taken up to a
stopping time for the discrete-time filtration (Gn

(j+1)wn
)j≥0: this is true of N ′n

t , but
not of N ′n

t − 1 in general.
We also introduce the following processes:

V
n,y,3
t =

N ′n
t∑

j=0

(
1

2

∣∣ξ(y)nj
∣∣2 − 1

2kn

V (y, y)nT (n,jwn)

)
,

V
n,y,4
t = −

N ′n
t∑

j=0

1

2kn

(
ρ(y)nj ξ(y)nj + ρ(2y)nj ξ(2y)nj

)
,

V
n,y
t = −

N ′n
t∑

j=0

ξ(y)nj , R
n,y
t =

N ′n
t∑

j=0

( |ξ(y)nj |2 + |ξ(2y)nj |2
kn

+ ∣∣ξ(y)nj
∣∣3).

By virtue of (3.8) and (5.58), we then obtain∣∣∣∣∣Z(y)ns − V n,y
s −

4∑
l=1

V n,y,l
s

∣∣∣∣∣≤ KR
n,y
t on �n,t , for all s ≤ t.

Therefore, for Theorems 1–3 it is enough to prove (i) below, and either (ii) or
(iii) or (iv), for appropriate rates vn, vn with vn/vn → 0 in (iv), depending on the
case:

(5.59)

(i) P(�n,t ) → 1, vnV
n,y,l
t

P−→ 0 for l = 1,2,3,4,

vnR
n,y
t

P−→ 0,

(ii) vnV
n,y
t

P−→ 0,

(iii)
(
vnV

n,y
t

)
y∈Y converges F∞-stably in law,

(iv)
(
vnV

n,1
t ,

(
vnV

n,y

t

)
y∈Y
)

converges F∞-stably in law.

We prove (i) in the forthcoming subsection, and (ii)–(iv) in the next one.
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5.6. Technical lemmas.

LEMMA 22. We have P(�n,t ) → 1, as soon as

(5.60)
1

knhn�n

(
α(p)n + α̂(p)n

)→ 0 for p large enough.

PROOF. Since N ′n
t ≤ Kt/wn�n by (5.2), the claim is implied by the following

consequence of (5.56):

P
((

�(y)n,t

)c)≤ 2pE

(N ′n
t∑

j=0

∣∣ξ(y)nj
∣∣p)≤ 2p

[Kt/wn�n]∑
j=0

E
(∣∣ξ(y)nj

∣∣p)
≤ Kt,p

α(p)n + α̂(p)n

knhn�n

. �

LEMMA 23. Let G be a càdlàg bounded (Ft )-adapted satisfying (2.3)2,q and

(2.4)q with q ≤ 1. As soon as v′
n((knhn�n)

q∧ 1+q
2 + �

q
2
n ) → 0, we have

Gn
t := v′

n

(
wn�n

N ′n
t∑

j=0

(Gλ)T (n,jwn) −
∫ t

0
Gs ds

)
P−→ 0.

PROOF. Recalling (2.10), we have Gn
t =∑4

l=1 G
n,l
t , where

G
n,1
t = v′

n

∫ T (n,wn(N ′n
t +1))

t
Gs ds,

G
n,2
t = −

N ′n
t∑

j=0

v′
n

∫ T (n,(j+1)wn)

T (n,jwn)
(Gs − GT (n,jwn)) ds,

G
n,3
t = −

N ′n
t∑

j=0

v′
n�nGT (n,jwn)

wn∑
m=1

λT (n,jwn+m−1)

(
�n

jwn+m − 1
)
,

G
n,4
t = −

N ′n
t∑

j=0

v′
n�nGT (n,jwn)

wn∑
m=1

(λT (n,jwn+m−1) − λT (n,jwn)),

and we will show G
n,l
t

P−→ 0 for l = 1,2,3,4.
The first part of (5.12) with p = q = 1 for Vt = λt plus Nn

t ≤ (1 + t)/�n by
(5.2), hence N ′n

t ≤ Kt/knhn�n, yield E(|Gn,4
t |) ≤ Ktv

′
nknhn�n, which goes to 0

by hypothesis (recall q ≤ 1).
For the case l = 1 we need a preliminary result. By (3.2), there is some ε > 0

such that knhn�
ε
n → ∞. Set Bn = {�(n, i) ≤ �1−ε

n : i = 1, . . . ,Nn
t }. (2.10) and
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λt ≤  imply �(n, i) ≤ �n�
n
i . Then, upon using (2.11) with p = 2/ε and again

Nn
t ≤ (1 + t)/�n, we get

P
(
Bc

n

)≤ [(1+t)/�n]∑
i=1

P
(
�n

i �
ε
n > 1

)≤ (�ε
n

)p [(1+t)/�n]∑
i=1

E
((

�n
i

)p)≤ Kt�n.

Since T (n,wn(N
′n
t +1)) ≤ T (n,Nn

t +wn) and |Gs | ≤ K , we see that for all ε′ > 0
we have

P
(∣∣Gn,1

t

∣∣> ε′)≤ P
(
Bc

n

)+ Kv′
n

ε′ E
(
�1−ε

n + T
(
n,Nn

t + wn

)− T
(
n,Nn

t + 1
))

.

Hence, since the set {T (n, i − 1) ≤ t < T (n, i)} belongs to Gn
i , (5.11) yields

P
(∣∣Gn,1

t

∣∣> ε′)
≤ Kt�n + Kv′

n

ε′

(
�1−ε

n

+
∞∑
i=0

E
((

T (n, i + wn) − T (n, i)
)
1{T (n,i−1)≤t<T (n,i)}

))

≤ Kt�n + Kv′
n

ε′

(
�1−ε

n + wn�n

∞∑
i=0

P
(
T (n, i − 1) ≤ t < T (n, i)

))

≤ Kt,ε′
(
�n + v′

n�
1−ε
n + v′

nhnkn�n

)≤ Kt,ε′
(
�n + v′

nhnkn�n

)
,

where the last inequality comes from our choice of ε. The claim for l = 1 follows.
For the cases l = 2,3, we use a martingale-type argument. We denote by ζ n

j the
j th summand in G

n,l
t , and use the property that for each n the sequence (ζ n

j : j ≥ 0)

is adapted to the discrete-time filtration (Gn
(j+1)wn

)j≥−1, whereas N ′n
t is a stopping

time for this filtration, Then, with the notation ζ ′n
j = E(ζ n

j | Gn
jwn

), the claim is

implied by the convergences
∑N ′n

t

i=1 |ζ ′n
j | P−→ 0 and

∑N ′n
t

j=1(ζ
n
j )2 P−→ 0. In view of

(5.2), so N ′n
t ≤ Kt/wn�n, it is thus enough to show that

(5.61) θn := sup
j

E
(∣∣ζ ′n

j

∣∣)= o(knhn�n), θ ′
n := sup

j

E
((

ζ n
j

)2)= o(knhn�n).

Note that the results of Section 5.3 apply for any sequence hn of integers
with hn�n ≤ K , and below we use them with knhn instead of hn, and also with
θn
j = 1, hence �t = 1, in (5.15), and with i = jwn. When l = 2, we have ζ n

j =
v′
nL(V )T (n,(j+1)wn) with the process Vt = Gt∨T (n,jwn) − GT (n,jwn), which be-

longs to P(�j )∩P(�)∩ P̂(�̂) with �j = K�
q
n and �̂ = K(knhn�n)

q and � =
K(knhn�n))

q . (5.20) and (5.23) yield θn ≤ Kv′
nknhn�n((knhn�n)

q∧ 1+q
2 + �

q/2
n )

and θ ′
n ≤ Kv′2

n (knhn�n)
2+q , hence (5.61) holds for l = 2.
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When l = 3, we use (2.10) and E(�n
i+1 | Gn

i ) = 1 and E((�n
i+1)

2 | Gn
i ) ≤ K to

get θn = 0 and θ ′
n ≤ Kv′2

n knhn�
2
n, hence (5.61). �

LEMMA 24. We have vnV
n,y,l
t

P−→ 0 for l = 1,2,3,4 as soon as

vn → 0,
vn

knhn�n

(
α3

n + α5
n

kn

+ α̂(2)n + α1
n

kn

+√α̂(2)nα(2)n

)
→ 0,

v2
n

knhn�n

(
α(2)n + α̂(2)n

k2
n

+ α(4)n + α̂(4)n

)
→ 0,

v2
n

knhn�n

(
κ1u

8
n(hn�n)

4

k2
n

+ u8
n

k2
nh

4
n

+ u
2β1
n (hn�n)

2

k2
n

)
→ 0.

(5.62)

PROOF. (1) If l = 1, on the set �n,t we have |̂c(y)nj | ≤ K , and thus

f (ĉ(y)nj , ĉ(2y)nj ) ≤ K for all j ≤ N ′n
t + 1, whereas (5.57) implies E(|Ŷ n

N ′n
t
|) ≤ K

because N ′n
t is a stopping time for the filtration (Gn

jwn
)j≥0, so E(|V n,y,2

t |) ≤ K

and the claim follows from vn → 0.
(2) If l = 2, and in view of (5.24) plus the convergences φn → φ and φn → φ

and φ̃
β
n → φ̃β , it suffices to prove the following properties:

u2
nvn

kn

(
2knhn�n

N ′n
t∑

j=0

(cλ)T (n,jwn) − Ct

)
P−→ 0 when κ1 = 1,

u
βm
n vn

kn

(
2knhn�n

N ′n
t∑

j=0

(
amλ

)
T (n,jwn) − Am

t

)
P−→ 0 for m = 1, . . . ,M,

u2
nvn

hn

N ′n
t∑

j=1

(
2γT (n,jwn) − Ŷ n

jwn

)
.

The first two properties follow from the previous lemma applied with G = cλ

[so q = q = 1 by (5.5)] and G = amλ (so q = βm/2 and q = 1 ∧ βm by (5.14)),
because k2

nh
2
n�n → ∞ and respectively vn → 0 and u2

nhnδn → 0 when κ1 = 1,
and vnu

βm
n (knhn�n)

βm/2/kn → 0 under (5.62). The last property follows from the
same martingale argument as in the proof of Lemma 23, upon using Lemma 21
and (3.2) and vn → 0.

(3) In the cases l = 3,4, we again use a martingale argument, with θn and θ ′
n

as in the proof of Lemma 23, relative to vnV
n,y,l
t instead of G

n,l
t . When l = 3, by
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(5.56) and |V (y, y)nt | ≤ K(κ1u
4
n(hn�n)

2 + u4
nh

−2
n + u

β1
n hn�n) we get

θn ≤ Kvn

(
α3

n + α5
n

kn

+ α̂(2)n +√α(2)nα̂(2)n

)
,

θ ′
n ≤ Kv2

n

(
α(4)n + α̂(4)n + κ1u

8
nh

4
n�

4
n

k2
n

+ u8
n

k2
nh

4
n

+ u
2β1
n h2

n�
2
n

k2
n

)
.

When l = 4, (5.56) gives us θn ≤ Kvn(α
1
n + α3

n + α5
n)/kn and θ ′

n ≤ Kv2
n(α(2)n +

α̂(2)n)/k2
n. In both cases, (5.62) implies (5.61), and the proof is complete. �

LEMMA 25. We have vnR
n,y
t

P−→ 0 if

(5.63)
vn

knhn�n

(
α(2)n + α̂(2)n

kn

+ α(3)n + α̂(3)n

)
→ 0.

PROOF. The claim readily follows from N ′n
t ≤ Kt/wn�n and (5.56). �

We need another auxiliary result.

LEMMA 26. Under (5.62) and vnα
1
n/knhn�n → 0, for any continuous

square-integrable (Ft )-martingale M we have

(5.64) vn

N ′n
t∑

j=0

E
(
(MT (n,(j+1)wn) − MT (n,jwn))ξ(y)nj | Gn

jwn

) P−→ 0.

PROOF. In the whole proof t is fixed, and the (varying) constant K may de-
pend on t . Recalling (5.2), we have N ′n

t ≤ mn, where mn = 1 + [(1 + t)/wn�n],
and we have mn ≤ K/knhn�n. By a classical result, it suffices to prove the claim
when the continuous martingale M is either orthogonal to W and bounded, or is
W itself.

(1) We begin with some preliminaries. First, we use the following notation:

M̂n
j = MT (n,(j+1)wn) − MT (n,jwn), M̂ ′n

i = MT (n,i+2hn) − MT (n,i).

Using Doob’s inequality and the properties of the approximate quadratic variation,
plus the fact that M is a (Hn

t )-martingale by Lemma 12, we see that

E

(
mn∑
j=0

(
M̂n

j

)2)= E

(
(mn+1)wn−2hn∑

i=0

(
M̂ ′n

i

)2)= E

(
(mn+1)wn∑

i=1

(
�n

i M
)2)

= E
(
MT (n,(mn+1)wn) − M0

)2 ≤ K.

(5.65)

(The last inequality is obvious when M is bounded; when M = W it comes from
E(T (n, (mn + 1)wn)) ≤ K(mn + 1)wn�n ≤ K .)
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With any arrays (ηn
i , z

n
i ) or (ηn

i,l, z
n
i ) of variables, with |zn

i | ≤ K , we associate
the variables

S
({

ηn
i , zn

i

})
n = vn

N ′n
t∑

j=0

zn
jE
(
ηn

j M̂n
j | Gn

jwn

)
,

S′({ηn
i , zn

i

})
n = vn

kn

N ′n
t∑

j=0

kn−1∑
l=0

zn
jwn+2lhn

E
(
ηn

jwn+2lhn
M̂ ′n

jwn+2lhn
| Gn

jwn

)
,

S′′({ηn
i,l, z

n
i

})
n = vn

kn

N ′n
t∑

j=0

kn−1∑
l=0

zn
jwn+2lhn+m

×
2hn∑
m=1

E
(
ηn

jwn+2lhn,m�n
jwn+2lhn+mM | Gn

jwn

)
,

and consider the properties

A2: E
((

ηn
i

)2 | Gn
jwn

)≤ an, and v2
nan/(knhn�n) → 0,

A′
1:

∣∣E(ηn
i M̂

n
i | Gn

i

)∣∣≤ an, and vnan/(knhn�n) → 0,

A′
2: E

((
ηn

i

)2 | Gn
i

)≤ an, and v2
nan/

(
k2
nhn�n

)→ 0,

A′′
1:

∣∣E(ηn
i �

n
i M | Gn

i−1
)∣∣≤ an, and vnan/(kn�n) → 0,

A′′
2: E

((
ηn

i

)2 | Gn
i−1
)≤ an, and v2

nan/
(
k2
n�n

)→ 0.

The last part of this step is devoted to proving the following:

A2 ⇒ S
({

ηn
i , z

n
i

})
n

P−→ 0,

A′
1 or A′

2 ⇒ S′({ηn
i , zn

i

})
n

P−→ 0,

A′′
1 or A′′

2 ⇒ S′′({ηn
i,l, z

n
i

})
n

P−→ 0.

(5.66)

The claims under A′
1 and A′′

1 are obvious because N ′n
t ≤ mn and |zn

j | ≤ K . Assum-
ing A′

2, for example, (5.65) and the Cauchy–Schwarz inequality yields

E
(∣∣S′({ηn

i , z
n
i

})
n

∣∣2)
≤ K

v2
n

k2
n

E

((
mn∑
j=0

kn−1∑
l=0

∣∣E(ηn
jwn+2lhn

M̂ ′n
jwn+2lhn

| Gn
jwn

)∣∣)2)

≤ K
v2

nmn

kn

E

(
mn∑
j=0

kn−1∑
l=0

E
((

ηn
jwn+2lhn

)2 | Gn
jwn

)
E
((

M̂ ′n
jwn+2lhn

)2 | Gn
jwn

))
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≤ K
v2

nmnan

kn

E

(
mn∑
j=0

kn−1∑
l=0

(
M̂ ′n

jwn+2lhn

)2)

≤ K
v2

nmnan

kn

≤ K
v2

nan

k2
nhn�n

,

implying S′({η′n
i , zn

i })n P−→ 0. The proof of (5.66) under A2 or A′′
2 is analogous,

hence the claim.
(2) By the definition of ξ(y)ni , the left-hand side of (5.64) is

∑3
w=1 S({ξ(y)

n,w
i ,

zn
i })n, where zn

i = 1/U(y)nT (n,iwn). Lemma 19 yields that the arrays (ξ(y)
n,w
i )

satisfy A2 with an = α(2)n when w = 2,3, hence (5.62) and (5.66) yield

S({ξ(y)
n,w
i , zn

i })n P−→ 0 in these cases. Now, S({ξ(y)
n,1
i , zn

i })n = S′({cos(yρn
i ),

z′n
i })n + S′({U(y)nT (n,i), z

′n
i })n if z′n

i = zn
j when jwn ≤ i < (j + 1)wn, and since

M is a martingale the array (U(y)nT (n,i)) satisfies A′
1 with an = 0. Thus we are left

to show that S′({cos(yρn
i ), z′n

i })n P−→ 0.

Toward this aim, we set ρ̂n
i = ρ

n,1
i +ρ

n,2
i . Expanding the cosine function around

ρ̂n
i , for any integer P ≥ 2 we have

cos
(
yρn

i

)= P+1∑
w=0

1

w!η
n,w
i ,

η
n,w
i =

⎧⎪⎪⎨⎪⎪⎩
(−1)w/2(yρn,3

i

)w cos
(
yρ̂n

i

)
if w is even and 0 ≤ w ≤ P,

(−1)(w+1)/2(yρn,3
i

)w sin
(
yρ̂n

i

)
if w is odd and 1 ≤ w ≤ P,

O
(∣∣ρn,3

i

∣∣P+1) if w = P + 1.

Note that E((η
′n,P+1
i )2 | Gn

i ) ≤ Ku2P+2
n /hP+1

n by (5.31), so the array (η
n,P+1
i )

satisfies A′
2 for P large enough because vnα

1
n/knhn�n → 0 is assumed, so

S′({ηn,P+1
i , z′n

i })n P−→ 0. Observe also that if η
′n,w
i = E(η

n,w
i | Hn∞), we have

S′({ηn,w
i , z′n

i })n = S′({η′n,w
i , z′n

i })n because M and z′n
i are Hn∞-measurable,

whereas with the notation (5.32) we have for 1 ≤ w ≤ P

w even ⇒ η
′n,w
i = (−1)w/2D

n,w,y
i cos

(
yρ̂n

i

)
,

w odd ⇒ η
′n,w
i = (−1)(w+1)/2D

n,w,y
i sin

(
yρ̂n

i

)
.

(5.34) yields that η
′n,1
i = 0 and, when w ≥ 3 is odd and upon combining with

(5.30) and u2
n ≤ Khn, the array (η

′n,w
i ) satisfies A′

2 with an = Khn�n. Thus for

all w odd we have S′({ηn,w
i , z′n

i })n P−→ 0.
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Now, suppose that w is even. Since |Dn,w,y

i | ≤ K by (5.32), we see that with the
new array z′′n

i = z′n
i D

n,w,y

i which is bounded again and Gn
i -measurable, we have

S′({ηn,w
i , z′n

i

})
n = (−1)w/2S′({ηn,0

i , z′′n
i

})
n + S′({η′′n,w

i , z′n
i

})
n,∣∣η′′n,w

i

∣∣≤ ∣∣Dn,w,y
i − D

n,w,y

i

∣∣.
(5.34) again yields that η

′′n,w
i satisfies A′

2 with an = Khn�n, hence S′({η′′n,w
i ,

z′n
i })n P−→ 0.

Summarizing the previous partial results, we deduce that we are left to prove
that, for any variables zn

i uniformly bounded and Gn
i -measurable, we have

(5.67) S′({cos
(
yρ̂n

i

)
, zn

i

})
n

P−→ 0.

(3) For simplicity of notation, we argue with complex valued variables below,
and with the notation (5.43) we have ρ̂n

i = ρ̂n
i,0,2hn

. We have M̂ ′n
i =∑2hn

l=1 �n
i+lM ,

so by successive conditioning (recall (5.9) and the (Hn
t )-martingale property of

M) we get

S′({cos
(
yρ̂n

i

)
, zn

i

})
n = Re

(
S′′({ηn

i,l, z
n
i

})
n

)
,

ηn
i,l = E

(
e
ιyρ̂n

i,0,2hn | Gn
i+l

)
.

With the notation of Lemma 17, if Bl = B(y)ni,l + ιB ′(y)ni,l and Bl = B(y)ni,l,2hn
+

ιB
′
(y)ni,l,2hn

, (5.45) yields ηn
i,l =∑3

w=1 η
n,w
i,l , where

η
n,1
i,l = e

ιyρ̂n
i,0,l−1−λn

i+l−1Bl e
−ιyρ̂n

i,l−1,l ,

η
n,2
i,l = e

ιyρ̂n
i,0,l
(
e−λn

i+lBl − e−λn
i+l−1Bl

)
,∣∣ηn,3

i,l

∣∣ ≤ Kuβ
nhn�

2
n.

The array (η
n,w
i,l ) satisfies A′′

2 with an = u
2β
n h2

n�
4
n = O(�2

n) in the case w = 3, and

with an = u
2β
n h2

n�
3
n = O(�n) in the case w = 2 (use |Bl| ≤ Ku

β
nhn�n and the

third part of (5.12) with V = λ), so S′′({ηn,w
i,l , zn

i })n P−→ 0 in these cases, and it

remains to prove S′′({ηn,1
i,l , zn

i })n P−→ 0.
(4) We first assume that M is orthogonal to W . Let W ′

t = WT (n,i+l−1)+t −
WT (n,i+l−1) and p=

′ be the restriction of p= to [T (n, i + l − 1),∞) × E, shifted
in time by −T (n, i + l − 1): so W ′ and p=

′ are still a Brownian motion and a Pois-
son measure with compensator q= , relative to the smallest filtration (Ln

t ) to which
they are adapted and with Ln

0 = Kn∞ ∨ Gn
i+l−1. Moreover, by Lemma 12 they have

the same properties for the filtration (Ln

t ) which is the smallest one containing
(Ln

t ) and such that Kn∞ ⊂ Ln

0, and the process M ′
t = MT (n,i+l−1)+t − MT (n,i+l−1)

is a continuous bounded (Ln

t )-martingale orthogonal to W .
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Now, �(n, i + l) is Ln
0-measurable and ρ̂n

i,l−1,l is Ln
�(n,i+l)-measurable. By the

representation property for (Ln
t )-martingales, the bounded variable e

−ιyρ̂n
i,l−1,l is

the sum of an Ln
0-measurable variable, plus two stochastic integral with respect to

W ′ and p=
′ − q= , on the time interval [0,�(n, i + l)], thus E(e

−ιyρ̂n
i,l−1,lM�(n,i+l) |

Ln
0) = 0. We deduce S′′({ηn,1

i,l , zn
i })n = 0.

When κ1 = 0, we drop W ′ from the definition of (Ln
t ). Then the variable

e
−ιyρ̂n

i,l−1,l is the sum of an Ln
0-measurable variable plus a single stochastic in-

tegral with respect to p=
′ − q= , so the orthogonality argument above applies also

when M = W , and S′′({ηn,1
i,l , zn

i })n = 0 again in this case.
(5) Finally, suppose M = W and κ1 = 1. Analogous with (5.46), we have

E
(
e
ιyρ̂n

i,l−1,lW ′
�(n,i+l) | Ln

0
)

= e−λn
i+l−1�

n
i+l�n(Gn

i (vn,k)+ιHn
i (vn,k))E

(
e
ιyunσn

i g′n
l W ′

�(n,i+l)W ′
�(n,i+l) | Ln

0
)
,

and since W ′
�(n,i+l) is N (0, λn

i+j−1�
n
i+l�n), conditionally on Ln

0, we deduce that,
with An

i,l = yσn
i g′n

l ,

E
(
e
ιyρ̂n

i,l−1,lW ′
�(n,i+l) | Ln

0
)= ιAn

i,lun�nλ
n
i+l−1�

n
i+le

−λn
i+l−1�

n
i+lBl ,

which in turn gives us

E
(
η

n,1
i,l �n

i+lW | Ln
0
)= ιAn

i,lun�nλ
n
i+l−1�

n
i+le

ιρ̂n
i,0,l−1−λn

i+l−1�
n
i+lBl−λn

i+l−1Bl .

Exactly as for (5.47), we then deduce (since here β = 2)

E
(
η

n,1
i,l �n

i+lW | Gn
i+l

)= ιAn
i,lun�nλ

n
i+l−1e

ιρ̂n
i,0,l−1−λn

i+l−1Bl−1 + O
(
u5

n�
3
n

)
.

Then, using the second part of (5.12) for V = λ plus |Ll−1| ≤ K , we get

E
(∣∣E(ηn,1

i,l �n
i+lW | Gn

i+l−1
)− ιAn

i,lun�nλ
n
i e

ιρ̂n
i,0,l−1−λn

i Bl−1
∣∣ | Gn

i

)
≤ K

(
u5

n�
3
n + unhn�

2
n

)
,

and thus (5.45) yields, because u5
n�

3
n + u3

nhn�
3
n ≤ unhn�

2
n,

E
(
η

n,1
i,l �n

i+lW | Gn
i

)= ιAn
i,lun�nλ

n
i e

−λn
i B0 + O

(
unhn�

2
n

)
.

Now, recalling (5.45), the real part of the above is

E
(
Re
(
η

n,1
i,l �n

i+lW
) | Gn

i

)= An
i,lun�nλ

n
i sin

(
λn

i B
′(y)ni,0,2hn

)+ O
(
unhn�

2
n

)
= O

(
u1+β1

n hn�
2
n

)
.

In other words, the array (Re(η
n,1
i,l )) satisfies A′′

1 with an = Ku
1+β1
n hn�

2
n.

Since vnα
1
n/knhn�n → 0, we have in particular vnu

1+r̃ ′/2
n (hn�n)

1/2/kn → 0 if

κ1 = 1, which implies vnu
1+β1
n hn�n/kn → 0 by (3.2) and r̃ ′ ≥ β1: therefore,

S′′({ηn,1
i,l , zn

i })n P−→ 0, and the proof is complete. �
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5.7. Proof of the main results. At this stage, and under (5.60), (5.62) and
(5.63), we are left to proving (ii)–(iv) of (5.59), according to the case. Toward
this aim, we introduce a series of conditions:

vn

N ′n
t∑

j=0

∣∣E(ξ(y)nj | Gn
jwn

)∣∣ P−→ 0,(5.68)

v3
n

N ′n
t∑

j=0

E
(∣∣ξ(y)nj

∣∣3 | Gn
jwn

) P−→ 0,(5.69)

v2
n

N ′n
t∑

j=0

E
(
ξ(y)nj ξ

(
y′)n

j | Gn
jwn

) P−→ 
(
y, y′)

t ,(5.70)

where (y, y′) will be defined later, depending on the case at hand. Let us mention
the following facts, based on (5.56) plus the consequence N ′n

t ≤ K(1+t)
knhn�n

of (5.2):

1. We have (5.68) as soon as

(5.71)
vn

knhn�n

(
α1

n + α3
n + α5

n

)→ 0.

2. We have (5.69) as soon as v3
n

hnkn�n
(α(3)n + α̂(3)n) → 0, hence under (5.63)

and vn → 0.
3. Under (5.62), (5.70) amounts to having

(5.72)
v2

n

kn

N ′n
t∑

j=0

V (y, y)njwn

P−→ 
(
y, y′)

t .

A (very) tedious but elementary calculation shows us that, under (3.2), the set
of conditions (5.60), (5.62), (5.63), (5.71) is indeed equivalent to (4.2), and thus
by the previous lemmas

(5.73) (4.2) =⇒ (5.59)(i), (ii), (5.64), (5.68), (5.69).

In connection with (4.3), we also set

ηn = u
β1
n h3

n�n

u
β1
n h3

n�n + u4
n(1 + κ1h2

n�n)2
, η′

n = h2
n�n

1 + h2
n�n

.

PROOF OF THEOREM 1. We fix t > 0 and we need to prove (5.59)(ii) with
vn = vn satisfying (4.1). By a classical convergence result for sums of triangular
arrays, since N ′n

t is a stopping time for the discrete-time filtration (Gn
jwn

)j≥0 and
each ξ(y)nj is Gn

(j+1)wn
-measurable, the three conditions (5.68), (5.69) and (5.70)
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for y′ = y and (y, y)t = 0 imply vnV
n,y
t

P−→ 0. By (5.27) and N ′n
t ≤ K(1+t)

knhn�n
again, the third condition is implied by

ζn := v2
n

k2
n

(
uβ1

n + u4
n

h3
n�n

+ κ1u
4
nhn�n

)
→ 0.

The above plus (5.73) are indeed equivalent to (4.1) under (3.2), hence the result.
�

PROOF OF THEOREM 2. We have κ1 = 0 here and v2
n/k2

n = h3
n�n/(u

4
n +

u
β1
n h3

n�n) = ηn/u
−β1
n . If vn = vn, a simple consequence of the estimate (5.27)

is
v2

n

kn

V
(
y, y′)n

t = wn�n

(
ηnψβ1

(
y, y′)φ̃(β1)

n χ(β1)a
1
t λt + (1 − ηn)y

2y′2φnγ
2
t

)
+ o(wn�n).

Lemma 23 applied with v′
n = 1 and with G equal to a1 or γ 2/λ or 1/λ (which all

satisfy the assumptions of that lemma) plus (3.3) and ηn → η by (4.3) and (5.56)
yield (5.72) with (y, y′)t given by the right-hand side of (4.5), for all t .

Now, by another classical result for the F∞-stable convergence in law of trian-
gular arrays, the property (iii) of (5.59) with the limit (Z(y)t )y∈Y holds as soon
as, for all t > 0, we have (5.68), (5.69), (5.70), and also (5.64) for any continuous
square integrable martingale M . Then the claim follows from (5.73). �

PROOF OF THEOREM 3. We have κ1 = 1 here and vn and v′
n are given by

(4.6).
(a) Note that v2

n/k2
n = ηn/u

β1
n , so if (5.27) yields

(5.74)

v2
n

kn

V
(
y, y′)n

t = wn�n

(
ηnψβ1

(
y, y′)φ̃(β1)

n χ(β1)a
1
t

+ (1 − ηn)y
2y′2(η′

nφnctλt + (1 − η′
n

)
φnγt

)2)+ o(wn�n).

Then the results follows exactly as for the previous theorem, upon using vn = vn.
(b) We have v′2

n /k2
n = 1/u

β1
n and we now set vn = v′

n. The property (iv) of
(5.59) with the limit (Z(1)t , (Z

′(y)t )y∈Y) holds as soon as we have (5.64), (5.68)
and (5.69) for all t and all M , plus the following (again for all t) instead of (5.70):

v2
n

N ′n
t∑

j=0

E
((

ξ(1)nj
)2 | Gn

jwn

) P−→ (1,1)t ,

v′2
n

N ′n
t∑

j=0

E
((

ξ(y)nj − y2ξ(1)ni
)(

ξ
(
y′)n

j − y′2ξ(1)ni
) | Gn

jwn

) P−→ 
(
y, y′)

t ,(5.75)

vnv
′
n

N ′n
t∑

j=0

E
((

ξ(y)nj − y2ξ(1)nj
)
ξ(1)nj | Gn

jwn

) P−→ 0,
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where (y, y′)t and (y, y′)t are the right-hand sides in (4.8) and (4.10). Now, we
have (5.74), and (5.27) also yields

v′2
n

kn

V
(
y, y′)n

t = wn�nψβ1

(
y, y′)φ̃(β1)

n χ(β1)a
1
t + o(wn�n),

vnv
′
n

kn

Ṽ (y)nt = o(wn�n).

At this stage, again the same argument as previously gives us the result. �
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