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DUALITY AND FIXATION IN �-WRIGHT–FISHER PROCESSES
WITH FREQUENCY-DEPENDENT SELECTION

BY ADRIÁN GONZÁLEZ CASANOVA1 AND DARIO SPANÒ

Weierstrass Institute Berlin and University of Warwick

A two-types, discrete-time population model with finite, constant size
is constructed, allowing for a general form of frequency-dependent selection
and skewed offspring distribution. Selection is defined based on the idea that
individuals first choose a (random) number of potential parents from the pre-
vious generation and then, from the selected pool, they inherit the type of the
fittest parent. The probability distribution function of the number of potential
parents per individual thus parametrises entirely the selection mechanism.
Using sampling- and moment-duality, weak convergence is then proved both
for the allele frequency process of the selectively weak type and for the pop-
ulation’s ancestral process. The scaling limits are, respectively, a two-types
�-Fleming–Viot jump-diffusion process with frequency-dependent selection,
and a branching-coalescing process with general branching and simultaneous
multiple collisions. Duality also leads to a characterisation of the probability
of extinction of the selectively weak allele, in terms of the ancestral process’
ergodic properties.

1. Introduction. Modelling selection is acknowledged to be one of the most
delicate problems in mathematical population genetics. A variety of hypotheses
have been proposed to describe how competing allelic types jostle against each
other in trying to propagate successfully their type in the next generation [3, 6, 12,
13]. Despite the complexity of the debate on the concept of selection itself, there
is general agreement on the idea that an appropriate measure of strength of fitness
of a given allelic type is the probability of its eventual fixation in the population,
conditional on a given starting frequency.

Fixation is the event that the frequency of the allelic type will eventually reach
1 and stay there forever. For the exact calculation of the probability of fixation, the
notion of duality has recently proved to be a formidable tool by means of which
to combine efficiently information coming from both a forward-in-time (allele fre-
quencies diffusion) and a backward-in-time (ancestral process) analysis of the pop-
ulation considered. In particular, it has been established (e.g., [2, 5, 8]) that, in case
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of weak selection, the fate of a selectively disadvantaged allele is intrinsically con-
nected, via duality, to the long-term dynamics of the so-called block-counting pro-
cess describing, at each time in the past, how many nonmutant lineages are alive
in the ancestral graph representing the population’s genealogy. Unless the popula-
tion is neutral, such graphs (the so-called Ancestral Selection Graph, ASG [14, 20,
21]) are not trees, but coalescing/branching processes where single lineages, when
traced backwards in time, may split into one true and one (or two, in some forms
of balancing selection, see [20, 25]) virtual parental lines, at rates which encode
the difference in fitness between the two allelic types.

The ASG induces a notion of selection associated to the idea of lineages splitting
into multiple potential parents. This observation is a crucial starting point for the
purposes of this paper.

In this paper, we will construct a class of population models incorporating two
key features: on one hand, they allow for a general form of frequency-dependent
selection, leading to a genealogy with multiple branching of lineages; on the other
hand, they allow for the possibility of high-fecundity extreme reproductive events
(�-events), leading to a genealogy with simultaneous multiple coalescence of lin-
eages. This class can be interpreted as a class of Cannings models with selection,
as defined in [16]. For models in this class, to the best of our knowledge, a unified
treatment of the scaling-limit allele frequency dynamics, the corresponding ances-
try, as well as the probability of fixation, has not been carried out in full generality
yet.

We will begin with a construction of a two-types, discrete-time population
model with constant size N and nonoverlapping generations. Our model of se-
lection, whose construction is laid out in Section 2, is based on the idea that in-
dividuals first choose a (random) number of potential parents from the previous
generation and then, from the selected pool, they inherit the type of the fittest par-
ent. The probability distribution function of the number of potential parents per
individual thus parametrises entirely the selection mechanism. In particular, the
model is nonneutral whenever the individuals are allowed to choose more than one
potential parent with positive probability. Thus rather than encoding limit prop-
erties of selection, in this paper multiple parents become part of the definition of
selection itself.

As for extreme reproductive events, these are modelled by assuming that, in
some generations chosen at random, distinct individuals make correlated choices
of their potential parents, the correlation being driven by a background measure
� on the infinite simplex. This is in line with many modern constructions of coa-
lescent processes with simultaneous multiple collisions and, in fact, our construc-
tion may be viewed as a discrete-time analogue of the Poisson-construction of
�-Moran models presented in [1], plus selection. On the other hand, by keeping
track of each individual’s potential ancestors backward in time, our model yields as
a finite-population, discrete-time analogue of an ASG, with nonoverlapping gen-
erations, converging to a general ASG scaling limit with multiple branching (as
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opposed to binary-only or ternary-only branching) as well as simultaneous multi-
ple coalescences of lineages.

We can show that in the limit as N → ∞, with time appropriately rescaled,
the process of the allele frequency of the selectively weaker type converges in
distribution to a two-type �-Fleming–Viot jump-diffusion process in [0,1] with
frequency-dependent selection, solution to the stochastic differential equation
(SDE)

dXt = − κs(Xt)Xt(1 − Xt) dt + √
σXt(1 − Xt)dBt

+
∫
(0,1]

∫
(0,1]

∞∑
i=1

yi(I{ui≤Xt−} − Xt−)Ñ(dt, dy, du),
(1)

where κ and σ are nonnegative constants and s(x) is a power series function with
positive, nonincreasing coefficients: κ measures the strength of the selective pres-
sure, s describes its shape as a function of the allele frequencies and σ represents
the effective population size (in population genetics terminology, the strength of
the random genetic drift). By “time appropriately rescaled” we mean that time is
measured in units of �−1

N , where �N [assumed to be o(1/N)] is the probability, for
any individual, of choosing more than one potential parent. Further assumptions
on the mean number of potential parents will also be needed [see condition (iv) of
Proposition 3.4].

The first addend on the right-hand side of (1) is the one accounting for selec-
tion. The frequency-dependent selection function s will turn out (see later, Propo-
sition 3.4) to be entirely determined by the limit distribution of the number of
potential parents per individual. Indeed, denote by ϕ(x) the probability generation
function (pgf) of the distribution of such a number, conditional on it being larger
than one. It will appear [see Remark 3.5, equation (25)] that

s(x) = 1 − ϕ(x)

1 − x
.

The second term in (1) is the classical Wright–Fisher diffusion and the third term
accounts for the jumps induced by extreme reproductive events, driven by a Pois-
son process Ñ whose intensity measure depends on � and regulates the frequen-
cies’ jumps and sizes when the population is infinite. Note that our convergence
result applies to any choice of �-measure.

To the best of our knowledge, the existence itself of a solution to the augmented
SDE (1), encompassing both frequency-dependent selection and �-extreme repro-
duction dynamics, has not been proved before. A proof will be given in Lemma 3.6
based on a recent work of González Casanova et al. [7]. We also believe that, al-
though frequency-dependent selection in Cannings models with nonoverlapping
generations have been considered in the literature [16], scaling limit approxima-
tions have so far been derived only under the assumption that, under neutrality, the
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population is in domain of attraction of Kingman’s coalescent, that is, its limit be-
haviour is purely diffusive. Our convergence result of Proposition 3.4 overcomes
such a limitation.

Several special cases of (1) are nevertheless well known:

• For κs(x) = 0, the SDE reduces to the two-type version of the so-called neutral
�-Fleming–Viot SDE (see [1], Section 5.3), whose genealogy is described by a
coalescent tree process with simultaneous multiple collisions, or �-coalescent
[19, 23, 24].

• Without the jump component (Ñ ≡ 0), one recognises in (1) the SDE of a gen-
eral frequency-dependent selection diffusion process in [0,1] which captures
many of the most popular models of selection in genetics, including the follow-
ing notable examples:
– s(x) = s̄ for a constant s̄. This is the classical model of weak selection

[12, 13].
– s(x) = λ − νx where λ > −ν > 0. This is a case of balancing selection.

The parameters λ and ν have been described in terms of stochastic evolu-
tionary games (see, e.g., [16, 22] and references therein). In our framework,
they will be essentially tail probabilities of the distribution of the potential
parents’ number. The scaling limit genealogy is encoded by an ASG with
ternary branches [20].

More examples of Cannings models with frequency-dependent selection lead-
ing to purely diffusive scaling limits can be found in [16], where the selection
mechanism is defined via evolutionary game theory.

• With nonzero jump component Ñ , the particular case of (1) where s(x) ≡ 1
and the parameter measure � is concentrated on [0,1] (	-coalescent) has been
studied independently by Griffiths [8] and Foucart [5], although a derivation
of the SDE from a pre-limiting model, or a discussion on the existence of its
solution, was not within their aims.

The cited work of Griffiths and Foucart (but see also [2]) forms the main back-
ground for the methodology and results on duality and fixation proposed in this
paper. Both authors apply a duality method to describe the probability of fixation
of the advantageous allele. In particular, Griffiths’ methodology relies on the fol-
lowing clever interpretation of the generator of the two-type Lambda Fleming–Viot
under neutrality:

(2) Af (x) = 1

2
E

[
x(1 − x)f ′′(x(1 − W) + V W

)]
,

where V is a Uniform random variable in [0,1], W = SY with Y a 	/	([0,1])-
distributed random variable and S a size-biased uniform random variable in [0,1],
and all the variables on the right-hand side are independent; see [8], equation (7).
Our own derivation is crucially based on an extension of Griffiths’ approach to
more general �-coalescent dynamics; see Lemma 4.1 of this paper.
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We will show (in Proposition 3.8) that moment duality holds between the pro-
cess (Xt) solution to (1), and the block-counting process (Dt) associated to a
branching-coalescing random graph (the limit ASG), with generator given by

(3) Lf (n) = κ

∞∑
i=0

πi

[
f (n + i − 1) − f (n)

] + σ

(
n

2

)[
f (n − 1) − f (n)

] + Lf (n)

for every n ∈ N and f : N → R in C2, where πi is a sequence of constants de-
pending on the distribution of the number of potential parents and L̄ denotes the
generator of the �-coalescent [see equation (36) for details]. Without the L̄ com-
ponent, L is the generator of a branching process with logistic growth [15].

Moment duality means namely that, for every x ∈ [0,1], n ∈N,

(4) E
[
Xn

t | X0 = x
] = E

[
xDt | D0 = n

]
.

We will exploit moment duality to study the probability of fixation for the process
(Xt) of the selectively weaker allele frequency: we will prove that, for any given
initial frequency x, the process almost surely gets extinct (i.e., Xt = 0 eventually)
if and only if (Dt) does not have a stationary distribution. The weaker allele may
survive and in fact even reach fixation (Xt = 1) if (Dt) has a stationary distribu-
tion. The probability of fixation of the fitter allele will depend on the stationary
distribution of (Dt). This is the content of Lemma 4.7. Necessary and sufficient
conditions for either scenario to hold will be found in Theorem 4.6 to depend on a
critical value κ∗ for the parameter κ measuring the total selection pressure in (1).
The critical value will depend on the mean number β , say, of potential parents per
individuals in a branching event as well as on the coalescent parameter measure
�: indeed, the process (Dt) will reach stationarity if and only if κ ≥ κ∗ where

(5) κ∗ := 1

2β
E

[
1∑∞

i=1 Z∗
i

2

1

W(1 − W)

]
,

so long as β and κ∗ are finite and � satisfies some mild admissibility con-
ditions (see Definition 4.3). In (5), Z∗

i = Zi/|Z|, W = S|Z|, |Z| := ∑
i Zi for

Z = (Z1,Z2, . . .) a random sequence with distribution �/�(∇∞), where ∇∞ :=
{x1 ≥ x2 ≥ · · ·0 : ∑

i xi ≤ 1} is the ranked infinite simplex, S is a size-biased uni-
form random variable, (Bi : i ∈ N) are i.i.d. Bernoulli random variables with pa-
rameter x and Z, S, V , (Bi) are independent.

The problem of describing the long-term behaviour of branching-coalescing
processes including multiple collisions has been addressed in [7] but only under
the assumption that σ > 0, that is, that Kingman-like coalescence events occur
with positive rates. The method in [7] crucially relies on stochastic domination
and does not allow to analyse if and how, in absence of a Kingman component, the
competing events of branching and coalescence balance each other out or, on the
contrary, one of them eventually prevails. Our Theorem 4.6 aims to fill this missing
gap, thus in Section 4 we will assume σ = 0 which, interestingly, turns out to be
the only case with finite β where a threshold κ∗ can be found.
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1.1. Outline of the paper. The paper is structured as follows: in Section 2, our
two-type discrete model will be introduced in terms of a random graph with vertex
set in a portion of Z2 (generation × label of individual), with random edges de-
noting potential ancestral relation between individuals in successive generations.
This approach will allow us to define both the frequency process and the ancestral
process on the same probability space. In the same section, a form of duality re-
lationship, the so-called sampling duality (see [18]), between the allele frequency
process and the block-counting process of the population’s ancestral graph, will be
proved. We will also derive the one-step transition probabilities of the frequency
process of the weak allelic type. In both representations, a central role will be
played by the pgf of the distribution of the number of potential parents per indi-
vidual, per generation.

In Section 3, we will prove convergence, with time appropriately rescaled, of
the weak allele’s frequency process to the process (Xt) solving the SDE (1). In
particular, we will show existence of a strong solution to (1). We will thus establish
moment duality (4) with a branching-coalescing process, that is, the Markov chain
with generator (3).

In Section 4, we will first prove our �-version of Griffiths’ representation (2)
for the generator associated to the frequency process’ SDE (1) and then we will use
moment duality to determine our criterion for fixation based on the critical value
κ∗ for the selection pressure parameter κ .

2. Discrete models with selection. The goal of this section is to define a two-
types, discrete-time population model, with finite constant size N and nonoverlap-
ping generations, with frequency-dependent selection. We start with a first formu-
lation of the model without �-reproductive events.

2.1. Selection without extreme reproductive events. We denote the allelic type
space with {0,1} and adopt the notation N = {1,2, . . .}. Type 1 will denote the se-
lectively advantageous allele. We parametrise the strength of selection via a prob-
ability distribution QN on N ∪ {∞}. The reproduction mechanism works as fol-
lows.

(1) Choice of potential parents. At each generation g ∈ Z, every individual i

(i = 1, . . . ,N ) chooses, independently, a random number K(g,i) of potential par-
ents among the N individuals in the previous generation, g − 1, where K(g,i) is a
random variable with distribution QN . The choice is with replacement in the sense
that, given K(g,i) = k, the individual i chooses its k parents by sampling k labels
independently and uniformly at random from {1, . . . ,N}. However, the ancestry
of the model will retain information only about all the distinct potential parents
chosen by each individual, that is, parents chosen more than once will be included
in the ancestry only once.
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(2) Choice of type. Types 1 or 0 are arbitrarily assigned to all the individuals at
a starting generation g = 0, say. For every subsequent generation, each individual
takes on the allelic type 0 if and only if all its potential parents carry the type 0. If
at least one of the parents is of type 1, then the inherited allele will be 1.

(3) Actual vs virtual parents. Although the distinction between virtual and ac-
tual parents will not play a significant role in the derivation of our main result, in
order to stress the connection with the ASG of [14] and [20], we can stipulate that
the actual parent of i is the individual with the lowest label among all the potential
parents carrying the same type as i. All other potential parents will be considered
as virtual parents.

2.1.1. Wright–Fisher random graph. We shall now provide a random graph
representation of the model, with the benefit of embedding in the same probability
space both the forward in time allele frequency process and the ancestry of the
population. Consider the set of vertices

VN := Z× {1, . . . ,N}.
For every v = (g, i) ∈ VN , we denote with g(v) = g the generation of the indi-
vidual v and with i(v) = i its label. From every v ∈ VN , an edge is drawn from
(g(v) − 1, l) to v if l is one of the potential parents of v. The random set EN of all
such edges thus depends on the following random variables:

(i) The collection K = (Kv : v ∈ VN) of i.i.d. QN random variables, indicating
how many potential parents are chosen by each individual at each generation.

(ii) The collection

L0(K) = {
L0

v

}
v∈VN

= {
L0

(v,1),L
0
(v,2), . . . ,L

0
(v,Kv)

}
v∈VN

of i.i.d. random variables uniformly distributed over {1, . . . ,N}, where, for every
v = (g, i), L0

v lists the labels of all the potential parents selected by the individual
i at generation g.

For every v, let Jv ≤ Kv be the number of distinct parents appearing in L0
v =

(L0
(v,1),L

0
(v,2), . . . ,L

0
(v,Kv)

), and with L̃0
v = (L̃0

(v,1), . . . , L̃
0
(v,Jv)

) denote their la-
bels.

DEFINITION 2.1. For every N ∈ N and QN ∈ P(N∪{∞}), the Wright–Fisher
graph with (frequency-dependent) selection QN is the graph with vertex set VN

and the edge set

(6) E0
N := {{(

g(v) − 1, L̃0
(v,j)

)
, v

} : j = 1, . . . , Jv, v ∈ VN

}
.
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2.1.2. Allele frequencies. Let us assign to each vertex of a fixed starting gen-
eration g = 0 either type 0 or 1 arbitrarily. Each vertex v in each of the subsequent
generations will be of type 1 if and only if it is connected in (VN,EN) to at least
one vertex of type 1 in the restriction (VN,EN) ∩ {v ∈ VN : g(v) ≥ 0}. We are
interested in the evolution of the type-0 frequencies. Let ξ(v) denote the type of
vertex v and with

XN
g = 1 − 1

N

∑
{v:g(v)=g}

ξ(v)

the frequency of type-0 individuals at generation g = 0,1, . . . .
Denote with ϕQN

the probability generating function of QN . Consider the sam-
pling function

μN(x) = P
(
ξ(v) = 0 | XN

g(v)−1 = x
)

that is, the probability that a vertex v is of type 0 if the frequency of type 0 individ-
uals in generation g(v) − 1 is x. This event occurs if and only if all the potential
parents of v are of type 0. Since (Kv) is an i.i.d. sequence, this probability does not
depend on v and since the values of the coordinates in L0

v = (L0
(v,1), . . . ,L

0
(v,Kv)

)

do not depend on Kv ,

μN(x) =
∞∑

k=1

P
(
ξ
(
g(v) − 1,L0

(v,j)

) = 0 for all j ≤ Kv,

Kv = k | XN
g(v)−1 = x

)
=

∞∑
k=1

xkQN(Kv = k) = ϕQN
(x).

(7)

The following proposition is an obvious consequence of (7), and of the fact that
individuals choose their potential parents independently.

PROPOSITION 2.2. In a Wright–Fisher graph with selection parameter QN ,
the type-0 allele frequency process (XN

g : g ∈ N) evolves as a time-homogeneous
Markov chain on the state space [N ]/N := {0,1/N, . . . , (N − 1)/N,1} with tran-
sition probabilities

P
(
XN

g = m/N | XN
g−1 = x

) =
(
N

m

)
ϕQN

(x)m
(
1 − ϕQN

(x)
)N−m

,

m = 0,1, . . . ,N,

for every x ∈ [N ]/N .

EXAMPLE 2.3 (Weak selection). With the choice

(8) QN(Kv > m) = sm−1
N , m = 1,2, . . .
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for some sN > 0 (geometric distribution), the sampling probability μN becomes

(9) μN(x) = x(1 − sN)

1 − x + x(1 − sN)
.

In other words, the allele frequency process (XN
g : g ∈ N) of the Wright–Fisher

graph (VN,EN,QN) with geometric QN coincides with the classical Wright–
Fisher model with weak selection coefficient sN [11–13].

2.2. Selection with extreme reproductive events. Now we will extend the
model of Section 2.1 in such a way to include the possibility of high fecundity
events (�-events), where the offspring of one or more individuals may replace
a nonnegligible (relative to the population size) proportion of the population in
the next generation. The reproduction mechanism is somehow a discrete-time
analogue to the Poisson construction of the �-Moran model proposed in [1].
To this purpose, we introduce a random background formed by a sequence of
i.i.d. Bernoulli trials H = {Hg : g ∈ Z} ∈ {0,1}∞, with probability of success
γN ∈ [0,1] and a sequence Z = {Zg : g ∈ Z} of i.i.d. ∇∞-valued random elements
with common distribution �. H and Z are assumed to be independent. For every
g ∈ Z, Hg = 1 (resp., Hg = 0) indicates that at generation g extreme reproduction
does (resp., does not) occur. Z will give the expected sizes of extreme reproduc-
tive events, when they occur. We assume that reproduction depends on (H,Z) as
follows:

(a) every individual v ∈ VN samples, independently, a random number of po-
tential parents Kv from the previous generation, where Kv has distribution QN ;

(b) given Kv = k the individual chooses the labels of its k potential parents by
sampling k i.i.d. random variables with random distribution

(10) η∗
g := Hgηg + (1 − Hg)UN,

where g = g(v), UN is the uniform distribution on {1, . . . ,N} and

(11) ηg :=
∞∑

m=1

Z(g,m)δY ∗
(g,m)

+ (
1 − |Zg|)UN,

where Y ∗ = {Y ∗
(g,m) : g ∈ Z,m ∈ N} is a sequence of i.i.d. random variables,

independent of (H,Z), each with uniform distribution on {1, . . . ,N}, |Zg| :=∑∞
m=1 Z(g,m) and Hg , Zg , Y ∗

g are independent.
(c) Each individual v inherits type 1 if and only if at least one of its virtual

parents is of type 1.

In other words, at step (b), if Hg = 0 (no extreme event occurs), all the potential
parents of each individual are chosen independently, uniformly at random, exactly
as described in Section 2.1. If Hg = 1 (extreme event occurs), then the potential
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parents are sampled independently according to the random measure ηg . To ex-
plain how such a measure works, one might think of each potential parent being
first assigned either to a group m (m = 1,2, . . .) with probability Z(g,m) or to a
residual group m = 0 with probability 1 − |Zg|; then all the members of the same
group m = 1,2, . . . will choose collectively the same label uniformly at random,
independently of all other groups, while each of the members in the residual group
m = 0 will make its own individual choice independently, uniformly at random.

2.2.1. �-Wright–Fisher graph with selection. The random graph representing
the population will be formed by the vertex set VN and a random edge set EN

depending on the following random variables:

(i) The random background (H,Z) with distribution Ber(γN)⊗∞ ⊗ �⊗∞.
(ii) The collection K = (Kv : v ∈ VN) of i.i.d. (QN) random variables, indicat-

ing how many potential parents are chosen by each individual at each generation.
(iii) The collection of potential parents

L(K) = {Lv}v∈VN
= {L(v,1),L(v,2), . . . ,L(v,Kv)}v∈VN

of i.i.d. random variables where, for each v = (g, i) ∈ VN and j ∈ N, the distribu-
tion of L(v,j) is η∗

g .

Define Jv ≤ Kv the number of distinct parents sampled by v and let {L̃(v,1), . . . ,

L̃(v,Jv)} be their labels.

DEFINITION 2.4. For every N ∈ N, γN ∈ [0,1], QN ∈ P(N ∪ {∞}) and
� ∈ P(∇∞), the (�,γN,QN)-Wright–Fisher graph (with frequency-dependent
selection QN ) is the graph with vertex set VN and the edge set

(12) EN = {{(
g(v) − 1, L̃(v,j)

)
, v

} : j = 1, . . . , Jv, v ∈ VN

}
.

2.2.2. �-Allele frequencies. A key property needed to prove both convergence
and duality is the following proposition. Denote

(13) Y(x) =
∞∑
i=1

BiZi + x
(
1 − |Z|)

for Z = (Z1,Z2, . . .) with distribution �, and (Bi : i = 1,2, . . .) i.i.d. Bernoulli(x),
independent of Z.

PROPOSITION 2.5. Let (XN
g : g ∈ N) be the 0-type allele frequency process

in a (�,γN,QN)-Wright–Fisher graph. For every g, the probability that all the
individuals in a sample of n (n ≤ N ) from generation g will be of type 0, given
XN

g−1 = x, is

(14) S(x,n) = (1 − γN)ϕQN
(x)n + γNνN(x,n),
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where ϕQN
(x) is the pgf of Qn and

(15) νN(x,n) := E
[(

ϕQN

(
Y(x)

))n]
,

where Y(x) is defined as in (13).

PROOF. Given XN
g−1 = x, if Hg = 0 the conditional probability that an indi-

vidual v from generation g(v) = g is of type 0 is μN(x) as in (7). By indepen-
dence,

P

(
n⋂

r=1

{
ξ(g, r) = 0

} ∣∣∣ Hg = 0,XN
g−1 = x

)
= μN(x)n = ϕQN

(x)n.

If Hg = 1, the individual v samples each of its i.i.d. potential parents (Lv,1, . . .)

from ηg . If Y ∗ is a random individual sampled uniformly from generation (g − 1),
then, given XN

g−1 = x, the variable

B := I
[
ξ
(
g − 1, Y ∗) = 0 | XN

g−1 = x
]

is a Bernoulli random variable with probability of success x. From the form of ηg

then

P
[
ξ(g − 1,Lv,1) = 0 | XN

g−1 = x,Hg = 1
]

= E

[ ∞∑
i=1

Z(g,i)P
(
ξ
(
g − 1, Y ∗

g,i

) = 0 | XN
g−1 = x

) + x
(
1 − |Zg|)

]

= E

[ ∞∑
i=1

Z(g,i)Bi + x
(
1 − |Zg|)

]
= E

[
Y(x)

] = x,

where (Bi) is a collection of i.i.d. Bernoulli random variables with parame-
ter x, independent of Zg . Since v chooses Kv parents independently from ηg ,
then

P
(
ξ(v) = 0 | Hg = 1,XN

g−1 = x
)

=
∞∑

k=0

P

(
k⋂

j=1

{
ξ(g − 1,L(v,j)) = 0

} ∣∣∣ Hg = 1,XN
g−1 = x

)
QN(Kv = k)

= E

[ ∞∑
k=0

( ∞∑
i=1

BiZ(g,i) + x
(
1 − |Zg|)

)k

QN(Kv = k)

]

= E
[
ϕQN

(
Y(x)

)] = νN(x,1).



�-WRIGHT–FISHER PROCESSES WITH SELECTION 261

Similarly, when the choices of n individuals are considered, then by independence
of the random variables {K(g,i)}i=1,...,N ,

P

(
n⋂

r=1

{
ξ(g, r) = 0

} ∣∣∣ Hg = 1,XN
g−1 = x

)

= E

[(
ϕQN

(
m∑

i=1

BiZ(g,i) + x
(
1 − |Zg|)

))n]
= νN(x,n).

Since the probability that Hg = 1 is γN , the result follows. �

By a similar argument, it is easy to derive a description of the one-step 0-type
allele frequency process.

COROLLARY 2.6. Let (XN
g : g ∈ N) be the 0-type allele frequency process

in a (�,γN,QN)-Wright–Fisher graph (VN,EN). Then XN
g evolves as a Markov

chain in [N ]/N with one-step transition probabilities

P
(
XN

g = j/N | XN
g−1 = x

)
= (1 − γN)Bin

(
j ;N,ϕQN

(x)
) + γNE

[
Bin

(
j ;N,ϕQN

(
Y(x)

))]
,

(16)

for j ∈ {1, . . . ,N}, x ∈ [N ]/N , where Bin(·;n,p) is the binomial probability mass
function with parameter (n,p), Y(x) is as in (13) and ϕQN

is the pgf of QN .

2.3. Ancestry and duality. Now we will introduce the ancestral process in-
duced by the (�,γN,QN)-Wright–Fisher graph (VN,EN).

DEFINITION 2.7. We say that (g−r, l) ∈ VN is a potential ancestor of (g, i) ∈
VN , g ∈ Z, r ∈ N l, i ∈ {1, . . . ,N}, if there exists a path of r connected vertices in
(VN,EN) that starts in (g − r, l) and ends in (g, i).

For all v ∈ VN , we define the following sets:

• Ancestors of an individual: for every v ∈ VN ,

AN(v) := {s ∈ VN : s is an ancestor of v}.
• Ancestry of a sample: for every g ∈ Z, n ≤ N and every v1, . . . , vn ∈ VN such

that g(v1) = · · · = g(vn) = g,

AN(v1, . . . , vn) :=
n⋃

i=1

AN(vi).

• Ancestors of a sample alive r generations back in time: for every g ∈ Z, r ∈ N,
n ≤ N and every v1, . . . , vn ∈ VN such that g(v1) = · · · = g(vn) = g,

AN
(v1,...,vn)(r) = {

u ∈ AN(v1, . . . , vn) : g(u) = g − r
}

Finally, let us write |B| to denote the cardinality of a set B .
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DEFINITION 2.8. The ancestral process, or block-counting process, of a sam-
ple of n individuals v = (v1, . . . , vn) from generation g is the process (DN

r : r ∈ N)

counting the number of ancestors of the sample alive in each of the previous gen-
erations, that is, DN

0 = n and

DN
r (v) = ∣∣AN

(v1,...,vn)(r)
∣∣, r = 1,2, . . . .

Notice that the law of the process (DN
r ) depends on the initial sample v only

through the number n of its coordinates. Our next goal is to prove a so-called
sampling duality property of (�,γN,QN)-Wright–Fisher graphs, adapting the ap-
proach of [18] to graphical representations.

PROPOSITION 2.9 (Sampling duality). Consider a (�,γN,QN)-Wright–
Fisher graph (VN,EN) defined on some probability space (�,F,P). Let (XN

g :
g ∈ N) and (DN

r : r ∈ N) be the corresponding 0-type allele frequency process and
ancestral process, respectively. Consider the sampling probability function S(x,n)

defined in (14). For every n,g ∈N and x ∈ [N ]/N ,

(17) Ex

[
S
(
XN

g ,n
)] = En

[
S
(
x,DN

g

)]
,

where the expectation on the left-hand side is on the random variable XN
g condi-

tional on XN
0 = x and the expectation on the right-hand side is on the variable

DN
g conditional on DN

0 = n.

REMARK 2.10. In fact, Proposition 2.9 establishes a pathwise duality of
(XN

g : g ∈ N) and (DN
r : r ∈ N) with respect to the duality function S, since the

two processes are defined on the same probability space, both as functions of the
same underlying driving process (VN,EN) (see [9] for a discussion of various
definitions of duality).

PROOF. Fix m,n ∈ N and a sample v0 = (v1, . . . , vn) of size n from genera-
tion g + 1. Define the following events:

−→
W (i) = {There are i individuals of type 0 in generation g} = {

XN
g = i/N

};
←−
W (i) = {There are i ancestors of v0 in generation 1} = {

DN
g (v0) = i

}
.

Finally, define the event

(18) E = {All individuals in v0 are of type 0}.
Note that the events

−→
W (i),

←−
W (i) and E belong to the σ -algebra generated by

the Wright–Fisher graph (VN,EN). We can use the law of total probabilities in
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two different ways to calculate the probability of E , conditional on {XN
0 = m/N}.

On one hand, we have

P{XN
0 =m/N}(E) =

N∑
i=0

P{XN
0 =m/N}

(
E | −→W (i)

)
P{XN

0 =m/N}
(−→
W (i)

)

=
N∑

i=0

P

(
E

∣∣∣ XN
g = i

N
,XN

0 = m

N

)
P

(
XN

g = i

N

∣∣∣ XN
0 = m

N

)

=
N∑

i=0

S(i/N,n)Pm/N

(
XN

g = i/N
)

= Em/N

[
S
(
XN

g ,n
)]

.

(19)

The third equality follows from the Markov property of (XN) and Proposition 2.5:
if there are i type zero individuals in generation g, the event E happens with prob-
ability S(i/N,n).

Similarly, we can calculate the probability of E by conditioning on the number
of ancestors of v0 at generation 1:

P{XN
0 =m/N}(E) =

N∑
i=0

P{XN
0 =m/N}

(
E | ←−W (i)

)
P{XN

0 =m/N}
(←−
W (i)

)

=
N∑

i=0

S

(
m

N
, i

)
Pn

(
DN

g (v0) = i
)

= En

[
S

(
m

N
,DN

g

)]
.

(20)

Finally, notice that all the above probabilities vanish for m = 0, or are conditioning
on zero-probability events (and can arbitrarily be set to zero). �

In some cases, sampling duality is very close to moment duality.

COROLLARY 2.11. Assume that QN(Kv = 1) = 1 − �N , 0 ≤ �N ≤ 1. Then

Ex

[(
XN

g

)n] = En

[
xDN

g
] + O(�N) + O(γN).

PROOF. The proof follows immediately from Proposition 2.5, Proposition 2.9
and from the fact that, if P(Kv = 1) = 1 − �N , the pgf of QN satisfies

(21) ϕQN
(x) ≈ (1 − �N)x + �NEQN

[
xKv | Kv > 1

]
. �
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3. Convergence. Now we will focus on the case QN(Kv = 1) = 1 − �N → 1
as N → ∞ and show weak convergence of the process XN�t/�N �.

DEFINITION 3.1. For any finite measure � on ∇∞ and any α ∈ (0,1/2), de-
fine

�α
N

(
(zi)

∞
1 ∈ ·) = �((zi)

∞
1 ∈ ·)∑∞

i=1 z2
i

1{z1≥N−α}.

Furthermore, denote �̂ := �/�(∇∞) and �̂α
N := �α

N/�α
N(∇∞).

REMARK 3.2. Note that �α
N(∇∞) ≤ �(∇∞)N2α . In particular, �α

N(∇∞)/

Nβ → 0 for all β > 2α.

The following lemma will be useful.

LEMMA 3.3. If Z has distribution �̂, Z(N) has distribution �̂α
N and (Bi : i ∈

N) is an i.i.d. sequence of Bernoulli(x) random variables, independent from Z and
Z(N), then

�(∇∞)E

[( ∞∑
i=1

(Bi − x)Zi∑∞
i=1 Z2

i

)2]
− �α

N(∇∞)E

[( ∞∑
i=1

(Bi − x)Z
(N)
i

)2]

= x(1 − x)

∫
∇∞

I{z1<N−α}(z)�(dz) → 0 as N → ∞.

(22)

PROOF. The proof is immediate by independence of the Bernoulli random
variables (Bi), and from the fact that

�(∇∞) − �α
N(∇∞)E

[ ∞∑
i=1

Z
(N)
i

2
]

=
∫
∇∞

[
1 − I{z1≥N−α}(z)

]
�(dz). �

PROPOSITION 3.4. Fix � a finite measure in ∇∞ and let �α
N, �̂α

N be as in
Definition 3.1 for some α < 1/2. Let (XN

g ) be the frequency process associated
to a Wright–Fisher graph with parameters (�̂α

N, γN,QN), for some α < 1/2, and
suppose that there exist κ ∈ (0,∞) and σ ≥ 0 such that:

(i) γN = κ−1�α
N(∇∞) × �N + o(�α

N(∇∞) × �N);
(ii) limN→∞ 1/(N�N) = σ/κ < ∞ and �NN2α → 0;

(iii) limN→∞ QN(K = k | K > 1) = πk−1 for every k ≥ 2;
(iv) β := limN→∞EQN

[K − 1 | K > 1] = ∑∞
k=1 kπk < ∞.

Then (XN�κt/�N �) ⇒ (Xt), where (Xt) is the unique strong solution to the SDE

dXt = − κs(Xt)Xt(1 − Xt) dt + √
σXt(1 − Xt) dBt

+
∫
(0,1]

∫
(0,1]

∞∑
i=1

yi(1{ui≤Xt−} − Xt−)Ñ(dt, dy, du),
(23)



�-WRIGHT–FISHER PROCESSES WITH SELECTION 265

where s(x) = ∑∞
k=1 P(K∗ ≥ k)xk−1, K∗ has distribution P(K∗ = j) = πj for all

k ∈ N, Ñ is a compensated Poisson measure on (0,∞) × ∇∞ × [0,1]∞ with in-
tensity ds × �(dy)∑∞

i=1 y2
i

× du, where du is the Lebesgue measure on [0,1]∞.

REMARK 3.5. If Xt exists, it has generator A with domain D(A) containing
all the twice differentiable functions f : [0,1] →R, such that, for every x ∈ [0,1],

Af (x) = κ

∞∑
i=1

πi

(
xi+1 − x

)
f ′(t) + σ

2
x(1 − x)f ′′(x)

+
∫
∇∞

E

[
f

(
x

(
1 −

∞∑
i=1

zi

)
+

∞∑
i=1

ziBi

)
− f (x)

]
�(dz)∑∞

i=1 z2
i

,

(24)

for a collection (Bi) if i.i.d. Bernoulli(x) random variables. This follows from the
fact that

∞∑
i=1

πi

(
xi+1 − x

) = −x(1 − x)

∞∑
i=1

πi

1 − xi

1 − x

= −x(1 − x)

∞∑
i=1

πi

i−1∑
j=0

xj

= −x(1 − x)

∞∑
j=0

xj
∞∑

i=j+1

πi

= −x(1 − x)

∞∑
j=0

xj
∞∑

i=j+1

P
(
K∗ = i

)

= −x(1 − x)

∞∑
j=1

P
(
K∗ ≥ j

)
xj−1

= −x(1 − x)s(x)

which accounts from the first sum in (24). The remaining terms, and in particular
the integral, follow from a simple reformulation of the generator of the two-type �-
Fleming–Viot process without selection (see, e.g., formula (5.6) in [1]), but could
also be derived directly from (23) by Poisson calculus techniques.

In view of this, the drift coefficient −s(x)x(1 − x) can be also be written as

(25) −x(1 − x)s(x) = [
ϕπ(x) − x

]
,

where ϕπ is the probability generating function of (π : i > 1, . . .), the distribution
of K∗. The form (25) highlights an important connection between our generator A

and that of a class of Branching-coalescing stochastic processes with K∗ denoting
the offspring random variable of the branching component. This connection will
be explored further in Section 3.1.
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Before starting with the proof of Proposition 3.4, we shall make sure that a
solution (Xt) to the SDE (23) in fact exists. This is the content of the following.

LEMMA 3.6. For any σ ≥ 0, κ > 0, any finite measure � on ∇∞ and any
probability mass function {πi : i ∈ N} with finite mean, there exists a unique strong
solution (Xt) to the SDE (23), associated to the generator A as in equation (24).

PROOF. To prove strong existence and pathways uniqueness of XN , we will
use Theorem 5.1 of Li and Pu (2012) [17]. In particular, we need to verify the
sufficient conditions (3.a), (3.b) and (5.a) of that paper. (3.a) in our case amounts
simply to proving Lipschitz continuity for the drift coefficient, which is verified by
observing that

(3.a)

∣∣∣∣∣
∞∑

k=1

πk

(
xk+1 − x

) −
∞∑

k=1

πk

(
yk+1 − y

)∣∣∣∣∣ < max{1, β}|x − y|.

This follows from the fundamental theorem of calculus since, if we denote u(x) =∑∞
k=1 πk(x

k+1 − x), then −1 ≤ u′(x) ≤ ∑∞
k=1 kπk = β for x ∈ [0,1].

To prove condition (3.b), define g(x,u | z) = ∑∞
i=1 zi(I{ui<x} − x) for any

(x,u, z) ∈ [0,1] × [0,1]∞ × ∇∞ and notice that∫
∇∞

∫
[0,1]∞

g(x,u | z) du
�(dz)∑∞

j=1 z2
i

=
∫
∇∞

∞∑
i=1

ziE
[
Bx

i − x
] �(dz)∑∞

j=1 z2
i

,

where (Bx
i : i ∈N) is an i.i.d. sequence of Bernoulli(x) random variables (in other

words, (Bx
i ) = (I{Ui≤x}) for (Ui) i.i.d. Uniform in [0,1]). Our next task is to show

that there exist a constant K such that, for every x, y where 0 ≤ x, y ≤ 1,∣∣√σx(1 − x) −
√

σy(1 − y)
∣∣2

(3.b)
+

∫
∇∞

∫
[0,1]∞

(
g(x,u | z) − g(y,u | z))2

du
�(dz)∑∞

j=1 z2
i

< K|x − y|.

To this purpose, we first claim that

(26)
∣∣√σx(1 − x) −

√
σy(1 − y)

∣∣2 ≤ max{4,2
√

σ }|x − y|.
Note that the claim is trivial if |x − y| ≥ 1/4. Now assume that |x − y| < 1/4.
There are two cases: First, assume that x, y ∈ [1/4,1] and note that |√σx(1 − x)−√

σy(1 − y)|2 < |√σx − √
σy|. Let f (x) := √

σx and note that |f ′(x)| < 2
√

σ

for all x ∈ [1/4,1]. Then, by the fundamental theorem of calculus,∣∣√σx(1 − x) −
√

σy(1 − y)
∣∣2 < |√σx − √

σy| =
∣∣∣∣∫ x

y
f ′(s) ds

∣∣∣∣ < 2
√

σ |x − y|.
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Now assume that x, y ∈ [0,3/4]. Then (26) is proved by a similar argument, by
using |√σx(1 − x) − √

σy(1 − y)|2 < |√σ(1 − x) − √
σ(1 − y)| and with f (x)

replaced by h(x) := √
σ(1 − x), so that |h′(x)| < 2

√
σ for all x ∈ [0,3/4].

Finally, assuming without loss of generality x > y,∫
∇∞

∫
[0,1]∞

(
g(x,u | z) − g(y,u | z))2

du
�(dz)∑∞

j=1 z2
i

=
∫
∇∞

E

[ ∞∑
i=1

zi

(
Bx

i − x − B
y
i + y

)2

]
�(dz)∑∞

j=1 z2
i

=
∫
∇∞

∞∑
i=1

z2
i E

[[(
Bx

i − B
y
i

) + (y − x)
]2] �(dz)∑∞

j=1 z2
i

=
∫
∇∞

∞∑
i=1

z2
i

(
(x − y)

(
1 − (x − y)

)) �(dz)∑∞
j=1 z2

i

=
∫
∇∞

(x − y)
(
1 − (x − y)

)
�(dz)

< �(∇∞)|y − x|,
where the third equality follows from the fact that each difference (Bx

i − B
y
i ) =

I{Ui≤x} − I{Ui≤y} is Bernoulli(x − y). This proves condition (3.b) and we are left
with the task of proving condition (5.a), that is, there is a constant M such that

(5.a) s2(x) + σx(1 − x) +
∫
[0,1]∞×∇∞

g2(x, u | z) du
�(dz)∑∞

j=1 z2
i

< M,

for every x ∈ [0,1]; however, this is easy, after the above calculations. Indeed, we
can rewrite the left-hand side as( ∞∑

i=2

πi

(
xi − x

))2

+ σx(1 − x) +
∫
∇∞

E

[ ∞∑
i=1

z2
i

(
Bx

i − x
)2

]
�(dz)∑∞

j=1 z2
i

≤ β2 + σ + �(∇∞).

This implies that all the sufficient conditions of Li and Pu’s theorem are satisfied
and we can conclude strong existence and uniqueness of Xt . �

We can turn our attention to the proof of our main convergence result.

PROOF OF PROPOSITION 3.4. We will prove the convergence of the generator
of (XN

Mt
), where MN

t is a Poisson process with rate κ/�N , to the generator of Xt .
Provided this claim is true, we can use Theorem 19.25 and Theorem 19.28 of [10]
to conclude that (XN�κt/�N �) converges weakly to (XN

t ).
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First of all, assumption (i) implies that, in proving convergence, we can work
with the simplification γN = ηN�N/κ , where ηN := �α

N(∇∞), without loss of gen-
erality. Notice that the construction requires γN ∈ [0,1], but this, by assumption
(ii), is always satisfied at least for N sufficiently large.

From formula (16) of Corollary 2.6, it is convenient to have in mind the repre-
sentation

(27) XN
g | {Xg−1 = x} = (1 − Hg)

Mx

N
+ Hg

MY(x)

N
,

where: Hg has Bernoulli(γN) distribution; MY(x) (resp., Mx) is a binomial ran-
dom variable with parameter (N,ϕQN

(Y (x))) [resp., (N,ϕQN
(x))], with Y(x) de-

scribed by (13) and, given Xg−1 = x, all the random variables on the right-hand
side are conditionally independent.

Furthermore, the assumption that QN({1}) = 1 − O(�N) entails (21), that is,
ϕQN

(x) ≈ x as N → ∞, �N → 0, hence MY(x) is, asymptotically, binomial with
parameter (N,Y (x)). By a routine use of the binomial theorem, from the definition
(13) of Y(x), conditionally on Z = z we can thus write

MY(x) | {Z = z} ≈
∑∞

i=1 Biκi + R

N
, N → ∞, �N → 0,

where (Bi) are i.i.d. Bernoulli(x), R is binomial(κ0, x) and (κ0, κ1, . . .) is a
sequence of nonnegative integers with multinomial distribution with parameter
(N, (1 − |z|, z1, . . .)). For every g, we can write

E
[
f

(
XN

g

) | XN
g−1 = x,Hg = 1,Zg = z

] ≈ E

[
f

(∑∞
i=1 Biκi + R

N

)]
.

Now we consider the following Poisson embedding of the 0-type frequency pro-
cess (XN

g ): Let Mt be a Poisson process on [0,∞) with rate (κ/�N), independent

of (XN
g ), and define X̃N

t := XN�Mt� for every t ≥ 0. We can see that the discrete

generator AN of (X̃N
t ), applied to any function f ∈ C2[0,1] in a point x ∈ [0,1],

fulfils

ANf (x) := lim
t→0

Ex[f (X̃N�κt/�N �)] − f (x)

t

= ηN�Nk−1E[f (MY(x)/N) − f (x)]
�Nκ−1

+ (
1 − ηN�Nκ−1)κE[f (Mx/N) − f (x)]

�N

≈ ηN

∫
∇∞

E

[
f

(∑∞
i=1 Biκi + R

N

)
− f (x)

∣∣∣ Z = z

]
�̂α

N(dz)

+ (
1 − ηN�Nκ−1)κEx[f (Mx/N) − f (x)]

�N

.

(28)
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Add and subtract x to the first term and Taylor-expand the second term around x

to obtain

≈ ηN

∫
∇∞

E

[
f

(
x +

∑∞
i=1(Bi − x)κi + R − κ0x

N

)
− f (x)

∣∣∣ Z = z

]
�̂α

N(dz)(29)

+ (
1 − ηN�Nκ−1)κEx[Mx/N − x]f ′(x)

�N

(30)

+ (
1 − ηN�Nκ−1)κEx[(Mx/N − x)2]f ′′(x)

2�N

+ o(1).(31)

Now we will study separately the parts (29), (30), (31). The simplest is (31), for
which we just need to use that QN({1}) = 1−o(1) and write explicitly the variance
of Mx/N . By assumption (ii) and because ηN�N → 0,

(32) (1 − ηN�N/κ)
κEx[(Mx/N − x)2]f ′′(x)

2�N

= σ

2
x(1 − x)f ′′(x) + o(1).

Now we study part (30):

(1 − ηN�N/κ)
κEx[Mx

N
− x]f ′(x)

�N

= (1 − ηN�N/κ)
ϕQN

(x) − x

�N/κ
f ′(x)

= κ

∞∑
k=2

(
xk − x

)QN({k})
�N

f ′(x) + o(1)

= κ

∞∑
k=1

(
xk+1 − x

)
πkf

′(x) + o(1)

= κx(1 − x)s(x) + o(1).

(33)

The last equality follows from Remark 3.5. Finally, we study part (29). First ex-
pand around x + ∑∞

i=1(Bi − x)zi , conditioning on κ , (Bi), R, z:

f

(
x + 1

N

[ ∞∑
i=1

(Bi − x)κi + R − κ0x

])

= f

(
x +

∞∑
i=1

(Bi − x)zi +
∞∑
i=1

(Bi − x)(κi/N − zi) + R/N − κ0x/N

)

= f

(
x +

∞∑
i=1

(Bi − x)zi

)

+ 1

2

( ∞∑
i=1

(Bi − x)(κi/N − zi) + 1

N
[R − κ0x]

)2

f ′′(ξ),
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where ξ is a number between x + ∑m
i=1(Bi − x)zi and x + ∑m

i=1(Bi − x)κi/N +
[R − κ0x]/N . Next, note that, since E[R] = κ0x and E[κi] = Nzi then, condition-
ally on Z = z,

Ez

[( ∞∑
i=1

(Bi − x)(κi/N − zi) + 1

N
[R − κ0x]

)2]

= x(1 − x)Ez

[ ∞∑
i=1

zi(1 − zi)

N
+ κ0

N2

]

= x(1 − x)

[ ∞∑
i=1

zi(1 − zi)

N
+ 1 − |z|

N

]
≤ 2

N
.

This is useful to us because, still by Remark 3.2, it implies that

∫
∇∞

Ez

[( ∞∑
i=1

(Bi − x)(κi/N − zi) + 1

N
[R − κ0x]

)2]
�α

N(dz) ≤ 2

N
�α

N(∇∞)

≤ 2N2α−1�(∇∞).

Recall that we assumed N2α−1 → 0, so we have shown that part (29) is equal
to

ηN

∫
∇∞

Ez

[
f

(
x +

∞∑
i=1

(Bi − x)zi

)
− f (x)

]
�̂α

N(dz) + o(1)

=
∫
∇∞

Ez

[
f

(
x +

∞∑
i=1

(Bi − x)zi

)
− f (x)

]
�α

N(dz) + o(1).

Finally, by Lemma 3.3 this is also is equal to

(34)
∫
∇∞

Ez

[
f

(
x +

∞∑
i=1

(Bi − x)zi

)
− f (x)

]
�(dz)∑∞

i=1 z2
i

+ o(1).

Equations (32), (33) and (34) imply that ANf → Af . �

3.1. Duality for the limit genealogy. Now we shall focus on the sampling dual
of (XN

g ), that is, the ancestral process (DN
g ) introduced in Section 2.3. We will

work with the inverse process of (DN
g ), which we define as (SN

g ) = (1/DN
g ), with

the benefit of mapping the sequence of N-valued processes ((SN) : N = 1,2, . . .)

into a sequence of processes in the compact state space [N ]/N ⊆ [0,1]. This will
allow us to guarantee weak convergence of the processes just by exploiting weak
convergence of their (semi)-duals, ((XN) : N = 1,2, . . .).
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DEFINITION 3.7. Fix a, b ∈ R, a probability mass function p = (pi : i ∈ N)

on N ∪ {∞} and a finite measure � on ∇∞. We call the (a,p, b,�)-branching-
coalescent process the continuous time Markov chain (Dt) with state space N ∪
{∞} and generator

Lf (n) = a

∞∑
i=0

pi

[
f (n + i − 1) − f (n)

]

+ b

(
n

2

)[
f (n − 1) − f (n)

] + Lf (n)

(35)

for every n ∈ N and f :N →R in C2, with

Lf (n) :=
∫
∇∞

n∑
k=0

∑
{m:|m|=k}

[
f

(
n − k + d(m)

) − f (n)
]

× Bin
(
k;n, |z|) Mn(m;k, z)

�(dz)∑∞
i=1 z2

i

,

(36)

where Mn(·;k, z) is the multinomial probability mass function with parameter
(k, z), and d(m) counts the number of nonzero coordinates in m = (m1,m2, . . .).

PROPOSITION 3.8. Assume the same notation and hypotheses of Proposi-
tion 3.4. Let (XN

g : g ∈ N) and (DN
g : g ∈ N) be, respectively, the type-0 allele fre-

quency process and the ancestral process of a (�̂α
N,QN,γN)-Wright–Fisher graph

(VN,EN). Define SN
g := 1/DN

g for every g ∈ N. Then (SN�t/�N � : t ≥ 0) converges
in distribution to (1/Dt : t ≥ 0), where (Dt) is a (κ,π,σ,�)-branching-coalescent
process with generator L as defined in (35). Moreover, for every x ∈ [0,1], n ∈ N

and t > 0

Ex

[
Xn

t

] = En

[
xDt

]
,

where (Xt) is the two-type (κ,π,σ,�)-Fleming–Viot process solution to the SDE
(23) of Proposition 3.4.

PROOF. It is easy to show directly that, if A is the two-type (�,σ,�)-
Fleming–Viot generator then, for h(x,n) = xn, Ah(x,n) = Lh(x,n) where L is as
(35), with a = κ , b = σ , p = π , although one could as well combine together re-
sults already proven in the literature for the cases where there are no simultaneous
multiple coalescence events [7] or κ = 0 [1]. For every x ∈ [0,1],

Axn = κ

∞∑
i=1

πi

[
xn+i − xn] + σ

(
n

2

)(
xn−1 − xn)

(37)

+
∫
∇∞

(
E

[(
x
(
1 − |z|) +

∞∑
i=1

ziBi

)n]
− xn

)
�(dz)∑∞

i=1 z2
i

.(38)
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The first line, (37), describes the action on n �→ h(x,n) of the Markov generator
L − L̄. As for the L̄-part, rewrite the expectation in the second term as

(39) E

[(
x
(
1 − |z|) +

∞∑
i=1

ziBi

)n]
=

n∑
k=0

(
n

k

)
xn−k(1 − |z|)n−k

E

( ∞∑
i=1

ziBi

)k

.

Since (Bi) is an i.i.d. sequence of Bernoulli(x) random variables,

E

( ∞∑
i=1

ziBi

)k

= |z|k ∑
|m|=k

Mn
(
m;k, z/|z|)xk−d(m),

where d(m) counts the nonzero coordinates of the vector m. Hence (38) is equal
to∫

∇∞

[
n∑

k=0

∑
|m|=k

(
n

k

)
Mn

(
m;k, z/|z|)|z|k(1 − |z|)n−k

xn−k+d(m) − xn

]
�(dz)∑∞

i=1 z2
i

= L̄xn.

Now, by Corollary 2.11, we have that

En

[
xDN

t
] = Ex

[(
XN

t

)n] + O(�N).

On the other hand, by Proposition 3.4, for all x ∈ [0,1], n ∈ N and t > 0,

En

[
xNt

] = Ex

[
Xn

t

] = lim
N→∞Ex

[(
XN�t/�N �

)n] = lim
N→∞En

[
x

DN�t/�N �].
Since convergence of pgfs implies convergence of the corresponding distributions,
we conclude the convergence of the semigroup pN

t (f (n)) = En[f (DN�t/�n�)] to the
semigroup pt(f (n)) = En[f (Dt)]. Using composition of functions, this also im-
plies that pN

t (f (n)) = En[f ((DN
t )−1)] converges to pN

t (f (n)) = En[f ((Nt)
−1)].

As SN
g = (DN

g )−1 takes values in the compact [0,1] we conclude that (SN�t/�N �) ⇒
(Dt)

−1 by applying Theorem 19.25 and Theorem 19.28 of [10]. �

4. Fixation in the ancestral process. We will now turn our attention to study-
ing the probability of extinction of the 0-type allele in the jump-diffusion scaling
limit (Xt) with generator (24). Such a probability is intrinsically related to the
long-term behaviour of the dual ancestral process (Dt). We have seen that, back-
ward in time, selection is responsible for positive jumps in (Dt), due to the choice
of multiple potential parents, whereas reproduction induces negative jumps, due to
coalescence of lineages. We will determine, in Theorem 4.6, conditions in order
for none of these two forces to dominate the other so that (Dt) has a stationary dis-
tribution. We shall see that the 0-type has a chance to survive (and even fixate in
the population) whenever (Dt) has a stationary distribution. In fact, the stationary
distribution of (Dt) characterises the probability of fixation of type 1. Otherwise,
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if (Dt) does get absorbed at one, then type 0 is doomed to extinction: this will be
the content of Lemma 4.7.

As motivated in the Introduction, our focus in this section is on population mod-
els without the Kingman component, that is, whose allele frequency process has no
diffusive part, since this is the case that cannot be covered by other duality-based
methods proposed recently [7]. Thus we will assume throughout that � has no
atoms at zero (equivalently, that σ = 0). It is worth pointing out that our generator
approach [in particular, the identity (40)] relies on such an assumption.

Recall the definition �̂(dz) := �(dz)/�(∇∞). The following identity will play
a key role.

LEMMA 4.1. Let � be a finite measure on (∇∞) with no atoms at {0}. The
generator A of the two types (π,0,�) Fleming–Viot process applied to a bounded
function f : [0,1] →R admits the representation

Af (x) = −κs(x)x(1 − x)f ′(x)

+ �(∇∞)

2
E

[
(−x + ∑∞

i=1 Z∗
i Bi)(

∑∞
i=1 Z∗

i Bi)

(
∑∞

i=1 Z∗
i

2)

× f ′′
(
x(1 − W) + V W

∞∑
i=1

Z∗
i Bi

)]
,

(40)

where Z∗
i := Zi/|Z| i = 1,2, . . . , Z = (Z1,Z2, . . .) is �̂-distributed, (Bi)i∈N is

a sequence of i.i.d. Bernoulli(x)- distributed random variables, V is a uniform
[0,1] random variable, W = |Z|S, S has density 2s on [0,1], and Z, S, V , (Bi)

are independent.

REMARK 4.2. The identity (40) extends a representation for the generator
of a two-type 	-Fleming–Viot process proved by Griffiths (equation (7) in [8]),
which can be recovered as the particular case where Z2 = Z3 = · · · = 0 with �̂-
probability one. In this case, (40) holds with

∑∞
i=1 Z∗

i Bi = B1.

PROOF. The drift component plays no substantial role in the proof so we can
as well set s(x) ≡ 0 for convenience and we only need to calculate directly the
expectation (integrating) with respect to V and S and apply a simple change of
variables. With s ≡ 0, denote with A∗f the right-hand side of (40) and with Af

the two type �-Fleming–Viot generator. We will first calculate the expectation
with respect to V . Integrating by parts,

A∗f (x)

�(∇∞)
= 1

2
E

[
1∑∞

i=1 Z∗
i

2

(
−x +

∞∑
i=1

Z∗
i Bi

)( ∞∑
i=1

Z∗
i Bi

)

× f ′′
(
x(1 − W) + V W

∞∑
i=1

Z∗
i Bi

)]
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= 1

2
E

[
1∑∞

i=1 Z∗
i

2

(
−x +

∞∑
i=1

Z∗
i Bi

)
1

W
f ′

(
x(1 − W) + W

∞∑
i=1

Z∗
i Bi

)]
(41)

− 1

2
E

[
1∑∞

i=1 Z∗
i

2

(
−x +

∞∑
i=1

Z∗
i Bi

)
1

W
f ′(x(1 − W)

)]
.(42)

The last term, (42), in fact vanishes. Indeed, for any z∗ ∈ ∇∞ : |z∗| = 1,

E

[ ∞∑
i=1

z∗
i Bi

]
=

∞∑
i=1

z∗
i E[Bi] = x.

Thus

1

2
E

[
1∑∞

i=1 Z∗
i

2

(
−x +

∞∑
i=1

Z∗
i Bi

)
1

W
f ′(x(1 − W)

)]

= 1

2
E

[(
−x +E

[ ∞∑
i=1

Z∗
i Bi

∣∣∣ Z∗
])

f ′(x(1 − W))

W
∑∞

i=1 Z∗
i

2

]
= 0.

Finally, we calculate the expectation with respect to S:

A∗f (x)

�(∇∞)
= 1

2
E

[
1∑∞

i=1 Z∗
i

2

(
−x +

∞∑
i=1

Z∗
i Bi

)

× 1

W
f ′

(
x(1 − W) + W

∞∑
i=1

Z∗
i Bi

)]

= 1

2
E

[∫ 1

0

1∑∞
i=1 Z∗

i
2

(
−x +

∞∑
i=1

Z∗
i Bi

)

× 1

s|Z|f
′
(
x
(
1 − s|Z|) + s|Z|

∞∑
i=1

Z∗
i Bi

)
2s ds

]

= E

[∫ 1

0

1

|Z|∑∞
i=1 Z∗

i
2

(
−x +

∞∑
i=1

Z∗
i Bi

)

× f ′
(
x
(
1 − s|Z|) + s|Z|

∞∑
i=1

Z∗
i Bi

)
ds

]

=
∫
∇∞

1∑∞
i=1 zi

2

[
f

(
x
(
1 − |z|) +

∞∑
i=1

ziBi

)
− f (x)

]
�̂(dz)

= Af (x)

�(∇∞)
,

(43)
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where the second-to-last equality follows from integration by parts and the last
equality follows from (24). �

Our main result on fixation will consider the dynamics of branching-coalescing
dual processes driven by a certain class of admissible measures �.

DEFINITION 4.3. Let z ∈ ∇∞ and c ∈ (0,1). Define m(z, c) = inf{k ∈ N :∑k
i=1 zi > |z|(1 − c)}. We say that z is admissible if

lim
n→∞m(z, cn)/

√
n = 0,

for some sequence cn such that ncn → 0. We denote ∇◦∞ the set of elements of ∇∞
which are admissible. We say that a probability measure μ on ∇∞ is admissible if
μ(∇◦∞) = 1.

EXAMPLE 4.4 (Finite support). Every � measure with support in ∇m := {z =
(z1, z2, . . .) ∈ ∇∞ : zj = 0∀j > m}, for any m ∈ N, is admissible. The parameter
measure 	 of a 	-Fleming–Viot model is thus always admissible since 	 is a
�-measure concentrated on ∇1 = [0,1].

EXAMPLE 4.5 (Stick-breaking distributions). Let {Yn}n∈N be a sequence of
independent and identically distributed [0,1) valued random variables, such that
P(Y1 > 0) > 0. Let Z̄1 = Y1 and Z̄n = Yn

∏n−1
i=1 (1 − Yi), n = 2,3, . . . . Let the

random vector (Z1,Z2, . . .) be a permutation of (Z̄1, Z̄2, . . .) such that Zn > Zn+1
for all n ∈ N. If � is the distribution of (Z1,Z2, . . .) then � is admissible. To see
this, let ε > 0 be such that δ := P(Y1 > ε) > 0 and let Cn = ∑n

i=1 I{Yi>ε}. We will
show that P(m(Z,n−1/2) > n1/4) is exponentially small. That � is admissible will
then follow by Borel–Cantelli’s lemma:

P

(
n1/4∑
i=1

Zi > 1 − 1√
n

)
≥ P

(
n1/4∑
i=1

Z̄i > 1 − 1√
n

)

= P

(
n1/4∏
i=1

(1 − Yi) <
1√
n

)

≥ P

(
Cn1/4 > n1/4 δ

2

)
I{(1−ε)

n1/4 δ
2 < 1√

n
}.

Important examples in this class are the Poisson–Dirichlet distribution, its two-
parameter extension (see [4]).

The main result of this section is the following.
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THEOREM 4.6. Let (Xt : t ≥ 0) be the solution to (23) for given (πi) ∈ P(N∪
{∞}) such that β = ∑∞

k=1 kπk < ∞, for 0 < κ < ∞ and for a measure � such that
�̂ is an admissible probability measure on ∇∞. Let (Dt) be the corresponding dual
branching-coalescing process. With the same notation as in Proposition 3.4 and
Lemma 4.1, let

(44) κ∗ := 1

2β
E

[
1∑∞

i=1 Z∗
i

2

1

W(1 − W)

]
.

So long as κ∗ < ∞, (Dt) has a unique stationary distribution if and only if κ < κ∗.
Otherwise, if κ ≥ κ∗ then for every n,m > 0 it holds that limt→∞P(Dt < m |
D0 = n) = 0. Equivalently, Px(limt→∞ Xt = 0) = 1 if and only if κ ≥ κ∗.

To prove the claim, we need the next lemma which spells out the relationship
between probability of extinction in the forward in time frequency process and
stationarity of the dual ancestral process.

LEMMA 4.7. Let κ > 0, (πi) and � satisfy the assumptions of Proposition 3.4
such that there exists a solution (Xt) to (23). Let (Dt) be the dual ancestral process
to (Xt). One of the following two cases is always true:

(i) If (Dt) is positive recurrent, then (Dt) has a unique stationary distribution
μ and

p(x) := Px

(
lim

t→∞Xt = 0
)

= 1 − ϕμ(x),

where ϕμ is the probability generating function of μ. In particular p′(x) =
−∑∞

m=1 μ(m)mxm−1 is strictly negative and decreasing for all x ∈ [0,1].
(ii) If Dt is not positive recurrent, then Px(limt→∞ Xt = 0) = 1 for every x ∈

(0,1].

PROOF. First, assume that (Dt) is positive recurrent. The process (Dt) moves
from any n ∈ N to each of its neighbours in N ∪ {∞} with a positive rate, hence
clearly (Dt) is an irreducible Markov process and thus it has a unique stationary
distribution. Now we apply moment duality and dominated convergence. Let n ∈
N∪ {∞} and x ∈ (0,1]:

(45) Ex

[
lim

t→∞Xn
t

]
= lim

t→∞Ex

[
Xn

t

] = lim
t→∞En

[
xDt

] =
∞∑

m=1

μ(m)xm = ϕμ(x).

Since the random variable limt→∞ Xt takes values in [0,1], its distribution is char-
acterised by its moments. This allows us to conclude that

P

(
lim

t→∞Xt ∈ · | X0 = x
)

= (
1 − ϕμ(x)

)
δ0(·) + ϕμ(x)δ1(·).
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Now we assume that (Dt) is not positive recurrent. This implies that for every
n,m ∈ N ∪ {∞}, limt→∞P(Dt < m | D0 = n) = 0. We will use again moment
duality and dominated convergence. For any x ∈ (0,1],
(46) Ex

[
lim

t→∞Xn
t

]
= lim

t→∞Ex

[
Xn

t

] = lim
t→∞En

[
xDt

] ≤ xm.

As m is arbitrary, we conclude that Ex[limt→∞ Xn
t ] = 0 for every n ∈ N. This

implies that

P

(
lim

t→∞Xt ∈ · ∣∣ X0 = x
)

= δ0(·). �

We are now ready to prove Theorem 4.6.

PROOF OF THEOREM 4.6. We will first assume that � is concentrated on the
m-dimensional simplex, that is, �̂ selects almost surely at most m nonzero atoms
Z1, . . . ,Zm.

Sufficiency. Take κ = κ∗. Let p(x) = P(limt→∞ Xt = 0 | X0 = x) where Xt has
generator A given by (24).

Note that Ap(x) = 0. Then, by Lemma 4.1,

0 = κ

∞∑
k=1

πk

(
xk+1 − x

)
p′(x)

+ 1

2
E

[
(−x + ∑m

i=1 Z∗
i Bi)(

∑m
i=1 Z∗

i Bi)∑m
i=1 Z∗

i
2 p′′

(
x(1 − W) + V W

m∑
i=1

Z∗
i Bi

)]
.

Taking the expectation with respect to V , dividing by 1
2x(1 − x) and observing

that xi+1−x
x(1−x)

= −∑i−1
j=0 xj , we obtain

0 = − 2κ

∞∑
k=1

πk

k−1∑
j=0

xjp′(x)

+ 1

x(1 − x)
E

[
(−x + ∑m

i=1 Z∗
i Bi)

W
∑m

i=1 Z∗
i

2

×
{
p′

(
x(1 − W) + W

m∑
i=1

Z∗
i Bi

)
− p′(x(1 − W)

)}]
.

(47)

Writing the expectation over B = (B1,B2, . . .) as a sum, we obtain

0 = − 2κ

∞∑
k=1

πk

k−1∑
j=0

xjp′(x)

+ ∑
b∈{0,1}m

m∏
i=1

P(Bi = bi)E

[
(−x + ∑m

i=1 Z∗
i bi)

x(1 − x)W
∑m

i=1 Z∗
i

2 �
(
x, b;W,Z∗)]

,

(48)
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where

�
(
x, b;W,Z∗) :=

{
p′

(
x(1 − W) + W

m∑
i=1

Z∗
i bi

)
− p′(x(1 − W)

)}
.

Since P(B = b) = x|b|(1 − x)m−|b| where |b| = ∑m
i=1 bi then, if we consider the

limit when x goes to 1, only the terms where at most one of the bi is equal to zero
remain, as only in this cases limx→1

P(b=v)
x(1−x)

(−x + ∑m
i=1 zibi) �= 0. Thus as x → 1,

0 = − 2κ

∞∑
k=1

πkkp
′(1−)

+E

[
p′(1−) − p′(1 − W)

W
∑m

i=1 Z∗
i

2

]

−
m∑

i=1

E

[
Z∗

i

W
∑m

i=1 Z∗
i

2

{
p′(1 − WZ∗

i

) − p′(1 − W)
}]

.

(49)

The first expectation accounts for the case where bi = 1 for all i = 1, . . . ,m. The
second expectation deals with all the cases where the only zero coordinate in b =
(b1, . . . , bm) is bi for each i = 1, . . .m, in each of which cases one has

−x +
m∑

i=1

Z∗
i bi = −x + 1 − Z∗

i → −Z∗
i , x → 1.

Rewriting,

0 = −2κβp′(1−)
+

m∑
i=1

E

[
Z∗

i

W
∑m

i=1 Z∗
i

2

{
p′(1−) − p′(1 − Z∗

i W
)}]

.

Multiplying and dividing by (1 − W) the argument of the expectation, our choice
of κ implies that

(50) 0 =
m∑

i=1

E

[−Wp′(1) − (1 − W)p′(1 − Z∗
i W)

W(1 − W)

]
.

Equation (50) cannot be true if (Dt) is positive recurrent, because in that case p′(x)

is negative. By Lemma 4.7, then p(x) = 1 for all x ∈ [0,1), and thus p′(x) = 0 for
all x ∈ [0,1].

Necessity. Let κ < κ∗. Assume that p(x) = 1 for all x ∈ [0,1). We will show
that this assumption leads to a contradiction. Consider the test function w(x) =
log(1 − x) + Kx, where K is a positive (large) constant. For any t ≥ 0 consider
the generator equation

(51) Ex

[
w(Xt)

] − w(x) =
∫ t

0
Ex

[
Aw(Xs)

]
ds,
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where A is the generator in equation (24). If p(x) = 1, when t → ∞, equation
(51) becomes

(52) −w(x) =
∫ ∞

0
Ex

[
Aw(Xs)

]
ds,

we will show that for some choice of x ∈ (0,1] and K > 0 equation (52) does not
hold. This implies that p(x) �= 1 for some x ∈ (0,1], a contradiction. Lemma 4.7
then assures that p(x) �= 1 for all x ∈ (0,1].

Our proof is based on the analysis of E[Aw(Xs)]. We will first take the expec-
tation with respect to the uniform random variable V . Using w′(x) = − 1

1−x
+ K

and the fact that ∫ 1

0
w′′(a + bv)dv = 1

b

[
w′(a + b) − w′(a)

]
we obtain

Aw(x) = xκ

∞∑
i=1

πi

i−1∑
j=0

xj − xKκ

∞∑
i=1

πi

(
1 − xi)

− 1

2
E

[(
−x +

m∑
i=1

Z∗
i Bi

)[(
1 − x(1 − W) − W

m∑
i=1

Z∗
i Bi

)−1

− (
1 − x(1 − W)

)−1

]/(
W

m∑
i=1

Z∗
i

2

)]

= xκ

∞∑
i=1

πi

i−1∑
j=0

xj − xKκ

∞∑
i=1

πi

(
1 − xi)

− 1

2
E

[
1∑m

i=1 Z∗
i

2

(
−x +

m∑
i=1

Z∗
i Bi

)

×
∑m

i=1 Z∗
i Bi

(1 − x(1 − W) − W
∑m

i=1 Z∗
i Bi)(1 − x(1 − W))

]
.

(53)

Note that for all x ∈ (0,1) if K → ∞ the right-hand side of equation (53) tends to
−∞. Then we can chose K large enough such that, for x ∈ [0,1),

x−1Aw(x) < lim
x→1

x−1Aw(x).

We shall prove that

lim
x→1

Aw(x) < 0

so that Aw(x) < 0 for every x ∈ [0,1).
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Rewriting the expectation over (B1, . . . ,Bm) as a sum and reordering the terms,
(53) becomes

Aw(x) = xκ

∞∑
i=1

πi

i−1∑
j=0

xj − xKκ

∞∑
i=1

πi

(
1 − xi)

− 1

2

∑
b∈{0,1}m

x|b|(1 − x)m−|b|

×E

[
1∑m

i=1 Z∗
i

2

(
−x +

m∑
i=1

Z∗
i bi

)

×
∑m

i=1 Z∗
i bi

(1 − x(1 − W) − W
∑m

i=1 Z∗
i bi)(1 − x(1 − W))

]
.

(54)

But with K chosen large enough, as limx→1 P(
⋂m

i=1{Bi = 1}) = 1,

lim
x→1

Aw(x) = κ

∞∑
k=1

kπk − lim
x→1

1

2
E

[
1∑m

i=1 Z∗
i

2 (−x + 1)

× 1

(1 − x(1 − W) − W)(1 − x(1 − W))

]

= κβ − 1

2
E

[
1∑m

i=1 Z∗
i

2

1

W(1 − W)

]
= κβ − κ∗β < 0.

(55)

This implies that, for every x ∈ [0,1], Aw(x) < 0. Finally, we observe that
limx→1 w(x) = −∞, so for every big enough x ∈ [0,1), it holds that −w(x) > 0.
However, we showed that

∫ ∞
0 Ex[Aw(Xs)]ds < 0 for every x ∈ (0,1). This con-

tradicts equation (52) and completes the proof for �̂ a probability measure select-
ing at most m nonzero atoms with probability one.

Our new task is to extend the proof to the case which �̂ is a general admissible
probability measure, not necessarily concentrated on the m-simplex.

Sufficiency. The proof remains unchanged until equation (48). There we will
fix n ∈ N and write the expectation over (Bi) by summing over the probability of
every possible configuration of the first mn terms:

0 = − 2β

∞∑
i=1

πi

i−1∑
j=0

xjp′(x) + ∑
b∈{0,1}mn

P

(
mn⋂
i=1

{Bi = bi}
)

×E

[
1

x(1 − x)

(−x + ∑mn

i=1 Z∗
i bi + ∑∞

i=mn+1 Z∗
i Bi)∑∞

i=1 Z∗
i

2

× p′(x(1 − W) + W(
∑mn

i=1 Z∗
i bi + ∑∞

i=mn+1 Z∗
i Bi)) − p′(x(1 − W))

W

]
.

(56)
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Rather than taking the limit when x goes to 1, we evaluate in x = 1 − 1/n.
Note that

∑mn

i=1 Z∗
i + ∑∞

i=mn+1 Z∗
i Bi = 1 −Ecn, where cn is the sequence making

admissible the probability �̂ (see Definition 4.3) and E is a random variable such
that |E| ≤ 2.

Now, contrary to the m-finite case, we will need to control all the terms in the
expectation for every possible realisation b = b1, . . . , bmn and not only for those
binary vectors b with at most one zero coordinate.

Let us first see what happens in the case b = (1,1, . . . ,1):

E

[
(1 − 1/n)mn−1

1/n

(1/n − Ecn)∑∞
i=1 Z∗

i
2

× p′((1 − 1/n)(1 − W) + W(1 − Ecn)) − p′((1 − 1/n)(1 − W))

W

]
.

Since, by definition 4.3, ncn → 0, if we let n go to infinity this term converges to

(57) E

[
1∑∞

i=1 Z∗
i

2

p′((1 − W) + W) − p′(1 − W)

W

]
.

Now we will focus on all the vectors b ∈ {0,1}mn that have exactly one zero:

mn∑
j=1

E

[
(1 − 1/n)mn−2 1∑∞

i=1 Z∗
i

2

(
1/n − Z∗

i − Ecn

)

× p′((1 − 1/n)(1 − W) + W(1 − Z∗
j − Ecn)) − p′((1 − 1/n)(1 − W))

W

]
.

When n → ∞, the equation reduces to

(58)
mn∑
j=1

E

[ −Z∗
j∑∞

i=1 Z∗
i

2

p′((1 − WZ∗
j )) − p′(1 − W)

W

]
.

Finally, let Rk := {b ∈ {0,1}mn : |b| = mn − k}, for every k ∈ {0,1, . . . ,mn}. Note
that |Rk| ≤ mk

n = o(nk/2) and for every k ≥ 2

∑
b∈Rk

E

[
(1 − 1/n)mn−k−1(1/n)k−1

× (−1 + 1/n + ∑mn

i=1 Z∗
i bi + ∑∞

i=mn+1 Z∗
i Bi)∑∞

i=1 Z∗
i

2

×
(
p′

(
(1 − 1/n)(1 − W) + W

(
mn∑
i=1

Z∗
i bi +

∞∑
i=mn+1

Z∗
i Bi

))
(59)
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− p′((1 − 1/n)(1 − W)
))/

W

]

= O
(
mk

n(1/n)k−1) = o
(
nk/2−1)

.

In the derivation of the equality, we used the property −p′(1) < ∞. This is a fact
which requires a proof. Assume p′(1) = −∑∞

k=1 kμ(k) = −∞. Consider the limit
when x → 1 in (48). Using that −x +∑m

i=1 Z∗
i bi < 1−x and that p′(x) is negative

and decreasing, we obtain

0 >
1

2
E

[−p′(1) − (1 − W)p′(x(1 − W) + W
∑m

i=1 Z∗
i bi) − (1 − W)p′(x(1 − W))

W
∑∞

i=1 Z∗
i

2

]
= ∞,

which is a contradiction. Then −p′(1) < ∞ and equation (59) holds.
Equations (57), (58) and (59) imply that as n → ∞ we obtain equation (49),

and the proof follows as in the finite m case.
Necessity. The strategy is the same as in the sufficiency case. Observe that(

1 − x(1 − W) − W

(
mn∑
i=1

Z∗
i Bi +

∞∑
i=mn+1

ziBi

))

= (1 − W)

(
−x +

mn∑
i=1

Z∗
i Bi +

∞∑
i=mn+1

Z∗
i Bi

)

+ 1 −
(

mn∑
i=1

Z∗
i Bi +

∞∑
i=mn+1

Z∗
i Bi

)

= (1 − W)

(
−x +

mn∑
i=1

Z∗
i Bi +

∞∑
i=mn+1

Z∗
i Bi

)
+ O(cn).

Applying this to equation (54), and evaluating at x = 1 − 1/n, we obtain

Av(x) = κ

∞∑
k=1

kπk − 1

2
P

(
mn⋂
i=1

{Bi = 1}
)

×E

[
1∑∞

i=1 Z∗
i

2

1

(1 − W)(1 − (1 − 1/n)(1 − W))

]
+ O(cn)

= κβ − 1

2
E

[
1

W(1 − W)
∑∞

i=1 Z∗
i

2

]
+ O(cn),

which converges to (55) when n → ∞. The rest of the proof is as in the finite m

case. �
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