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EIGENVALUE VERSUS PERIMETER IN A SHAPE THEOREM FOR
SELF-INTERACTING RANDOM WALKS1

BY MAREK BISKUP∗,† AND EVIATAR B. PROCACCIA‡

University of California, Los Angeles∗, Charles University† and Texas A&M‡

We study paths of time-length t of a continuous-time random walk on Z
2

subject to self-interaction that depends on the geometry of the walk range and
a collection of random, uniformly positive and finite edge weights. The inter-
action enters through a Gibbs weight at inverse temperature β; the “energy” is
the total sum of the edge weights for edges on the outer boundary of the range.
For edge weights sampled from a translation-invariant, ergodic law, we prove
that the range boundary condensates around an asymptotic shape in the limit
t → ∞ followed by β → ∞. The limit shape is a minimizer (unique, modulo
translates) of the sum of the principal harmonic frequency of the domain and
the perimeter with respect to the first-passage percolation norm derived from
(the law of) the edge weights. A dense subset of all norms in R

2, and thus a
large variety of shapes, arise from the class of weight distributions to which
our proofs apply.

1. Introduction and results.

1.1. Motivation. Limit theorems for random shapes have been a topic of re-
curring interest in both probability and statistical mechanics. One successful line
of attack came up in the 1990s under the banner of the Wulff construction. There
one was interested in the asymptotic shape of a “droplet” of one equilibrium phase
(e.g., the minus phase of the Ising model at inverse temperature β) immersed in
another (the plus Ising phase) subject to a restriction on the overall order parameter
(the magnetization, or the total number of plus spins, in the Ising case). See, for
example, Alexander, Chayes and Chayes [1], Dobrushin, Kotecký and Shlosman
[17], Ioffe and Schonmann [22] for studies in the spatial dimension d = 2 and Cerf
[14], Bodineau [11], Cerf and Pisztora [15] and Bodineau, Ioffe and Velenik [12]
for work in spatial dimensions d ≥ 3.

In all of the above mentioned studies, the asymptotic shape is determined as a
solution of an isoperimetric problem; namely,

(1.1) inf
{
P(U) : U ⊂ R

d open, |U | = 1
}
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for |U | denoting the Lebesgue measure of U and P(U) being a perimeter func-
tional given explicitly in terms of a model-dependent surface tension τ : Rd →
(0,∞) by

(1.2) P(U) :=
∫
∂U

τ
(
n(x)

)
Hd−1(dx),

where n(x) denotes the unit outer normal to ∂U at point x and Hd−1 is the (d −1)-
dimensional Hausdorff measure on ∂U . The mode of convergence of the random
shape to its deterministic limit is generally stronger in d = 2 than in d ≥ 3. This is
due to a different type of continuity of the perimeter functional.

Recently, an interesting example which is related to but does not quite fit under
the umbrella of the Wulff construction program emerged in the work of Berestycki
and Yadin [6]. They studied random walks of time-length t that are subject to
an interaction suppressing, through a Gibbs weight at inverse temperature β , the
internal vertex boundary of the walk range (i.e., the set of sites visited by the
walk). The analysis in [6] determined the (typical) spatial size of the range in the
limit t → ∞ but made no definitive conclusions on the limit shape.

In the present paper, we prove the existence of a limit shape for a class of self-
interacting random walks closely related to that studied in [6]; namely, those where
the “energy” of a random walk configuration is the length of the external edge
boundary of the range measured using a sample of random, nonnegative, shift-
ergodic weights. A novel feature here is that this limit shape is no longer a solution
of an isoperimetric problem. Instead, after a judicious rescaling of the relevant
quantities, it is the minimizer of

(1.3) inf
{
λ(U) +P(U) : U ⊂ R

d open
}
,

where P(U) is a quantity of the form defined above and

(1.4) λ(U) := inf
{‖∇g‖2

2 : g ∈ C∞(
R

d)
, supp(g) ⊂ U,‖g‖2 = 1

}
denotes the principal (i.e., smallest) eigenvalue of the negative Laplacian in U with
Dirichlet boundary conditions on ∂U . Some attributes of the isoperimetric prob-
lem of course remain in effect; for example, the eigenvalue part of the functional
acts as a kind of soft lower bound on the volume. However, the precise shape is
a consequence of a subtle interplay between both terms and, in general, the min-
imizers of (1.1) and (1.3) are not homothetic. A companion paper (Biskup and
Procaccia [10]) carries out a detailed study of this variational problem.

As it turns out, our results are restricted to spatial dimension d = 2 and they
require the limit of zero temperatures, β → ∞. The restriction on the dimension is
(partly) a matter of convenience—indeed, the control of the shape in d ≥ 3 would
suffer the same technical challenges as in the above Wulff construction studies.
The limit of zero temperatures is more serious and is dictated by our inability to
control all aspects of the problem in full generality. [In particular, the variational
problem (1.3) may be relevant only at β = ∞.] Notwithstanding, since we allow
the edge weights to be random, we are able to demonstrate a rich class of possible
limit shapes.
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1.2. The model. Let us now move to precise definitions. Although we will
ultimately restrict attention to d = 2, we will keep d general in the forthcoming
discussion until we get to the main result. This will allow us to track the role of d

in the numerical values of some important exponents.
Given a finite set A ⊂ Z

d , let hull(A) denote the complement in Z
d of the set of

vertices in the unique infinite connected component of Zd
�A—in short, hull(A)

is A with all of the “holes” filled. Consider the continuous-time simple random
walk {Xt : t ≥ 0} on Z

d with uniform jump rate 2d and let P x be its law for
P x(X0 = x) = 1. Write �t (x) := ∫ t

0 1{Xs=x} ds for the local time at x and define

(1.5) R(t) := hull
({

x ∈ Z
d : �t (x) > 0

})
.

The reason for taking the hull is that we wish the interaction energy to depend only
on the geometry of the outer boundary of the visited set.

Consider the set B(Zd) of (unoriented) edges in Z
d and let w : B(Zd) → (0,∞)

be a collection of edge weights. Given a set A ⊂ Z
d , let ∂A denote the set of edges

in B(Zd) that have exactly one endpoint in A. The “energy” of a finite set A is then
given by the Hamiltonian

(1.6) H(A) := ∑
e∈∂A

w(e).

For β ≥ 0, we consider the Gibbs measure Qx
β,t on the path space defined by

(1.7) Qx
β,t (A) := 1

Z(β, t)
Ex(

1Ae−βH(R(t))),
where

(1.8) Z(β, t) := Ex(
e−βH(R(t)))

with Ex denoting the expectation with respect to P x .
A canonical (and simplest) choice of the weights is w(e) := 1. However, this

will lead to a rather uninteresting limit shape (namely, a square) and so, in order
to get a larger variety of possible limit shapes, we will permit the weights to be
random. Some natural restriction on the law of the weights is still in order; these
are the subject of the following.

DEFINITION 1.1. We will call a probability law P on (0,∞)B(Zd ) admissible
if it is stationary and ergodic with respect to translates of Zd and the marginal law
of w(e) is compactly supported in (0,∞) for each e ∈ B(Zd).

The basic problem we wish to address is the behavior of the walk sampled from
Q0

β,t for t and β large, for a given (typical) sample of the random weights w

distributed according to some admissible law P. The main focus is the asymptotic
shape of the random walk support; cf. Figure 1.
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FIG. 1. Samples, for uniform edge weights w(e) := 1, from Q0
t,β for the random walk of

time-length t := 5000 at four values of the inverse temperature β := 0.5, 1, 2 and 5, respectively,
as labeled left to right. The emergence of an asymptotic shape, which by our main result should be
a perfect square in the limit β → ∞, is quite apparent. The sizes of the external boundary in these
samples are 156, 112, 66 and 54, respectively.

A reader interested in physics might wish to have a physical system in mind
that could be represented by the above class of models. One such system consists
of a hydrophobic polymer chain of length t immersed in a water-based solvent.
The negative affinity between the polymer and the solvent causes the polymer to
fold so that the number of contacts with the solvent is minimized. The contact
energy is represented by H(R(t)); the inverse temperature β tunes the balance
between the energy and the entropy of the paths. Making the weights random is
quite natural, and particularly so in dimension d = 2, as that permits us to take into
account spatial inhomogeneities of the physical substrate on which the solvent and
the polymer co-exist. We refer to, for example, the book by den Hollander [16] for
more information on polymers in random environment.

1.3. Earlier and related work. As noted above, Berestycki and Yadin [6] (ap-
parently prompted by questions from I. Benjamini) studied a related model of an
interacting random walk. There are two notable differences between their and our
setting: First, their interaction includes the internal components of the boundary
and, second, it is given by the number of vertices on the inner boundary. For this
case, they showed that the path is confined (with different type of control in d = 2
and d ≥ 3) on the spatial scale

(1.9) r(t, β) :=
(

t

β

) 1
d+1

.

The exponent is strictly less than 1
2 in all spatial dimensions d ≥ 2; the walk is thus

“squeezed” by the interaction relative to its typical (diffusive) scaling.
This conclusion should naturally be compared with that for the model where

the “self-interaction” is proportional to the cardinality of the whole range. In this

case, Bolthausen [13] showed that the walk is confined to the spatial scale t
1

d+2 .
(Bolthausen’s paper is actually focused on d = 2 only but one can relate this to
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the problem of Brownian motion among Poissonian obstacles studied by Sznitman
[26] in d = 2 and Povel [25] in all d ≥ 3.) The minimizing shape is then determined
by the variational problem

(1.10) inf
{
λ(U) : U ⊂ R

d open, |U | = 1
}

whose unique minimizer is, thanks to the Faber–Krahn inequality, a Euclidean ball.
The appearance of the Dirichlet eigenvalue has to do with the large-deviations

cost of keeping the walk confined to a given spatial region. The associated large-
deviations principle (which goes back to Donsker and Varadhan [18]) under-
lies a large body of literature on random walks interacting via their local time
and/or through an underlying random environment; for example, the study of
the parabolic Anderson model (cf. König [24] for a recent review), random walk
and/or Brownian motion among random obstacles (Sznitman [27]), etc. Two recent
papers of Asselah and Shapira [2, 3] are relevant for our context as they develop a
detailed large-deviation approach to the size of the boundary of the random walk
range in spatial dimensions d ≥ 3. This expands on the study of moderate devia-
tions for the Brownian “sausage” by van den Berg, Bolthausen and den Hollander
[28].

Our variational problem (1.3) is kind of a mix of (1.1) and (1.10). This is be-
cause the mechanisms underlying the latter two problems meet, and are able to
compete, in our model. Understanding this competition is key for a proper de-
scription of the walk at large time scales.

1.4. Main results. We are now ready to give the statements of our results. For
the remainder of this paper, we will restrict ourselves to dimension d = 2. The
main take-away message from this note is the following.

THEOREM 1.2 (Shape theorem). Let d = 2 and suppose that the law of edge
weights P is admissible. Then there is a nonempty bounded open convex set U0 ⊂
R

2 and, for each ε > 0, there is β0(ε) < ∞ such that for all β > β0(ε) and for
r(t, β) as in (1.9),

(1.11) lim
t→∞Q0

β,t

(
inf

x∈Rd
distH

(
r(t, β)−1R(t), x + U0

)
> ε

)
= 0

for P-almost every realization of the weights.

A natural problem next is the determination of the shape U0 for specific choices
of the interaction. As hinted above, this will be done by characterizing U0 as the
minimizer (unique, modulo translates) of a suitable variational functional. We will
take

(1.12) U := {
U ⊂ R

2 : Jordan domain with 0 ∈ U
}

as our class of admissible continuum domains. (This means that each U ∈ U is a
bounded, open, connected and simply-connected set in R

2 whose boundary is the
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trace of a simple closed curve.) Given a norm ρ on R
2 and writing γ : [0,1] →R

2

for the curve constituting ∂U [where, necessarily, γ (0) = γ (1)] we define the ρ-
perimeter of U by

(1.13) P(U) := sup
n≥1

sup
t0,...,tn∈[0,1]

0=t0<t1<···<tn=1

n∑
i=1

ρ
(
γ (ti) − γ (ti−1)

)
.

For U ∈ U , we then set

(1.14) F (U) := λ(U) + P(U),

with λ(U) as defined in (1.3).
The object F plays the role of a large-deviation functional for the asymptotic

shape; we will thus particularly be interested in sets in U that minimize U 
→
F(U). This is an analysis problem that has been studied in a companion paper
(Biskup and Procaccia [10]). Let us recall the salient conclusions of this work:

(1) For any choice of the norm ρ, the functional U 
→ F(U) achieves its mini-
mum on U . Moreover, there is U0 ∈ U such that

(1.15) M := {
U ∈ U : F(U) = minF

} = {x + U0 : − x ∈ U0}.
(2) The set U0 is convex and can be taken to be symmetric under reflections

(x 
→ −x). It is also symmetric under all rotations that preserve the norm ρ.
(3) Letting distH(A,B) denote the Hausdorff distance between A,B ⊂ R

2, for
each ε > 0 there is δ > 0 such that, for each U ∈ U ,

(1.16) distH(U,M) > ε ⇒ F(U) ≥ minF + δ.

Moreover, the map ρ 
→ U0 is continuous as a map between the set of continuous
functions on the unit circle (endowed with the supremum norm) and the set of
bounded nonempty open subsets of R2 (endowed with the Hausdorff metric).

In order to use these results to determine U0, we thus have to show how to extract
the relevant norm ρ from the particular problem at hand.

We first need some terminology and notation. Consider Z2 regarded as a graph
with its nearest-neighbor structure and let Z2� denote its graph dual. A path of
length n is a sequence of vertices x0, . . . , xn ∈ Z

2 such that xi and xi+1 are nearest
neighbors for each i = 0, . . . , n − 1. A similar definition applies to paths on Z

2�

which we then call dual paths. A path (or a dual path) is self-avoiding if no vertex
appears in the corresponding sequence of vertices more than once. For any x, y ∈
Z

2, let �(x, y) denote the set of all self-avoiding dual paths γ = (x�
0, . . . , x�

n) (for
any n ≥ 0) such that x�

0 = x + (1
2 , 1

2) and x�
n = y + (1

2 , 1
2).

Given a self-avoiding dual path γ = (x�
0, . . . , x�

n), let (e1, . . . , en) denote the
sequence of edges in Z

2 such that ei is the edge dual to (x�
i−1, x

�
i ). Assuming a
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collection of weights w : B(Z2) → (0,∞) is given, we then set

(1.17) d(γ ) :=
n∑

i=1

w(ei)

and define

(1.18) D(x,y) := inf
γ∈�(x,y)

d(γ ).

Relying on duality, D can be identified with the distance in the first-passage per-
colation (FPP) for weights distributed according to P. [In this identification, w(e)

is the passage time for the edge dual to e.] It is known (see, e.g., Auffinger, Dam-
ron and Hanson [4] for a recent review) that the FPP distance is asymptotic to a
deterministic norm. This underlies our next claim.

THEOREM 1.3 (Extracting the norm). Suppose d = 2 and assume that P is
admissible. Then there is a norm ρ on R

2 such that for P-almost every realization
of the weights

(1.19) lim
n→∞ max

x,y∈Z2

|x|,|y|≤n

|D(x,y) − ρ(x − y)|
n

= 0.

The FPP norm ρ is actually constructed from—and is thus completely deter-
mined by—the P-almost sure limits

(1.20) lim
n→∞

D(0, nx)

n
= ρ(x), x ∈ Z

2,

whose existence is, in our case, fairly immediate from the subadditive ergodic
theorem; cf. Lemma 3.1. The above statement just requires combining (1.20) with
some additional uniformity considerations.

As soon as the norm ρ is identified for each given law of the weights, we can
complete the above shape theorem by the following.

THEOREM 1.4 (Shape characterization). The set U0 in Theorem 1.2 is a mini-
mizer (unique, up to translates) of U 
→ F(U) with the perimeter functional P(U)

constructed using the asymptotic FPP norm ρ defined, for example, by (1.20).

1.5. Remarks and extensions. Let us proceed with some remarks on the above
setting and results. We begin with comments on the connection between the norm
and the limit shape.

(1) In the canonical situation w(e) := 1 (i.e., with constant weights), ρ is the �1-
norm and U0 is then an �∞-ball (a square). In the situation treated by Berestycki
and Yadin [6]—where the interaction is through the number of boundary vertices
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rather then edges—we expect ρ to be the �∞-norm and U0 thus an �1-ball (a dia-
mond). This is in fact quite consistent with the numerical simulations shown in [6].

(2) For nondegenerate laws of the weights, the FPP norm ρ is generally not
explicitly computable. A question then arises what possible norms one can get in
our class of models and what shapes then arise as minimizers of the associated
functional U 
→ F(U)? Here, we recall the following.

THEOREM 1.5 (Häggström and Meester [21], Theorem 1.3 and remarks after-
wards). For each compact convex set B ⊂ R

d that has a nonempty interior and
is symmetric under the reflection x 
→ −x, there is a translation-invariant, ergodic
law P on (0,∞)B(Zd ) such that B is the unit ball in the norm ρ defined implic-
itly by (1.20). Moreover, the weights w(e) are bounded under P and their law is
strongly mixing.

The norms on R
d are in one-to-one correspondence with the symmetric

(nonempty) compact convex sets B ⊂ R
d via the equivalence

(1.21)
B := {

x ∈R
d : ρ(x) ≤ 1

}
⇔ ρ(x) = sup{x · y : y ∈ B} ∀x ∈R

d .

In particular, all norms in R
d arise as FPP norms for some law of the weights as

described in the theorem. However, the construction in [21] does not make w(e)

bounded away from zero (the whole argument is based on existence of arbitrarily
fast edges) and so we are unfortunately not guaranteed to get all norms from laws
that are admissible in the sense of Definition 1.1. Notwithstanding, thanks to a
continuity of the FPP norm in the underlying law of the edge weights, we get at
least a dense subset of all norms.

The question on what limit shapes arise from the class of admissible laws is
more complicated. Indeed, at this time we do not even know whether the map
ρ 
→ U0 (of a norm to a symmetric, bounded, open and convex set) is injective
and/or surjective. This is very different for the isoperimetric problem where we
have the one-to-one correspondence (1.21).

(3) A particularly interesting sub-class of admissible laws are those that make
the weights i.i.d. A good amount of research has gone into the analytic properties
of such norms. Durrett and Liggett [19] gave examples of i.i.d. laws for which ρ

is not strictly convex; this implies facets on the ball in the ρ-metric and, by Theo-
rem 1.7 of Biskup and Procaccia [10], appearance of corners on U0. However, the
opposite regime—namely, the conditions for strict convexity of the FPP norm—is
only poorly understood (for the i.i.d. setting); see the review by Auffinger, Damron
and Hanson [4]. We advance some of the existing conjectures into the following.

CONJECTURE 1.6. For i.i.d. laws of the edge weights that are continuously
distributed and bounded uniformly away from zero and infinity, U0 as well as the
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isoperimetric minimizer (a.k.a. the Wulff shape) for the associated FPP norm have
no corners. Notwithstanding, facets on both U0 and the Wulff shape are allowed
and, most likely, typical.

The rest of our comments are concerned with possible extensions of the present
work.

(4) We believe that a shape theorem holds for all β sufficiently large although
we do not think that the limit shape is obtained by optimizing the functional of
the form (1.14). Our need for taking β → ∞ stems from the inability to control
the surface-order terms in the “eigenvalue part” of the contribution to the partition
function (1.8); see also Remark 2.8. Any progress on this question is certainly of
interest.

(5) Theorem 1.2 should extend without significant changes to discrete-time ran-
dom walks. Our focus on continuous-time walks is more advantageous technically
as that makes functional-analytic techniques and particularly, spectral calculus,
readily available.

(6) The above results should be extendable to all d ≥ 2 (still under the limit
β → ∞) provided that we weaken the Hausdorff metric to

(1.22) dist1(A,B) = |A�B|.
The extension would carry a significant amount of technical overhead that would
ultimately detract from the principal message of our paper. However, we still think
it is worthy an attempt. Another obstruction is that our understanding of the vari-
ational problem for the functional (1.14) is presently considerably more advanced
in d = 2 than in d ≥ 3.

(7) Theorem 1.2 discusses the asymptotic shape of the random-walk support
but one can also ask about how this shape is positioned relative to the starting
point of the walk. Similarly, one might also be interested in the asymptotic law of
the endpoint of the path. We expect that both of these laws can be expressed using
the principal eigenfunction of the Laplacian. (Essentially, the eigenfunction should
correspond to the local-time profile of the walk.)

(8) Our choice of the interaction—the sum of nonnegative weights on the outer
boundary of the range—is reasonably canonical, but other natural choices exist
as well. One is the size of the inner-vertex boundary (i.e., the case related to that
in Berestycki and Yadin [6]). However, even this example harbors some of the
complications that turn out to be the more severe the more general the interaction
becomes: the minimal “energy” of paths from 0 to nx may no longer be subadditive
in n. There are ways to overcome this in specific cases (e.g., by way of considering
random-walk bridges) but a general approach seems elusive at this point.

1.6. Main ideas and outline. The remainder of this paper is devoted to the
proofs of the above results. These come roughly in three parts each of which is the



SHAPE THEOREM FOR RANDOM WALKS 349

content of one section. Here is the basic starting idea: Consider the collection of
sets

(1.23) S := {
S ⊂ Z

d : finite, connected with Sc connected,0 ∈ S
}
.

For the random walk started from the origin, R(t) takes values in S. Since the
interaction depends only on R(t), to control the shape it suffices to study

(1.24) Q0
t,β

(
R(t) = S

) = e−βH(S)P 0(R(t) = S)∑
S′∈S e−βH(S′)P 0(R(t) = S′)

.

To estimate this probability, we generally need upper bounds on the numerator and
lower bounds on the denominator. The essential point is that, in both of these, the
computation separates into two parts: computing P 0(R(t) = S) and matching the
result against e−βH(S).

The proofs are then organized as follows: Section 2 expresses the probability
P 0(R(t) = S) by means of the principal eigenvalue λ

(1)
S of the (negative) discrete

Laplacian in S (defined precisely below). This yields an expression of the form

(1.25) Qβ,t

(
R(t) = S

) = e−[tλ(1)
S +βH(S)+O(|∂S|)].

The next step, carried out in Section 3, is a coarse-graining argument. This is
achieved by a resummation of all S that give rise to the same continuum object,
called the skeleton P(S), which is a polygonal domain in R

2, with interior denoted
by Int(P ), that closely approximates the given set S (in the Hausdorff distance).
The result is now expressed in terms of the norm ρ and the perimeter functional P
defined above in the form that looks, roughly, as

(1.26)
∑

S : P(S)=P

Qβ,t

(
R(t) = S

) = e−[tλ(Int(P))+βP(P)+O(|P|)].

The reason for using skeletons is that they permit us to perform local optimization
of the boundary energy while, at the same time, reduce the combinatorial com-
plexity of possible shapes.

The expression in the exponent on the right of (1.26) has the form of the func-
tional F . With some extra work, this allows us to complete the proofs of main
results. This occurs in Section 4; the final section (Section 5) derives some use-
ful estimates for eigenvalues and eigenfunctions of the Laplacian in finite subsets
of Z2.

2. Extracting the principal eigenvalue. The goal of this section is to express
the probability law of R(t) under the random walk measure using the principal
eigenvalue of the Laplacian. This is a classical problem that lies, in one way or an-
other, at the heart of all the aforementioned studies by Bolthausen [13], Sznitman
[26], Povel [25] and others. Still, since our focus is on controlling all aspects of
the problem at the surface order, some additional caution is needed.
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2.1. Key propositions. Let S be as above and let S ∈ S. Abusing the earlier
notation slightly, let

(2.1) λ
(1)
S := inf

{
1

2

∑
〈x,y〉

∣∣g(y) − g(x)
∣∣2 : suppg ⊂ S,

∑
x

∣∣g(x)
∣∣2 = 1

}
,

where the first sum is over unordered pairs of nearest-neighbor vertices in Z
d and

the infimum is over functions g : Zd → R with the stated properties. Modulo a
sign change, this is the principal eigenvalue of the discrete Laplacian

(2.2) f (x) := ∑
y : |y−x|=1

[
f (y) − f (x)

]
in S with Dirichlet boundary conditions on Z

2
� S. We will also frequently need

the notation λ
(k)
S for the kth eigenvalue of − in S, where k = 1, . . . , |S|, and we

will write h(k) to denote the associated (kth) eigenfunction normalized so that

(2.3)
∑
x

∣∣h(k)(x)
∣∣2 = 1.

This eigenfunction is not necessarily unique, but it can always be taken real valued.
Let us start with bounds on P 0(R(t) = S). The upper bound is quite simple.

LEMMA 2.1. For any S ∈ S,

(2.4) P 0(
R(t) = S

) ≤ |S|3/2e−tλ
(1)
S .

PROOF. Let τS denote the first exit time of the random walk Xt from S. The
function

(2.5) f (x, t) := P x(τS > t)

solves the differential equation

(2.6)
∂

∂t
f (x, t) = f (x, t), x ∈ S, t > 0,

with initial/boundary data

(2.7) f (x,0) = 1S(x) and f (·, t) = 0 on Sc.

In terms of the canonical inner product 〈·, ·〉 in �2(S), we get f (0, t) = 〈δ0, et1S〉
which in the language of eigenvalues/eigenfunctions of  becomes

(2.8) P 0(τS > t) =
|S|∑
k=1

e−tλ
(k)
S h(k)(0)

∑
x∈S

h(k)(x).



SHAPE THEOREM FOR RANDOM WALKS 351

Invoking the Cauchy–Schwarz inequality, the bound λ
(k)
S ≥ λ

(1)
S along with the fact

that h(k) is normalized, and in particular obeys |h(k)(0)| ≤ 1, yield

(2.9) P 0(τS > t) ≤ |S|3/2e−tλ
(1)
S .

But

(2.10) P 0(
R(t) = S

) ≤ P 0(
R(t) ⊆ S

) = P 0(τS > t)

and so the claim follows. �

The corresponding lower bound is somewhat more involved. Fortunately, we
will only need it for a reduced class of sets. Then we have the following.

PROPOSITION 2.2. Given U ∈ U convex, let

(2.11) S(U, t, β) := {
x ∈ Z

2 : x/r(t, β) ∈ U
}
.

There is c = c(U) ∈ (0,∞) and, for each a ∈ (0,∞), there is β0 = β0(a) such that
for all β ≥ β0, all ε > 0 small enough and all S ∈ S with

(2.12) S
(
(1 − ε)U, t, β

) ⊆ S ⊆ S(U, t, β) and |∂S| ≤ ar(t, β),

then

(2.13) P 0(
R(t) = S

) ≥ e−tλ
(1)
S −c|∂S|

holds as soon as t is sufficiently large.

Given a finite and connected S ⊂ Z
2, let diam(S) denote the intrinsic diameter

of S; that is, the diameter of a graph with vertices in S and edges with both vertices
in S measured using the intrinsic distance. An important input in the proof are
the following estimates on the size of the spectral gap and decay of the principal
eigenfunction relative to the size of the set in (2.11).

LEMMA 2.3. For U ∈ U convex and ε > 0 small enough, there are constants
c1, c2 ∈ (0,∞) such that if S ∈ S obeys S((1 − ε)U, t, β) ⊆ S ⊆ S(U, t, β), then

λ
(1)
S ≤ c1

r(t, β)2 ,(2.14)

λ
(2)
S − λ

(1)
S ≥ c2

r(t, β)2(2.15)

once r(t, β) is sufficiently large. Moreover, there are also c3, c4 ∈ (0,∞) such that
the principal eigenfunction in such S obeys

(2.16) h(1)(0)2 ≥ c3

|S|
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and

(2.17) min
z∈S

∣∣h(1)(z)
∣∣ ≥ e−c4 diam(S),

as soon as r(t, β) is sufficiently large.

The proof of this lemma requires some standard but rather technical steps that
will be also used elsewhere in this paper. To avoid breaking the flow of the expo-
sition, we therefore postpone the proof to Section 5. The key step in the proof of
Proposition 2.2 is the following.

LEMMA 2.4. Let U ∈ U . There is c = c(U) ∈ (0,∞) and for each a ∈ (0,∞)

there is β0(a) ∈ (0,∞) such that for all ε > 0 small enough, all β ≥ β0(a) and
any S ∈ S that obeys (2.12),

(2.18) P 0(
R(t) = S|R(t) ⊆ S

) ≥ e−c|∂S|

holds as soon as t is sufficiently large.

Deferring the proof of the lemma to the next subsection, let us see how it implies
the above proposition.

PROOF OF PROPOSITION 2.2. Obviously,

(2.19) P 0(
R(t) = S

) = P 0(
R(t) ⊆ S

)
P 0(

R(t) = S|R(t) ⊆ S
)
.

In light of (2.8) and the equality in (2.10), the first term on the right-hand side can
be bounded as

(2.20)
P 0(

R(t) ⊆ S
) ≥ e−tλ

(1)
S h(1)(0)2 +

|S|∑
k=2

e−tλ
(k)
S h(k)(0)

∑
x∈S

h(k)(x)

≥ e−tλ
(1)
S h(1)(0)2 − |S|3/2e−tλ

(2)
S ,

where we applied that h(1) is of one sign and then bounded the contribution of
the second and higher eigenvalues as in the proof of Lemma 2.1. Invoking (2.15)–
(2.16) along with the definition of r(t, β), we then see that, for some c > 0,

(2.21) P 0(
R(t) ⊆ S

) ≥ c

|S|e−tλ
(1)
S

once t is sufficiently large. In combination with Lemma 2.4, this proves the claim.
�
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2.2. Surface order in confinement probability. Let us now move to the proof of
Lemma 2.4. As it turns out, the main challenge is to deal with the conditioning on
R(t) ⊆ S, which we can write as τS > t where (we recall) τS := inf{t ≥ 0 : Xt /∈ S}.
This would perhaps appear easier if the condition τS > t were replaced by τS = ∞.
As it turns out, this is not hard to arrange the following.

LEMMA 2.5. There are constants c, c̃ ∈ (0,∞) depending only on U such
that for all ε > 0 small, all β ≥ 1 and all a ∈ (0,∞), if S ∈ S obeys (2.12), then

(2.22) P 0(A|τS > t) ≥ 1

2
P 0(A|τS = ∞) − e−ct

holds for all events A ∈ σ(Xu : 0 ≤ u ≤ t − u(t)) where

(2.23) u(t) := c̃ar(t, β)3.

PROOF. Let u(t) be as above with a constant c̃ to be determined. Abbreviate
t ′ := t − u(t) and let A ∈ σ(Xu : 0 ≤ u ≤ t ′). Define the collection of stopping
times {Ti : i ≥ 0} inductively by

(2.24) Ti+1 := t ′ ∧ inf{u > Ti : Xu �= XTi
} where T0 := 0,

and denote

(2.25) N := inf
{
i ∈ N : Ti = t ′

}
.

Using the function f (x, t) from (2.5), the Markov property gives us

(2.26) P 0(A|τS > t) = E0

(
1A∩{τS>t ′}

N∏
i=1

f (XTi
, t − Ti)

f (XTi−1, t − Ti−1)

)
.

The function f (x, t) admits the representation (2.8). The estimates we derived for
the k ≥ 2 part of the sum above show

(2.27)
∣∣∣∣f (x, t) − e−tλ

(1)
S h(1)(x)

∑
z∈S

h(1)(z)

∣∣∣∣ ≤ |S|3/2e−tλ
(2)
S .

For 0 ≤ u ≤ t , we then get

(2.28)
f (x, t − u)

f (y, t)
≥ euλ

(1)
S

h(1)(x)

h(1)(y)

(
1 − 2

|S|3/2

minz∈S h(1)(z)2 e−(t−u)(λ
(2)
S −λ

(1)
S )

)
.

Thanks to (2.15) and (2.17) we can bound

(2.29)

|S|3/2

minz∈S h(1)(z)2 e−(t−u)(λ
(2)
S −λ

(1)
S )

≤ |S|3/2e2c4 diam(S)−u(t)r(t,β)−2
, 0 ≤ u ≤ t ′.
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Using the bound on |∂S| along with the fact that

(2.30) |∂S| ≥ diam(S)

and also the fact that |S| = O(r(t, β)2), the right-hand side of (2.29) decays to
zero with t → ∞ as soon as c̃ is take sufficiently large. We will henceforth assume
t is large enough so that the expression on the right of (2.29) is less than 1

4 .
For all paths of the walk in the event {N ≤ 2t}, we thus get

(2.31)
N∏

i=1

f (XTi
, t − Ti)

f (XTi−1, t − Ti−1)
≥ 1

2
et ′λ(1)

S
h(1)(Xt ′)

h(1)(0)
,

and thus

(2.32) P 0(A|τS > t) ≥ 1

2
et ′λ(1)

S
1

h(1)(0)
E0(

1A∩{τS>t ′}∩{N≤2t}h(1)(Xt ′)
)
.

But the Doob h-transform (or a limit argument based on the spectral decomposi-
tion) gives

(2.33) P 0(A|τS = ∞) = et ′λ(1)
S

1

h(1)(0)
E0(

1A∩{τS>t ′}h(1)(Xt ′)
)

so we just need to prove

(2.34) P 0(N > 2t |τS = ∞) ≤ e−ct .

This is derived directly from (2.33), (2.16) and the fact that tλ
(1)
S = o(t); cf. (2.14).

�

In order to proceed further, it will be easier to convert to a discrete-time version
of the conditional chain. Writing temporarily d for the spatial dimension, here we
note the following.

LEMMA 2.6. Under P 0(−|τS = ∞), the law of (Xt : t ≥ 0) satisfies

(2.35) (Xt : t ≥ 0)
law= (ZNt : t ≥ 0),

where Z = (Zn : n ≥ 0) is the discrete time Markov chain on S with Z0 = 0 a.s.
and the transition probabilities given by

(2.36) P(x, y) = 1

2d − λ
(1)
S

h(1)(y)

h(1)(x)

whenever x and y are nearest neighbors of Zd , and (Nt : t ≥ 0) is the Poisson
process with rate 2d − λ

(1)
S , independent of Z.
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PROOF. The general theory ensures that the random walk conditioned on
τS = ∞ is still a Markov process. Since the state space is finite, this Markov pro-
cess is automatically realized as a time change of a discrete-time Markov chain.
An inspection of (2.33) shows that the waiting time at site x is exponential with
parameter 2d − λ

(1)
S which, in particular, is independent of x. The same formula

shows that the corresponding discrete-time Markov chain has transition probabili-
ties as stated in (2.36). �

Henceforth, we will think of X as realized by Z and N . In this representation,
there is no need to impose the conditioning on τS = ∞ as the Markov chain Z

never leaves S with probability one. Before we get to the proof of Lemma 2.4, we
need one more observation.

LEMMA 2.7. For any S ∈S and any pair of nearest neighbors x, y ∈ S,

(2.37)
h(1)(y)

h(1)(x)
≥ 1

2d
.

PROOF. Since S is connected, we may assume that h(1) is of one sign, say,
h(1) ≥ 0. Whenever x and y are neighbors, we thus get

(2.38) h(1)(x) ≤ ∑
z : |z−y|=1

h(1)(z) = (
2d − λ

(1)
S

)
h(1)(y) ≤ 2dh(1)(y),

using the eigenvalue equation and the fact that λ
(1)
S ≥ 0. �

PROOF OF LEMMA 2.4. Set β0(a) := max{1,2c̃a}, where c̃ is as in Lem-
ma 2.5. In light of (1.9), the quantity in (2.23) obeys u(t) ≤ t/2 as soon as β ≥
β0(a). In particular, as soon as S obeys (2.12) we have

(2.39) P 0(
R(t) = S|R(t) ⊆ S

) ≥ 1

2
P 0(

R(t/2) = S|τS = ∞) − e−ct .

The conditional X process is now representable using Z and N above. Since the
latter processes are independent, dropping probability of order e−ct for some c > 0
small, we can assume that the Markov chain X makes at least n := ct steps in time
t/2. [This uses that the jump rate 2d − λ

(1)
S is uniformly positive thanks to (2.14).]

Hence,

(2.40) P 0(
R(t/2) = S|τS = ∞) ≥ P 0(

∂�S ⊆ {Z1, . . . ,Zn}) − e−ct ,

where ∂�S denotes the inner vertex boundary of S. Noting that, under our restric-
tions in (2.12), both diam(S) and |∂�S| are at most order t1/3 which is much less
than n, we now realize the lower bound by forcing Z to take a path going from
0 directly to ∂�S and then move on or around ∂�S until all vertices of ∂�S are
visited. The length of this path is at most a constant times |∂S|. By Lemma 2.7,
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P(x, y) ≥ c > 0 uniformly for all neighbors x, y ∈ S, and so the probability of the
given strategy is at least e−c|∂S|. By (2.12) again, this is sufficiently large to absorb
all prefactors as well as e−ct corrections. �

REMARK 2.8. The boundary term c|∂S| in the exponent on the right-hand
side of (2.13) arises directly from (2.18) (other errors are subexponential in the
boundary); no such term appears in the upper bound in (2.4). Our inability to con-
trol this term more explicitly than by way of an estimate is the sole reason why our
proof of the shape theorem is restricted to the limit β → ∞.

An interested reader might wonder (as we have) whether the boundary-order
error term is not just an artifact of our way of proving the lower bound. The answer
is that, most likely, it is not: Indeed, denoting, for ε > 0,

(2.41) S′
t,ε := {

S ∈ S : P 0(
R(t) = S|R(t) ⊆ S

) ≥ e−ε|∂S|},
we have

(2.42) Z(β, t) ≥ ∑
S∈S′

t,ε

e−βH(S)−(ε+o(1))|∂S|−tλ
(1)
S ,

where o(1) tends to zero with diameter of S. However, H(S) = O(|∂S|) and so, for
β � ε � 1, as soon as S′

t,ε contains, say, all sets in S within log r(t, β) Hausdorff
distance of the Euclidean ball of radius Kr(t, β) for some K > 0 large enough,
the sum would diverge in the limit as t → ∞. This would be in contradiction with
Z(β, t) ≤ 1, implied by H(S) ≥ 0.

3. Boundary norm and skeletons. Our next task is to control the energy of
each configuration using a suitable norm. In addition, we will group the discrete
“shapes” into (generally nondisjoint) families each of which is represented by a
single continuum object, called a skeleton. A similar coarse-graining argument
has been invoked numerous times in various studies of the two-dimensional Wulff
construction. We will draw on ideas from the early work in the context of the two-
dimensional Ising model at low temperatures by Dobrushin, Kotecký and Shlos-
man [17].

3.1. Boundary norm. The starting point here is the construction of the norm
ρ for each admissible law P. Here and henceforth, we will write E to denote the
expectation with respect to P. Recall the definition of D(x,y) from (1.18). The
following lemma is standard (see, e.g., Kesten [23]); we include it for completeness
of exposition.

LEMMA 3.1. Suppose P is an admissible law and let 0 < a < b < ∞ be such
that the edge weights are supported in [a, b] under P. Then there exists a norm ρ

on R
2 such that

(3.1) lim
n→∞

ED(0, nx)

n
= ρ(x), x ∈ Z

2.
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In particular, the limit exists and the norm ρ obeys a|x|1 ≤ ρ(x) ≤ b|x|1 for all x,
where | · |1 denotes the �1-norm on Z

2.

PROOF. By definition,

(3.2) D(x,y) ≤ D(x, z) + D(z, y), x, y, z ∈ Z
2.

The stationarity of P with respect to translates of Z2 ensures that D(x,x + y) is
equidistributed to D(0, y). Moreover, we clearly have

(3.3) a|x − y|1 ≤ D(x,y) ≤ b|x − y|1.
It follows that, for each x ∈ Z

2, the sequence {ED(0, nx) : n ≥ 1} is subadditive.
By Fekete’s lemma, the limit in (3.1) exists and defines a map ρ : Z2 → [0,∞).
By (3.2), ρ obeys the triangle inequality on Z

2 and, since it is also homogeneous
over integers, it is a restriction of a norm on R

2. The bounds between ρ and the
�1-norm then follow from (3.3). �

We are now ready to address the main part of Theorem 1.3 which states roughly
that the norm ρ captures the leading-order behavior of the FPP-distances D(x,y)

at linear scales in sufficiently large boxes centered at the origin.

PROOF OF THEOREM 1.3. Inequality (3.2) and the fact that the process
{D(z + x, z + y) : z ∈ Z

2} is stationary (and bounded) implies via the subaddi-
tive ergodic theorem that the limit ρ̂(x) := limn→∞ D(0,nx)

n
exists P-almost surely.

Thanks to the triangle inequality (3.2), one checks that ρ̂ is invariant (a.s.) under
translations of Z

2. By ergodicity of P, it is thus almost surely constant. Taking
expectations, the bounded convergence theorem and Lemma 3.1 above show that

(3.4) lim
n→∞

D(0, nx)

n
= lim

n→∞
ED(0, nx)

n
= ρ(x)

holds P-almost surely for each x ∈ Z
2. What remains to be done is to bootstrap

this “directional” convergence into the uniform bound (1.19).
First note that, by choosing a finite set of rational directions on the unit circle

and using (3.2) to interpolate the directions in-between, we can augment (3.4)
to the following claim: For each x ∈ Z

2 and each ε > 0, there is n0(x, ε) with
P(n0(x, ε) < ∞) = 1 such that for each y ∈ Z

2,

(3.5) |y − x|1 > n0(x, ε) ⇒ (1 − ε)ρ(x − y) ≤ D(x,y) ≤ (1 + ε)ρ(x − y).

(This is standard as it is exactly what one needs to conclude a uniform shape theo-
rem for large balls in first passage percolation.) The sequence {n0(x, ε) : x ∈ Z

2} is
stationary and, since it is also a.s. finite, there is an M > 0 such that P(n0(x, ε) ≤
M) > 0 for all x ∈ Z

2. The ergodicity of P then ensures that

(3.6) AM := {
x ∈ Z

2 : n0(x, ε) ≤ M
}
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has a positive density in Z
2. This implies

(3.7) lim
n→∞

1

n
max

z : |z|1≤n
dist1(z,AM) = 0

P-almost surely, where dist1 is the distance in the �1-norm. We will now fix δ > 0,
assume that n is so large that

(3.8) δn ≥ M and max
z : |z|1≤n

dist1(z,AM) ≤ δn

holds and derive a bound on the maximum in the statement of the theorem.
Suppose that (3.8) holds and pick x, y ∈ Z

2 with |x|1, |y|1 ≤ n. Let x0, respec-
tively, y0 denote the closest point in �1-distance in AM to x, respectively, y. The
triangle inequality (3.2) shows

(3.9)
∣∣D(x,y) − D(x0, y0)

∣∣ ≤ D(x,x0) + D(y,y0).

Letting b denote the a.s. upper bound on the weights under P, we have

(3.10) |x − x0|1 ≤ M ⇒ D(x,x0) ≤ b|x − x0|1 ≤ bM

while, assuming ε < 1, (3.5) and (3.8) yield

(3.11)
|x − x0|1 > M

⇒ D(x,x0) ≤ (1 + ε)ρ(x − x0) ≤ 2b|x − x0|1 ≤ 2bδn.

Completely analogous statements hold for D(y,y0) as well. Using δn ≥ M we
thus get

(3.12) (3.8) holds ⇒ ∣∣D(x,y) − D(x0, y0)
∣∣ ≤ 4bδn.

It remains to relate D(x0, y0) to ρ(x − y). Invoking again (3.5), a very similar
reasoning to one above yields

(3.13) (1 − ε)ρ(x0, y0) − bδn ≤ D(x0, y0) ≤ (1 + ε)ρ(x0, y0) + bδn.

Since (3.3) gives

(3.14)
∣∣ρ(x − y) − ρ(x0 − y0)

∣∣ ≤ 2bδn

from (3.12–3.14) we thus conclude

(3.15)
(3.8) holds

⇒ ∣∣D(x,y) − ρ(x − y)
∣∣ ≤ b(ε + 7δ)n, |x|1, |y|1 ≤ n.

As ε and δ are arbitrary, this proves the claim. �

A slight complication with using the quantity D(x,y) is that, in our arguments,
the limit β → ∞ has to be taken only after t → ∞. This requires us to work with
the model at a fixed finite (albeit arbitrarily large) β . The following lemma will be
quite useful.
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LEMMA 3.2. Suppose P is admissible and let κ > 0 be an almost-sure lower
bound on the weights. Pick β0 > 1

κ
log 4. Then for all β > β0 and all x, y ∈ Z

2,

(3.16) e−βD(x,y) ≤ ∑
γ∈�(x,y)

e−βd(γ ) ≤ (
1 − 4e−β0κ

)−1e−(β−β0)D(x,y).

PROOF. The lower bound is immediate (and we state it mostly for aesthetic
reasons). For the upper bound, we first dominate

(3.17) e−βd(γ ) ≤ e−(β−β0)D(x,y)e−β0d(γ ), γ ∈ �(x, y),

and then use d(γ ) ≥ κ|γ |1, where |γ |1 is the length of (i.e., the number of edges
crossed by) γ , and a standard path-counting argument to estimate the sum of
e−β0d(γ ) over γ ∈ �(x, y) by a geometric series with quotient 4e−β0κ . �

3.2. Polygonal approximation. Consider now a set S ∈ S and recall that ∂S

is the set of outer-boundary edges of S. The collection of edges dual to those in
∂S can then be ordered in such a way that they form a simple closed path γS on
Z

2�. Our next task is to partition this path into pieces whose contribution can be
represented using the norm constructed earlier.

Fix an integer L ≥ 1. Given a set S ∈ S and the boundary curve γS , we will
define a collection of points {x0, x1, . . . , xn(S) = x0} on γS inductively as follows:
Let x0 be the vertex of the Z

2� that is the smallest of all vertices on γS in the stan-
dard lexicographic order on Z

2. Following γS in the counterclockwise orientation,
let x2 be the first vertex on γS that is at least �1-distance L from x1; if no such
vertex exists we set n(S) := 1 and let xn(S) := x0. Similarly, if {x0, . . . , xk} have
already been defined, we let xk+1 be the first vertex on the portion of γS starting
from xk that is �1-distance L from xk ; if no such vertex exists we set n(S) := k + 1
and xn(S) := x0.

Now assume that S ∈ S is such that n(S) > 1. Connecting the pairs (xi, xi+1)

by linear segments gives rise to a polygonal closed curve P(S). In analogy with the
objects defined in Dobrushin, Kotecký and Shlosman [17], we will refer to P(S) as
the L-skeleton of S [the reference to L marks the obvious dependence of P(S) on
L]. Abusing notation slightly, we write n(P) for the number of vertices in P. Let

(3.18) PL := {
P(S) : S ∈ S, n(S) > 1

}
denote the set of all (nontrivial) L-skeletons that can possibly arise. The skeletons
will enter the computation of the probabilities of various shapes via the following
estimate.

LEMMA 3.3. For each admissible law P and each ε ∈ (0,1), there is β1 ∈
(0,∞) and a (random) L0 ∈ [1,∞) such that for all β > β1, all L ≥ L0 and all
P ∈ PL with n := n(P) ≤ 1/ε,

(3.19)
∑

S : P(S)=P

e−βH(S) ≤ e2bβL exp

{
−(1 − ε)

n∑
i=1

ρ(xi − xi−1)

}
,
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where x1, . . . , xn are the vertices of the polygonal curve P and where b is an a.s.
upper bound on the edge weights under P.

PROOF. Fix ε ∈ (0,1) and let L0 be the smallest nonnegative integer such that
for all L ≥ L0 and all x, y ∈ Z

2, we have

(3.20)
|x|1, |y|1 ≤ L/ε & |x − y| ≥ L

⇒ D(x,y) ≥ (1 − ε)1/2ρ(x − y).

Theorem 1.3 ensures that P(L0 < ∞) = 1. Let now L ≥ L0 and let P ∈ PL obey
n := n(P) ≤ 1/ε. Note that the vertices x0, . . . , xn of P then satisfy |xi |1 ≤ L/ε

and, in particular, we have

(3.21) D(xi−1, xi) ≥ (1 − ε)1/2ρ(xi − xi−1), i = 1, . . . , n − 1.

We now fix the skeleton P and proceed to prove (3.19) for β1 defined (later) only
in terms of ε and the a.s. upper and lower bounds on the edge weights.

Given S ∈ S such that P(S) = P, let γS be the simple path on dual-Z2 corre-
sponding to S as discussed above. Then γS passes through the vertices x1, . . . , xn

of P in the given order and so we may write γi to denote the portion of γS between
xi−1 and xi . Clearly, γi ∈ �(xi−1, xi) and so we have an injection:

(3.22)
{
S ∈ S : P(S) = P

} → �(x0, x1) × · · · × �(xn−1, xn).

Moreover,

(3.23) H(S) ≥ d(γ1) + · · · + d(γn).

It thus follows that

(3.24)
∑

S : P(S)=P

e−βH(S) ≤
n∏

i=1

∑
γ∈�(xi−1,xi )

e−βd(γ ).

Invoking the upper bound in Lemma 3.2, for β > β0 we then get

(3.25)
∑

S : P(S)=P

e−βH(S) ≤ (
1 − 4e−β0a

)−n
n∏

i=1

e−(β−β0)D(xi−1,xi ).

Assuming that β1 is so large that 1 − β0/β1 ≥ (1 − ε)1/2, as soon as β > β1 the
bound (3.21) yields (3.19) with the right-hand side multiplied by

(3.26) CL := eβρ(xn−xn−1)−2βbL(
1 − 4e−β0a

)−n
.

In light of n ≤ 1/ε and ρ(xn − xn−1) ≤ b|xn − xn−1|1 ≤ bL, we have CL ≤ 1 as
soon as β1 is so large that eβ1b ≥ (1 − 4e−β0a)−1/ε . �
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A minor problem with the above construction of L-skeletons is that P(S) need
not be a simple curve. However, if we define wP(x) to be the winding number of
P (oriented counterclockwise) around x ∈ R

2
� P and set

(3.27) Int(P) := {
x ∈ R

2
� P : wP(x) odd

}
,

then P can be reparametrized as a closed curve that “keeps Int(P) on its left,” that
is, after reparametrization, all points in Int(P) have a positive winding number. (An
explicit construction requires a limit argument performed, e.g., in [9], Lemma 4.4.)
In this case, it is quite consistent to abbreviate

(3.28) P
(
Int(P)

) :=
n∑

i=1

ρ(xi − xi−1),

where x0, x1, . . . , xn = x0 are the vertices of P.
Of course, in light of (1.25), the bound in (3.19) will only be useful if we can

first lower-bound λ
(1)
S by a quantity that depends only on P := P(S). Naturally,

we would like to work with Int(P), but the fact that ∂S may reach as far as L lat-
tice spacings outside of Int(P) forces us to consider instead an L-neighborhood of
Int(P). Relating the perimeter of this L-neighborhood to P(Int(P)) then seems
rather hard, due to possible “holes” and and other effects caused by “inward”
spikes of P. These issues disappear when we consider the convex hull of P,

(3.29) hull(P) := {
αx + (1 − α)y : x, y ∈ P, α ∈ [0,1]},

and, given L ≥ 1, let

(3.30) VL = VL(P) := {
x ∈R

2 : dist1
(
x,hull(P)

)
< L + 3

}
,

where (we recall) dist1 denotes the �1-distance on R
2. Obviously,

(3.31) S ⊂ VL

(
P(S)

)
, S ∈ S.

Concerning the relation between λS and λ(VL), we get the following.

PROPOSITION 3.4. There is a constant C ∈ (0,∞) such that the following
holds: For any L ≥ 1 and any S ∈ S with P(S) = P and VL = VL(P) as above,

(3.32) C

√
λ

(1)
S < 1 ⇒ λ

(1)
S

(1 − C

√
λ

(1)
S )2

≥ λ(VL).

We note that, since λ
(1)
S ≤ c|S|−1/2 for some constant c ∈ (0,∞), the conclusion

of (3.32) applies as soon as |S| is sufficiently large. For the proof, we will need the
following.

LEMMA 3.5. There is a constant C ∈ (0,∞) for which the following holds:
For any f : Z2 →R there is f̃ : R2 →R such that:
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(1) the map f 
→ f̃ is linear,
(2) f̃ is continuous on R

2 and f̃ (x) = f (x) for all x ∈ Z
2,

(3) for any x ∈ Z
d and any y ∈ x + [0,1)2 we have

(3.33)
∣∣f̃ (y)

∣∣ ≤ max
z∈x+{0,1}2

∣∣f (z)
∣∣,

(4) the L2-norms of the functions are related by

(3.34)
∣∣‖f̃ ‖L2(R2) − ‖f ‖�2(Z2)

∣∣ ≤ C‖∇f ‖�2(Z2),

(5) f̃ is piecewise linear, and thus a.e. differentiable with

(3.35) ‖∇f̃ ‖L2(R2) = ‖∇f ‖�2(Z2).

Here, ∇f denotes the discrete gradient whereas ∇f̃ denotes the continuous gra-
dient.

PROOF. This is a simplified version of Lemma 3.3 from Biskup, Fukushima
and König [7] which itself is a version of Lemma 2.1 in Becker and König [5]. See
also van der Hofstad, König and Mörters [29], Proposition 5.1. �

With this lemma in hand, the proof of the above proposition is quite straightfor-
ward.

PROOF OF PROPOSITION 3.4. Fix P ∈ PL and let S be such that P(S) = P.
Let g : Z2 → R denote the principal eigenfunction of the (lattice) Laplacian in S

with zero boundary conditions outside of S. Thanks to the above definitions (and
using g for function f in Lemma 3.5) there is a function h : R2 →R (correspond-
ing to f̃ in the lemma) such that:

(1) h ∈ C1
c (VL),

(2) ‖∇h‖L2(R2) = ‖∇g‖�2(Z2),
(3) ‖h‖L2(R2) ≥ ‖g‖�2(Z2) − C‖∇g‖�2(Z2).

Hence, assuming that the right-hand side of the expression in (3) is positive,

(3.36) λ(VL) ≤
‖∇h‖2

L2(R2)

‖h‖2
L2(R2)

≤
‖∇g‖2

�2(Z2)

(‖g‖�2(Z2) − C‖∇g‖�2(Z2))
2 .

Under the normalization ‖g‖�2(Z2) = 1, we have ‖∇g‖�2(Z2) =
√

λ
(1)
S and the claim

follows. �

The upshot of Proposition 3.4 is that, once λ
(1)
S is known to be small, we get a

tight comparison between λ
(1)
S and λ(VL). It remains relate P(Int(P)) to P(VL).

This is the content of the following.
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PROPOSITION 3.6. For each norm ρ, there is a constant c ∈ (0,∞) such that
the following holds for the perimeter functional U 
→ P(U) defined using ρ: For
each L ∈ N and each P ∈ PL, if VL is related to P as in (3.30), then

(3.37) P
(
Int(P)

) ≥ P(VL) − cL.

Moreover, for each ε > 0 there are δ > 0 and ζ > 0 such that for any r > 0 and
any minimizing shape U0 ∈ U [i.e., a set with F(U0) = minF ],

(3.38)
distH

(
hull(P), rU0

)
< δr & distH

(
hull(P), Int(P)

)
> εr

⇒ P
(
Int(P)

) ≥ P(VL) − cL + ζ r

For the proof, we will need to recall some geometric facts established by the
present authors in a companion paper (Biskup and Procaccia [10]). First, setting
U + V := {x + y : x ∈ U,y ∈ V } for any sets U,V ⊂ R

2, a particular feature of
the two-dimensional perimeter functional is that

(3.39) U,V ∈ U convex ⇒ P(U + V ) = P(U) +P(V );
see [10], Lemma. This alone now permits us to give the following.

PROOF OF PROPOSITION 3.6, FORMULA (3.37). Fix P and consider the
perimeter with respect to the norm ρ. Note that the vertices of hull(P) are also
vertices of P. The triangle inequality then readily shows

(3.40) P
(
hull(P)

) ≤ P
(
Int(P)

)
.

If B := {x ∈ R
2 : |x|1 < L + 3}, then VL = hull(P) + B . By (3.39),

(3.41) P(VL) = P
(
hull(P)

) +P(B).

Hereby (3.37) follows by the fact that P(B) ≤ cL holds for all L ≥ 1 with some
c ∈ (0,∞) that only depends on the underlying norm ρ. �

For the second part of Proposition 3.6, we first note that, since the minimizer of
F is unique up to translates (see [10], Theorem 1.1), it suffices to consider just one
minimizing shape U0. Here, we recall that U0 is said to contain a facet in direction
of a unit vector e ∈ R

2, if there are x, y with y = x +|x −y|2e, such that the linear
segment [x, y] is contained entirely in ∂U0. If e′ is a unit vector that is orthogonal
to e and define, in light of convexity s 
→ ρ(e + se′),

(3.42) θ± := d

ds± ρ
(
e + se′)∣∣∣∣

s=0
.

The difference θ+ − θ− is nonnegative and independent of the orientations of e

and e′, and thus depends only on e. Then

(3.43) U0 has a facet in direction e ⇔ θ+ > θ−;
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see [10], Theorem 1.5. The direction e with the property on the right is then called
degenerate.

The reason why we care for degenerate directions here is as follows: The ρ-
length of a path that connects two points on the facet can then be compared to the
ρ-length of the linear segment connecting just the endpoints. Indeed, for any pair
of orthogonal unit vectors e and e′,

(3.44)
n∑

i=1

ρ
(
tie + uie

′) ≥
(

n∑
i=1

ti

)
ρ(e) + θ+ − θ−

2

n∑
i=1

|ui |

holds for any t1, . . . , tn ∈ R and any u1, . . . , un ∈ R such that
∑n

i=1 ui = 0; see
[10], Lemma 4.1. To use these facts efficiently, we will also need the following.

LEMMA 3.7. Let U ∈ U be convex and let Br denote the Euclidean ball of
radius r . For each η > 0 and each ξ > 0, there is δ > 0 such that if x, y obey

(3.45) [x, y] ⊂ ∂U + Bδ,

then either |x − y|2 < η or there are z, z′ ∈ ∂U with

(3.46) |z − x|2 < ξ,
∣∣z′ − y

∣∣
2 < ξ and

[
z, z′] ⊂ ∂U.

PROOF. If the first alternative fails for each δ > 0 existed, then there would
exist sequences {xn} and {yn} with xn → z ∈ ∂U and yn → z′ ∈ ∂U such that
[xn, yn] ⊂ ∂U + B1/n and yet |xn − yn|2 ≥ η. By convexity of U , the segment
[z, z′] would then lie on a facet of U . �

With these in hand, we can now give the following.

PROOF OF PROPOSITION 3.6, FORMULA (3.38). Let c1, c2 ∈ (0,∞) be such
that c1|x|2 ≤ ρ(x) ≤ c2|x|2 for each x ∈ R

2. Fix ε > 0 and pick η > 0 such that
2c1ε > c2η. Next, let m denote the minimum of (θ+ − θ−)/2 for all degenerate
directions e for which U0 has a facet of length at least η/2. Since ∂U0 is rectifiable,
there are only a finite number of such facets and so, by (3.43), m > 0. Then let
ξ > 0 be such that m(ε − η) > 4c2ξ and ξ < η/4. For these η and ξ , let now δ > 0
be such that Lemma 3.7 applies. We claim that if P be such that the two conditions
on the left of (3.38) hold for some r > 0 and the ε and δ as above, then

(3.47) P
(
Int(P)

) ≥ P
(
hull(P)

) + ζ r

with

(3.48) ζ := min
{
(2c1ε − c2η),m(ε − η) − 4c2ξ

}
which is positive by our choices above. This is enough to (3.38) by invoking the
argument after (3.41). It thus remains to show that (3.47) indeed holds.
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We begin by noting that, since Int(P) ⊆ hull(P), the assumption that
distH(hull(P), Int(P)) > εr implies the existence of a vertex v ∈ P such that

(3.49) dist2
(
v,hull(P)c) ≥ εr.

As hull(P) is a polygonal domain whose every vertex is a vertex of P, there are
vertices x, y of hull(P) such that the part of P between x and y (in the chosen ori-
entation) passes through v. These can in fact be chosen so that [x, y] ⊂ ∂ hull(P).
By the triangle inequality,

(3.50) P
(
Int(P)

) ≥ P
(
hull(P)

) + ρ(v − x) + ρ(v − y) − ρ(x − y).

We will now bound the expression involving norms on the right-hand side.
Let Hxy denote the open half-plane containing v whose boundary line passes

through x and y. Then hull(P) ⊂ Hxy and so

(3.51) dist2
(
v,Hc

xy

) ≥ dist2
(
v,hull(P)c) ≥ εr.

Thus, in particular,

(3.52) |v − x|2 ≥ εr and |v − y|2 ≥ εr.

Next, by our assumptions,

(3.53) dist2
(
x, ∂(rU0)

)
< δr and dist2

(
y, ∂(rU0)

)
< δr

and so [x, y] ⊂ (rU0) + Brδ . Our choice of δ (and scale invariance) then ensures
that then either |x − y|2 < ηr or there is a segment [z, z′] on ∂(rU0) such that
|x − z|2 < ξr and |y − z′|2 < ξr . In the former case, we have

(3.54) ρ(x − y) ≤ c2ηr while ρ(v − x) + ρ(v − y) ≥ 2c1εr

and so (3.47) holds with the first alternative in (3.48). In the latter case, we add the
segment [z, x] and [y, z′] to the path from x to z to y and apply (3.44) with the
result

(3.55)
ρ(x − v) + ρ(y − v) + ρ(x − z) + ρ

(
y − z′)

≥ ρ
(
z − z′) + m(ε − η)r.

Bounding ρ(x − z) + ρ(y − z′) ≤ 2c2rξ and ρ(z − z′) ≥ ρ(x − y) − 2c2rξ , we
thus get (3.47) with the second alternative in (3.48). Hence (3.47) is proved and
the claim holds. �

4. Proof of main theorems. We are now ready to move to the proof of the
shape theorem. Throughout this section, ρ denotes the norm constructed in The-
orem 1.3 and F is the functional in (1.14) with the perimeter defined using this
norm. The starting point is a lower bound on the partition function Z(t, β). This
will set a scale to which we will later compare the contribution of various undesir-
able events.
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4.1. Large deviation lower bound. The sole subject of this subsection is the
proof of the following.

PROPOSITION 4.1. We have

(4.1) lim inf
β→∞ lim inf

t→∞
r(t, β)2

t
logZ(t, β) ≥ −minF .

For the proof, we will need the following.

LEMMA 4.2. Given U ∈ U , let S = S(U, t, β) be as in (2.11). For each ε > 0,
there is r0 = r0(U) such that if r(t, β) ≥ r0, then

(4.2) λ
(1)
S ≤ (1 + ε)

λ(U)

r(t, β)2 .

PROOF. Let U ∈ U , let S = S(U, t, β) and abbreviate r := r(t, β). Fix ε > 0
and pick h ∈ C∞

c (U) such that ‖h‖L2(R2) = 1 and ‖∇h‖2
L2(R2)

≤ (1 + ε)1/2λ(U).
Then define

(4.3) g(x) :=
∫
[0,1]2

h
(
r−1(x + z)

)
dz, x ∈ Z

2

and note that, for r sufficiently large, we have supp(g) ⊂ S. We claim that

(4.4) ‖∇g‖�2(Z2) ≤ 1

r
‖∇h‖L2(R2)

and, for some absolute constant c ∈ (0,∞), also

(4.5) 0 ≤ ‖h‖2
L2(R2)

− ‖g‖2
�2(Z2)

≤ c

r2 ‖∇h‖2
L2(R2)

.

These then readily give the claim via

(4.6)

λ
(1)
S ≤

‖∇g‖2
�2(Z2)

‖g‖2
�2(Z2)

≤ 1

r2

‖∇h‖2
L2(R2)

‖h‖2
L2(R2)

− c
r2 ‖∇h‖2

L2(R2)

≤ 1

r2

(1 + ε)1/2λ(U)

1 − c′
r2 λ(U)

,

where c′ := c(1 + ε)1/2 and where we assumed c′
r2 λ(U) < 1. Indeed, increasing r

further if necessary, the right-hand side is at most r−2(1 + ε)λ(U).
It thus remains to establish the bounds (4.4)–(4.5). The first of these is quite

straightforward: Letting e1 and e2 denote the unit vectors in coordinate directions,
we have

(4.7) g(x + ei) − g(x) = 1

r

∫
[0,1]2

dz

∫ 1

0
dsei · ∇h

(
r−1(x + z + sei)

)
.
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Applying Cauchy–Schwarz, we then get

(4.8) ‖∇g‖2
�2(Z2)

≤ 1

r2

∑
x∈Z2

∑
i=1,2

∫
[0,1]2

dz

∫ 1

0
ds

∣∣ei · ∇h
(
r−1(x + z + sei)

)∣∣2.
As is now easy to check, the sums on the right-hand side then reduce to
‖∇h‖2

L2(R2)
.

The second inequality (4.5) is slightly more involved. First, the bound on the
left is obtained by using Cauchy–Schwarz in (4.3) and summing over x ∈ Z

2. This
in turn shows

(4.9)

‖h‖2
L2(R2)

− ‖g‖2
�2(Z2)

= ∑
x∈Z2

(∫
[0,1]2

h
(
r−1(x + z)

)2 dz −
(∫

[0,1]2
h
(
r−1(x + z)

)
dz

)2)
.

A simple rewrite and the Cauchy–Schwarz estimate then permit us to recast this as

(4.10)

∑
x∈Z2

∫
[0,1]2×[0,1]2

dz dz′∣∣h(
r−1(x + z)

) − h(r−1(
x + z′)∣∣2

≤ 1

r2

∑
x∈Z2

∫ 1

0
ds

∫
[0,1]2×[0,1]2

dz dz′∣∣(z − z′)
· ∇h

(
r−1(

x + sz + (1 − s)z′))∣∣2.
The expression in absolute value is bounded by twice the norm of ∇h at the corre-
sponding point. The push-forward on R

2 of the integrating measure under the map
(s, z, z′) 
→ sz + (1 − s)z′ is dominated by a constant times the Lebesgue measure
on, say, [−1,2]×[−1,2]. Using translation invariance again, we get the inequality
on the right of (4.5) as well. �

We will also need the following.

LEMMA 4.3. For each admissible P, there is q ≥ 1 such that for P-a.e. sample
of edge weights, each x, y ∈ Z

2 and each path γ = (x�
0, . . . , x�

n) ∈ �(x, y) with
d(γ ) ≤ 2D(x,y) we have

(4.11) max
i=0,...,n

max
{∣∣x�

i − x
∣∣
2,

∣∣x�
i − y

∣∣
2

} ≤ q|x − y|2.

PROOF. Recall that for each admissible P there are 0 < κ < υ < ∞ such that
the edge weights lie in [κ,υ] P-a.s. Let c, c′ ∈ (0,∞) be the constant such that
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c|x|2 ≥ |x|1 ≥ c′|x|2 for all x ∈R
2. Clearly,

(4.12) d(γ ) ≥ a max
i=0,...,n

max
{∣∣x�

i − x�
0
∣∣
1,

∣∣x�
i − x�

n

∣∣
1

}
so if the maximum in the statement is larger than r|x − y|2 then we have d(γ ) ≥
κ(c′/c)q|x − y|1. But the assumptions also tell us d(γ ) ≤ 2D(x,y) ≤ 2υ|x − y|1
and so this is not possible once q is so large that 2υ < κ(c′/c)q . �

PROOF OF PROPOSITION 4.1. Let U0 be the minimizer of F and let ε > 0 be
so small that Proposition 2.2 applies to U := (1 + ε)U0. Let P = (x0, . . . , xn) be
a polygonal curve such that 0 ∈ Int(P) ⊂ U0, the vertices of P lie on ∂U0 and, for
δ := min{|xi − xi−1|2 : i = 1, . . . , n}, we have

(4.13) (1 − ε)U0 ∩ (P + B2qδ) = ∅ and (P + B2qδ) ⊆ (1 + ε)U0,

where BR is the Euclidean ball of radius R centered at the origin and q is as in
Lemma 4.3. This is possible in light of convexity of U0.

Next, abbreviate r := r(t, β) and assume that r is so large that

(4.14) D
(�rxi�, �rxi−1�) ≤ (1 + ε)rρ(xi − xi−1), i = 1, . . . , n.

This is possible thanks to Theorem 1.3, the fact that P is bounded and also thanks
to the continuity of x 
→ ρ(x). Pick a minimizing path γi ∈ �(�rxi�, �rxi−1) for
each i = 1, . . . , n. These paths form a closed cycle on Z

2 which, however, may not
be simple. Notwithstanding, letting S denote the finite connected component of
the interior of the above cycle containing the origin, Lemma 4.3 and (4.13) ensure
that

(4.15) S̃ ⊆ S ⊆ S
(
(1 − ε)U0, t, β

)
for S̃ := S

(
(1 − ε)U0, t, β

)
and thus, in particular, S ∈S.

The inclusion S̃ ⊆ S and Lemma 4.2 now yield

(4.16) λ
(1)
S ≤ λ

(1)

S̃
≤ 1 + ε

(1 − ε)2

λ(U0)

r(t, β)2 .

On the other hand, the construction of S and (4.14) guarantee

(4.17)

H(S) ≤
n∑

i=1

d(γi) =
n∑

i=1

D
(�rxi�, �rxi−1�)

≤ (1 + ε)r

n∑
i=1

ρ(xi − xi−1) ≤ (1 + ε)rP(U0).

Since |∂S| ≤ a−1H(S) ≤ crP(U0) where a is the lower bound on the weights in
P, Proposition 2.2 implies

(4.18) Z(t, β) ≥ e−tλ
(1)
S −βH(S)−c|∂S|
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as soon as β and t are sufficiently large. From (1.9), we thus get

(4.19)

logZ(t, β) ≥ − t

r2

1 + ε

(1 − ε)2 λ(U0) − (
β + ca−1)

(1 + ε)rP(U0)

≥ − t

r2

1 + ε

(1 − ε)2

(
F(U0) − c

aβ
P(U0)

)
.

Taking the limits t → ∞, β → ∞ and ε ↓ 0, the claim follows. �

4.2. Proof of the shape theorem. Suppose, throughout this subsection, that κ ∈
(0,1) is an P-a.s. lower bound on edge weights. Before we delve into proof of the
shape theorem, we begin with some basic lemmas. The first one notes a restriction
on the diameter of R(t).

LEMMA 4.4. For each β > 2
κ

log 4, all M > 0 and all t sufficiently large,

(4.20) E0(
e−βH(R(t))1{|∂R(t)|>Mr(t,β)}

) ≤ e− 1
2 κMt/r(t,β)2

.

PROOF. Note that H(R(t)) ≥ κ|∂R(t)|. On the stated event, ∂R(t) can be
identified with a closed path on the dual-Z2 of length at least Mr(t, β) surrounding
the origin in Z

2. The number of such paths of length n is at most n4n and so for
β0 := 1

κ
log 4 and β > β0:

(4.21)

E0(
e−βH(R(t))1{|∂R(t)|>Mr(t,β)}

)
≤ ∑

n>Mr(t,β)

n
(
4e−βκ)n ≤ C(β)e−(β−β0)κMr(t,β).

Now for β > 2β0 we have (β − β0) > 1
2β and, by definition of r(t, β),

(4.22) (β − β0)r(t, β) >
1

2

t

r(t, β)2 .

For t sufficiently large, we can then absorb C(β) into the exponent. �

The next lemma effectively restricts λ
(1)
R(t) to values order r(t, β)−2:

LEMMA 4.5. For each β > 3
κ

log 4 and all M and t sufficiently large,

(4.23) E0(
e−βH(R(t))1{λ(1)

R(t)>Mr(t,β)−2}
) ≤ 2e− 1

2 κMt/r(t,β)2
.

PROOF. By Lemmas 4.4 and 2.1,

(4.24)

E0(
e−βH(R(t))1{λ(1)

R(t)>Mr(t,β)−2}
)

≤ e− 1
2 κMt/r(t,β)2

+ ∑
S∈S

1{|∂S|≤Mr(t,β)}1{λ(1)
S >Mr(t,β)−2}|S|3/2e−βH(S)−tλ

(1)
S .
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Bounding |S|3/2 by cM3/2r(t, β)3 for some constant c ∈ (0,∞) and employing
the restriction on λ

(1)
S dominates the second term on the right by

(4.25) cM3/2r(t, β)3e−Mt/r(t,β)2 ∑
S∈S

e−βH(S).

For β > β0 := 1
κ

log 4, the sum is bounded by a constant that only depends
on β . Taking M sufficiently large, the result is thus at most another factor of

e− 1
2 κMt/r(t,β)2

(since κ < 1). �

We will now use these to prove the following.

PROPOSITION 4.6. Let M := {x + U0 : − x ∈ U0} where U0 is a minimizer
of F . For each ε > 0, there is δ > 0 such that

(4.26)
lim sup
β→∞

lim sup
t→∞

r(t, β)2

t
logE0(

e−βH(R(t))1{distH(r(t,β)−1R(t),M)>ε}
)

≤ −minF − δ.

PROOF. Much of the work has already been done; here we just basically as-
semble all facts together. Abbreviate r := r(t, β) and let L := �2ζ r� for some
ζ > 0 to be let go to zero at the end. Let

(4.27) SM,ζ := {
S ∈ S : 2L < |∂S| ≤ Mr,λ

(1)
S ≤ Mr−2}

.

Since each S ∈ SM,ζ is connected, the discrete Faber–Krahn estimate λ
(1)
S ≥

c|S|−1 along with the isoperimetric inequality |∂S| ≥ c′|S|1/2 (both written for
d = 2) show that |∂S| > 2L is implied by λ

(1)
S ≤ Mr−2 as soon as 4ζ

√
M < c′√c.

Thanks to Lemmas 4.4–4.5, we can choose M so that for all ζ sufficiently small
the event {R(t) ∈ SM,ζ } may freely be inserted into the expectation. This reduces
the proof to a suitable estimate on the quantity

(4.28) Yε := ∑
S∈SM,ζ

distH(r−1S,M)>4ε

e−βH(S)P 0(
R(t) = S

)
,

where we write 4ε instead of ε for later convenience.
We start by applying the inequality from Lemma 2.1, use that |S| ≤ cMr2 for

some constant c ∈ (0,∞) and then represent (as an upper bound) the sum over S

as a sum over L-skeletons and the sum over S for a given skeleton. This yields

(4.29)

Yε ≤ ∑
S∈SM,ζ

distH(r−1S,M)>4ε

e−βH(S)|S|3/2e−tλ
(1)
S

≤ (cM)3/2r3
∑

P∈PL

distH(r−1P,M)>2ε

∑
S∈SM,ζ

P(S)=P

e−βH(S)e−tλ
(1)
S ,
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where we invoked the bound distH(S, Int(P)) ≤ L ≤ 2εr (which requires ζ < ε)
along with distH(Int(P),M) = distH(P,M) to move the Hausdorff-distance re-
striction to P. We also used that |∂S| > 2L implies P(S) ∈ PL.

Let now VL be related to P as in (3.30). Proposition 3.4 then shows

(4.30) λ
(1)
S ≥ λ(VL)

(
1 − CM1/2r−1)2 ≥ λ(VL)(1 − ζ )

for every S ∈ SM,ζ once r is large enough. Denote

(4.31) P′
L := {

P(S) : S ∈ SM,ζ

}
,

and note that every P ∈ P′
L has at most Mr/L+1 linear segments. This is less than

1/ζ for r large enough so bounding the sum over S with the help of Lemma 3.3
yields

(4.32) Yε ≤ (cM)3/2r3e2bβL
∑

P∈P′
L

distH(r−1P,M)>2ε

e−tλ(VL)(1−ζ )−β(1−ζ )P(Int(P)).

Our next goal is to invoke Proposition 3.6 so let δ correspond to ε in the statement.
Without loss of generality, we may assume that δ < ε. Then for each P subject to
distH(r−1P,M) > 2ε:

(1) either distH(r−1 hull(P),M) ≥ δ

(2) or distH(r−1 hull(VL),M) < δ and distH(Int(P),hull(P)) > εr .

In the former case, we invoke (3.37) while in the latter case we use (3.38) to con-
clude, for some numerical constants c1, c2 ∈ (0,∞) that

(4.33)

sum in (4.32) ≤ ec1βL
∑

P∈P′
L

distH(r−1 hull(P),M)>δ

e−(1−ζ ) t

r2 F(VL(P))

+ ec1βL−c2βεr
∑

P∈P′
L

e−(1−ζ ) t

r2 F(VL(P))

Since distH(r−1 hull(P),M) = distH(r−1VL,M) − L/r , once ζ is so small that
ζ < δ/2, (1.16) then implies the existence of β(ε) < ∞ and δ′ > 0 such that for all
β > β(ε),

(4.34) distH
(
r−1 hull(P),M

)
> δ ⇒ F

(
VL(P)

) ≥ minF + δ′.
Since βr = t

r2 , assuming without loss of generality that δ′ ≤ c2ε yields, for some
c3 ∈ (0,∞),

(4.35) Yε ≤ 2(cM)3/2r3eβc3Le− t

r2 (1−ζ )[minF+δ′]∣∣P′
L

∣∣.
Since every P ∈ P′

L has at most 1/ζ linear segments each of which is of length at
most L, there is c ∈ (1,∞) such that

(4.36)
∣∣P′

L

∣∣ ≤ (
cL2)1/ζ

.
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The entropy of the skeletons is thus negligible and so, since βL = (1 +
o(1))2ζ t/r2, we get

(4.37) β > β(ε) ⇒ lim sup
t→∞

r(t, β)2

t
logYε ≤ −(1 − ζ )

[
minF − δ′] − 2c3ζ.

Taking β → ∞ followed by ζ ↓ 0 then gives the claim for all ε > 0. �

It now remains to put the pieces together to get the followi

PROOF OF THEOREM 1.4. By Propositions 4.1 and 4.6, given ε > 0, the prob-
ability in the statement decays exponentially in t/r(t, β)2 as soon as β is chosen
sufficiently large. This readily yields the claim. �

5. Laplacian eigenvalues and eigenfunctions. The last item to finish is the
proof of certain estimates for the eigenvalues and eigenfunctions of the Laplacian
in discrete sets that well approximate a continuum domain. These have been de-
ferred to here from Section 2. The estimates are fairly standard; we include proofs
for completeness of exposition. We begin with the claims concerning the eigenval-
ues:

PROOF OF LEMMA 2.3, (2.14)–(2.15). Inequality (2.14) follows either by
Lemma 4.2 (and the corresponding statement in the continuum) or directly by the
monotonicity of S 
→ λ

(1)
S and the fact that S contains a box of side of order r(t, β).

To get the spectral gap estimate (2.15), we have to work a bit harder. Fix U ∈ U
and let λ(k)(U) denote the kth lowest eigenvalue of the negative Laplacian in U

with Dirichlet boundary conditions on ∂U . The argument will be based on the fact
that

(5.1) �(2)(U) := λ(1)(U) + λ(2)(U)

obeys

(5.2)
�(2)(U) = inf

{‖∇g1‖2
L2(R2)

+ ‖∇g2‖2
L2(R2)

:
g1, g2 ∈ C∞

c (U), 〈gi, gj 〉L2(R2) = δij

}
.

(This is sometimes called the Ky Fan principle; cf. Ky Fan [20].) For the discrete
problem and

(5.3) �
(2)
S := λ

(1)
S + λ

(2)
S

we similarly have

(5.4)
�

(2)
S = inf

{‖∇g1‖2
�2(Z2)

+ ‖∇g2‖2
�2(Z2)

:
supp(gi) ⊆ S, 〈gi, gj 〉�2(Z2) = δij

}
.
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Our argument is now based on the fact that the principal eigenvalue in any U ∈ U is
nondegenerate, that is, �(2)(U) > λ(U). Lemma 4.2 gives us a tight upper bound
of λ

(1)
S in terms of λ(1)(U); it thus suffices to show that, for each ε > 0,

(5.5) �
(2)
S ≥ (1 − ε)

�(2)(U)

r(t, β)2

as soon as t and β are sufficiently large and S is any set as specified in the state-
ment. As S 
→ �

(2)
S is nondecreasing with respect to inclusion and the scaling

relation

(5.6) λ(k)(αU) = α−2λ(k)(U)

holds, it will in fact suffice to show this S := S(U, t, β) for any ε > 0.
The infimum in (5.4) is achieved by g1 := h(1) and g2 := h(2), the first two

eigenfunctions of the discrete Laplacian in S. Recall that these are normalized
to have �2(Z2)-norm one. Let g̃1, respectively, g̃2 be the functions in R

2 that
are the counterparts to g1, respectively, g2 as in Lemma 3.5. These functions
are not necessarily normalized or orthogonal. However, thanks to the fact that
‖∇gi‖2

�2(Z2)
≤ �

(2)
S = O(r(t, β)−2), (3.34) shows, for some c1 ∈ (0,∞),

(5.7)
∣∣‖g̃i‖L2(R2) − 1

∣∣ ≤ c1r(t, β)−2, i = 1,2.

Since the map f 
→ f̃ in Lemma 3.5 is linear, a similar argument applied to f± :=
g1 ±g2 combined with the polarization identity reveals that, for some c2 ∈ (0,∞),

(5.8)
∣∣〈g̃1, g̃2〉L2(R2)

∣∣ ≤ c2r(t, β)−2

Defining, for r(t, β) sufficiently large,

(5.9) h1 := g̃1

‖g̃1‖L2(R2)

and h2 := g̃1 − 〈h1, g̃2〉L2(R2)h1

‖g̃1 − 〈h1, g̃2〉L2(R2)h1‖L2(R2)

we now get a pair of orthonormal functions. By (3.35) and the fact that g1, g2 are
normalized in �2(Z2) we then have, for some c3, c4 ∈ (0,∞),

(5.10) ‖∇h1‖L2(R2) ≤ (
1 + c3r(t, β)−2)‖∇g2‖�2(Z2)

and

(5.11) ‖∇h2‖L2(R2) ≤ (
1 + c3r(t, β)−2)‖∇g2‖�2(Z2) + c4r(t, β)−2‖∇g1‖�2(Z2).

Since by (3.33) the support of h1, h2 is contained in (1+ ε)U , from (5.2) and (5.4)
we get

(5.12) �(2)((1 + ε)r(t, β)U
) ≤ (

1 + c5r(t, β)−2)
�

(2)
S

for some c5 ∈ (0,∞). Invoking the scaling relation (5.6), the bound (5.5) follows.
�
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Next, we move to the claims dealing with lower bounds on the principal eigen-
function:

PROOF OF LEMMA 2.3, (2.16)–(2.17). The proof of (2.16) will be based on
the following simple fact (derived, e.g., in Biskup and König [8], Lemma 4.1): Let
Y1, Y2, . . . be the simple symmetric random walk on Z

2 and, abusing our earlier
notation slightly, let τS be the first exit time of the walk from S. For the eigenfunc-
tion h(1) in S, the process {Mn∧τS

: n ≥ 0} where

(5.13) Mn := h(1)(Yn)
(
1 − λ

(1)
S /4

)−n

is a martingale with respect to the filtration σ(Y0, . . . , Yn).
We will now derive the desired conclusion from this fact. We actually begin

with an upper bound instead of a lower bound. Since M2
n∧τS

is a submartingale
and M2

n∧τS
≤ M2

n due to the fact that h(1)(YτS
) = 0 when τS < ∞, we have

(5.14) h(1)(x)2 ≤ Ex(
M2

n∧τS

) ≤ Ex(
M2

n

) = (
1 − λ

(1)
S /4

)−n
Ex(

h(1)(Yn)
2)

.

Now let S be as in the statement and set n := �r(t, β)2�. By (2.14), the prefactor
on the right is bounded uniformly in t, β ≥ 1. Since S fits into a ball of radius
proportional to r(t, β), the local central limit theorem shows that P x(Yn = y) ≤
cn−1 ≤ cr(t, β)−2 uniformly in x, y ∈ S. Hence,

(5.15) Ex(
h(1)(Yn)

2) = ∑
y∈S

P x(Yn = y)h(1)(y)2 ≤ cr(t, β)−2∥∥h(1)
∥∥2
�2(Z2).

As h(1) is assumed normalized and |S| is of order r(t, β)2, we get

(5.16) max
x∈S

h(1)(x)2 ≤ c̃

|S|
with c̃ depending only on U .

Moving over to the desired lower bound, the sequence {h(1)(Yn∧τS
) : n ≥ 0} is a

nonnegative supermartingale and so for any stopping time T ,

(5.17) h(1)(0) ≥ E0(
h(1)(YT ∧τS

)
)
.

We will use this for T equal to Ta := inf{n ≥ 0 : Yn ∈ La} where

(5.18) La :=
{
x ∈ S : h(1)(x)2 ≥ a

|S|
}
.

Then (5.17) reads

(5.19) h(1)(0) ≥ a

|S|P
0(Ta < τS).

It suffices to derive a lower bound on P 0(Ta < τS) for S := S((1 − ε)U, t, β),
which is uniformly positive in the limit as r(t, β) → ∞ for all ε small enough.
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Since h(1) is normalized, the upper bound (5.16) ensures that |La| ≥ 1−a
c̃−a

|S|
(for a < 1). We assume a > 0 is small enough that 1−a

c̃−a
> (2c̃)−1. Let Bs(x) :=

x +[−s, s]2 ∩Z
2. An averaging argument then shows that there is δ > 0 depending

only on c̃ and U such that for at least one x ∈ S,

(5.20) Bδr(t,β)(x) ⊂ S and
∣∣Bδr(t,β)(x) ∩ La

∣∣ ≥ 1

2c̃

∣∣Bδr(t,β)(x)
∣∣

Now take δ̃ := δ/(4c̃). A use of the pigeon-hole principle shows that, for some
integer n with n/r(t, β) ∈ [2δ̃, δ] we then have

(5.21)
∣∣{z ∈ Z

2 : |z − x|∞ = n
} ∩ La

∣∣ ≥ n

4c̃

We now bound P 0(Ta < τS) by first requiring the walk to hit Bδ̃r(t,β)(x) before

exiting from S and then to hit {z ∈ Z
2 : |z − x|∞ = n} ∩ La before exiting from

Bn(x). The former event has a uniformly positive probability due to the conver-
gence of the walk to Brownian motion in the supremum norm and the fact that
both Bδ̃r(t,β)(x) and S scale proportionally to r(t, β). The latter event has a uni-
formly positive probability by the fact that, for any N ≥ 1 large enough and any
c > 2, the exit distributions from BcN(x) for the walk started at x and the walk
started at any z ∈ ∂BN(x) are mutually absolutely continuous with bounds that are
uniform in N and z.

Having proved (2.16), the proof of (2.17) is now straightforward. Indeed, a suc-
cessive use of Lemma 2.7 shows that

(5.22)
h(1)(y)

h(1)(x)
≥ (2d)−diam(S), x, y ∈ S.

Taking x := 0, the lower bound in (2.16) now completes the job. �
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