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FINANCIAL MARKETS WITH A LARGE TRADER1

BY TILMANN BLÜMMEL2 AND THORSTEN RHEINLÄNDER

University of Vienna and Vienna University of Technology

We construct a large trader model using tools from nonlinear stochastic
integration theory and an impact function. It encompasses many well-known
models from the literature. In particular, the model allows price changes to
depend on the size as well as on the speed and timing of the large trader’s
transactions. Moreover, a volume impact limit order book can be studied in
this framework. Relaxing a condition about existence of a universal martin-
gale measure governing all resulting small trader models, we can show ab-
sence of arbitrage for the small trader under mild conditions. Furthermore,
a case study on utility maximization from terminal wealth highlights new
phenomena that can arise in our framework. Finally, an outlook on further
research provides insights on (no) arbitrage opportunities for the large trader
and how different levels of information may affect our analysis.
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1. Introduction. In mathematical finance, the “competitive market paradigm”
is a widely spread and yet unrealistic assumption. It claims that all agents can buy
or sell an arbitrary amount of shares without changing the price of the asset. Here,
our concern is to drop this paradigm and to consider a large investor who influences
prices by means of her transactions.

The “mechanics” behind the impact of the large trader’s transactions on the
price might have different causes and may appear in many different ways. On one
hand, the changes of the price can depend on the size, the speed or the timing of
the large trader’s transactions. On the other hand, the effects of the transactions on
the price can be temporary, permanent or abrupt in the beginning and fading away
over time. The last phenomenon is usually referred to as resilience. The model of
Almgren and Chriss [2, 3] is an example for a large trader model with temporary
and permanent price impact, the model of, for example, Gatheral [16] captures
the resilience-type of price impact. While both models describe the impact of the
large trader’s strategy on the price process in a rather direct way as a function of the
strategy and its derivative, more recent models use a more indirect way to describe
the impact. One example is the volume impact model of Alfonsi and Schied [1],
where the authors describe the volume impact of the large trader strategy on the
limit order book. Here, the actual price impact is derived from the relation between
volume impact and price impact, which is characterized by the shape function of
the limit order book.

The “consequences” of the large trader’s impact on the price process are far-
reaching and might affect price takers as well as the large trader herself. First, the
large trader faces an additional risk due to her price impact. In the market micro-
structure literature (see, e.g., Kyle [26]), this risk is referred to as liquidity risk.
Simply put, it is the risk a large trader faces due to the timing, the speed and the
size of her transactions. Second, the large trader might be able to use her influence
on the price process to generate an arbitrage. Furthermore, the turbulences caused
by the large trader’s actions might also lead to arbitrage opportunities for the small
trader.

Aside from the impact of the large trader’s transactions on the price and its con-
sequences, the probably most important question is the following: “What is the
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large trader’s motivation to trade?” A typical example would be to find an optimal
liquidation strategy; see, for example, Schied and co-authors [17, 31–33]. Usually,
the optimality criterion is tied to a utility maximization problem or a liquidity cost
minimization problem. In this way, the optimization problems constitute a mathe-
matical formulation reflecting the goals of the large trader. Another motivation for
the large trader might be the realisation of arbitrage opportunities.

The papers of Çetin, Jarrow and Protter [10] and Bank and Baum [4] are to our
knowledge the first that embed the large trader problematic into a sophisticated
random field based stochastic model. Using different approaches, both models cap-
ture several of the phenomena addressed above. While Çetin, Jarrow and Protter
[10] postulate the existence of a stochastic supply curve governing the transactions
of the large trader, Bank and Baum [4] model the prices themselves using a random
field (S(ϑ, ·))ϑ∈R indexed by the large trader’s constant position ϑ in the asset. For
a dynamic large trader strategy θ , Bank and Baum [4] model the evolution of the
price as P θ

BB := S(θ ·, ·). As a consequence, any change of the position causes an
instantaneous reaction of the price process. From a mathematical point of view,
the resulting value process of the large investor has to be modelled by a nonlinear
stochastic integral. This is due to the fact that the integrator is affected by the strat-
egy of the large trader. Bank and Baum [4] have chosen the Kunita integral [25] for
this purpose. Amongst others, Bank and Baum [4] prove the absence of arbitrage
for the large trader in their model and discuss utility maximization from terminal
wealth. However, all these results are achieved under the crucial assumption that
there exists a universal local martingale measure for all primitive price processes
constituting the random field. Moreover, due to the definition of P θ

BB, the impact
of the large trader on the price process only depends on the size of her position.
Hence, the models of Almgren and Chriss [2, 3] and Gatheral [16] are in general
not included in the model class of Bank and Baum [4] as their price processes
rather depend on the speed of the large trader’s transaction than on its size.

So far we have seen that various authors considered a variety of questions re-
lated to the presence of a large trader in a financial market. Besides, the technical
frameworks in which the answers are embedded are as diverse as the questions
themselves. Here, we present a framework in which the models mentioned above
can be embedded. Due to the high level of complexity concerning the different
phenomena and their interaction in a market with a large trader, our main purpose
is to present a modular approach to the large trader problematic. We focus on the
core modules, that is, the definition of the price process affected by a large trader
and her real wealth process.

Inspired by the work of Bank and Baum [4], the price process affected by a
large trader is provided by a primal family (S(ϑ, ·))ϑ∈Rd of continuous, R-valued
semimartingales which, together with an impact function F and a large trader
strategy θ , constitutes the price process P θ . For a simple strategy θ , the price
process P θ is then modelled as the elementary nonlinear stochastic integral of
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F(θ) w.r.t. the random field (S(ϑ, ·))ϑ∈Rd . For nonsimple strategies, P θ is de-
fined by using a limit procedure similar to the definition of a strong nonlinear
integrator in the sense of Carmona and Nualart [9]. Not only does this approach
allow us to capture the different types of price impacts mentioned above, it also
enables us to ease ([4], Assumption 3, of Bank and Baum) postulating the ex-
istence of a universal equivalent local martingale measure for the whole primal
family. Throughout the paper, we work under the standing Assumption I which
ensures that the price process affected by an arbitrary simple large trader strat-
egy is a semimartingale. Additionally, for any simple large trader strategy θ , it
claims the existence of an equivalent local martingale measure for the price pro-
cess P θ . Thereby, the resulting price process serves as a reasonable price process
for a frictionless small trader market model. Note that this assumption is similar to
the assumption in the discrete time framework by Jarrow [20]. Besides Assump-
tion I, we also introduce a stronger Assumption II. It claims that the random field
(S(ϑ, ·))ϑ∈Rd is a strong nonlinear integrator in the sense of Carmona and Nualart
[9], and that the impact function F is continuous. Under this mild regularity as-
sumption, it turns out that the existence of equivalent local martingale measures
for each element of the primal family (S(ϑ, ·))ϑ∈Rd is sufficient for Assumption I
to hold.

Even more challenging than the definition of the affected price process P θ is
the definition of the real wealth process. This is due to the fact that the book value
of a strategy usually deviates from its realizable wealth, which is given by the real
wealth process. We propose a definition being a mixture of the definitions given in
Bank and Baum [4] and Çetin, Jarrow and Protter [10]. Similar to both, we end up
with a representation

V (θ) = V θ
0 +

∫
θ dP θ − C(θ)

of the real wealth process V (θ), where C(θ) represents costs due to liquidity risks
and

∫
θ dP θ reflects the accumulated gains and losses due to (impact) trading. This

representation becomes even more intuitive if P θ is the sum of an unperturbed
price P̃ and a perturbed price I θ . In this case,

(1) V (θ) = V θ
0 +

∫
θ dP̃ +

∫
θ dI θ − C(θ),

where
∫

θ dP̃ can be interpreted as gains and losses due to exogenous shocks while∫
θ dI θ are gains and losses due to the large trader’s price impact. Hence, given

(1), the process

(2)
∫

θ dI θ − C(θ)

can be seen as the overall large trader risk due to illiquidity and price impact.
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Apart from these two modules related to the presence of a large trader, we are
interested in other modules as well. These modules are closely related to the mo-
tivation behind the large trader’s actions, for example, utility maximization from
terminal wealth, optimal liquidation of the large trader’s portfolio and (no) arbi-
trage considerations for the large trader. In all of these problems, the large trader’s
real wealth process and its structure, that is, the impact of θ on P θ and the choice of
the cost function C, play a major role in the analysis. These considerations directly
lead back to the core modules as the motivation of the large trader determines the
set of large trader strategies for which we have to provide a definition for P θ and
V (θ). On one hand, from an economic and functional point of view, the subset of
simple large trader strategies should always be contained in the analysis. This is
reflected in the standing Assumption I. On the other hand, any further technical
assumption ensuring the existence of P θ and V (θ) for a large class of strategies
should be postulated with regard to an economic motivation. For instance, As-
sumption II enables us to define P θ for arbitrary càglàd strategies and reduces
questions regarding the existence of V (θ) to an analysis regarding the existence
of C(θ). The economic motivation behind Assumption II is to extend the analysis
of (no) arbitrage opportunities for the small trader to prices P θ , driven by general
large trader strategies.

Besides the latter and a critical discussion of Assumptions I and II, we provide
a case study on utility maximization from terminal wealth for a simple underlying
primal family. Despite its plain structure, it illustrates various phenomena which
may occur when considering utility maximization from terminal wealth in our set-
ting. In particular, we single out a simple condition which decides whether we are
in a stable situation, or whether we encounter an alternative run-away effect, which
leads to ultimate destabilisation of the market.

Although the case study on utility maximization from terminal wealth is one
example for what we termed “other modules”, we end up with an outlook on fur-
ther research. In particular, we outline how we intend to include a limit order book
into our analysis and how different levels of information affect price takers as well
as the large trader.

The paper is structured as follows. In Section 2, we provide the definitions for
the price process and the real wealth process for a simple large trader strategy. Be-
sides, we introduce Assumptions I and II and give numerous examples and remarks
to motivate and explain the definitions and assumptions. The main result is Propo-
sition 2.8. It provides a link between Assumptions I and II. In Section 3, we extend
the definition of the price process affected by the large trader and the definition of
her real wealth process to general large trader strategies using a limit procedure.
Furthermore, we highlight the different qualities of Assumptions I and II. While
the leading edge of Assumption I is its flexibility, which is reflected in various
examples, the strong suit of Assumption II is reflected in Theorem 3.3. The latter
ensures the existence of price processes for general càglàd strategies. At the end,
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we provide a critical discussion regarding Assumptions I and II. Section 4 is ded-
icated to the analysis of no arbitrage conditions for the small trader given that the
large trader uses general càglàd strategies. Here, the main results are Theorem 4.6
and Proposition 4.9. In Section 5, we turn to a case study on utility maximization
from terminal wealth. In a plain setting, we illustrate various phenomena which
may occur when prices are affected by a large trader. Section 6 provides the proofs,
whereas Section 7 gives an outlook addressing further research questions. Finally,
the Appendix provides an overview of strong nonlinear integrators and nonlinear
stochastic integration.

2. Basic setting and examples for simple large trader strategies. Our fi-
nancial market consists of a probability space (�,F,P) equipped with a filtration
F = (Ft )t∈[0,T ] that satisfies the usual conditions. Besides, F0 is trivial apart from
zero sets and T denotes some finite time horizon. Furthermore, we want to stress
the following points. Results from the literature, formulated for an infinite time
horizon, are used by applying the corresponding result to the stopped process.
Moreover, all relations between random variables are to be understood P-a.s.

We consider two different types of investors: a small trader and a large trader.
While we think of a small trader as a price taker, a large trader is an agent whose
trades may influence the price of the asset she trades.

2.1. Primal family and the price process for simple large trader strategies. To
allow for an impact of the large trader, the discounted price process is composed
of three building blocks. The first one is the large trader’s strategy.

DEFINITION 2.1. Let θ be a predictable process with representation

(3) θ(t) = θ−11{0}(t) +
n∑

i=0

θi1(τi ,τi+1](t),

where 0 = τ0 ≤ τ1 ≤ · · · ≤ τn+1 = T is a finite sequence of F-stopping times,
θ−1 ∈ Rd and θi is a bounded, Fτi

-measurable, Rd -valued random variable for all
i ∈ {0, . . . , n}.

1. We call θ an extended simple strategy if the random variables θi take only
finitely many values.

2. An extended simple strategy is called simple strategy if the stopping times τi

take only finitely many values.
3. A representation (3) is called minimal representation if the sequence of stop-

ping times is deterministic and constitutes the smallest partition of [0, T ] that con-
tains 0, T , and all jump times of θ such that the jumps in these points occur with
positive probability.

We denote the space of all Rd -valued, extended simple strategies by Se(Rd). The
space of all Rd -valued simple strategies is denoted by S(Rd).
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REMARK 2.2. 1. The closure of S(Rd) and Se(Rd) w.r.t. the ucp-topology
is the space of all Rd -valued, càglàd and adapted processes; see [9], Proposition
II.1.1. It is denoted by L(Rd). Moreover, bL(Rd) ⊂ L(Rd) denotes the subspace
of all bounded càglàd processes.

2. While the spaces S(Rd) and Se(Rd) are needed for technical reasons, the
spaces S(R) and L(R) are considered as the spaces of all (simple) large trader
trading strategies.

3. All θ ∈ S(R) admit a unique minimal representation; see Lemma A.1.
4. Sometimes we need a càdlàg version of an element θ ∈ L(Rd). For all ω ∈ �,

we denote it by θ+ = (θ+
t )t∈[0,T ], where θ+

T := θT and θ+
t (ω) := lims↓t θs(ω) for

t ∈ [0, T ).

The second and third building blocks that constitute the discounted price process
affected by the large trader are the primal family (S(ϑ, ·))ϑ∈Rd of R-valued, F-
adapted, continuous semimartingales and an impact function

F : S(R) −→ S
(
Rd),

θ �−→ F(θ).
(4)

For a large trader strategy θ ∈ S(R) and F(θ) ∈ S(Rd) with representation

(5) Ft(θ) = F0(θ)1{0}(t) +
n∑

i=0

Fτi+(θ)1(τi ,τi+1](t),

the discounted price process affected by the large trader is modelled by

P θ
t :=

∫ t

0
S
(
Fs(θ), ds

)

:= S
(
F0(θ),0

)+
n∑

i=0

(
S
(
Fτi+(θ), τi+1 ∧ t

)− S
(
Fτi+(θ), τi ∧ t

))
.

(6)

Hereafter, we discuss the definition of P θ as well as several assumptions on P θ

and the primal family (S(ϑ, ·))ϑ∈Rd itself. We compare (6) and the assumptions to
miscellaneous large trader models proposed in the literature. Among those are the
models of Almgren and Chriss [2, 3], Bank and Baum [4], Gatheral [16], Jarrow
[20] and the limit order book model of Alfonsi and Schied [1]. In order to give an
economic interpretation of our definition of the discounted price process affected
by the large trader, we consider only simple large trader strategies in this section.
The definition of P θ for θ ∈ L(R) is postponed to Section 3.

REMARK 2.3 (On the definition of P θ ). The following ideas are behind
the definition of P θ . First, the spatial parameters ϑ ∈ Rd of the primal family
(S(ϑ, ·))ϑ∈Rd reflect all possible (constant) “impact levels” of the price process
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under consideration. Second, F(θ) is the actual impact of the large trader’s strat-
egy θ ∈ S(R) on the price process. Hence, (6) constitutes a price process having an
impact level that changes over time. More precisely, the stopping times (τi)i≤n+1
in (5) are interpreted as those points in the future when the large trader’s actions
cause the changes (Fτi+(θ))i≤n+1 of the impact level of the discounted price pro-
cess.

REMARK 2.4 (On the impact function F ). The task of the function F in (6) is
to incorporate different types of price impacts into the price process that are caused
by the large trader’s actions. Usually, one distinguishes between a permanent price
impact and a temporary price impact. On the one hand, the permanent price impact
affects the evolution of the price process even though the large trader does not
trade. On the other hand, the temporary price impact usually vanishes whenever
the large trader stops trading. These types of impact appear for example in the large
trader model of Almgren and Chriss [2, 3]; see also Example 3.4 below. Apart from
different types of price impacts, the function F can also be used to model the well-
known resilience effect of prices after substantial trades of the large trader. An
example of a model incorporating this effect is suggested by Gatheral; see [16]
and Example 3.5 below. Finally, the impact function can be used in a more indirect
way to include a volume impact limit order book into the model. An example is
the model of Alfonsi and Schied [1]; see Example 7.1.

There are two aspects that we have to take into account. First of all, the price
process affected by a large trader strategy should serve as a reasonable price pro-
cess of a frictionless small trader model. Here, the class of semimartingales is the
classical choice for modelling price processes in frictionless small trader markets.
Second, the large trader’s actions should not lead to arbitrage opportunities for the
small trader. Hence, we work under the following standing assumption.

ASSUMPTION I. For all θ ∈ S(R), the following hold:

(P-I): P θ defined in (6) is a continuous semimartingale.
(NA-I): ∃Qθ ∼ P such that P θ is a local Qθ -martingale w.r.t. F.

REMARK 2.5 (On Assumption I). 1. The main idea of Assumption I is to
consider only those price processes P θ that do not contradict no-arbitrage as-
sumptions for the small trader in a frictionless market. The probably most popular
no-arbitrage assumption in a frictionless small trader market model is the no free
lunch with vanishing risk condition. Due to the fundamental theorem of asset pric-
ing ([12], Theorem 7.2 and Corollary 1.2), Assumption I is a natural consequence
of the above considerations. Besides, this approach naturally embeds a large trader
into the small trader setting.

2. The choice of the filtration F is for convenience. From an economic point
of view, we think that it is more reasonable to consider different filtrations for the
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small and the large trader. In our opinion, the most natural choice for the filtra-
tion FST, modelling the information of the small trader, is essentially the filtration
generated by the discounted price process P θ . To us, the filtration FLT generated
by P θ and the large trader strategy θ would be the best choice for modelling the
information of the large trader. Although a detailed investigation of phenomena ap-
pearing due to different levels of information is left for further research, we briefly
discuss the main idea in Section 7.

3. For simple large trader strategies, (NA-I) is essentially assumption four of
Jarrow [20]. It claims that, given the large trader’s information, there are no arbi-
trage opportunities for the small trader. The only difference is that the large trader’s
information is rather given by FLT.

2.2. Regularity conditions on the primal family. On the one hand, the strength
of the large trader impact on the price process strongly depends on the regularity
and smoothness of the primal family (S(ϑ, ·))ϑ∈Rd and the impact function F . The
less regular (S(ϑ, ·))ϑ∈Rd and F are, the stronger is the impact of the large trader
on the price process. On the other hand, a certain amount of regularity is needed
to ensure that Assumption I holds. In this regard, the so-called strong nonlinear
integrators, introduced in [9], constitute a quite general and yet tractable set of
primal families satisfying (P-I). For a definition, we refer to the Appendix or [9].
As we will see below, the amount of regularity provided by strong nonlinear inte-
grators allows us to work with a no-arbitrage assumption for the small trader that
is weaker and even more tractable than (NA-I). It is formulated in Assumption II.

ASSUMPTION II. (P-II): (S(ϑ, ·))ϑ∈Rd is a strong nonlinear integrator. More-
over, the function F in (4) can be extended to a function (still denoted by)
F : L(R) −→ L(Rd) that is continuous w.r.t. the ucp-topology.

(NA-II): For all ϑ ∈Rd , there exists an equivalent local martingale measure Qϑ

for S(ϑ, ·) w.r.t. F.

REMARK 2.6. Strong nonlinear integrators are tailor-made for our setting.
On the one hand, they ensure by definition that (P-II) is sufficient for (P-I). On the
other hand, (6) is exactly the elementary nonlinear stochastic integral of F(θ) ∈
S(Rd) w.r.t. the primal family (S(ϑ, ·))ϑ∈Rd .

REMARK 2.7 (Relation to the Bank and Baum model). If d = 1 and F = id,
there are some similarities between our approach and the model proposed by Bank
and Baum in [4].

1. Discounted price process: At the core of their model, Bank and Baum [4]
also have a primal family (S(ϑ, ·))ϑ∈R of continuous semimartingales in order
to model the discounted price process affected by a large trader. Moreover, for
constant large trader strategies ϑ ∈ R our definition of the discounted price process
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coincides with the definition of Bank and Baum [4]. Hence, in the special case
F = id we can interpret an element S(ϑ, ·) of the primal family as the discounted
price process of a risky asset given the large trader holds a constant amount of
ϑ shares in this asset. However, as soon as we consider nonconstant large trader
strategies, the definitions of the price processes usually differ.

2. Regularity of the primal family: While we work under the regularity assump-
tion (P-I) or (P-II) on the primal family ([4], Assumption 1, of Bank and Baum),
[4] asks for a different type of regularity. More precisely, it requires (S(ϑ, ·))ϑ∈R
to be a smooth family of semimartingales. This requirement is essentially a dif-
ferentiability condition on (S(ϑ, ·))ϑ∈R in the spatial parameter; see Kunita [25],
Chapter III.

3. NA-condition for the small trader: The probably most important improve-
ments of our approach are the no-arbitrage assumptions (NA-I) and (NA-II) con-
cerning the small trader. While Bank and Baum [4] insist on the existence of a
universal equivalent local martingale measure for all S(ϑ, ·), where ϑ ∈R, (NA-II)
ensures that the small trader can not make riskless profits whenever the large trader
does not trade.

Our first proposition highlights the link between (NA-I) and (NA-II) given that
the primal family satisfies the regularity assumption (P-II).

PROPOSITION 2.8. Suppose that (S(ϑ, ·))ϑ∈Rd satisfies (P-II) and let θ̃ ∈
S(R) be a simple strategy with representation (3). Under (NA-II), there exists an
equivalent local martingale measure Qθ̃ for the process P θ̃ . In particular, (NA-II)
is sufficient for (NA-I).

The following corollary is an immediate consequence of the definition of a
strong nonlinear integrator and Proposition 2.8.

COROLLARY 2.9. Assumption II implies Assumption I.

The next theorem provides a sufficient condition for (S(ϑ, ·))ϑ∈Rd to be a strong
nonlinear integrator.

THEOREM 2.10. Let A be a nondecreasing, continuous, adapted process, M

be a continuous, local martingale with E[√[M]T ] < ∞, and μ,σ :Rd ×R −→ R

jointly continuous functions. Let (S(ϑ, ·))ϑ∈Rd be given by

S(ϑ, t) = S(ϑ,0) +
∫ t

0
μ
(
ϑ,S(ϑ,u)

)
dAu +

∫ t

0
σ
(
ϑ,S(ϑ,u)

)
dMu,

and suppose that for almost all ω ∈ � the mapping S(·, ·,ω) : Rd × [0, T ] −→ R

is jointly continuous. Then (S(ϑ, ·))ϑ∈Rd is a strong nonlinear integrator.
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2.3. Examples. We start with the probably most trivial example. Here, the
large trader does not affect the price process at all.

EXAMPLE 2.11 (Classical small trader setting). If S(ϑ, ·) = S(0, ·) for all
ϑ ∈ Rd , (6) coincides with the classical definition for a small trader market model.
Indeed, the price process at time t is P 0

t . In this case, the trading activities of the
large trader have no impact on the evolution of the price process. Moreover, for
all functions F : S(R) −→ S(Rd), (NA-I) holds if and only if P 0 possesses an
equivalent local martingale measure w.r.t. F.

In the following two examples, F = id holds. This means that the price impact
only depends on the large trader’s position in the underlying asset.

EXAMPLE 2.12 (Stochastic differential equations). Let d = 1, F = id, and
assume that processes S(ϑ, ·) are given as strong solutions of the SDEs

dS(ϑ, t) = bϑ (S(ϑ, t)
)
dt + σ

(
S(ϑ, t)

)
dWt .

Here, W is a Brownian motion and the function b :R×R −→ R, where (ϑ, x) �−→
bϑ(x), is assumed to be continuous and nondecreasing in the first argument and
Lipschitz continuous in the second argument. Furthermore, we assume that σ is a
function that is bounded from below by some ε > 0 and satisfies |σ(x)−σ(y)|2 ≤
ρ|x − y| for some ρ > 0. Besides, let S(ϑ,0) ≤ S(ϑ ′,0) whenever ϑ ≤ ϑ ′. Note
that the comparison theorem [29], (3.7) Theorem, for SDEs ensures that the family
(S(ϑ, ·))ϑ∈R satisfies the following.

Condition (O): ϑ ≤ ϑ ′ implies S(ϑ, ·) ≤ S(ϑ ′, ·).
This condition has been introduced by Bank and Baum [4]. Due to Theo-

rem 2.10 and Lemma A.10, we can conclude that (S(ϑ, ·))ϑ∈R satisfies (P-II).
Besides if, for example, (bϑ)ϑ∈R is a family of bounded functions, Girsanov’s the-
orem and Novikov’s criterion guarantee that assumption (NA-II) holds. However,
there is in general no universal equivalent local martingale measure for all S(ϑ, ·).
Thus, the analysis of Bank and Baum [4] does not apply to this situation. Finally,
we want to emphasize the following. Condition (O) has been introduced by Bank
and Baum [4] to exclude arbitrage opportunities for the large trader in their model.
We do not need Condition (O) for any particular reason. It is just an additional
feature of this primal family.

EXAMPLE 2.13 (Reaction–diffusion setting). This example is similar to the
model of Frey [15]. Let ψ(t, x,ϑ) be a C1,2,1-function, F = id, and d = 1. Define
(S(ϑ, ·))ϑ∈R via S(ϑ, t) = ψ(t,Wt,ϑ), where the Brownian motion W models
some fundamental state variable. Due to Itô’s formula, the dynamics of the primal
price processes have the form

dψt =
(

∂

∂t
+ 1

2

∂2

∂x2

)
ψt dt + ∂

∂x
ψt dWt .
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We assume that ∂ψ/∂x is strictly positive. Note that ∂ψ/∂ϑ ≥ 0 implies Condi-
tion (O). An explicit example for a reaction function is given by ψ(t,Wt ,ϑ) =
exp(σWt + κϑt), where σ, κ > 0. Its dynamics are given by

dψt = ψt

((
κϑ + 1

2
σ 2
)

dt + σ dWt

)
.

Moreover, (P-II) holds thanks to Theorem 2.10 and Lemma A.10. Again, Gir-
sanov’s theorem and Novikov’s criterion ensure that (NA-II) holds in this particu-
lar example. But there does not exist a universal local martingale measure for all
S(ϑ, ·). Thus, the analysis of Bank and Baum [4] does not apply to the reaction–
diffusion setting.

At this point, we want to call attention to the fact that not only the primal fam-
ilies, but also the price processes in the last three examples are strong nonlinear
integrators. This is essentially due to the fact that the function F is the identity. In
the next example, we call it the additive compound impact model, only the primal
family is a strong nonlinear integrator. Although (P-I) holds, the model does not
necessarily satisfy (P-II).

EXAMPLE 2.14 (Additive compound impact model). The underlying price
process in the additive compound impact model is given by the sum of an unper-
turbed price P̃ and a price impact I θ that depends on the large trader’s actions.
More precisely, for θ ∈ S(R) the price process is given by

P θ = P̃ + I θ ,

where P̃ is a continuous semimartingale and P θ satisfies Assumption I. A typical
example is given by Iϑ = t

∑
i≤d ϑi for ϑ ∈Rd and

(7) P̃ = P̃0 + σW,

where σ > 0 and W is a Brownian motion. Hence, for F : S(R) −→ S(Rd), where
F(θ) = (F 1(θ), . . . ,F d(θ)), and a continuous function I : Rd −→ R with ϑ �−→
I (ϑ,0), we get

I θ
t = I

(
F0(θ),0

)+
d∑

i=1

∫ t

0
F i

u(θ) du.

The primal family in the last example serves as the primal family for the large
trader models of Almgren and Chriss [2, 3], Gatheral [16] and Alfonsi and Schied
[1]. We discuss them extensively in the next section.

2.4. The large trader real wealth process for simple strategies. To incorpo-
rate liquidity risk into their large trader model, Bank and Baum [4] use a special
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definition of the bank account as well as an idealized definition of the real wealth
process, the asymptotic liquidation proceed process. In Çetin et al. [10], the au-
thors incorporate liquidity risk into their model by using a new definition of self-
financing strategies. Using particular integration by parts formulas, both conclude
that the real wealth process V (θ) of the large trader is of the form

V (θ) = V0 + G(θ) − C(θ).

While G(θ) represents the gains and losses due to trading, the nonnegative pro-
cess C(θ) is interpreted as costs due to liquidity risk. Similar to [4] and [10], we
only consider self-financing large trader strategies. In order to define self-financing
strategies and to incorporate liquidity risk into our model, we choose an approach
being a mixture of [4] and [10]. For simple large trader strategies, we define the
cost function, linked to liquidity risk, as

C : S(R) −→ V≥0,

θ �−→ Cθ
0 + C(θ).

Here, Cθ
0 ∈ R, C0(θ) = 0 for all θ ∈ S(R), and V≥0 denotes the set of all

adapted, nonnegative càdlàg processes of finite variation. A strategy (βθ , θ), where
θ ∈ S(R) and βθ is an optional process, is called self-financing if

βθ
t = βθ

0 −
∫ t

0
P θ

u dθ+
u − Cθ

0 − Ct(θ),

where θ+ is defined in Remark 2.2. As we work with discounted price processes,
βθ can be interpreted as the money market account. Hence, the product rule leads
to the following reformulation of the self-financing condition:

βθ
t + θ+

t P θ
t = βθ

0 + θ0P
θ
0 − Cθ

0 +
∫ t

0
θu dP θ

u − Ct(θ).

Note that for C ≡ 0 and P θ = P 0 for all θ ∈ S(R), the last equation is the classical
definition of a self-financing strategy in a frictionless small trader market model.
These considerations lead us to the following definition of the large trader real
wealth process V (θ) for θ ∈ S(R). If we set V θ

0 := βθ
0 + θ0P

θ
0 − Cθ

0 , it is given
by

(8) Vt(θ) = V θ
0 +

∫ t

0
θu dP θ

u − Ct(θ).

REMARK 2.15. Suppose that, as in Example 2.14, the price process P θ can
be decomposed into the sum of two semimartingales P̃ and I θ . As a result, the
accumulated gains and losses G(θ) = ∫

θ dP θ are given by

(9) G(θ) =
∫

θ dP̃ +
∫

θ dI θ .
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Clearly, if P θ can be decomposed as above, the real wealth process of a self-
financing simple strategy θ is given by

(10) V (θ) = V θ
0 +

∫
θ dP̃ +

∫
θ dI θ − C(θ).

While
∫

θ dP̃ accounts for the accumulated gains and losses from stock price fluc-
tuations caused by exogenous random shocks, the term

∫
θ dI θ − C(θ) represents

profits and losses due to liquidity risks and the price impact of the large trader.

We end this section with some examples for cost functions.

EXAMPLE 2.16 (Cost functions). Let θ ∈ S(R) and ε > 0.

1. Zero cost function: The most simple cost function is the constant zero func-
tion, that is, C(θ) ≡ 0. However, the term

∫
θ dI θ in (10), representing the price

impact of the large trader, might still lead to costs due to liquidity risks; see Exam-
ple 3.4 below.

2. Maximal change cost function: This cost function is defined as follows:

C·(θ) = max
{∣∣θ+

0 − θ0
∣∣, sup

s≤·
∣∣θ+

s − θ+
0

∣∣}.
Graphically, θ is the costlier the more it deviates from its initial value.

3. Proportional (variation) costs: Denote by Varθ the total variation process of
θ+. Similar to the terms that are used to model proportional transaction costs, we
define

C(θ) = ε

(∣∣θ+
0 − θ0

∣∣∣∣P θ
0

∣∣+ ∫ ∣∣P θ
∣∣dVarθ

)
.

The cost function ties liquidity risk to a fraction of the trading volume.
4. Proportional (quadratic variation) costs: Suppose that d = 1, F = id, and that

Condition (O) holds. Moreover, we assume that the primal family (S(ϑ, ·))ϑ∈R
is continuously differentiable in the spatial parameter and denote this deriva-
tive by (S′(ϑ, ·))ϑ∈R. Since F = id, we have (P ϑ)ϑ∈R = (S(ϑ, ·))ϑ∈R as well as
( ∂
∂ϑ

P ϑ)ϑ∈R = (S′(ϑ, ·))ϑ∈R. Define

1

ε
C·(θ) := ∑

0≤s≤.

∫ θ+
s

θ+
s−

(
S
(
θ+
s , s

)− S(x, s)
)
dx

= 1

2

∫ .

0
S′(θ+

s−, s
)
d
[
θ+]c

s + ∑
0≤s≤.

∫ θ+
s

θ+
s−

(
S
(
θ+
s , s

)− S(x, s)
)
dx

and note that the second equality follows by applying the integration by parts for-
mula to∫ θ+

s

θ+
s−

(
S
(
θ+
s , s

)− S(x, s)
)
dx =

∫ θ+
s

θ+
s−

(S(θ+
s , s) − S(x, s))

θ+
s − x

(
θ+
s − x

)
dx
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and rearranging the resulting terms. Note that this is exactly the cost function (re-
lated to liquidity risk) derived by Bank and Baum [4] using the Itô–Wentzell for-
mula. We would like to point out that Çetin et al. [10] derive a similar formula
reflecting the costs due to liquidity risks. Indeed, in both models the costs due to
liquidity risk strongly depend on the quadratic variation of the large trader strat-
egy.

3. Price process and real wealth process for dynamic large trader strate-
gies. In this section, we provide definitions of the price process P θ and the large
trader real wealth process for a general strategy θ ∈ L(R). Our main goal is to en-
sure that these definitions translate the ideas of Assumption I to general strategies.
Furthermore, we provide examples highlighting that (P-II) does not hold in the
large trader models of Almgren and Chriss [2, 3] and Gatheral [16]. Besides, we
provide a critical discussion of Assumptions I and II and the definitions of price
process and real wealth process for general large trader strategies.

3.1. The price process for dynamic strategies. We start with the definition of
the discounted price process P θ for θ ∈ L(R).

DEFINITION 3.1. Let (S(ϑ, ·))ϑ∈Rd satisfy (P-I) and θ ∈ L(R). If there exists
a sequence (θn)n≥1 ⊂ S(R) such that:

1. θn −→ θ in the ucp-topology,
2. (P θn

)n≥1 is a Cauchy sequence in the semimartingale topology,

then the discounted price process P θ affected by the large trader strategy θ ∈ L(R)

is the limit of (P θn
)n≥1 in the semimartingale topology, that is,

P θn −−→
SM

P θ .

The next lemma is a tool to verify whether or not P θ exists for θ ∈ L(R).

LEMMA 3.2. Let θ ∈ L(R), (θn)n≥1 ⊂ L(R), and suppose that P θn
exists for

all n ≥ 1. If θn −→ θ in the ucp-topology and (P θn
)n≥1 is a Cauchy sequence

in the semimartingale topology, then P θ exists in the sense of Definition 3.1 and
P θn −→ P θ in the semimartingale topology.

We already argued that (P-II) might be too restrictive in some cases. Never-
theless, it ensures the existence of price processes affected by the large trader for
arbitrary strategies. The next statement is an immediate consequence of the defi-
nition of strong nonlinear integrators and Theorem A.16.

THEOREM 3.3. If (S(ϑ, ·))ϑ∈Rd satisfies (P-II), then for all θ ∈ L(R) there
exists (θn)n≥1 ⊂ S(R) such that the following properties hold:
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1. θn −→ θ in the ucp-topology.
2. (P θn

)n≥1 is a Cauchy sequence in the semimartingale topology.

Thus, the discounted price process P θ affected by the large trader strategy θ exists.
Finally, the definition does not depend on the approximating sequence.

Due to Theorem 3.3, P θ in Examples 2.11, 2.12 and 2.13 exists for all θ ∈ L(R).
However, the next two examples, the large trader models of Almgren and Chriss
[2, 3] and Gatheral [16], are typical examples in which the impact function F is
not smooth enough to ensure that (P-II) holds. Nevertheless, (P-I) holds and for
sufficiently regular large trader strategies θ ∈ L(R) the price process P θ exists in
the sense of Definition 3.1.

EXAMPLE 3.4 (Almgren–Chriss model). The Almgren–Chriss model [2, 3]
can be reached as the limit of a special case of the additive compound impact
model; see Example 2.14. Let g,h ∈ C(R,R) be nondecreasing, continuous func-
tions, where h ∈ C1(R,R) and g(0) = h(0) = 0, and set

X :=
{
θ ∈ bL(R)

∣∣θ has twice cont. diff. paths on (0, T ],
lim

u−→0
θ̇u exists and equals θ0

}
.

For θ ∈X , the price process is given by

P θ = P̃ + I θ ,

where P̃ is defined as in (7) and the price impact I θ is given by

(11) I θ =
∫

g(θ̇) du + h(θ̇).

Usually, the term
∫

g(θ̇) du is referred to as permanent price impact while h(θ̇) is
called a temporary price impact.

For θ ∈ S(R), we define F : S(R) −→ S(R2) in Example 2.14 as follows: while
F 1 maps the minimal representation,

(12) θ(t) = θ−11{0} +
n∑

i=0

θti+1(ti ,ti+1](t)

of θ ∈ S(R) to

F 1(θ) = h(θ−1)1{0} +
n∑

i=0

g

(
θti+ − θti−1+

ti − ti−1

)
1(ti ,ti+1](t),

F 2 maps the minimal representation of θ ∈ S(R) to

F 2(θ) =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=4

θti+ − 2θti−2+ + θti−4+
(
ti−ti−4

2 )2
h′
(

θti+ − θti−1+
ti − ti−1

)
1(ti ,ti+1](t) if n ≥ 4,

0 else.
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Finally, we choose I :R2 −→ R, where (ϑ1, ϑ2) �−→ ϑ1. For θ ∈ X , we define the
approximating sequence (θn)n≥1 via

(13) θn
u := θ01{0} +

2n−1∑
i=0

θ iT
2n

1
( iT

2n ,
(i+1)T

2n ](u).

Due to Proposition A.7, it is straightforward to check that (P θn
)n≥1 exists. As

θn −→ θ in the ucp-topology, Taylor’s theorem and the dominated convergence
theorem allow us to conclude that for all ω ∈ � the sequence (I θn

(ω))n≥1 con-
verges in L1([0, T ],Leb) to I θ (ω) as defined in (11). Hence, Proposition A.7 guar-
antees that P θn −→ P θ in the semimartingale topology. Due to Lemma 3.2, P θ is
a discounted price process in the sense of Definition 3.1 for all θ ∈ X . Finally,
if θ has bounded first and second derivatives, Girsanov’s theorem and Novikov’s
criterion imply that there exists an equivalent local martingale measure for P θ .

EXAMPLE 3.5 (Gatheral model with exponential decay). Similar to the
Almgren–Chriss model [2, 3], we can reach the model of Gatheral [16] as the
limit of a special case of the additive compound impact model. Let h :R −→ R be
a nondecreasing, continuous function with h(0) = 0, η > 0, and define

X := {
θ ∈ bL(R)|θ has continuously differentiable paths

}
.

For θ ∈ X , the price process is given by

P θ = P̃ + I θ ,

where P̃ is defined as in (7) and the price impact I θ is given by

(14) I θ
t =

∫ t

0
h(θ̇u)e

−η(t−u) du.

This price impact is neither temporary nor permanent. It rather reflects the re-
silience effect of prices after a sudden and major trade of the large trader.

Due to the product rule, we can rewrite I θ
t = e−ηtXθ

t as

I θ
t =

∫ t

0
η
(
h(θ̇u) − Xθ

ue−ηu)du,

where Xθ
u := ∫ u

0 h(θ̇v)e
ηvdv. Denote by (12) the minimal representation of

θ ∈ S(R), let

θ̃ =
n∑

i=0

h

(
θti+ − θti−1+

ti − ti−1

)
1(ti ,ti+1](t),

define Y θ̃
u := ∫ u

0 θ̃ve
ηv dv, and let F : S(R) −→ S(R) map θ ∈ S(R) to

ηθ̃u − η

n∑
i=0

Y θ̃
ti
e−ηti 1(ti ,ti+1](u).
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If we choose the approximating sequence (θn)n≥1 for θ ∈ X as in (13), similar
arguments as in Example 3.4 ensure that (P θn

)n≥1 and P θ exist, P θn −→ P θ in the
semimartingale topology, and (14) holds. Finally, if θ has bounded first derivatives,
Girsanov’s theorem and Novikov’s criterion ensure that there exists an equivalent
local martingale measure for P θ .

REMARK 3.6. 1. To ease the representation of the above examples, we used
an approximating sequence (13) that does not constitute of simple strategies in the
sense of Definition 2.1. This is due to the fact that θ iT

2n
does not necessarily take

finitely many values. However, using Lemma 3.2 and the fact that bounded random
variables can be approximated by bounded random variables having only finitely
many values, this gap can easily be fixed.

2. The volume impact model of Alfonsi and Schied [1] is yet another example
that highlights the difference between (P-I) and (P-II); see Example 7.1 below.

3.2. The large trader real wealth process for dynamic strategies and a critical
discussion of Assumptions I and II. For general strategies, the cost function as
well as the self-financing condition are defined by using a limit procedure.

DEFINITION 3.7. Suppose that Assumption I holds and let C : S(R) −→ V≥0.
We say that θ ∈ L(R) is self-financing if there exists a sequence (θn)n≥1 ⊂ S(R)

of self-financing simple strategies such that:

1. θn converges in the ucp-topology to θ ∈ L(R).
2. P θ exists in the sense of Definition 3.1 w.r.t. this particular sequence.
3. The sequence (C(θn))n≥1 converges in the semimartingale topology. Its

limit, denoted by C(θ), is interpreted as the liquidity risk related to θ .

In particular, the real wealth process of θ is defined as in (8). Moreover, we call the
self-financing large trader strategy θ tame if C(θ) ≡ 0. Finally, for a self-financing
strategy θ ∈ L(R), we call ((S(ϑ, ·))ϑ∈Rd ,F,C, θ) a minimal large trader mar-
ket model if there exists an equivalent local martingale measure for P θ w.r.t. the
filtration F.

REMARK 3.8. The phrase “minimal large trader market model” indicates that
the large trader model satisfies the minimal requirements needed to:

1. define the discounted price process,
2. exclude arbitrage opportunities for the small trader, and
3. ensure that we can define the real wealth process of the large trader.

Until the end of this section, we discuss our definition of the price process af-
fected by a large trader strategy in the context of Assumption I/(P-I), Assump-
tion II/(P-II), and the large trader real wealth process.
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Clearly, Assumption I and Assumption II, in combination with Theorem 3.3,
are extreme points of a spectrum of assumptions that one might formulate in order
to ensure the existence of price processes for a large class of large trader strategies.
In our opinion, Assumption I is the minimal assumption required by reality. This is
due to the fact that in practice one can only trade using finite linear combinations
of buy and hold strategies. From a mathematical point of view, it is desirable to
seek for assumptions that also ensure the existence of the price process for a large
class of nonsimple dynamic strategies. Assumption II/(P-II) is one example that
allows to define the price processes for all adapted processes having càglàd paths.
This class of strategies is the classical class of strategies/integrands suggested by
stochastic integration theory. Hence, these assumptions are extreme points of a
spectrum of assumptions focusing on different aspects, reality and theory. Unfor-
tunately, Assumption II/(P-II) is too strong in order to include the classical large
trader models of Example 3.4 and Example 3.5 that are frequently used in prac-
tice. Thus, one could ask for an assumption that provides a better trade off between
theory and reality. We believe that there are two ways to come up with such an as-
sumption. The first one is to impose more mathematical assumptions, for example,
on the primal family or the impact function that allow us to conclude that the price
process exists for a sufficiently large class of nonsimple, dynamic strategies. How-
ever, this way the “theory” (in terms of the postulated assumptions) chooses the
strategies. The second way is to postulate a minimal assumption (Assumption I)
that is as close to reality as possible. This “ close to reality model” chooses the set
of strategies. The next remarks provide more insights into these approaches.

REMARK 3.9 (On: “The model chooses the strategies”). How does the model
choose the strategies? We have already argued in the Introduction, that the most
important question is the following: “What is the large trader’s intention to trade?”
In a mathematical context, these questions are usually related to the large trader’s
real wealth process. A typical example is utility maximization from terminal
wealth. While under Assumption I, we can define the real wealth process as well
as the price process affected by simple large trader strategies, for general strategies
these processes may not exist. But if the large trader’s real wealth process does not
exist, we have no tool to decide whether or not this strategy is important from an
economic point of view. Yet, for special choices of the primal family and the cost
function one can presume that economic considerations limit the set of reasonable
large trader strategies significantly, that is, the model chooses its own strategies.
Let us consider an example.

Consider the cost function in Example 2.16 4. It is clear that all strategies having
continuous paths of finite variation admit zero liquidity costs, that is, they are tame.
Now suppose that P θ exists for all these strategies. Moreover, suppose that for
all ε > 0 and all θ ∈ L(R) such that P θ exists, there exists θε ∈ L(R) having
continuous paths of finite variation and

P

(
sup
s≤T

∣∣∣∣
∫ s

0
θu dP θ

u −
∫ s

0
θε
u dP θε

u

∣∣∣∣< ε

)
= 1.
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It is then clear that it suffices to consider only strategies having continuous paths of
finite variation. Nevertheless, it is the model having chosen this class of strategies.
However, it is not clear whether or not this holds if we just use another cost func-
tion, for example, the cost function in Example 2.16 2. Finally, we would like to
mention that such approximation results (even for nonlinear integrators) exist un-
der certain technical conditions; see, for example, [4], Theorem 4.4. Particularly,
this line of arguments is used in [4] and [10] to reduce their analysis to strategies
of finite variation having continuous paths.

REMARK 3.10 (On: “The theory chooses the strategies”). Clearly, the ap-
proach described in Remark 3.9 has one disadvantage. It does not provide an easy-
to-handle recipe that ensures the existence of price processes for a large class of
large trader strategies. At this point, additional assumptions, motivated by math-
ematical theory, come into play. One example is Assumption II/(P-II). Although
this type of assumptions focuses on technical necessities, these assumptions also
reflect a fair bit of specific features of the object that an author wants to model. For
example, Assumption II/(P-II) enables us to use the theory of nonlinear stochastic
integration in the sense of Carmona and Nualart [9]. In particular, it is “tailor-
made” to extend the analysis of the no-arbitrage property for the small trader to
price processes P θ affected by general large trader strategies; see Section 4 below.
In our opinion, another big advantage of Assumption II/(P-II) is the fact that it
does not fix explicit mechanics of the impact a large trader strategy has on the price
process. Of course, if one “knows how” the large trader influences the price, one
can propose more specific and easy to handle assumptions. Suppose, for example,
that one knows that the speed of changes in the large trader’s strategy is respon-
sible for the price impact. Then it seems to be plausible to use the first derivative
of a trading strategy in order to model this impact. In particular, it is obvious that
one chooses strategies having continuously differentiable paths to come up with
an Almgren–Chriss-type model.

We end this section with a lemma that provides an example for a sufficient as-
sumption for the additive compound impact model introduced in Example 2.14. As
the structure of the primal family is known, we are able to formulate tailor-made
assumptions that ensure the existence of the price process for a large set of non-
simple large trader strategies. Its proof is an application of Lebesgue’s dominated
convergence theorem and Proposition A.7.

LEMMA 3.11. Let θ ∈ L(R) and consider the primal family of the additive
compound impact model, where P̃ is an arbitrary continuous semimartingale and
(Iϑ)ϑ∈Rd is defined as in Example 2.14. Then P θ exists if there exists (θn)n≥1 ⊂
S(R) such that the following holds:

1. θn −→ θ in the ucp-topology.
2. (F (θn))n≥1 is a Cauchy sequence in the ucp-topology.
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3. There exists a nonnegative process θ̄ such that
∫ T

0 θ̄u du < ∞ P-a.s. and
P(‖Ft(θ

n)‖Rd ≤ θ̄t ∀t ≤ T ) = 1 holds for all n ≥ 1.

REMARK 3.12. Whenever the impact function F is given explicitly, it is likely
that the limit can be identified; compare, for example, Examples 3.4 and 3.5.

4. No arbitrage condition for dynamic strategies under Assumption II. In
this section, we assume that Assumption II holds. Thanks to Proposition 2.8, the
regularity of the primal family also provides a regularity of the no-arbitrage as-
sumptions for the small trader, that is, (NA-II) is sufficient for (NA-I). Besides,
Theorem 3.3 ensures that P θ exists for all strategies θ ∈ L(R). The goal of this
section is to provide sufficient conditions that enable us to extend the result of
Proposition 2.8 to general θ ∈ L(R).

REMARK 4.1. If F = id, Proposition A.14 ensures that the statement of
Proposition 2.8 also holds for θ ∈ Se(R).

Simply put, we are looking for sufficient conditions ensuring that the large
trader’s actions, that is, her strategy θ ∈ L(R), do not lead to arbitrage opportu-
nities for the small trader. Our main tool is the following version of the fundamen-
tal theorem of asset pricing. It follows directly from [12] and [18], Theorem 3.4.
Recall that a continuous semimartingale S satisfies the structure condition (SC) if
its canonical decomposition is given by S = S0 + M + ∫

λd[M], where M is a
continuous local martingale starting in zero and

∫ T
0 λ2

u d[M]u < ∞ holds P-a.s.

THEOREM 4.2. Let S = M + ∫
λd[M] be a continuous semimartingale:

1. S satisfies (SC) if and only if E(− ∫
λdM) is a strictly positive local martin-

gale density for S, that is, E(− ∫
λdM)S is a local P-martingale.

2. There exists an equivalent local martingale measure for S if and only if S

satisfies (SC) and the classical (NA)-condition, that is, for all S-integrable pro-
cesses H that satisfy P(

∫ t
0 Hu dSu ≥ −1; ∀t ≤ T ) = 1, the following implication

holds:

P

(∫ T

0
Hu dSu ≥ 0

)
= 1 =⇒ P

(∫ T

0
Hu dSu = 0

)
= 1.

REMARK 4.3. Let θ ∈ L(R). Due to Theorem 4.2, it is clear that the structure
condition (SC) is necessary for the price process P θ in order to admit an equivalent
local martingale measure. Hence, we start looking for sufficient conditions that
ensure that P θ satisfies (SC).

The next lemma highlights that it is natural to use the definition of P θ to find
conditions that ensure the existence of an equivalent local martingale measure. In
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the following, we denote by TV(Y )T the total variation of the process Y on [0, T ].
Moreover, −−→

ucp
and −−→

SM
indicate the convergence in the ucp-topology and the

semimartingale topology, respectively.

LEMMA 4.4. Suppose that Assumption II holds and let (θn)n≥1 ⊂ S(R). Be-
sides, let θ ∈ L(R), S(ϑ, ·) = S(ϑ,0) + Mϑ + ∫

λϑ d[Mϑ ], and let

(15) Ft

(
θn)= F0

(
θn)1{0}(t) +

mn∑
i=0

Fτn
i +
(
θn)1(τn

i ,τn
i+1](t), n ≥ 1,

be representations of (F (θn))n≥1 ⊂ S(Rd). The following statements hold:

1. The canonical decompositions of (P θn
)n≥1 can be written as

(16) P θn =
∫

S
(
Fs

(
θn), ds

)= S
(
F0
(
θn),0

)+ Mn +
∫

λ(n) d
[
Mn],

where
∫ T

0 (λ
(n)
u )2 d[Mn]u < ∞ P-a.s. and

Mn
t =

mn∑
i=0

(
M

Fτn
i

+(θn)

τn
i+1∧t

− M
Fτn

i
+(θn)

τn
i ∧t

)
,

λ
(n)
t =

mn∑
i=0

λ
Fτn

i
+(θn)

t 1(τn
i ,τn

i+1](t).
(17)

2. If S̄0 + M + A denotes the canonical decomposition of P θ , where M is a
continuous local martingale and M0 = 0, then θn −−→

ucp
θ ensures that

Mn −−→
SM

M and
[
Mn]−−→

SM
[M] and

∫
λ(n) d

[
Mn]−−→

SM
A.

3. In 2. there exists a subsequence (still indexed by n) such that P-a.s.

(18) TV
(∫

λ(n) d
[
Mn]− A

)
T

−→ 0.

If d = 1 and F = id, then the statements also hold for (θn)n≥1 ⊂ Se(R).

REMARK 4.5. The lemma is the key tool to check whether or not P θ satisfies
(SC). It allows us to use results from measure theory that guarantee the conver-
gence of Lebesgue–Stieltjes integrals as in (18) to a limit of the form

∫
λd[M];

see, for example, [8], 4.7.132–4.7.133. These results usually assume pointwise
convergence of the integrands (λ(n))n≥1. However, at this point, we do not know a
priori whether or not the convergence of (θn)n≥1 in the ucp-topology implies the
pointwise convergence of the integrands (λ(n))n≥1.
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The next theorem provides a sufficient condition for P θ to satisfy (SC) without
assuming pointwise convergence of (λ(n))n≥1.

THEOREM 4.6. Suppose that Assumption II holds, let (θn)n≥1 ⊂ S(R),
θ ∈ L(R) such that θn −→ θ in the ucp-topology. Recall the notation of Lemma 4.4
and suppose that

(19) lim inf
n−→∞

∫ T

0

(
λ(n)

u

)2
d
[
Mn]

u < ∞
holds P-a.s. Then the price process P θ satisfies the structure condition (SC).

The following corollary is an immediate consequence of the above theorem.

COROLLARY 4.7. If there exists a sequence of stopping times (Rm)m≥1 ↑ T

P-a.s. and (Cm)m≥1 ⊂ L2(P) such that P(Rm = T ) −→ 1 for m −→ ∞ and

lim inf
n−→∞

∫ Rm

0

(
λ(n)

u

)2
d
[
Mn]

u ≤ Cm

holds for m ≥ 1 P-a.s., then P θ satisfies the structure condition (SC).

Next, we show that (19) might depend on the approximating sequence.

EXAMPLE 4.8. Let F = id, W be a Brownian motion and set S(ϑ, t) = Wt +
ϑt . For n ≥ 1, choose θn = λn = n1(0,n−3/2]. On the one hand, λn −→ 0 a.s. and
in L1. Therefore, we get P θn = ∫

S(θn, ds) −→ W in the semimartingale topology.
Although the limit satisfies (SC) with λ ≡ 0, the assumption of Theorem 4.6 does
not hold. Indeed, we have

∫ T
0 |λn

u|2 du = √
n. On the other hand, θ̃ n = 1/n −→ 0

and satisfies (19).

Due to Theorem 4.2, the structure condition is a necessary condition for the ex-
istence of an equivalent local martingale measure for the discounted price process
P θ , where its canonical decomposition is given by

P θ = S̄0 + M +
∫

λd[M].
A candidate for a martingale measure is now given via the density process

(20) E
(
−
∫

λdM

)
= exp

(
−
∫

λdM − 1

2

∫
λ2 d[M]

)
.

This stochastic exponential is a strictly positive local P-martingale and, there-
fore, a P-supermartingale. It is well known that E[E(− ∫

λdM)T ] = 1 if and only
if the stochastic exponential is a true martingale. If it were a true martingale,
dQ = E(− ∫

λdM)T dP defines an equivalent local martingale measure for P θ .
However, in general E(− ∫

λdM) is not necessarily a true martingale; see [30].
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The following proposition gives a sufficient condition for E(− ∫
λdM) being a

true martingale. Hence, it provides a sufficient condition for the existence of an
equivalent local martingale measure for the price process P θ if the large trader
uses a general strategy θ ∈ L(R).

PROPOSITION 4.9. Let θ ∈ L(R) be a large trader strategy. Moreover, de-
note by (θn)n≥1 ⊂ S(R) a sequence of strategies such that θn −→ θ in the ucp-
topology. Recall the notation of Lemma 4.4 and suppose the following:

1. E(− ∫
λn dMn) are true martingales for all n ≥ 1.

2. The family (E(− ∫
λn dMn)T )n≥1 is uniformly integrable.

3. [∫ λn dMn − ∫
λdM]T −→ 0 in probability.

Then E(− ∫
λdM) is a true martingale. Hence, dQ = E(− ∫

λdM)T dP is an
equivalent local martingale measure for the discounted price process P θ .

We end this section with an example. It is an application of Corollary 4.7.

EXAMPLE 4.10. Due to Lemma A.2, we can find (θn)n≥1 ⊂ Se(R), where

Ft

(
θn)= θn(t) = θ−11{0}(t) +

mn∑
i=0

θn
i 1(τn

i ,τn
i+1](t), n ≥ 1,

and a sequence (Rm)m≥1 of stopping times such that {(θn)Rm, θRm} is uniformly
bounded, P(Rm = T ) −→ 1 for m −→ ∞, and θn −→ θ ∈ L(R) in the ucp-
topology. Since F = id, Lemma 4.4 and Remark 4.1 ensure that the canonical
decomposition of P θn

is given by

P θn = S
(
θn−1,0

)+ Mn +
∫

λ(n) d
[
Mn],

where Mn and λ(n) are defined in (17).

1. Stochastic differential equations: In the setting of Example 2.12, the local
martingales Mn as well as the λ(n) are given by

Mn
t =

mn∑
i=0

σ
(
S
(
θn
i , τ n

i

))
(Wτn

i+1∧t − Wτn
i ∧t ),

λ
(n)
t =

mn∑
i=0

λ
θn
i

t 1(τn
i ,τn

i+1](t) =
mn∑
i=0

bθn
i (S(θn

i , τ n
i ))

σ 2(S(θn
i , τ n

i ))
1(τn

i ,τn
i+1](t).

Since ∫ T

0

(
λ(n)

u

)2
d
[
Mn]

u =
∫ T

0

(
mn∑
i=0

bθn
i (S(θn

i , τ n
i ))

σ 2(S(θn
i , τ n

i ))
1(τn

i ,τn
i+1](u)

)2

d
[
Mn]

u

=
mn∑
i=0

(
bθn

i (S(θn
i , τ n

i ))

σ 2(S(θn
i , τ n

i ))

)2(
τn
i+1 − τn

i

)
,
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the assumptions as well as the special choice of (θn)n≥1 and (Rm)m≥1 ensure that
we can apply Corollary 4.7. Therefore, P θ satisfies (SC).

As by assumption σ > ε, the ratio bϑ(x)/σ 2(x) is again continuous in both ar-
guments and nondecreasing in ϑ . The same arguments as in Lemma A.10 ensure
that bϑ(x)/σ 2(x) is jointly continuous. If, in addition, the family {(θn)n≥1, θ} is
uniformly bounded and there exists a continuous function f : R −→ R and a con-
stant c > 0 such that ∣∣∣∣b

ϑ(x)

σ 2(x)

∣∣∣∣≤ cf (ϑ), ∀(ϑ, x) ∈R×R,

then there exists K > 0 such that

∫ T

0
λ2

u d[M]u ≤ c2 lim inf
n−→∞

mn∑
i=0

f 2(θn
i

)(
τn
i+1 − τn

i

)≤ c2K2T .

On that account, Novikov’s condition ensures that E(− ∫
λdM) is a true mar-

tingale. Thus, dQ = E(− ∫
λdM)T dP is an equivalent local martingale measure

for P θ .
2. Reaction–diffusion setting: Similar calculations as above show that in the

setting of Example 2.13 we have

Mn
t =

mn∑
i=0

∂

∂x
ψ
(
τn
i ,Wτn

i
, θn

i

)
(Wτn

i+1∧t − Wτn
i ∧t ),

λ
(n)
t =

mn∑
i=0

( ∂
∂t

+ 1
2

∂2

∂x2 )ψ(τn
i ,Wτn

i
, θn

i )

( ∂
∂x

ψ(τn
i ,Wτn

i
, θn

i ))2
1(τn

i ,τn
i+1](t)

and ∫ T

0

(
λ(n)

u

)2
d
[
Mn]

u

=
mn∑
i=0

(( ∂
∂t

+ 1
2

∂2

∂x2 )ψ(τn
i ,Wτn

i
, θn

i )

∂
∂x

ψ(τn
i ,Wτn

i
, θn

i )

)2(
τn
i+1 − τn

i

)
.

For general reaction functions ψ , it is plausible that one has to impose certain
conditions on the fraction above to ensure that the condition of Theorem 4.6 is
satisfied. However, for the reaction function ψ(t, x,ϑ) = exp(σx + κϑt), where
σ, κ > 0, we get

∫ T

0

(
λ(n)

u

)2
d
[
Mn]

u =
mn∑
i=0

(
κ

σ
θn
i + 1

2
σ

)2(
τn
i+1 − τn

i

)
.
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Due to the special choice of (θn)n≥1 and (Rm)m≥1, we may apply Corollary 4.7
and conclude that P θ satisfies the structure condition (SC). If the sequence is uni-
formly bounded by some constant K > 0, we get∫ T

0
λ2

u d[M]u ≤ 2T

(
κ2K2

σ 2 + σ 2

4

)
.

Again, Novikov’s condition ensures that dQ= E(− ∫
λdM)T dP defines an equiv-

alent local martingale measure for P θ .

5. Utility maximization: Description of new phenomena arising in a large
trader setting. When it comes to modelling the effects on the price process
caused by the large trader’s actions, the most crucial question is: “What is the
large trader’s motivation to trade?” Here, we consider a large trader seeking to
maximize her expected utility from terminal wealth.

In order to formulate the utility maximization problem, we first have to provide
an admissibility concept for the large trader. On the one hand, we think that this
definition should coincide with at least one generic definition of admissibility in the
small trader setting if the large trader does not influence the price process. In this
case, she is in fact a small trader. On the other hand, the most popular admissibility
concept, the a-admissibility, where the wealth process is bounded from below by
a finite credit line a, is not tractable in our setting. Although this admissibility
concept has a clear economic interpretation, it might lead to a prohibition of all
constant large trader strategies (except θ ≡ 0); see Remark 5.4 below. As simple
strategies form the core of our model, this would be highly unsatisfactory. Here, we
use a modified version of the concept suggested by Biagini and Sirbu [7]. These
authors suggest (in a small trader setting) to consider those strategies that allow
for a loss control of the associated (real) wealth process by a martingale under the
historical measure. Taking these considerations into account, we end up with the
following definition of an admissible large trader strategy.

DEFINITION 5.1. Let ((S(ϑ, ·))ϑ∈Rd ,F,C, θ) be a minimal large trader mar-
ket model. The large trader strategy θ ∈ L(R) is called admissible if there exists a
strictly positive P-martingale Lθ such that

V (θ) ≥ −Lθ

holds up to indistinguishability. We call Lθ a loss control of the strategy θ .

In order to formulate the utility maximization problem, we need the following
definition. It traces back to [5, 6].

DEFINITION 5.2. Let u : R −→ R be a strictly concave, increasing and twice
continuously differentiable function that satisfies the Inada conditions

u′(−∞) := lim
x−→−∞u′(x) = −∞ and u′(+∞) := lim

x−→+∞u′(x) = 0.
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An admissible large trader strategy θ ∈ L(R) is called u-compatible for α > 0 if
there exists a loss control Lθ that satisfies

E
[
u
(−αLθ

T

)]
> −∞.

For α > 0, we denote by Hα the set of all admissible large trader strategies that are
u-compatible for α. Furthermore, we set H :=⋂

α>0 Hα .

We analyse the utility maximization problem of a large trader in a basic setting.
Despite its rather simple structure, it highlights new phenomena that are not present
in the classical utility maximization theory for small traders. At this point, we want
to emphasize that these phenomena show up despite the fact that there exists an
equivalent local martingale measure for the real wealth process of the large trader.
Besides, in some cases the real wealth process is even a supermartingale under this
measure. These phenomena are a consequence of the nonlinear structure of the
wealth process.

Let d = 1, F = id, and define the primal family (S(ϑ, ·))ϑ∈R by

(21) S(ϑ, t) := S0 + μ(ϑ)[M]t + σ(ϑ)Mt, t ∈ [0, T ],
where M is a continuous and square-integrable martingale starting in zero
a.s. and having a deterministic quadratic variation [M]. Besides, let S0 ∈ R,
μ,σ ∈ C2(R,R), such that μ vanishes whenever σ is zero. Hence, (NA-II) holds.
Due to Theorem 2.10, (S(ϑ, ·))ϑ∈R satisfies (P-II). Furthermore, let C : S(R) −→
V≥0 be a cost function that maps constant strategies to zero. For an admissible
large trader strategy θ ∈ L(R), the price process and the large trader real wealth
process are given by

P θ = S0 +
∫

μ(θ)d[M] +
∫

σ(θ) dM,

V (θ) = V θ
0 +

∫
θμ(θ) d[M] +

∫
θσ (θ) dM − C(θ).

For α > 0, we consider the exponential utility maximization problem

(22) sup
θ∈H1

E
[
u
(
VT (θ)

)]
,

where u(x) = 1 − e−αx . Next, we provide a partial characterization of H.

LEMMA 5.3. Let (S(ϑ, ·))ϑ∈R be given by (21) and let u(x) = 1 − e−αx for
α > 0. If θ ∈ bL(R) and C(θ) are bounded, then θ ∈ H. Moreover, for all α > 0
the process Lθ is an u-compatible loss control for θ , where

Lθ
t := E

[
sup
s≤T

∣∣Vs(θ)
∣∣|Ft

]
.

REMARK 5.4. The lemma highlights that the concept of a-admissibility is not
suitable for our large trader setting. Indeed, if M in (21) is a Brownian motion, it
would prohibit any constant large trader strategy except θ = 0.
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Recall Definition 3.7 of tame strategies and define

� := {
θ ∈ bL(R)|θ is a tame admissible large trader strategy

}
.

Due to Novikov’s condition, we can define probability measures Qθ ∼ P via

(23)
dQθ

dP
:= exp

(
−α

∫ T

0
θuσ (θu) dMu− α2

2

∫ T

0
θ2
uσ 2(θu) d[M]u

)
, ∀θ ∈ �.

Now we can rewrite the utility maximization problem (22) for all θ ∈ � as

(24) E
[
u
(
VT (θ)

)]= 1 − e−αV θ
0 EQθ

[
e−α

∫ T
0 p(θu) d[M]u],

where

(25) p(x) := xμ(x) − α

2
x2σ 2(x), x ∈ R.

After these preliminary observations, we first discuss the reduced problem

(26) sup
θ∈�

E
[
u
(
VT (θ)

)]
.

As we will see below, two different scenarios might happen. In the first scenario,
the so-called stable regime, we can find at least one optimal strategy. These optimal
strategies are constant. In the second scenario, the unstable regime, the presence
of the large trader completely destabilizes the market. This is due to the fact that it
is optimal for the large trader to buy/sell as many shares as possible to maximize
her expected utility.

REMARK 5.5. It will turn out that the existence of an optimal strategy boils
down to the existence of a maximum of the function p. The following observations
show that the market is stable if and only if p, defined in (25), attains at least one
maximum:

1. Stable regime: Suppose that p has at least one maximum ϑ∗ ∈ R. Then

E
[
u
(
VT (θ)

)]= 1 − e−α(V θ
0 +p(ϑ∗)[M]T )EQθ

[
e−α

∫ T
0 (p(θu)−p(ϑ∗)) d[M]u]

is equivalent to (24) for all θ ∈ �. Since P(p(θ) − p(ϑ∗) ≤ 0,∀θ ∈ �) = 1, it
follows that ϑ∗ is an optimal strategy and

sup
θ∈�

E
[
u
(
VT (θ)

)]= 1 − exp
(−α

(
V θ

0 + p
(
ϑ∗)[M]T )).

2. Unstable regime: Suppose that p has no maximum. Due to the continuity of
p, we can find a sequence (ϑn)n∈N ⊂ � of constant strategies such that

sup
ϑ∈R

p(ϑ) =
⎧⎨
⎩ lim

n−→∞p(ϑn) =: p∗ ∈ R if p is bounded from above,

+∞ else.
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Keeping this in mind, it follows that

sup
θ∈�

E
[
u
(
VT (θ)

)]=
{

1 − e−α(V θ
0 +p∗[M]T ) if p is bounded from above,

1 else.

Since continuous functions attain their extreme points on compact intervals, it is
clear that ϑn −→ ±∞. Obviously, ϑn −→ +∞ means that the large trader tries to
buy as many shares as possible in order to reach her maximal expected utility from
terminal wealth. ϑn −→ −∞ means that she achieves her goal by short selling.
Thus, there is no optimal strategy θ ∈ �. Such strategies lead to exploding or
collapsing prices and destabilize the market.

We collect the above results in the following proposition.

PROPOSITION 5.6. Under the assumptions made above, we have

sup
θ∈�

E
[
u
(
VT (θ)

)]= sup
θ∈H1

E
[
u
(
VT (θ)

)]
.

Furthermore, either of the following statements hold:

1. Stable regime: There exists at least one solution to the utility maximization
problem (22) if and only if the function p defined in (25) attains at least one maxi-
mum. The set of optimal strategies contains only constant strategies and (if consid-
ered as subset of R) coincides with the set of maxima of the function p. If ϑ∗ ∈ R

is an optimal strategy, the value of the utility maximization problem (22) is given
by

sup
θ∈�

E
[
u
(
VT (θ)

)]= 1 − exp
(−α

(
V θ

0 + p
(
ϑ∗)[M]T )).

2. Unstable regime: There is no optimal trading strategy in H1. Moreover, by
maximizing the expected utility from terminal wealth, the large trader destabilizes
the market since the prices either explode or collapse. Here, her utility maximiza-
tion efforts lead to

sup
θ∈�

E
[
u
(
VT (θ)

)]=
{

1 − e−α(V θ
0 +p∗[M]T ) p is bounded from above,

1 else.

REMARK 5.7. 1. Due to Proposition 5.6, it is easy to find an example in
which the necessary condition is not sufficient. Choose for instance μ(x) = x

and σ(x) = x2. Then ϑ∗ = 0 satisfies the necessary condition p′(ϑ∗) = 0. As
p′′(ϑ∗) = 2, ϑ∗ is a local minimum of p. Due to Proposition 5.6, this constant
trading strategy is not optimal.

2. Note that in the stable regime there exists an equivalent local martingale mea-
sure for the real wealth process. Furthermore, the “destabilization” of the market
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in the unstable regime can be achieved by a sequence of large trader strategies
such that for all of these wealth processes there exists an equivalent local martin-
gale measure. Finally, if M in (21) is a Brownian motion, the corresponding real
wealth processes are also supermartingales under the equivalent local martingale
measure.

3. Recall our discussion on “The model chooses the strategies” in Section 3.2.
In the context of utility maximization, the stable regime is an example in which
the model chooses its strategies.

EXAMPLE 5.8 (Illiquid Bachelier model). Define (S(ϑ, ·))ϑ∈R by

S(ϑ, t) = S0 + (μ + κϑ)t + σWt,

where W is a Brownian motion and μ,κ,σ are positive parameters. The filtration
is supposed to be the smallest one fulfilling the usual conditions and containing
the one generated by W .

To analyse the model, we apply the same arguments as in Proposition 5.6. The
function p defined in (25) is a polynomial of order 2. In particular, we find that for
ασ 2 �= 2κ ,

p(x) = −ασ 2 − 2κ

2

(
x − μ

ασ 2 − 2κ

)2
+ μ2

2(ασ 2 − 2κ)
.

Clearly,

ϑ∗ = μ

ασ 2 − 2κ

satisfies the necessary condition p′(ϑ∗) = 0. Therefore, utility maximization relies
on the stability condition p′′(ϑ∗) < 0, which is equivalent to 2κ < ασ 2.

1. Stable regime 2κ < ασ 2: The strategy ϑ∗ performs best among all strate-
gies. Moreover, it is the only admissible strategy which fulfils the necessary op-
timality condition. If the initial value equals 0 and the large trader chooses the
strategy ϑ∗, she gains an expected utility of

1 − exp
(
− αμ2T

2(ασ 2 − 2κ)

)
.

We now want to compare the expected utility of the large trader with the optimal
utility in the classical Merton problem in this stable regime. Consider the case
where we face a hypothetical small investor with the same utility function and
initial wealth 0, and with given price process P θ . Given that the large trader is
present in the market and behaves rationally, that is, chooses the constant strategy
θ = ϑ∗, it results that the small trader would choose a constant strategy as well,
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namely

ψ
(
ϑ∗)= μ + κϑ∗

ασ 2 .

His expected utility in that case would be

1 − e− α2ψ2(ϑ∗)σ2T
2 = 1 − exp

(
− αμ2T

2(ασ 2 − 2κ)

(
1 + κ2

ασ 2(ασ 2 − 2κ)

))
.

Therefore, the small investor would achieve a higher expected utility. If there were
no large trader around, that is, θ = 0, the small trader would hold an optimal port-
folio of

ψ(0) = μ

ασ 2

stocks, and his expected utility in that case is

1 − exp
(
−μ2T

2σ 2

)
= 1 − exp

(
− αμ2T

2(ασ 2 − 2κ)

(
1 − 2κ

ασ 2

))
.

Accordingly, the absence of the large trader is not beneficial for the small trader as
it reduces his expected utility.

In [4], Bank and Baum compare the utility maximization problem of the large
trader to the utility maximization problem of the small trader in the market P 0.
Under [4], Assumption 4, which requires that S(ϑ, t) = S(ϑ,0) + ∫ t

0 pϑ
u dS(ϑ,u)

for all ϑ ∈ R, they prove that the utility maximization efforts of both traders lead
to the same value. However, our primal family does not satisfy [4], Assumption 4.
Moreover, the small trader achieves only a lower expected utility (in the model
P 0) compared to the large trader that maximizes her expected utility. The only
exception would be the case μ = 0.

2. Unstable regime:

(a) Case 2κ > ασ 2: In this case, ϑ∗ is the minimum of the function p. Thus, the
strategy ϑ∗ performs worst among all strategies, while the expected utility grows
with |ϑ | up to the maximum value. This can be interpreted in a way that the impact
on the drift is so substantial that the large investor buys as many shares as possible.

(b) Case 2κ = ασ 2: In this critical case, p defined in (25) is given by p(x) =
μx. Hence, the result depends on μ. If μ = 0, all strategies perform equally as the
investor always gets the expected utility of the zero strategy. For μ �= 0 she can,
like above, achieve expected utility arbitrarily close to the maximum value of one.
Yet, now her stake has to have the right sign, depending on the sign of μ.

REMARK 5.9. This example is not included in the model class studied by
Kühn [24] whose Assumption 2.1 (“Largeness is not favourable”) implies that the
drift is nonincreasing in ϑ .
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6. Proofs.

PROOF OF PROPOSITION 2.8. For ϑ ∈ Rd , let Zϑ denote the density pro-
cess of a local martingale measure Qϑ for S(ϑ, ·) which exists due to (NA-II).
As F(θ̃) =: θ is a simple strategy, all the θi in the representation (3) assume only
finitely many values denoted by {ϑi1, . . . , ϑimi

}. We may assume by localization

that the S(ϑ, ·) are Qϑ -martingales for each ϑ from this finite set. Define proba-
bility measures Qθi , i ∈ {0, . . . , n}, by

Z
θi
t := dQθi

dP

∣∣∣∣
Ft

:= ci

mi∑
j=1

Z
ϑij

t 1{θi=ϑij },

where the ci are normalising constants. Then
∫

S(θi, ds) is a Qθi -martingale for
all i ∈ {0, . . . , n}. Indeed, for each i ∈ {0, . . . , n} and t ∈ [0, T ], we set

�tS
i := S(θi, τi+1 ∧ t) − S(θi, τi ∧ t),

�tS
i,j := S(ϑij , τi+1 ∧ t) − S(ϑij , τi ∧ t).

Bayes’ formula enables us to compute the conditional expectations under a mea-
sure change. Hence, for i ∈ {0, . . . , n} and s < t we get

EQθi

[
�tS

i |Fs

]= 1

Z
θi
s

EP

[
Z

θi

T �tS
i |Fs

]

= 1

Z
θi
s

ci

mi∑
j=1

EP

[
Z

ϑij

T �tS
i1{θi=ϑij }|Fs

]

= ci

mi∑
j=1

Z
ϑij
s

Z
θi
s

E
Q

ϑij

[
�tS

ij 1{θi=ϑij }|Fs

]
.

(27)

Moreover, for fixed j ∈ {1, . . . ,mi} we compute

E
Q

ϑij

[
�tS

ij 1{θi=ϑij }|Fs

]= E
Q

ϑij

[
�tS

ij 1{θi=ϑij }1{s≥τi}|Fs

]
+E

Q
ϑij

[
�tS

ij 1{θi=ϑij }1{s<τi}|Fs

]
.

(28)

First, let us compute the first term on the right-hand side of (28). Due to (NA-II),
we know that �tS

ij are Qϑij -martingales for all j ∈ {1, . . . ,mi}. As θi is Fτi
-

measurable, we conclude that

E
Q

ϑij

[
�tS

ij 1{θi=ϑij }1{s≥τi}|Fs

]= E
Q

ϑij

[
�tS

ij |Fs

]
1{θi=ϑij }1{s≥τi}

= �sS
ij 1{θi=ϑij }1{s≥τi}.
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In the next step, we compute the second term on the right-hand side of (28). It
equals zero. Indeed, by conditioning on Fτi

and using the tower property of con-
ditional expectation, we get

E
Q

ϑij

[
�tS

ij 1{θi=ϑij }1{s<τi}|Fs

]
= E

Q
ϑij

[
E
Q

ϑij

[
�tS

ij 1{θi=ϑij }1{s<τi}|Fτi

]|Fs

]
= E

Q
ϑij

[
1{θi=ϑij }1{s<τi}EQ

ϑij

[
�tS

ij |Fτi

]|Fs

]
.

Due to the martingale property of S(ϑij , ·), we can conclude that

E
Q

ϑij

[
1{θi=ϑij }1{s<τi}EQ

ϑij

[
�tS

ij |Fτi

]|Fs

]
= E

Q
ϑij

[
1{θi=ϑij }∩{s<τi}�t∧τi

Sij |Fs

]= 0.

Since �sS
ij 1{θi=ϑij }1{s<τi} is zero, the computations above ensure that

E
Q

ϑij

[
�tS

ij 1{θi=ϑij }|Fs

]= �sS
ij 1{θi=ϑij }

and (28) are equivalent. Summing up over j , we deduce from (27) that

EQθi

[
�tS

i |Fs

]= �sS
i.

Hence,
∫

S(θi, ds) is a local martingale under Qθi . Finally, we construct the density
process Zθ of Qθ on the whole time interval [0, T ] by concatenation,

Zθ
t :=

n∏
i=0

Z
θi
t∧τi+1

Z
θi
t∧τi

.

In particular, Qθ̃ := Qθ is an equivalent local martingale measure for P θ̃ . �

PROOF OF THEOREM 2.10. Without loss of generality, we assume that
S(ϑ,0) = 0 for all ϑ ∈ Rd . Due to Lemma A.10, Definition A.8 1 holds. To prove
the second item, let K > 0 and define the sequence of stopping times (τK

n )n≥1 via

(29) τK
n := inf

{
t > 0 : sup

‖ϑ‖
Rd ≤K

∣∣μ(ϑ,S(ϑ, t)
)∣∣∨ sup

‖ϑ‖
Rd ≤K

∣∣σ (ϑ,S(ϑ, t)
)∣∣≥ n

}
∧ T .

For all K > 0, the joint continuity ensures that P(τK
n < T ) −→ 0 as n −→ ∞.

Let θ ∈ S(Rd), η ∈ S(R), and max{η∗, θ∗} ≤ K , where η∗ = supt≤T ‖η(t)‖R and
θ∗ = supt≤T ‖θ(t)‖Rd . Without loss of generality, we may and do assume that

θ(t) =
n∑

i=0

θi1(τi ,τi+1](t) and η(t) =
n∑

i=0

ηi1(τi ,τi+1](t).
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Denote by η · ∫ S(θ, ds) the linear stochastic integral of η w.r.t.
∫

S(θ, ds),

μ̃u(η, θ) :=
n∑

i=0

ηiμ
(
θi, S(θi, τi)

)
1(τi ,τi+1](u) and

σ̃u(η, θ) :=
n∑

i=0

ηiσ
(
θi, S(θi, τi)

)
1(τi ,τi+1](u).

Then we have(
η ·

∫
S(θ, ds)

)
t

=
∫ t

0
μ̃u(η, θ) dAu +

∫ t

0
σ̃u(η, θ) dMu.

Moreover, for C > 0 and n ≥ 1 ∈ N a straightforward computation leads to

P

(
sup
t≤T

∣∣∣∣
(
η ·

∫
S(θ, ds)

)
t

∣∣∣∣> C

)
≤ P

(
sup
t≤T

∣∣∣∣
∫ τK

n ∧t

0
μ̃u(η, θ) dAu

∣∣∣∣> C

2

)

+ P

(
sup
t≤T

∣∣∣∣
∫ τK

n ∧t

0
σ̃u(η, θ) dMu

∣∣∣∣> C

2

)

+ P
(
τK
n < T

)
.

Thanks to the definition of τK
n , Chebyshev’s inequality, and the Burkholder–

Davis–Gundy inequality, we can conclude that

P

(
sup
t≤T

∣∣∣∣
∫ τK

n ∧t

0
μ̃u(η, θ) dAu

∣∣∣∣> C

2

)
≤ P

(
AT >

C

2nK

)
,

P

(
sup
t≤T

∣∣∣∣
∫ τK

n ∧t

0
σ̃u(η, θ) dMu

∣∣∣∣> C

2

)
≤ C̃

2nK

C
E
[√[M]T ].

Combining these results, we get

P

(
sup
t≤T

∣∣∣∣
(
η ·

∫
S(θ, ds)

)
t

∣∣∣∣> C

)

≤ P
(
τK
n < T

)+ P

(
AT >

C

2nK

)
+ C̃

2nK

C
E
[√[M]T ].

Since the right-hand side of the inequality is independent of θ ∈ S(Rd), η ∈ S(R),
and P(τK

n < T ) −→ 0 as n −→ ∞, Definition A.8 2 holds (for C −→ ∞). Hence,
it remains to prove Definition A.8 3. Let (θn)n≥1 ⊂ S(Rd) be a Cauchy sequence in
the ucp-topology that is uniformly bounded by K and set τm := τK

m . For N,n,m ∈
N we have

dSM

(∫
S
(
θn, ds

)
,

∫
S
(
θm, ds

))

≤ P(τN < T ) + dSM

((∫
S
(
θn, ds

))τN

,

(∫
S
(
θm, ds

))τN
)
.
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As P(τN < T ) −→ 0 for N −→ ∞, it remains to show that ((
∫

S(θn, ds))τN )n≥1
is a Cauchy sequence in the semimartingale topology for all N ≥ 1. To see this,
note that ((θn)τN )n≥1 is a Cauchy sequence in the ucp-topology and Lemma A.15
ensures that for all N ≥ 1(∫

S
(
θn, ds

))τN =
∫

SτN
((

θn)τN , ds
) ∀n ≥ 1.

Due to the joint continuity of μ,σ , S(ϑ, t), and the dominated convergence the-
orem for semimartingales ([27], III.13 Théorème), (

∫
SτN ((θn)τN , ds))n≥1 is a

Cauchy sequence in the semimartingale topology for all N ≥ 1. �

PROOF OF LEMMA 4.4. (NA-II) and Theorem 4.2 allow us to write the canon-
ical decompositions of (S(ϑ, ·))ϑ∈Rd as S(ϑ, ·) = S(ϑ,0) + Mϑ + ∫

λϑ d[Mϑ ],
where P(

∫ T
0 (λϑ

u )2 d[Mϑ ]u < ∞) = 1 holds for all ϑ ∈ Rd . For (F (θn))n≥1 ⊂
S(Rd), Theorem 4.2 and Proposition 2.8 ensure that the canonical decompositions
of (P θn

)n≥1 are given by

P θn =
∫

S
(
F
(
θn), ds

)= S
(
F0
(
θn),0

)+ Mn +
∫

λ(n) d
[
Mn],

where
∫ T

0 (λ
(n)
u )2 d[Mn]u < ∞ P-a.s. for all n ≥ 1. Besides, for (F (θn))n≥1 with

representation (15) we get (17) for all n ≥ 1. Moreover, 2 and 3 follow from Propo-
sition A.7. Finally, the last statement can be proven along the same lines using
Proposition A.14 and Remark 4.1. �

PROOF OF THEOREM 4.6. Within the proof, we frequently use the fact that
for a Lebesgue–Stieltjes integral process F = ∫

H dB , where B is nondecreasing
and right-continuous, its total variation TV(F )T on the interval [0, T ] is P-a.s.
given by

(30) TV(F )T =
∫ T

0
|Hu|dBu;

see, for example, [28], Corollary, page 40. We first prove that there exists a pre-
dictable process λ such that A = ∫

λd[M] holds. As [Mn] −→ [M] in the semi-
martingale topology, Proposition A.7 ensures that there exists a subsequence (still
indexed by n) such that (recall our convention that equalities between random vari-
ables are to be understood P-a.s.)

lim
n−→∞ TV

([
Mn]− [M])T = 0,(31)

lim
n−→∞ TV

(∫
λ(n) d

[
Mn]− A

)
T

= 0.(32)

Therefore, we have

(33) TV(A)T ≤ lim inf
n−→∞ TV

(∫
λ(n) d

[
Mn])

T

.
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Due to (30), we get for n ≥ 1

(34) TV
(∫

λ(n) d
[
Mn])

T

=
∫ T

0

∣∣λ(n)
u

∣∣d[Mn]
u =

∫ T

0
1
∣∣λ(n)

u

∣∣d[Mn]
u.

Combining (33) and (34) and applying Hölder’s inequality to (34) leads to

TV(A)T ≤ lim inf
n−→∞

([
Mn]

T

) 1
2

(∫ T

0

(
λ(n)

u

)2
d
[
Mn]

u

) 1
2
.

According to assumption (19), we can conclude that

TV(A)T ≤ ([M]T ) 1
2 lim inf

n−→∞

(∫ T

0

(
λ(n)

u

)2
d
[
Mn]

u

) 1
2
.

Thanks to the Radon–Nikodym theorem, there exists a process λ such that

(35) A =
∫

λd[M];

see [19], 3.13 Proposition, for details. It remains to prove that
∫ T

0 λ2
u d[M]u < ∞

holds P-a.s. Due to (31), there exists a set Nc of measure zero such that the
family ([Mn](ω))n∈N, [M](ω) is uniformly bounded for all ω ∈ N . Thanks to
Lemma B.1, there exist probability measures dB(ω) on [0, T ] such that

∀n ∈ N: d
[
Mn](ω) � dB(ω) and d[M](ω) � dB(ω)

hold for all ω ∈ N , where N = � \ Nc. Due to (30) and (31),

lim
n−→∞ TV

([
Mn]− [M])T (ω) = lim

n−→∞

∫ T

0

∣∣∣∣d[Mn]
dB

− d[M]
dB

∣∣∣∣(ω,u) dBu(ω) = 0

holds for all ω ∈ N and
d[Mn]

dB
(ω, ·) −→ d[M]

dB
(ω, ·) in dB(ω)-probability.

Combining (32), (35) and (30), we also have for all ω ∈ N∫ T

0

∣∣∣∣λ(n)
u (ω)

d[Mn]
dB

(ω,u) − λu(ω)
d[M]
dB

(ω,u)

∣∣∣∣dBu(ω) −−−−→
n−→∞ 0

and

λ(n)· (ω)
d[Mn]

dB
(ω, ·) −−−−→

n−→∞ λ·(ω)
d[M]
dB

(ω, ·) in dB(ω)-probability.

Finally, we may apply Lemma B.3, Fatou’s lemma and assumption (19) in order
to conclude that the claim is proven. Indeed, for all ω ∈ N we have∫ T

0
λ2

u(ω)d[M]u(ω)

=
∫ T

0
1{ d[M]

dB
�=0}(ω,u)λ2

u(ω)
d[M]
dB

(ω,u)dBu(ω)
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≤ lim inf
n−→∞

∫ T

0
1{ d[M]

dB
�=0}(ω,u)

(
λ(n)

u (ω)
)2 d[Mn]

dB
(ω,u)dBu(ω)

≤ lim inf
n−→∞

∫ T

0

(
λ(n)

u (ω)
)2

d
[
Mn]

u(ω). �

PROOF OF COROLLARY 4.7. As (Cm)m≥1 ⊂ L2(P) holds, we know that
lim infn−→∞

∫ T
0 (λ

(n)
u )2 d[Mn]u < ∞ holds on {Rm = T }. Since P(Rm = T ) −→ 1

for m −→ ∞, (19) holds P-a.s. �

PROOF OF PROPOSITION 4.9. Due to [23], Proposition 2.7, the third assump-
tion is equivalent to

∫
λ(n) dMn −−→

SM

∫
λdM . According to Proposition A.7, the

composition of C2-functions with semimartingales is continuous w.r.t. the semi-
martingale topology. Therefore, we can conclude that

E
(
−
∫

λ(n) dMn

)
−−→
SM

E
(
−
∫

λdM

)
.

Due to 2, E[E(− ∫
λdM)T ] = 1 holds and E(− ∫

λdM) is a martingale. �

PROOF OF LEMMA 5.3. We set Vs := Vs(θ) and assume w.l.o.g. that
C(θ) ≡ 0. Note that it suffices to prove E[exp(α sups≤T |Vs |)] < ∞. This im-
plies that Lθ is a u-compatible loss control for θ . As θ is bounded and [M] is
deterministic, we know that for all α > 0 there exists a constant K > 0 such that

eα sups≤T |Vs | ≤ sup
s≤T

[
exp(αVs)

]+ sup
s≤T

[
exp(−αVs)

]

≤ K sup
s≤T

E
(
−
∫

αθσ(θ) dM

)
s

+ K sup
s≤T

E
(∫

αθσ(θ) dM

)
s

.

Due to Novikov’s condition, Lθ is a u-compatible loss control for θ . �

7. Outlook on further research. We would like to take the opportunity to
finish this paper with an outlook on further research goals. Introducing the modular
perspective to a financial market with a large trader was one major focus of this
paper. In particular, we ensured that the approach taken here is a natural extension
of the theory on financial markets with small traders. As a result, a rather big
portion of the paper was dedicated to the definition of the price process affected by
the large trader, Assumption I and its extension to general large trader strategies in
Section 4. Consequently, we could only mention other quite interesting aspects in
remarks or address them in a rather plain setting.

In the following subsections, we sketch three ideas, highlighting different di-
rections to which we intend to extend our modular approach. While we focus on
the question how to include a limit order book into our modular model in the first
subsection, the second and third subsection discuss various aspects of arbitrage
opportunities for the large trader and different levels of information. The latter is,
similar to the analysis in Section 4, closely related to the structure condition (SC).
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7.1. Price process for dynamic strategies and limit order book. In this subsec-
tion, we present one approach how to include a limit order book into our modular
model. Note that the examples considered so far are models focusing on illiquid-
ity, for example, Bank and Baum [4] and Çetin et al. [10] and price impacts, for
example, Almgren–Chriss [2, 3] and Gatheral [16]. In both types of models, the
impact of the large trader on her real wealth process and the price process is rather
direct. In more recent publications, several authors model the price impact of the
large trader via a limit order book and describe the relation between the volume
impact and the price impact. Using this approach, we can incorporate a limit order
book into our model. While a detailed analysis is left for further research, the next
example gives an idea how this can be done.

EXAMPLE 7.1 (Volume impact limit order book model of Alfonsi and
Schied [1]). Using the additive compound impact model, we can build a model
that is quite similar to the limit order book model of Alfonsi and Schied [1]. In
their model, the price impact is driven by the dynamics of a limit order book that
is exposed to market orders of the large trader. Our version of the model is charac-
terized as follows. For a strategy,

θ ∈ X := {
θ ∈ bL(R)|θ has continuously differentiable paths

}
,

the price process is given by

P θ = P̃ + I θ ,

where P̃ is defined as in (7) and the price impact I θ is given by

(36) I θ
t = H(E0) +

∫ t

0
h(Eu)dEc

u.

In the above equation, h : R−→ [0,∞) is an integrable function that is a.s. strictly
positive, H(y) = ∫ y

0 h(x) dx, and Ec denotes the continuous part of the volume
impact process E, whose dynamics are given by

(37) dEt = dθt − ρtEt dt, E0 ∈ R.

Here, ρ : [0,∞) −→ [0,∞) is a Borel-measurable function reflecting the re-
silience speed of the volume impact process. Note that for θ ∈ X we get

dEc
t = E0(−ρt)e

− ∫ t
0 ρv dv dt +

(
−ρt

∫ t

0
e− ∫ t

u ρv dvθ̇u du + θ̇t

)
dt.

Thus, using similar arguments as in Examples 3.4 and 3.5, we can define a proper
impact function F ensuring that Assumption I holds and I θ is given by (36) for all
θ ∈ X . Instead of presenting these details, we rather elaborate on the connection of
this model with the model suggested by Alfonsi and Schied [1]. Here, the choice
of the function h is crucial as it links the volume impact on the limit order book to
the actual price impact.
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In [1], the actual price process is driven by an unperturbed price P̃ and a re-
sponse D of the limit order book to market orders θ of the large trader. This is done
in an indirect way by describing the volume impact of the large trader strategy on
the limit order book; see (37). In order to connect the volume impact process E

to the price impact process D, Alfonsi and Schied [1] assume a continuous distri-
bution of the bid and ask spread orders away from the unperturbed price P̃ . More
precisely, they assume that the distribution is described by a continuous function
g :R −→ [0,∞), called the shape function, that is, Lebesgue a.s. strictly positive.
Intuitively, the number of shares offered at price P̃t +x is given by g(x) dx. Hence,
the volume impact of Et shares is related to the price impact Dt via G(Dt) = Et ,
where

G(y) :=
∫ y

0
g(x) dx, y ∈ R.

Since g is continuous and strictly positive, G is invertible and its inverse is

H(y) := G−1(y) =
∫ y

0
h(x) dx, y ∈ R,

where h(x) = 1
g(H(x))

for x ∈ R. Summing up, we get

Et = G(Dt) and Dt = H(Et).

The connection to our model is provided by the change of variables formula [28],
II Section 7, Theorem 31. Indeed, for a predictable càdlàg process θ of finite vari-
ation, whose continuous and purely discontinuous parts are denoted by θc and θd ,
respectively, we have

Dt = H(E0) +
∫ t

0
h(Eu)dEc

u +∑
u≤t

(
H
(
θd
u

)− H
(
θd
u−
))

.

Thus, for θ ∈ X the price impact process D coincides with (36). Finally, we would
like to remark that this representation is only a sketch of the model proposed by
Alfonsi and Schied [1] for which we refer for details.

7.2. (No) arbitrage opportunities for the large trader. We already fixed our no
arbitrage condition for the small trader, namely the no free lunch with vanishing
risk condition. Of course, the key question in this subsection is an exact definition
of an arbitrage opportunity for the large trader. Following Bank and Baum [4] and
the spirit of the fundamental theorem of asset pricing, we could use the classical
(NA)-condition. That is, there does not exist an admissible large trader strategy
θ ∈ L(R) such that

P
(
VT (θ) ≥ V0(θ)

)= 1 and P
(
VT (θ) > V0(θ)

)
> 0.

Using this notion, Proposition 4.9 provides a tool to check whether or not this con-
dition holds for a tame strategy θ ∈ L(R). The question regarding a proper no ar-
bitrage condition becomes particularly interesting if a limit order book is involved.
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For an analysis of different types of arbitrage opportunities in such a setting, we
refer to Alfonsi and Schied [1] and the references therein. Apart from a proper
notion for a large trader arbitrage and its dependence on (2), we are interested in
the consequences for the small trader once the large trader exploits the arbitrage.

7.3. Different levels of information. In this paper, we always assumed that
the small as well as the large trader have the same information modelled by the
filtration F. However, it seems to be obvious that different levels of information for
the small and the large trader can have substantial impact on the different modules
and their analysis. In the following subsection, we discuss some examples that
indicate how a weakening of this assumption might influence the analysis of the
different modules.

7.3.1. Different levels of information and arbitrage opportunities for the small
trader. Consider the illiquid Bachelier model

(38) dP θ
t = θt dt + dWt,

where W is a standard Brownian motion. Note that this illiquid Bachelier model is
our additive compound impact model with impact function F = id. For simplicity,
we assume that the cost function is constant zero. Thus, the large trader real wealth
process is given by V (θ) = ∫

θ dP θ . For this particular model, it is possible to
consider more general large trader strategies which not necessarily have càglàd
paths.

In the following, we discuss phenomena arising from different levels of infor-
mation for the large trader strategy θ = −W/t . Hence, the small trader faces the
following price process:

(39) dPt = −Wt

t
dt + dWt

affected by the large trader strategy θ = −W/t . Moreover, we assume that the
filtration (information) FST of the small trader is generated by P defined in (39).
Hence, the small trader does not observe the Brownian motion W . Besides, the
filtration for the large trader FLT is generated by P as well as her own strategy.
Thus, the large trader does observe W .

EXAMPLE 7.2 (Arbitrage opportunities for the small trader that depend on the
choice of filtration). For the large trader strategy θ = −W/t , the price process
P θ follows a Brownian motion w.r.t. FST; see Jeulin and Yor [22]. Thus, the large
trader’s action does not lead to arbitrage opportunities for the small trader. This
would be different if the small trader would possess the same information as the
large trader. Indeed, provided that the small trader’s information is given by FLT, a
result by Jeulin and Yor [21] implies

(40)
∫ ε

0

W 2
s

s2 ds = ∞ ∀ε > 0.
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Due to Delbaen and Schachermayer [13], this is sufficient for an immediate ar-
bitrage opportunity for the small trader. Note that (40) leads to a failure of the
structure condition (SC).

7.3.2. Different levels of information and (no) arbitrage opportunities for the
large trader. Questions regarding arbitrage opportunities for the large trader be-
come particularly interesting if she has an edge on information. The next example
gives a glimpse of how different levels of information might lead to arbitrage op-
portunities for the large trader without destabilizing the market and without intro-
ducing arbitrage opportunities for the small trader.

EXAMPLE 7.3 (Different levels of information and arbitrage opportunities for
the large trader). How can the large trader exploit arbitrage while the small trader
cannot? Informally, we can use Example 7.2 and argue as follows: given the infor-
mation FST, the small trader faces a market driven by a (P,FST)-Brownian motion
P θ . Thanks to its martingale property, the small trader wealth process

∫
H dP θ is

a (P,FST)-supermartingale whenever H is 1-admissible. Thus, there are no arbi-
trage opportunities for the small trader.

In contrast to the small trader, the large trader can exploit her additional knowl-
edge and invest according to θ = −W/t . Intuitively, (40) suggests that this strategy
leads to an arbitrage opportunity for the large trader. However, one has to be careful
as (40) ensures that θ is not integrable w.r.t. the Brownian motion W . Nevertheless,
using arguments similar to those in the proof of [11], Théorème 2.9 ii), the large
trader can exploit an unbounded profit with bounded risk without destabilising the
market by creating a run away effect in the drift.

APPENDIX A: STRONG NONLINEAR INTEGRATORS AND THE
NONLINEAR STOCHASTIC INTEGRAL

The purpose of Appendix A is to give an overview of strong nonlinear inte-
grators and the nonlinear stochastic integral. For a detailed introduction of these
concepts, we refer to Carmona and Nualart [9]. We consider a probability space
(�,F,P) equipped with a filtration F = (Ft )t∈[0,T ] satisfying the usual condi-
tions. Moreover, T ∈ (0,∞) and F0 is trivial apart from null sets. Results from the
literature formulated for an infinite time horizon are used by applying the corre-
sponding result to the stopped process.

A.1. Simple strategies. There are various definitions of simple strategies in
the literature. Our Definition 2.1 of simple strategies is the one given in Carmona
and Nualart [9]. One advantage of this definition is the following unique represen-
tation of simple strategies.
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LEMMA A.1. Let θ ∈ S(R). Then θt+ ∈ Ft for all t ∈ [0, T ]. Moreover, define
for t ≥ 0

�+θt := lim
h↓0

(θt+h − θt ).

Denote by t1 < · · · < tK the jump times of θ ∈ S(R), that is, those t ∈ [0, T ] such
that P(�+θt �= 0) > 0. Besides, set

� :=
{{0 = t0 ≤ t1 < · · · < tK+1 = T } θ jumps with positive probability,

{0, T } else.

Then

(41) θ−11{0} +
K∑

i=0
(ti )⊂�

θti+1(ti ,ti+1]

is a representation of θ that is unique in the following sense: � is the smallest
deterministic partition of [0, T ] that contains 0, T , and all jump times of θ ∈ S(R)

such that the jumps in these points occur with positive probability.

PROOF. Recall that, by assumption, the filtration F satisfies the usual con-
ditions. Hence, F is right-continuous. Since θ ∈ S(R) is bounded, the right-
continuity of F ensures that θt+ ∈ Ft for all t ∈ [0, T ]. As θ ∈ S(R), it jumps
at most finitely many times. If we define � as above, we know that it contains
all jump times of θ ∈ S(R). Hence, (41) is indeed a representation of θ . As
P(�+θti �= 0) > 0 for all i ∈ {1, . . . ,K}, uniqueness follows. �

The next lemma collects results about càglàd processes. Recall that f ∗ :=
supt≤T ‖f (t)‖Rd for a bounded, measurable function f : [0, T ] −→Rd .

LEMMA A.2. Let (θn)n≥1 ⊂ L(Rd) and θ ∈ L(Rd).

1. If θn −→ θ in the ucp-topology, then there exists a subsequence (still indexed
by n) such that (θn − θ)∗ −→ 0 a.s. for n −→ ∞.

2. The sequence (τm)m≥1 of stopping times, where

τm := inf
{
t > 0 : ‖θt‖Rd ≥ m

}∧ T ,

converges P-a.s. to T and satisfies P(τm < T ) −→ 0 for m −→ ∞.
3. Let c > 0, (θn)n≥1 ⊂ S(Rd), and define for m ≥ 1 the ith component of

(θm,n)n≥1 ⊂ Se(Rd) by

(
θ

m,n
t

)i :=
{

min
{
m + c,

(
θn
τm∧t

)i} on
{(

θn)i ≥ 0
}
,

max
{−m − c,

(
θn
τm∧t

)i} on
{(

θn)i < 0
}
.
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Then, for all m ≥ 1, the family {(θm,n)n≥1, θ
τm} is uniformly bounded by m + c.

Furthermore, if θn −→ θ in ucp, then

θm,n n−→∞−−−−→
ucp

θτm for all m ≥ 1.

4. There exists a sequence of extended simple strategies (θn) ⊂ Se(Rd), a se-
quence (am)m≥1 ⊂ N, and a sequence of stopping times (τm)m≥1 ↑ T P-a.s. such
that the following conditions hold:

(a) (θn − θ)∗ −→ 0 P-a.s. for n −→ ∞.
(b) P(τm = T ) −→ 1 for m −→ ∞.
(c) The family {(θτm

n )n≥1, θ
τm} is uniformly bounded by am.

PROOF. 1 is well known. In particular, it implies that almost all paths of
θ ∈ L(Rd) are bounded. This fact clearly implies 2. The first part of 3 holds by
definition. As for m,n ≥ 1 and 0 < ε ≤ c

2 ,

E
[
1 ∧ (

θm,n − θτm
)∗]≤ P

((
θn − θ

)∗
> ε

)+E
[
1 ∧ (

θn − θ
)∗]

holds, the assumption θn −→ θ in the ucp-topology ensures that 3 holds. To
prove the last statement, note that Remark 2.2 ensures that there exists a sequence
(θ̃n)n≥1 ⊂ S(Rd) such that θ̃ n −→ θ in the ucp-topology. Using the notation of
item 3 we define for c > 0 the sequence (θn)n≥1 ⊂ Se(Rd) of extended simple
strategies by θn := θ̃ n,n. Due to 1, there exists a subsequence of (θn)n≥1 ⊂ Se(Rd)

that satisfies the desired properties. �

DEFINITION A.3. Let θ ∈ L(Rd). (θn)n≥1 ⊂ Se(Rd) is called convenient ap-
proximating sequence of θ if it satisfies all properties of Lemma A.2 4.

REMARK A.4. The convenient approximating sequences are crucial to prove
the existence of the nonlinear stochastic integral for θ ∈ L(Rd).

A.2. Semimartingale topology. Denote by S1 ⊂ S(R) the set of all simple
strategies bounded by 1. Moreover, let S denote the space of R-valued semimartin-
gales. The semimartingale topology is induced by the metric

dSM : S × S −→ R≥0,

(X,Y ) �−→ sup
H∈S1

E

[
1 ∧

(
sup
t≤T

∣∣∣∣
∫ t

0
Hu d(X − Y)u

∣∣∣∣
)]

.

We say that a sequence (Xn)n≥1 of semimartingales converges to X in the semi-
martingale topology if dSM(Xn,X) −→ 0 for n −→ ∞. We also use the notation
Xn −−→

SM
X.
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THEOREM A.5. (S, dSM) is a complete metric space. In particular, the set of
continuous semimartingales Sc is a closed subset in (S, dSM), that is, (Sc, dSM)

is a complete metric space.

PROOF. The first statement is [27], II.7 Théorème. Since convergence in the
semimartingale topology implies convergence in the ucp-topology, the second
statement holds. �

Denote by Aloc the space of all càdlàg adapted processes, whose total variation
process is locally integrable. The next result is [27], IV.7 Théorème.

PROPOSITION A.6. The space Aloc is closed in S . Moreover, for A ∈ Aloc we
have dSM(0,A) = E[1 ∧ TV(A)T ], where TV(A)T denotes the total variation of
A on [0, T ].

The next proposition collects some results on convergence in the semimartingale
topology.

PROPOSITION A.7. Let (An)n≥0 be a sequence of processes of finite varia-
tion, (Mn)n≥0 be a sequence of local martingales, and define Sn := Mn + An for
n ≥ 0. If (An)n≥0 ⊂ Aloc, then An −→ A0 in the semimartingale topology if and
only if TV(An − A0)T −→ 0 in probability. Moreover, if Sn −−→

SM
S0 then the fol-

lowing statements hold:

1. If (Sn)n≥0 ⊂ Sc, then Mn −−→
SM

M0 and An −−→
SM

A0.

2. If f is twice continuously differentiable, then f (Sn) −−→
SM

f (S0).

3. If (Xn)n≥0 ⊂ S and Xn −−→
SM

X0, then XnSn −−→
SM

X0S0.

4. If (Sn)n≥0, (X
n)n≥0 ⊂ Sc, Xn −−→

SM
X0, then [Xn,Sn] −−→

SM
[X0, S0].

PROOF. Without loss of generality, we assume that all processes are a.s. zero
in 0. The first statement follows from Proposition A.6. 1 and 2 hold thanks to [27],
Remarque IV.3, and [14], Proposition 4. Since

XnSn = 1

4

((
Xn + Sn)2 − (

Xn − Sn)2)
holds, 2 implies 3. Thus, it remains to prove 4 Due to the product rule,

[
Xn,Sn]= XnSn −

∫
Sn− dXn −

∫
Xn− dSn

holds. As convergence in the semimartingale topology implies convergence in the
ucp-topology, we know that Xn− −→ X0− as well as Sn− −→ S0− in the ucp-topology.
Due to 3 and [27], III.13 Théorème, the claim is proven. �
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A.3. Strong nonlinear integrators. Here, we give a short overview of strong
nonlinear integrators. A detailed discussion can be found in [9]. Throughout this
subsection, we consider a family (S(ϑ, ·))ϑ∈Rd of R-valued, F-adapted, continuous
semimartingales on (�,F,P).

In linear stochastic integration theory, semimartingales build the biggest class
of “good integrators”. For the nonlinear stochastic integral, the strong nonlinear
integrators form the class of “good integrators”. In order to give a definition of
a strong nonlinear integrator, we need the following notation. Let L(Rd) denote
the set of all deterministic, Rd -valued, càglàd functions on the interval [0, T ]. For
h ∈ L(Rd) and t ∈ (0, T ) we set h(t+) := limtn↓t h(tn) and h(t−) := limtn↑t h(tn).
Furthermore, the elementary nonlinear stochastic integral of θ ∈ S(Rd) w.r.t.
(S(ϑ, ·))ϑ∈Rd , where the representation of θ ∈ S(Rd) is given in (3), is defined
as

(42)
∫ t

0
S(θs, ds) := S(θ−1,0) +

n∑
i=0

{
S(θτi∧t+, τi+1 ∧ t) − S(θτi∧t+, τi ∧ t)

}
.

DEFINITION A.8 ([9], Proposition II.3.1). (S(ϑ, ·))ϑ∈Rd is a strong non-linear
integrator if the following conditions hold:

1. For all t ∈ (0, T ] and all h,h′ ∈ L(Rd) we have S(h, t) = S(h′, t) outside of
a P-null set (possibly depending upon h,h′ and t) whenever

h(s) = h′(s) for all s ≤ t and h(t+) = h′(t+).

2. For all fixed t ∈ (0, T ] and K > 0, the set of random variables (η ×∫
S(θ, ds))t with θ ∈ S(Rd), η ∈ S and max{θ∗, η∗} ≤ K is bounded in proba-

bility.
3. For fixed t < T , the mapping θ �−→ ∫

St (θ, ds) is locally uniformly contin-
uous from S(Rd), endowed with the ucp-topology, into (S, dSM).

REMARK A.9. This definition is one way to define strong nonlinear integra-
tors; see [9], Proposition II.3.1. For our purposes, 3 is important. It allows us to
define the nonlinear stochastic integral for càglàd-processes.

Note that Definition A.8 1. is a regularity property of (S(ϑ, ·))ϑ∈Rd . The next
lemma provides sufficient conditions ensuring that (S(ϑ, ·))ϑ∈Rd satisfies Defini-
tion A.8 1.

LEMMA A.10. Let d = 1. (S(ϑ, ·))ϑ∈R satisfies the first item of Definition A.8
if at least one of the following conditions hold for almost all ω ∈ �:

1. The mapping S(·, ·,ω) :R× [0, T ] −→R is jointly continuous.
2. S is continuous in both arguments and satisfies (O); see page 3745.
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PROOF. The first statement is clear. To prove the second statement, we show
that Condition (O) implies joint continuity. We oppress the ω in the following
proof. Let (ϑ, t) ∈ R × [0, T ]. Since S(·, t) is continuous, for all ε > 0 we can
choose an open interval (ϑmin, ϑmax) � ϑ such that

(43)
∣∣S(ϑmin, t) − S(ϑmax, t)

∣∣< ε

3
.

Besides, S(ϑmin, ·) and S(ϑmax, ·) are continuous, too. Therefore, for all ε > 0 we
can find δ > 0 such that for all t ∈ (t − δ, t + δ) ∩ [0, T ]∣∣S(ϑmin, t) − S(ϑmin, t)

∣∣< ε

3
as well as

∣∣S(ϑmax, t) − S(ϑmax, t)
∣∣< ε

3
.

Thanks to the triangle inequality, we get∣∣S(ϑ, t) − S(ϑ, t)
∣∣≤ ∣∣S(ϑ, t) − S(ϑ, t)

∣∣+ ∣∣S(ϑ, t) − S(ϑ, t)
∣∣

for (ϑ, t) ∈ (ϑmin, ϑmax)× (t − δ, t + δ)∩[0, T ]. Due to (43) and the monotonicity
of S(·, t), the first term in the above equation is less than ε

3 for all ϑ ∈ (ϑmin, ϑmax).
By monotonicity, the second term is less than 2ε

3 for all ϑ ∈ (ϑmin, ϑmax) and for
all t ∈ (t − δ, t + δ) ∩ [0, T ]. Indeed, suppose∣∣S(ϑ, t) − S(ϑ, t)

∣∣= S(ϑ, t) − S(ϑ, t).

Due to monotonicity, we get

−2ε

3
≤ S(ϑmin, t) − S(ϑmin, t) + S(ϑmin, t) − S(ϑmax, t)

≤ S(ϑ, t) − S(ϑ, t)

≤ S(ϑmax, t) − S(ϑmax, t) + S(ϑmax, t) − S(ϑmin, t) ≤ 2ε

3
. �

A.4. Nonlinear stochastic integral. Let θ ∈ S(Rd) with representation (3).
In [9], the elementary nonlinear stochastic integral of θ w.r.t. a strong nonlinear
integrator (S(ϑ, ·))ϑ∈Rd is defined by (42). Moreover, the definition of a strong
nonlinear integrator allows us to define the nonlinear stochastic integral of θ ∈
bL(Rd) w.r.t. (S(ϑ, ·))ϑ∈Rd as the limit in the semimartingale topology.

DEFINITION A.11. Let (S(ϑ, ·))ϑ∈Rd be a strong nonlinear integrator, θ ∈
bL(Rd), and let (θn)n≥1 ⊂ S(Rd) denote a uniformly bounded sequence of simple
strategies such that θn −→ θ in the ucp-topology. The nonlinear stochastic integral∫

S(θ, ds) of θ ∈ bL(Rd) w.r.t. (S(ϑ, ·))ϑ∈Rd is the limit of (
∫

S(θn, ds))n≥1 in the
semimartingale topology, that is,∫

S
(
θn, ds

)−−→
SM

∫
S(θ, ds).
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REMARK A.12. 1. Since (S(ϑ, ·))ϑ∈Rd is a strong nonlinear integrator, the
limit in the above definition exists.

2. Let d = 1. If S(ϑ, ·) = ϑS(0, ·) for all ϑ ∈ R, the definition coincides with
the classical linear stochastic integral.

A diagonalization argument and Definition A.11 lead to the next lemma.

LEMMA A.13. Let (S(ϑ, ·))ϑ∈Rd be a strong nonlinear integrator, θ ∈
bL(Rd), and let (θn)n≥1 ⊂ bL(Rd) denote a uniformly bounded sequence of
strategies such that θn −→ θ in the ucp-topology. Then (

∫
S(θn, ds))n≥1 is a

Cauchy sequence in the semimartingale topology and∫
S
(
θn, ds

)−−→
SM

∫
S(θ, ds).

The next proposition provides an explicit expression for the nonlinear stochastic
integral of an extended simple strategy.

PROPOSITION A.14. Let (S(ϑ, ·))ϑ∈Rd be a strong nonlinear integrator and
let

θ(t) = θ−11{0} +
n∑

i=0

θi1(τi ,τi+1](t)

be an Rd -valued extended simple strategy. Then
∫

S(θ, ds) is given by

∫ t

0
S(θs, ds) = S(θ−1,0) +

n∑
i=0

{
S(θτi∧t+, τi+1 ∧ t) − S(θτi∧t+, τi ∧ t)

}
.

PROOF. To prove the statement, we construct a uniformly bounded sequence
of simple strategies (θm)m≥1 ⊂ S(Rd) that converges to θ in the ucp-topology.
Define for i ∈ {0, . . . , n} the sequence (τm

i )m≥1 via

τm
i := �2mτi� + 1

2m
.

By definition, τm
i ↓ τi a.s. for i ∈ {0, . . . , n}. Furthermore, (τm

i )m≥1 is a sequence
of stopping times. Indeed, let k ≥ 0 such that r ∈ [ k

2m , k+1
2m ) ⊂ [0, T ) holds. Then

{
τm
i < r

}=
{
τi <

k

2m

}
∈ Fr .

Since, by assumption, the filtration is right-continuous, we have for t ∈ [0, T ){
τm
i ≤ t

}= ⋂
r>t

{
τm
i < r

} ∈Ft .
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Define (θm)m≥1 ⊂ S(Rd) via

θm(t) = θ−11{0} +
n∑

i=0

θi1(τm
i ,τm

i+1](t).

By definition θm −→ θ in the ucp-topology. Since S is a strong nonlinear inte-
grator, the sequence

∫
S(θm, ds) converges to

∫
S(θ, ds) in the semimartingale

topology. Due to the fact that the limit in the semimartingale topology and the
limit in the ucp-topology are indistinguishable, the following computation proves
the statement:∫ t

0
S
(
θm
s , ds

)− S(θ−1,0) =
n∑

i=0

{
S
(
θτm

i ∧t+, τm
i+1 ∧ t

)− S
(
θτm

i ∧t+, τm
i ∧ t

)}

=
n∑

i=0

{
S
(
θi, τ

m
i+1 ∧ t

)− S
(
θi, τ

m
i ∧ t

)}

−→
ucp

n∑
i=0

{
S(θi, τi+1 ∧ t) − S(θi, τi ∧ t)

}

=
n∑

i=0

{
S(θτi∧t+, τi+1 ∧ t) − S(θτi∧t+, τi ∧ t)

}
.

�

Next, we need rules for stopping times and nonlinear stochastic integrals.

LEMMA A.15. Let (S(ϑ, ·))ϑ∈Rd be a strong nonlinear integrator, let τ be a
stopping time, and θ ∈ bL(Rd). Then∫ τ∧t

0
S(θs, ds) =

∫ t

0
Sτ (θs, ds) =

∫ t

0
Sτ (θτ

s , ds
)

=
∫ τ∧t

0
S
(
θτ
s , ds

)=
∫ τ∧t

0
Sτ (θτ

s , ds
)
.

PROOF. Due to Proposition A.14, it is straightforward to check that the
statement holds for all extended simple strategies. Since (S(ϑ, ·))ϑ∈Rd is a
strong nonlinear integrator, the result holds for θ ∈ bL(Rd) by an approximation
argument. �

Now, we are able to prove the existence of nonlinear stochastic integrals for
θ ∈ L(Rd).

THEOREM A.16. Let (S(ϑ, ·))ϑ∈Rd be a strong nonlinear integrator and θ ∈
L(Rd). Moreover, let (θn)n≥1 ⊂ S(Rd) such that θn −→ θ in the ucp-topology. Then
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(
∫

S(θn, ds))n≥1 is a Cauchy sequence in the semimartingale topology. Besides,
there exists a semimartingale

∫
S(θ, ds) such that

(44)
∫

S
(
θn, ds

)−−→
SM

∫
S(θ, ds).

Furthermore,
∫

S(θ, ds) is independent of the approximating sequence.

PROOF. We have to prove that (
∫

S(θn, ds))n≥1 is a Cauchy sequence in the
semimartingale topology. Then Theorem A.5 ensures that there exists a limit, de-
noted by

∫
S(θ, ds), such that (44) holds. Due to Definition A.8 3, the limit does

not depend on the approximating sequence. Let N,n,m ≥ 1, c > 0 and recall the
notation of Lemma A.2. As θn = θN,n and θm = θN,m on

{τN = T } ∩
{

sup
s≤T

∥∥θn
s − θm

s

∥∥
Rd ≤ c

2

}
,

Proposition A.14 guarantees that on this set∫
S
(
θn, ds

)=
∫

S
(
θN,n, ds

)
and

∫
S
(
θm, ds

)=
∫

S
(
θN,m, ds

)
holds. Hence, we get

dSM

(∫
S
(
θn, ds

)
,

∫
S
(
θm, ds

))

≤ P(τN < T ) + P

((
θn − θm)∗ >

c

2

)

+ dSM

(∫
S
(
θN,n, ds

)
,

∫
S
(
θN,m, ds

))
.

As (θn)n≥1 ⊂ S(Rd) is a Cauchy sequence in the ucp-topology, Lemma A.2 and
Lemma A.13 ensure that the sequence (

∫
S(θn, ds))n≥1 is a Cauchy sequence in

the semimartingale topology for all N ≥ 1. �

DEFINITION A.17. Let (S(ϑ, ·))ϑ∈Rd be a strong nonlinear integrator, θ ∈
L(Rd) and (θn)n≥1 ⊂ S(Rd) such that θn −→ θ in the ucp-topology. The semi-
martingale

∫
S(θ, ds) in Theorem A.16 is called the nonlinear stochastic integral

of θ w.r.t. (S(ϑ, ·))ϑ∈Rd .

APPENDIX B: MISCELLANEOUS RESULTS

LEMMA B.1. Let (μn)n≥1 be bounded measures on (�,F). There exists a
probability measure P on (�,F) such that μn � P holds for all n ∈ N.
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PROOF. As all measures dominate the zero-measure, we assume w.l.o.g. that
μn(�) > 0 for all n ∈ N. Define μ̃n := 1

μn(�)
μn for n ∈ N. As μ̃n ∼ μn for all

n ∈ N, it suffices to prove the lemma for the probability measures (μ̃n)n≥1. Choose
(αn)n≥1 ⊂ R such that αn > 0 for all n ∈ N and

∑∞
n=1 αn = 1 holds. Then the

measure P :=∑∞
n=1 αnμ̃n satisfies the desired properties. �

THEOREM B.2 (Continuous mapping theorem). Let (M1, d1), (M2, d2) be
complete metric spaces and (�,F,P) be a probability space. Further, let

X,Xn : (�,F,P) −→ (M1, d1), n ∈ N,

h : (M1, d1) −→ (M2, d2)

be measurable functions such that P(X ∈ Dh) = 0, where Dh ⊂ M1 denotes the
set of discontinuity points of h. Then the following holds:

Xn −→ X in P-probability =⇒ h(Xn) −→ h(X) in P-probability.

PROOF. The proof of [34], 2.3 Theorem, translates to this setting. �

LEMMA B.3. For all n ∈ N let gn, g, fn, f be measurable functions on the
probability space (�,F,P). Further, let gn, g ≥ 0 P-a.s. for all n ∈N,

fngn −→ fg in P-probability and gn −→ g in P-probability.

Then

1{g �=0}f 2
n gn −→ 1{g �=0}f 2g in P-probability.

PROOF. Due to Theorem B.2 and the assumptions, we have

f 2
n g2

n −→ f 2g2 and
1

gn + 1{g=0}
−→ 1

g + 1{g=0}
in P-probability. Applying Theorem B.2 again, we get

f 2
n g2

n

gn + 1{g=0}
−→ f 2g2

g + 1{g=0}
in P-probability.

This implies the desired convergence in P-probability. �
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