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ROBUST BOUNDS IN MULTIVARIATE EXTREMES

BY SEBASTIAN ENGELKE1 AND JEVGENIJS IVANOVS2

École Polytechnique Fédérale de Lausanne and Aarhus University

Extreme value theory provides an asymptotically justified framework for
estimation of exceedance probabilities in regions where few or no observa-
tions are available. For multivariate tail estimation, the strength of extremal
dependence is crucial and it is typically modeled by a parametric family of
spectral distributions. In this work, we provide asymptotic bounds on ex-
ceedance probabilities that are robust against misspecification of the extremal
dependence model. They arise from optimizing the statistic of interest over
all dependence models within some neighborhood of the reference model.
A certain relaxation of these bounds yields surprisingly simple and explicit
expressions, which we propose to use in applications. We show the effective-
ness of the robust approach compared to classical confidence bounds when
the model is misspecified. The results are further applied to quantify the effect
of model uncertainty on the Value-at-Risk of a financial portfolio.

1. Introduction. In parametric statistics, there are several sorts of uncertain-
ties that arise in the estimation of an unknown quantity of interest. The estimation
uncertainty, for instance, refers to the error made by inferring the model param-
eters from only finitely many data points. Bootstrapping or results on asymptotic
normality are typically applied to quantify this error and to derive confidence in-
tervals. On the other hand, the parametric family used as a model may not contain
the true data generating distribution. The uncertainty due to this misspecification
is usually called model uncertainty, and it is more difficult to quantify than the
estimation uncertainty within a parametric model class. A popular way to provide
confidence bounds that are robust against wrong model assumptions is to find the
smallest and largest values of the statistic of interest with respect to all probability
measures in some neighborhood of the estimated parametric distribution assum-
ing that it contains the true data generating distribution. Moreover, one may view
such a search for the worst case as a systematic stress test within a set of plausible
scenarios [6].
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For a random vector (X,Y�) = (X,Y1, . . . , Yd−1) with d ≥ 2, in this paper we
consider the optimization problem

Vμ(δ) = sup
P′

{
E

′X : Dμ

(
P

′,P
) ≤ δ,E′Y = EY

}
, δ > 0,(1)

where the supremum is taken over all probability measures in the δ-neighborhood
of the reference model P under the constraint that the expectation of Y is pre-
served. Here and in the sequel, E′ denotes the expectation under the model P′, and
all the measures are defined on a common measurable space (�,F). The proxim-
ity Dμ(P′,P) will be measured in terms of the L2

μ-distance between the densities
of P′ and P with respect to some dominating probability measure μ, which pro-
vides additional flexibility in selection of the neighborhood; it will be shown that
the choice μ = P essentially results in Rényi divergence of order 2. The random
variable X is the statistic of interest and the constraint on the expectation of Y
allows to incorporate necessary model restrictions. They arise naturally in the ap-
plication of the results to estimation of multivariate tail probabilities.

Importantly, the optimizing μ-density has an appealing form yielding the sur-
prisingly simple, explicit expression

EX +
√

δ
det{�μ(X,Y )}

det{�μ(Y )}(2)

for the optimal value Vμ(δ) when δ ∈ [0, δ∗] is in a certain range, and otherwise
this expression provides an upper bound on Vμ(δ), where �μ(·) denotes the re-
spective μ-covariance matrix. In this paper, we advocate using this simple square-
root bound, and its analogue for the respective minimization problem, as robust
bounds for EX under moment constraints; see Theorem 2. Interestingly, the above
fraction of the determinants is a well-known expression in stochastic simulation
theory where it arises as the minimal variance of X + c�Y , for arbitrary c ∈ R

d−1

([3], Section V.2).
The general optimization problem (1) might be interesting in many different

situations; see, for example, [6, 11, 17] for applications of the robust approach to
various problems in economics, risk and finance. Let us also note that a problem
similar to (1) appears as the dual representation of a coherent risk measure [1, 2].
In this work, we concentrate on the application to the risk of rare events and the
estimation of their small tail probabilities, a field that has attracted strong attention
in the last decade. Extreme value theory provides the theoretical foundation for
statistical extrapolation into tail regions with few or no data; see [10, 14, 28] for
more details.

The univariate theory is well understood and is concerned with the quantifi-
cation of tail probabilities P(Z > z) of a random variable Z, where z > 0 is a
threshold close to the upper end point of its distribution function F . There are
standard procedures to build confidence intervals for estimators of P(Z > z), but
bounds that are robust against violation of the assumptions of the extremal types
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theorem have only recently been studied in [4]. The authors of this paper solve the
optimization problem

Fδ(z) = sup
P′

{
P

′(Z > z) : D̂(
P

′,P
) ≤ δ

}
,

where Fδ is the worst case survival function over all probability measures P
′ in

some divergence neighborhood with radius δ > 0 around the reference model P.
Here, D̂ is either the Kullback–Leibler divergence or the Rényi divergence of an
arbitrary order; see also Section A.3. It is shown in [4] that the worst case tail Fδ

is considerably heavier than the one of the reference distribution F .
For a d-dimensional random vector Z = (Z1, . . . ,Zd)�, multivariate extreme

value theory studies probabilities P(Z ∈ tB), where for B ⊂ [0,∞]d bounded
away from the origin and large t > 0 the dilated set tB is called a tail region. As
in the univariate case, the idea is to extrapolate from regions with more data into
the tails, but in the multivariate case the dependence between components Zi at
high quantiles is crucial. The mathematical concept of regular variation is needed
in order to perform this extrapolation. Assuming that Z is standardized to have
unit Pareto marginal tails, multivariate extreme value theory justifies, in particular,
the following approximation for any zi > 0 and large t > 0:

(3) P(∃i : Zi > tzi) ≈ t−1dE

(
d

max
i=1

Yi

zi

)
,

where Y = (Y1, . . . , Yd) takes values in the standard simplex and satisfies certain
moment constraints, that is,

Y ∈ S
d−1 =

{
y ∈ [0,∞]d :

d∑
i=1

yi = 1

}
and ∀i : EYi = 1/d.

The distribution of Y is called a spectral distribution and it encodes extremal de-
pendence in the model. Many parametric models have been proposed for the spec-
tral distribution (e.g., [5, 9, 19, 32]). For a nonparametric approach to estimation of
the spectral distribution, we refer the reader to [13], where an optimization prob-
lem is used to enforce the moment constraint.

A natural problem is to find bounds for the asymptotic expression of the tail
probability in (3) with fixed z = (z1, . . . , zd)� that are robust against model mis-
specification of the spectral distribution, that is, the distribution of Y . For the upper
bound, we are thus interested in the maximization problem

sup
P′

{
E

′
(

d
max
i=1

Yi

zi

)
: Dμ

(
P

′,P
) ≤ δ,E′Yi = 1/d for all i

}
,(4)

which is clearly a special case of (1) with X = X(z) = maxd
i=1 Yi/zi . Importantly,

we assume here that the dominating measure μ is supported by {Y ∈ S
d−1}, and

hence Y ∈ S
d−1 holds also P

′-a.s. In particular, Yd = 1 − ∑d−1
i=1 Yi and so there
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are essentially d − 1 moment constraints which ensure that Y has a valid spectral
distribution also under the measure P

′.
Similarly, a lower bound can be defined as the optimal value of the correspond-

ing minimization problem with sup replaced by inf in (4). The respective optimal
values β∗(z) and β∗(z) of these optimization problems readily yield the robust
asymptotic bounds

t−1dβ∗(z)� P(∃i : Zi > tzi)� t−1dβ∗(z) as t → ∞.

Note that according to (3) it is enough to consider z ∈ S
d−1. It should also be

stressed that our bounds address misspecification of the extremal dependence
model exclusively, and so they are guaranteed to hold for sufficiently large scaling
factor t only. Furthermore, we essentially optimize over the class of max-stable
distributions, which is different from the univariate case analysis in [4].

In Section 2, we provide details on the divergence Dμ(P′,P), and recall nec-
essary results on multivariate extreme value theory, regular variation and spectral
measures. The convex optimization problem (1) is solved in Section 3 and the sim-
ple square-root bound for the optimal value Vμ(δ) is derived in Section 4, where
we also identify a necessary and sufficient condition for this upper bound to coin-
cide with Vμ(δ). Based on these general results, in Section 5 we investigate robust
bounds for small probabilities of tail regions in the bivariate case arising from the
optimization problem (4) for d = 2. Several examples are given in Section 5.1 to
illustrate the results. In Section 5.2, we conduct an experiment that shows the ef-
fectiveness of the robust bounds compared to classical confidence bounds when
the model is misspecified. As a further application of our theory, Section 6 dis-
cusses how worst case bounds on the Value-at-Risk of a financial portfolio under
model uncertainty can be derived. The Appendix contains some parametric fami-
lies of spectral distributions, further comments about the degenerate maximizer of
the problem in (4) and results on optimization for other divergences.

2. Preliminaries and the setup.

2.1. Distribution model risk. Distribution model risk refers to the error made
when using a simplified model of reality that is only an approximation to the data
generating process. From a probabilistic point of view, this amounts to comput-
ing the quantity of interest, say the probability P(A) of some event A, using a
wrong probability measure P, which nevertheless is close in some sense to the
true measure Ptrue. The robust approach to this problem is to consider all measures
P

′ in some neighborhood of P that should contain Ptrue as well, and to find the
maximal and the minimal values among all P′(A). These numbers then provide
robust bounds on the true value Ptrue(A). This approach has become quite popular
in financial mathematics; see [1, 7, 17, 18] and references therein, and [4] for an
application to univariate extreme value statistics.
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A natural way to define a neighborhood of measures around P is to consider
some form of divergence. Fix a dominating probability measure μ, that is, such that
P � μ, and suppose for now that P′ � μ. Letting L = dP/dμ and L′ = dP′/dμ be
the corresponding Radon–Nikodym derivatives we consider the standard squared
L2

μ-distance

(5) Dμ

(
P

′,P
) = Eμ

(
L′ − L

)2
,

where Eμ denotes the expectation under probability measure μ. We put Dμ(P′,
P) = ∞ if P′ is not absolutely continuous with respect to μ. It is noted that (5) is
a special case of the so-called Bregman divergence; see, for example, [7]. Further-
more, by choosing μ = P we get

(6) DP

(
P

′,P
) = E

(
L′ − 1

)2 = EL′2 − 1

for all P′ � P with L′ = dP′/dP. Moreover,

DP

(
P

′,P
) ≤ δ iff logEL′2 ≤ log(1 + δ) = δ′,

where logEL′2 is the well-known Rényi (power) divergence of order 2 of P
′

from P. In other words, neighborhoods of measures defined by DP(·,P) ≤ δ coin-
cide with second-order Rényi divergence neighborhoods with radius δ′.

It is clear that the choice of the dominating measure μ has an impact on the
solution of the optimization problem (1). Suppose, for instance, that P,P′ and μ are
defined on [0,1] and that they are absolutely continuous with respect to Lebesgue
measure with densities f,f ′ and g, respectively. Then it holds that

(7) Dμ

(
P

′,P
) =

∫ 1

0

(
f ′(ω)

g(ω)
− f (ω)

g(ω)

)2
g(ω)dω =

∫ 1

0

(
f ′(ω)−f (ω)

)2 1

g(ω)
dω,

and so μ provides a mechanism of weighing the squared distance between f ′
and f . A similar weight function appears in, for example, [8] in the context of
estimating the Pickands function. Thus the dominating measure μ may be chosen
according to our uncertainty about the measure P.

In this study, we leave out a detailed analysis of the choice of μ. Our default
choice in applications to multivariate extremes is μ = P, which corresponds to
Rényi divergence of order 2. We also provide an example where this choice is
inappropriate, in which case the uniform dominating measure is used. Finally, the
remaining parameter δ > 0, representing our trust into the measure P, has to be
chosen by hand or derived from data. In Section 5.2, we use a straightforward
heuristic procedure to estimate it from data.

2.2. Regular variation and spectral distributions. A d-dimensional random
vector Z is multivariate regularly varying in the nonnegative orthant if there exists
a sequence at → ∞, as t → ∞, and a Radon measure ν on E = [0,∞]d \ {0}
equipped with its Borel σ -algebra such that

(8) tP(Z/at ∈ ·) v→ν, t → ∞
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in the sense of vague convergence; see, for example, [27], Chapter 6. The so-
called exponent measure ν then satisfies the scaling property ν(tB) = t−αν(B) for
all t > 0 and all Borel sets B ⊂ E bounded away from 0, where α > 0 is called
the tail index of regular variation. Moreover, by switching to polar coordinates
z �→ (‖z‖,z/‖z‖) = (r,ω) for the L1-norm ‖z‖ = ∑d

i=1 |zi | on R
d , the measure ν

factorizes into

cαr−α−1 dr × H(dω),

where c > 0 and H is a probability measure, called the spectral measure, on the
simplex S

d−1 equipped with its Borel σ -algebra. Importantly, (8) implies the fol-
lowing weak convergence to H :

(9) P

(
Z

‖Z‖ ∈ ·
∣∣∣‖Z‖ > t

)
w→H as t → ∞.

Without loss of generality, we assume that ν is nondegenerate in the sense that
ν({z : zi > 1}) �= 0 for all i = 1, . . . , d . Otherwise, we may simply remove the
components of the vector Z that decrease at a faster rate. This implies that all
marginal survival functions F i(z) = 1 −Fi(z) are regularly varying with the same
index −α and, moreover, for some mi > 0,

(10)
F i(z)

F 1(z)
→ mi as z → ∞

with m1 = 1, that is, F i(z) are equivalent in the limit up to multiplicative constants.
It is common to split the problem of multivariate tail estimation into estima-

tion of marginal tails and estimation of the spectral distribution. The theory for
univariate tail estimation is well studied and there are many established methods
to estimate the survival functions [10, 27]. We therefore assume that the marginal
tail models are continuous and correctly specified, and that the Zi have been trans-
formed to unit Pareto tails, that is, we generally assume that α = 1 and F i(z) = 1/z

for large z, apart from Section 6, where we return to the general setup and the issue
of standardization.

With the above standardization in mind, we may choose at = t in (8) leading to
the approximation

P(Z ∈ tB) ≈ ν(B)/t

for large t and B bounded away from the origin with ν(∂B) = 0. A natural choice
of such a set is given by Bz = E \ [0,z], where we may assume that ‖z‖ = 1
because of the scaling property of ν. That is, we are interested in approximating
the probability that at least one marginal is relatively large, namely Zi > tzi for
some i. Letting Y ∈ S

d−1 have the spectral distribution H one finds that

(11) ν(Bz) = cE

∫
1{∃i:rYi>zi}r−2 dr = cE

(
d

max
i=1

Yi

zi

)
.
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Moreover, according to the above standardization the exponent measure must sat-
isfy

tP(Zi > t) → 1 = ν
({z : zi > 1}) = cEYi

and hence EYi = 1/c for all i. But since
∑d

i=1 Yi = 1, it must be that c = d , which
yields the approximation in (3), our starting point for the robust approach. Im-
portantly, any Y satisfying these moment constraints gives rise to a valid spectral
measure.

REMARK 1. The sum norm used throughout this paper is special in the sense
that the constant c does not depend on the spectral measure. This makes it possible
to employ the optimization problem in (1). Other norms would lead to the objective
E

′X(z)/E′Y1, which does not comply with (1).

A common way of representing the dependence structure in the bivariate case
[8, 20, 25] is by means of the so-called Pickands’ function:

(12) A(z) = 2E
{
(1 − z)Y1 ∨ z(1 − Y1)

}
, z ∈ [0,1].

Indeed, an easy transformation of (11) yields

ν(Bz) =
(

1

z1
+ 1

z2

)
A

(
z1

z1 + z2

)
.

Importantly, the Pickands dependence function A : [0,1] → [1/2,1] is convex and
satisfies z ∨ (1 − z) ≤ A(z) ≤ 1. Moreover, any such function defines a unique
exponent measure ν; see [10], page 226.

3. Convex optimization. In this section, we solve the optimization prob-
lem (1), which according to (5), can be rewritten in the convenient form

Vμ(δ) = sup
L′≥0

{
Eμ

(
L′X

) : EμL′ = 1,Eμ

(
L′ − L

)2 ≤ δ,

(13)
Eμ

(
L′Y

) = Eμ(LY )
}
,

where the supremum is taken over all measurable functions L′ : � → [0,∞) sat-
isfying the stated constraints. This is a convex optimization problem in an infinite
dimensional space allowing for a rather explicit solution given in Theorem 1. For
related results without moment constraints, see [4, 7, 11, 17]. The latter two works
also provide short derivations based on the strong duality theorem. There is, how-
ever, no reference to the strong duality theorem for infinite dimensional spaces
which does require verification of certain conditions. Moreover, the issue with a
distribution of X with some mass at its right end is not addressed in the literature.
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3.1. The underlying measurable space. Before solving the optimization prob-
lem (1) or its equivalent version (13), let us comment on the underlying mea-
surable space (�,F). Letting G = σ(X,Y ) ⊂ F we assume that L = dP/dμ is
G-measurable, that is, the choice of the dominating measure μ does not introduce
additional randomness in the model, which is trivially the case for our default
choice μ = P. The optimization problem (1) formulated on the measurable space
(�,F) and its analogue formulated on the measurable space (�,G) lead to the
same optimal value Vμ(δ). This follows from Jensen’s inequality:

Eμ

(
L′ − L

)2 = Eμ

(
Eμ

[(
L′ − L

)2|G]) ≥ Eμ

(
E

[
L′|G] − L

)2
,

where the latter is the respective divergence on (�,G). Therefore, we may always
consider the induced distributions of (X,Y�) without changing the robust bounds.
In the setting of (4), we may thus work on the Borel σ -algebra of Sd−1. In fact,
this can be seen as the modeling choice requiring little justification.

3.2. The optimal Radon–Nikodym derivative. Let us immediately present the
solution to the optimization problem (13). It is noted that the proof of this result
provides good intuition on the form of the solution. Throughout the paper, we will
denote a maximizer of (13), if it exists, by L∗, and for any random variable X we
put E∗X = Eμ(L∗X).

THEOREM 1. Assume that EμX2,EμY 2
i ,EμL2 < ∞ and let EY = y. Then

L∗ is a maximizer of the optimization problem (13) if and only if EμL∗ =
1,Eμ(L∗Y ) = y and at least one of the following holds:

(i) there exist a > 0, b, ci ∈R, i = 1, . . . , d − 1, such that

L∗ = (
aX + b + c�Y + L

)
+ μ-a.s. and Eμ

(
L∗ − L

)2 = δ.

(ii) there exist ci ∈ R, i = 1, . . . , d − 1, such that the distribution of X + c�Y
under μ has a positive mass at its upper end, L∗ = 0 everywhere else μ-a.s., and
the constraint Eμ(L∗ − L)2 ≤ δ holds.

PROOF. Note that EμL′2 ≤ 2{Eμ(L′ −L)2 +EμL2} < ∞ if Eμ(L′ −L)2 ≤ δ.
So we may consider a normed vector space of μ-square-integrable L′ and its
convex subset defined by the additional requirement of L′ ≥ 0. Note also that
Eμ(L′|X|),Eμ(L′|Yi |) < ∞. Next, for the convex optimization problem (13) we
define the corresponding Lagrangian:

(14) L
(
L′) = Eμ

(
L′X

)−a
(
Eμ

(
L′−L

)2 −δ
)+b

(
EμL′−1

)+c�(
Eμ

(
L′Y

)−y
)
,

where a ≥ 0, b, ci ∈ R. The strong duality theorem (see, e.g., [23], Theorem 4,
asserts that L∗ is a maximizer of the original problem if and only if L∗ is a maxi-
mizer of supL′≥0 L(L′) for some a ≥ 0, b, ci ∈ R, such that the constraints hold as
well as so-called complementary slackness:

EμL∗ = 1, Eμ

(
L∗Y

) = y, Eμ

(
L∗ − L

)2 ≤ δ, a
(
Eμ

(
L∗ − L

)2 − δ
) = 0.
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For this result to be true, it is sufficient to verify Slater’s condition: ∃L′ ≥ 0 such
that Eμ(L′ − L)2 < δ and EμL′ = 1,Eμ(L′Y ) = y, but this is clearly satisfied by
L′ = L.

Hence it is left to solve the dual problem supL′≥0 L(L′) for fixed a ≥ 0, b, ci ∈
R. Since L(L′) is concave in L′, a sufficient and necessary condition for a maxi-
mizer L∗ of the dual problem is

g′
L∗,L′(0+) ≤ 0 ∀L′ ≥ 0, where gL∗,L′(t) = L

(
L∗(1 − t) + L′t

)
,

that is, one looks down from L∗. But gL∗,L(t) is given by

Eμ

{(
L∗(1 − t)+L′t

)(
X + b + c�Y

)− a
(
L∗(1 − t)+L′t −L

)2 + aδ − b − c�y
}
,

which can be differentiated under the expectation sign (see, e.g., [33], Appendix
A16), yielding

(15) Eμ

(
L′ − L∗)(

X + b + c�Y − 2a
(
L∗ − L

)) ≤ 0 ∀L′ ≥ 0.

This implies that X + b + c�Y − 2a(L∗ − L) ≤ 0 and L∗ = 0 when the inequality
is strict μ-a.s., because otherwise we may choose L′ ≥ 0 to invalidate (15). But the
latter clearly implies (15) and so we have the equivalence. Thus for a > 0 we get

L∗ =
(

X + b + c�Y

2a
+ L

)
+
, μ-a.s.,

which is equivalent to (i). If a = 0 then X + c�Y ≤ −b and L∗ = 0 when
the inequality is strict μ-a.s. Hence μ(X + c�Y = −b) > 0, because otherwise
EμL∗ = 0. This yields (ii). �

REMARK 2. Suppose that for some δ′ > 0 there is L∗ as in (ii) of Theorem 1,
which also satisfies the equality constraints. Then such L∗ must be a maximizer of
(13) for any δ ≥ δ′. This implies that the corresponding optimal value Vμ(δ′) is the
maximal possible for any δ > 0, and in particular it does not increase with further
increase of δ. In the following, we let δ∗∗ be the minimal such δ′, and δ∗∗ = ∞ if
no such δ′ exists. The optimizer L∗ then has the form given in (ii) of Theorem 1 if
and only if δ ≥ δ∗∗.

We believe that some further clarification of Theorem 1 is necessary. Normally,
we only need to look at (i), whereas (ii) corresponds to a rather pathological case
explained in Remark 2. A necessary condition for the latter is that δ is sufficiently
large, δ ≥ δ∗∗, and also that (X,Y�) satisfies the condition mentioned in (ii) for
some c, because otherwise δ∗∗ = ∞. The following two simple examples will
provide some further intuition.

EXAMPLE 1. Consider the optimization problem without moment constraints
when μ = P and the distribution of X has a positive mass p > 0 at its upper end
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x. Then the optimizer L∗ in (ii) puts all the mass on {X = x} achieving E
∗X = x,

which is the maximal possible value for any δ > 0. But we must have

δ + 1 ≥ EL∗2 = pE
(
L∗2|X = x

) ≥ pE2(
L∗|X = x

) = 1/p,

because E(L∗|X = x) = 1/p. So if δ ≥ 1/p − 1 then we can choose L∗ =
1/p1{X=x} yielding the maximal possible optimal value x, but otherwise we must
consider L∗ from (i). In particular, we have δ∗∗ = 1/p − 1.

EXAMPLE 2. This example shows that in general (ii) does not require the
distribution of X to have a mass at its upper end. Take μ = P and consider the
case of one constraint where X = Y1A for some event A and Y > 0 on Ac. Hence
X − Y = −Y1Ac ≤ 0 a.s. meaning that X − Y has mass P(A) at 0. Clearly, E′X ≤
E

′Y = y for any P
′ � P, whereas E∗X = E

∗Y = y if L∗ puts all the mass on A. It
is only left to ensure that there is such L∗ preserving the expectation of Y .

The following observation will later lead to the square-root bound (2), an upper
bound on Vμ(δ).

REMARK 3. If the nonnegativity constraint on L′ is removed in the optimiza-
tion problem (13), then

L̂ = aX + b + c�Y + L, a > 0, b, ci ∈ R

satisfying EμL̂ = 1,Eμ(L̂ − L)2 = δ,Eμ(L̂Y ) = y is a maximizer.

Finally, we note that the optimization problem (1) can be solved for some
other popular divergences such as Rényi and Kullback–Leibler divergences; see
Appendix A.3 for details. In both cases, it is assumed that the dominating mea-
sure μ coincides with P. In this paper, however, we aim at providing simple ex-
plicit bounds while giving flexibility in defining the neighborhoods of measures
by choosing an appropriate dominating measure μ and, therefore, we exclusively
focus on the divergence Dμ(P′,P) defined in (5).

3.3. Computing the optimal value. Let us consider the main case (i) of The-
orem 1 where L∗ = (aX + b + c�Y + L)+. In order to find a > 0, b, ci ∈ R,
i = 1, . . . , d − 1, we need to solve a system of d + 1 corresponding equations:

(16) Eμ

(
L∗ − L

) = 0, Eμ

(
L∗ − L

)2 = δ, Eμ

{(
L∗ − L

)
Y

} = 0.

If a solution is found then the optimal value is given by Vμ(δ) = Eμ(L∗X). Note,
however, that the maximizer L∗ may be of a different form given in case (ii) of
Theorem 1, which corresponds to δ ≥ δ∗∗ and the maximal possible optimal value.
In some cases δ∗∗ has an explicit formula, whereas in some other cases identifica-
tion of δ∗∗ requires solving yet another convex optimization problem. This latter
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problem usually can be avoided in practice when plotting Vμ(δ) as a function of
δ, because solving (16) becomes problematic only when Vμ(δ) is close to its max-
imal value. Some further details concerning δ∗∗ in the particular case of problem
(4) are given in Section A.2.

In the important case of μ = P, we have L ≡ 1. Incorporating the latter into the
constant b reduces the number of equations by one. Indeed, we then may consider
L∗ = aU+ with U = U(b, c) = X + b + c�Y and the equations

E(U+) = 1/a, var(U+) = δ/a2, cov(U+,Y ) = 0�.

Hence we need to find constants b, ci ∈ R, i = 1, . . . , d − 1, such that U > 0 with
positive probability and

cov(U+,Y ) = 0�, δ = var(U+)/E2(U+).

If a solution is found then VP(δ) = E(U+X)/E(U+) and the corresponding
Radon–Nikodym derivative is L∗ = U+/E(U+). Moreover, this suggests a para-
metric approach to plot VP(δ), δ > 0: (1) fix b in some range and try to find
ci, i = 1, . . . , d − 1, such that cov(U+,Y ) = 0� and U > 0 with positive prob-
ability, (2) plot (δ,VP(δ)) for various values of b.

Solving the above systems of nonlinear equations may not be trivial, but it can
be done numerically for a moderate dimension d . Note that evaluation of the left-
hand sides in (16) for a given choice of constants a, b, ci requires integration with
respect to the joint distribution of (X,Y�). Thus each evaluation is costly even for
small d . In the following section, we provide an upper bound for the optimal value
of a simple explicit form that does not require solving any equation. Moreover,
in our applications we observed that this bound often coincides with the optimal
value or is very close to it.

4. Robust bounds of a simple form. Throughout this section, we assume
that EμX2,EμY 2

i ,EμL2 < ∞, and recall that �μ(X,Y ) denotes the μ-covariance
matrix of the vector (X,Y�). The following result provides a robust bound of a
simple form on E

′X under the moment constraints E′Y = EY and in the neighbor-
hood defined by Dμ(P′,P) ≤ δ. In the following, we call it a robust square-root
bound.

THEOREM 2. If �μ(X,Y ) is invertible, then the optimal value of (13) for
δ > 0 satisfies

Vμ(δ) ≤ EX +
√

δ
det{�μ(X,Y )}

det{�μ(Y )} ,

which holds with equality if and only if

(17) X −EμX − covμ(X,Y )�μ(Y )−1(Y −EμY ) +
√

det{�μ(X,Y )}
δ det{�μ(Y )} L ≥ 0

μ-a.s.
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PROOF. The covariance matrix �μ(X,Y ) is positive definite and so must be
�μ(Y ), showing that det{�μ(X,Y )},det{�μ(Y )} > 0. Consider case (i) of Theo-
rem 1 and note that we may rescale the constants b, c so that L∗ = (aU + L)+,
where U = X + b + c�Y .

First, we assume that aU + L ≥ 0 μ-a.s. Then according to (16), we have

EμU = 0, varμ(U) = δ/a2, covμ(Y ,U) = 0.

Denoting σ = covμ(Y ,X) the latter reads as

0 = covμ(Y ,U) = covμ

(
Y ,X + b + c�Y

) = σ + �μ(Y )c

showing that c� = −σ��μ(Y )−1. Similarly,

varμ(U) = covμ

(
U,X + b + c�Y

) = covμ(U,X) = varμ(X) + c�σ
(18)

= varμ(X) − σ��μ(Y )−1σ ,

which is det{�μ(X,Y )}/det{�μ(Y )} according to the well-known formula for the
determinant of a block matrix (see [30] or [24], equation (1.3)); the expression in
(18) is called the Schur complement of �μ(Y ) with respect to �μ(X,Y ). Hence
we find that

a =
√

δ det
{
�μ(Y )

}
/det

{
�μ(X,Y )

}
, b = −EμX + σ��μ(Y )−1

EμY .

According to (18), we finally get

Vμ(δ) = E
∗X = Eμ

{
(aU + L)X

} = EX + a covμ(U,X)

= EX + a
det{�μ(X,Y )}

det{�μ(Y )} ,

which readily yields Vμ(δ) under the assumption of nonnegativity of aU + L. But
in any case we have an upper bound according to Remark 3. Finally, we have an
exact expression for Vμ(δ) if

0 ≤ U + L/a = X −EμX + σ��μ(Y )−1
EμY − σ��μ(Y )−1Y

+
√

det{�μ(X,Y )}
δ det{�μ(Y )} L

holds μ-a.s., which completes the proof. �

The assumption that �μ(X,Y ) is invertible is not a restriction, because other-
wise either some moment constraints are redundant and so can be removed, or X

can be expressed as a linear combination of Yi and so EX is determined by the
moment constraints. Moreover, there is a link to the control variates method for
variance reduction, where det{�μ(X,Y )}/det{�μ(Y )} corresponds to the mini-
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FIG. 1. The optimal value Vμ(δ) (lower curve) and the square-root bound (upper curve) as func-
tions of δ.

mal possible variance of X + c�Y for an arbitrary vector c, see [3], Section V.2.
Furthermore, if (X,Y�) is jointly normal then the above fraction of the determi-
nants is the variance of X conditional on Y = y. Finally, in some applications it
may be important to understand when the optimizing measure is equivalent to the
dominating measure μ, that is, L∗ is strictly positive μ-a.s. It is easy to see that this
happens if and only if (17) holds with strict inequality. As before, here we assume
that det{�μ(X,Y )} �= 0, which additionally ensures that the case (ii) of Theorem 1
cannot be used to construct a strictly positive L∗.

The condition (17) implies that there exists δ∗ ∈ [0,∞] such that the robust
square-root bound is exact for all δ ∈ [0, δ∗], but otherwise it is conservative. Be-
cause of the form of the square-root bound we observe that necessarily δ∗ ≤ δ∗∗,
where the latter is defined in Remark 2. Figure 1 illustrates these quantities, the
optimal value and the square-root bound. Note also that the optimal value Vμ(δ)

must be a concave function of δ, which is easily seen from (13).
The corresponding minimization problem is solved by considering −X instead

of X in (13), in which case we define L∗, δ∗ and δ∗∗ analogously to L∗, δ∗ and δ∗∗.
In particular, we have the following lower square-root bound.

COROLLARY 1. Under the assumptions of Theorem 2 it holds for δ > 0 that

inf
P′

{
E

′X : Dμ

(
P

′,P
) ≤ δ,E′Y = EY

} ≥ EX −
√

δ
det{�μ(X,Y )}

det{�μ(Y )}
with equality if and only if

(19) X −EμX − covμ(X,Y )�μ(Y )−1(Y −EμY ) −
√

det{�μ(X,Y )}
δ det{�μ(Y )} L ≤ 0

μ-a.s.

PROOF. Consider −X in place of X in Theorem 2 and note that det{�μ(X,Y )}
stays the same. The condition for equality immediately follows from (17). �
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REMARK 4. When μ = P, with � = �P it holds that

δ∗ = det{�(X,Y )}
b∗2 det{�(Y )}1{b∗>0} + ∞1{b∗≤0},

(20)

δ∗ = det{�(X,Y )}
b∗2 det{�(Y )}1{b∗<0} + ∞1{b∗≥0},

where b∗ and b∗ are the essential supremum and the essential infimum of

cov(X,Y )�(Y )−1(Y −EY ) − (X −EX),

respectively. In particular, if |X| and all |Yi | are bounded a.s. then necessarily
δ∗, δ∗ > 0.

In the case of no moment constraints, d = 1, the square-root bounds on E
′X in

the respective ball of measures are given by

EX ±
√

δ varμ(X).

In the case of one constraint, d = 2, we obtain the square-root bounds

(21) EX ±
√

δ varμ(X)
(
1 − corr2

μ(X,Y )
)
,

and the corresponding δ∗, δ∗ can be computed from (17) and (19). Notice that the
bounds become tighter in presence of a constraint when X and Y are correlated.

It is important to note that the exact robust bounds become tighter or stay
the same when an extra moment constraint is added, which follows immediately
from (13). The same is true for the square-root bounds. This either follows from
the proof of Theorem 2 and Remark 3, or from the following analysis based on
block matrix algebra. Letting Y+ = (Y1, . . . , Yd)�, we need to show that

det
{
�μ

(
X,Y+)}

/det
{
�μ

(
Y+)} ≤ det

{
�μ(X,Y )

}
/det

{
�μ(Y )

}
.

This inequality follows by rewriting it using the Schur complements as in (18) and
applying the block matrix inversion formula [24], Theorem 2.7. By doing so, we
find that this inequality is strict unless

covμ(X,Yd) = covμ(X,Y )�μ(Y )−1 covμ(Y , Yd).

In other words, this condition corresponds to the case when the extra moment con-
straint on Yd does not improve the square-root bounds, assuming that the enlarged
covariance matrix �μ(X,Y+) is invertible.
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5. Bounds on Pickands’ dependence function. In this section, we apply the
bounds from the previous sections to assess the model misspecification error in
multivariate extremes with the focus on tail probabilities in (3). For illustration,
we consider the bivariate case and note that the extension to higher dimensions
is analogous. Possible computational challenges will be discussed in Section 6
presenting another application of the robust approach to multivariate extremes.

Recall that we exclusively address misspecification of the spectral distribution.
In the bivariate case, this distribution is defined on the simplex S

1, and it is thus
effectively one-dimensional. In the following, we assume that the corresponding
random variable Y = Y1 ∈ [0,1] μ-a.s. Alternatively to (4), we may directly con-
sider the robust bound on the Pickands dependence function defined in (12):

(22) sup
P′

{
2E′{(1 − z)Y ∨ z(1 − Y)

} : Dμ

(
P

′,P
) ≤ δ,EY = 1/2

}
,

that is, we take X = X(z) = 2{(1 − z)Y ∨ z(1 − Y)} for a fixed z ∈ (0,1). The
respective optimal value A∗(z; δ) provides the asymptotic robust upper bound on
the tail probability

P(Z1 > tz1 or Z2 > tz2)� t−1
(

1

z1
+ 1

z2

)
A∗

(
z1

z1 + z2
; δ

)
, t → ∞.

The lower bound is obtained similarly using the optimal value A∗(z; δ) of the
corresponding minimization problem.

In addition to the exact robust bounds, we will use the corresponding square-
root bounds, and also bounds in the model class for comparison. More precisely,
we consider the following:

(a) Robust bounds A∗(z; δ) and A∗(z; δ) given by Theorem 1, which can be
computed as explained in Section 3.3. Details on the identification of δ∗∗ and δ∗∗
are postponed to the Appendix A.2, because this is not essential for applications.

(b) Robust square-root bounds Â∗(z; δ) ≥ A∗(z; δ) and Â∗(z; δ) ≤ A∗(z; δ)
given by (21). These are conservative bounds that are easy to compute. Moreover,
they are exact when δ ≤ δ∗ and δ ≤ δ∗ for upper and lower bounds, respectively.

(c) Exact bounds in the model class that are not robust under model misspec-
ification, that is, we impose the restriction that Y under P

′ belongs to the cho-
sen model class. These bounds are easy to compute, for example, one-parameter
families, but otherwise it can be a hard problem. This paper addresses model mis-
specification issues and so the bounds in the model class will be given only for
comparison.

REMARK 5. The bounds in (a) and (b) on Pickands’ function directly pro-
vide robust bounds on the extremal coefficient θ = 2A(1/2) ∈ [1,2], a commonly
used summary statistic for dependence in multivariate and spatial extreme value
statistics [29].
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Regarding the optimization problem (22), it is convenient to switch to the in-
duced distributions of Y ; see also Section 3.1. Thus we assume that � = [0,1]
and F is the respective Borel σ -algebra, and that Y(ω) = ω. In Section 2.1, we
claimed that the choice of the dominating measure μ reflects our uncertainty about
the measure P. Throughout this paper, however, our main choice is μ = P lead-
ing to the Rényi divergence of order 2. For the purpose of illustration, we also
use μ = Leb[0,1] assigning uniform weights; see (7). In the following, we discuss
some further simplifications of the general theory in these two particular cases.

If μ = P, then computing the robust bounds requires solving a system of two
nonlinear equations, see Section 3.3 for details. On the contrary, the square-root
bounds (21) are always explicit, and we only need to compute EX,var(X) and
corr(X,Y ). Moreover, Remark 4 provides simple expressions for δ∗ and δ∗ in
terms of b∗ and b∗. Importantly, the latter two can be given explicitly under a
minor assumption that 0,1, z are in the support of the distribution of Y :

b∗ = EX − ρ/2 + (−2z) ∨ (
ρz − 2z(1 − z)

) ∨ (
ρ − 2(1 − z)

)
,

b∗ = EX − ρ/2 + (−2z) ∧ (
ρ − 2(1 − z)

)
,

where ρ = cov(X,Y )/var(Y ). Indeed,

b∗ = EX − ρ/2 + ess sup(ρY − X), b∗ = EX − ρ/2 + ess inf(ρY − X)

according to Remark 4, and ρY − X achieves its maximum in one of the points
Y = 0, Y = z or Y = 1, and its minimum in Y = 0 or Y = 1. Further comments
concerning δ∗∗ and δ∗∗ will be given in Section A.2.

If μ = Leb, then for the exact robust bounds we need to solve a system of three
nonlinear equations. Concerning the square-root bounds, we observe from (21)
that their width is determined by the dominating measure μ, whereas L affects the
center EX and the values of δ∗, δ∗ only; see (17) and (19). A simple calculation
based on (21) yields the following square-root bounds for an arbitrary density L:

(23) EX ±
√

δ
4

3
z3(1 − z)3.

Furthermore, for any δ one can provide a lower bound on the density L(w) so
that the square-root upper and lower bounds are exact. In particular, one can show
that if L approaches 0 at one of the ends of the interval [0,1] then δ∗ = 0, that is,
the lower square-root bound is never exact. Similarly, if L approaches 0 at z then
δ∗ = 0.

5.1. Illustration of the bounds. In the beginning of this section, we provided
a list of three bounds on the Pickands dependence function A(z): (a) exact robust
bounds, (b) conservative square-root bounds and (c) bounds in the model class.
Let us illustrate these bounds for different divergence levels δ with an example of
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FIG. 2. Upper panels contain the value of A(z) for P being Hüsler–Reiss with λ = 0.6 and z = 0.4
(blue), exact robust bounds (black), the square-root bounds (green) and bounds in the model class
(dashed purple) as functions of δ. Middle and lower panels show the Hüsler–Reiss density and the
optimizing (Lebesgue-)densities for δ = 0.4 corresponding to upper and lower bounds, respectively.
The pseudo-densities corresponding to square-root bounds are given in green.

a Hüsler–Reiss spectral distribution; see Appendix A.1 for several common para-
metric families of spectral distributions. The Hüsler–Reiss distribution has a single
parameter λ ∈ (0,∞) and we fix it to λ = 0.6. Furthermore, we consider z = 0.4
and use two dominating measures: μ = P and μ = Leb. The upper panels of Fig-
ure 2 show the bounds as functions of divergence δ. The middle and lower panels
depict the Hüsler–Reiss density h0.6(ω) as well as the optimizing densities corre-
sponding to the upper and lower bounds for a particular choice of δ = 0.4. In order
to make comparisons easier, the densities with respect to the Lebesgue measure are
depicted in both cases, and so for μ = P we plot L∗(ω)h0.6(ω) and L∗(ω)h0.6(ω)
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rather than L∗(ω) and L∗(ω). Finally, there is no density corresponding to the
square-root bound when δ is larger than δ∗ or δ∗ for the upper and lower bound,
respectively. Nevertheless, there always exists the corresponding pseudo-density
which is not necessarily nonnegative; see Remark 3. These pseudo-densities are
also included in Figure 2.

Additionally, we find δ∗ = 0.36, δ∗ = 0.14 when μ = P, and δ∗ = 0.43, δ∗ = 0
when μ = Leb, respectively. Thus in the case of μ = Leb, the upper square-root
bound is exact for the chosen level δ = 0.4 and so L∗ and the corresponding
pseudo-density coincide. In the other cases, exact and square-root bounds do not
coincide, but it can be seen that the square-root bound is still a very good ap-
proximation of the exact robust bound even when δ is much larger than δ∗ or δ∗.
Furthermore, the upper bounds in the model class are obtained for λ = 0.737 and
λ = 0.844 according to μ = P and μ = Leb, and the lower bounds for λ = 0.367
and λ = 0.366.

Let us make some final observations concerning the optimizing densities. First,
when maximizing A(z) the probability mass is shifted from around z toward 0
and 1. Conversely, when minimizing A(z) the mass is shifted toward z. Second,
when μ = P the density corresponding to the exact upper bound approaches 0 at
both ends, and it does not do so when μ = Leb. The reason is that the chosen
Hüsler–Reiss spectral density decays faster than any power at 0 and at 1, and so
Rényi divergence as defined in (6) is finite only if the density of P′ decays fast at
0 and at 1. This issue will arise again in Section 5.2 describing our experiments.

5.2. Experiments. In this section, we show how the robust bounds are able
to capture correctly the uncertainty due to model misspecification in a statistical
estimation problem. They remain reliable in situations where classical confidence
bounds would underestimate the statistical error.

As an application of our results we consider the estimation of tail probabilities of
the bivariate, regularly varying random vector Z; see Section 2.2. Throughout this
section, we assume that Z follows an asymmetric logistic distribution with depen-
dence parameter a ∈ (0,1) and asymmetry parameters b1, b2 ∈ [0,1] as defined in
Appendix A.1.2, so that the limiting spectral measure H = AL(a, b1, b2) = Ptrue
in (9) has the density (27). We conduct several experiments that illustrate the use
of the robust bounds in practical applications. All our experiments are carried out
according to the following scheme:

(a) Simulate n data Z(1), . . . ,Z(n) from a bivariate asymmetric logistic distri-
bution using the R-package [31].

(b) Transform the samples to polar coordinates as in Section 2.2, and choose
r > 0 such that there are k < n of the radii exceeding the threshold r . According
to (9), the corresponding angles, say Y (1), . . . , Y (k), are approximate realizations
of the spectral distribution. The choice of the threshold r is a trade-off between the
sample size k and the approximation error.
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TABLE 1
Details on the four experiments. AL: asymmetric logistic, HR: Hüsler–Reiss, ET: extremal-t

# Ptrue n Fitted model P μ δ δtrue

1 AL(0.4,0.7,1) 20,000 ET(0.65,1.21) P 0.34 0.35
2 AL(0.5,1,1) 20,000 HR(0.61) Leb 0.05 0.06
3 AL(0.5,1,1) 2,000 ET(0.88,3.37) P 0.05 0.05
4 AL(0.5,0.9,0.5) 20,000 AL(0.49,0.85,0.54) P 0.02 0.02

(c) Choose a parametric family for the spectral distribution and fit it to the
observations Y (1), . . . , Y (k), using maximum likelihood estimation. The parametric
family can either be the correct asymmetric logistic model, or a misspecified model
such as the Hüsler–Reiss or the extremal-t described in Appendices A.1.1 and
A.1.3, respectively. This model of the spectral distribution defines our probability
measure P.

(d) Plot the Pickands dependence functions Atrue and A corresponding to the
true asymmetric logistic model Ptrue and the estimate P from (c), respectively;
see (12).

(e) Estimate the divergence of the data from the fitted model δ = Dμ(Pdata,P)

using a naive approach: estimate the density (and point masses) from the given k

observations and plug it into (5) together with the model density from (c). Alter-
native methods for divergence estimation can be found in, for example, [26]. For
comparison, we also compute the true divergence δtrue = Dμ(Ptrue,P) of the true
underlying asymmetric logistic distribution from the fitted model.

(f) Compute the robust square-root bounds Â∗(z; δ) and Â∗(z; δ) for Pickands’
function A using δ computed in (e). The exact robust bounds, which are consider-
ably harder to compute, are very close to the square-root bounds and we omit them
for clarity of the plots.

(g) Compute the classical 95%-confidence bounds for the Pickands function by
nonparametric bootstrap. This is based on 300 estimates of the model parameters
as in (c), each for a resample of the data with replacement. We plot these bounds
around A.

REMARK 6. Let us remark that instead of simulating data from the asymmet-
ric logistic distribution we could have used any bivariate distribution from its max-
domain of attraction, because we rely on a limiting result in (b) to approximate
realizations of Y . Importantly, it is the limiting asymmetric logistic distribution
and the corresponding spectral distribution of Y , which are of main interest since
they provide a way to extrapolate tail probabilities out of the sample.

The basic information on the four experiments is given in Table 1, and the cor-
responding plots are given in Figure 3. In all experiments, we use k = 500 ex-
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FIG. 3. Left column: histogram of approximate Y , the true spectral distribution (solid red), the
fitted distribution (blue), nonparametric density estimate used to compute divergence (dashed red).
Right column: Atrue(z) (red), fitted A(z) (solid blue) with its bootstrap bounds (dashed blue), and the
robust square-root bounds (green). The rows correspond to experiments #1–4 described in Table 1,
respectively.
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ceedances. In experiment #1, we fit a symmetric extremal-t model to an asymmet-
ric logistic model, where both allow for point masses at 0 and 1. The bootstrap
confidence bounds are quite tight in this example, but they do not contain the true
model on most of the domain. This shows that these classical bounds are overly
confident if the fitted model is misspecified. The robust bounds, one the other hand,
are wider and they do contain the true model everywhere. We note that the square-
root bounds may go outside the triangle of admissible Pickands’ functions; see the
first row in Figure 3. This, however, can be easily fixed by simply restricting the
bounds to stay inside the triangle.

In experiment #2, we fit a symmetric Hüsler–Reiss model to a symmetric lo-
gistic model (b1 = b2 = 1) with no point masses. Here, the dominating measure
is μ = Leb for the reasons that we discuss below. Even though both models are
symmetric, the Hüsler–Reiss family is not flexible enough to well-approximate
the generating logistic distribution. This is underlined by the fact that the Pickands
function does not stay inside the bootstrap bounds, but only inside the wider robust
bounds.

In the first two experiments, we simulate n = 20,000 data points, corresponding
roughly to 55 years of daily observations. We choose r to be the 97.5% quantile of
all radii, and use for fitting the k = 500 observations whose radii exceed r . In ex-
periment #3, we only have n = 2000 data points and still use k = 500, correspond-
ing to the 75% quantile for r . Comparing the histograms #2 and #3 in Figure 3,
we note that in the latter case there are less observations close to 0 and 1. This
illustrates that the data used for fitting comes from a pre-limit distribution. The δ

we are estimating therefore represents the divergence of the data, that is, the pre-
limit distribution, from the fitted model. This number can be considerably larger
or smaller than δtrue, the divergence of the generating logistic distribution from the
fitted model. In this case, the robust theory still works well, but the estimated δ

becomes unreliable. In experiment #3, we chose a run with similar divergences δ

and δtrue.
Experiment #4 shows the case of fitting the well-specified asymmetric logistic

family to the data. As expected, both the bootstrap and the robust bounds con-
tain the true model. It is interesting to observe that both types of bounds almost
coincide, meaning that the robust version is not overly conservative in the well-
specified case.

Let us briefly discuss the choice of a dominating measure μ. We use μ = P,
that is, the classical Rényi divergence as defined in (6), whenever possible, that
is, whenever δtrue is finite. This is the case when fitting extremal-t in experiments
#1 and #3 and asymmetric logistic in #4, but not in experiment #2. Even though
the true symmetric logistic density with no point masses is absolutely continuous
with respect to the fitted Hüsler–Reiss density, the Rényi divergence of the former
from the latter is infinite, because the Hüsler–Reiss density decays faster than any
power at 0. Therefore, we take μ = Leb as a dominating measure in this case.
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Notice however, that the Lebesgue dominating measure does not allow for point
masses, which is desired in the other experiments.

Our experiments show that the easily computable robust square-root bounds can
be applied effectively to measure uncertainty related to misspecified dependence
structures in multivariate extremes. These readily available bounds are often exact,
or very close to the exact robust bounds; see also Section 5.1. Thus the more chal-
lenging computation of the exact bounds is usually not required. Let us note that
estimation of δ can be subtle, but it can be improved by an adequate choice of the
dominating measure μ. Another important problem concerns reliable estimation
of δ when data is coming from a pre-limit distribution. We leave these statistical
questions for future research.

6. Robust bounds on the value-at-risk of a portfolio. In recent years, di-
versification effects in heavy-tailed portfolios received considerable attention; see
[21, 22, 34]. Suppose that Z is a d-dimensional vector of dependent risk factors,
and consider the portfolio P = ∑d

i=1 wiZi , where w1, . . . ,wd ≥ 0 are some non-
negative weights, not all being 0; one may assume that

∑
i wi = 1 but this is not

required. In order to have comparable risks, one assumes that Z is multivariate
regularly varying with some index α > 0 and nondegenerate exponent measure ν,
so that (10) holds true.

Let VaRi (p) be the Value-at-Risk of the ith component, that is, it satisfies
F i(VaRi (p)) = p, where p > 0 is a number close to 0. It follows that VaRi (p)

is regularly varying at 0 with index −1/α, and moreover from (10) we find

(24)
VaRi (p)

VaR1(p)
→ m

1/α
i as p ↓ 0.

In the following, we consider the Value-at-Risk VaRP (p) of the portfolio P and
provide the corresponding asymptotic robust bounds.

As discussed in Section 2.2, it is a common procedure to first estimate the
marginal tails and then to address tail dependence, comparable to the copula con-
cept in multivariate modeling. In this work, we focus on the latter, more difficult
task, and so we assume that the marginal survival functions F i are correctly spec-
ified. Transforming the marginals to unit Pareto,

Ẑi = 1

F i(Zi)
,

we obtain normalized multivariate regularly varying ̂Z, to which we associate Ŷ ∈
S

d−1 having the corresponding spectral distribution.
According to [34], Theorem 3.1, the Value-at-Risk VaRP (p) of the portfolio P

satisfies

(25)
(

VaRP (p)

VaR1(p)

)α

→ dE

(
d∑

i=1

wi(miŶi)
1/α

)α

as p ↓ 0.
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That is, the Value-at-Risk of the portfolio is asymptotically equivalent to the Value-
of-Risk of every individual risk factor up to a diversification constant, which is
easily identified from (25) and (24). In particular, letting

(26) X =
(

d∑
i=1

wi(miŶi)
1/α

)α

we have the approximation for small p > 0:

VaRP (p) ≈ VaR1(p)(dEX)1/α.

Suppose now that our model P for the extremal dependence between the risk
factors, that is, for the spectral distribution Ŷ , is subject to model uncertainty.
A prominent problem in the financial literature on model uncertainty is to ob-
tain worst case bounds on the Value-at-Risk of a portfolio (cf., [15, 16]). In this
regard, we may directly apply our results from Sections 3 and 4 by considering
the optimization problem (13) with X given in (26) and the moment constraints
EŶi = 1/d . Let us note again that there are essentially d − 1 constraints since
Ŷd = 1 − ∑d−1

i=1 Ŷi . For fixed uncertainty radius δ > 0, Theorem 1 yields the de-
sired exact worst case bounds on the asymptotic Value-at-Risk on the right-hand
side of (25), which are found numerically by solving a system of d + 1 nonlinear
equations. In higher dimension, solving these equations might be computationally
challenging. On the other hand, the upper and lower square-root bounds in The-
orem 2 and Corollary 1 coincide with the exact bounds for δ < δ∗ and δ < δ∗,
respectively, and are otherwise very good approximations. Moreover, they can be
easily computed even in higher dimensions. Indeed we only need to evaluate the
covariance matrix �μ(X, Ŷ ) with respect to the chosen dominating measure μ.
In the default case μ = P, this can be done, for instance, by Monte Carlo meth-
ods based on independent samples from Ŷ . An algorithm for exact and efficient
simulation of Ŷ can be found in [12].

Differently to [34] and the above discussion, in [21] the asymptotic relation
between VaRP (p) and VaR1(p) is expressed using the spectral distribution Y of
the original nonstandardized Z. This approach avoids separating the problem into
marginal tail estimation and estimation of the tail dependence structure, which
may be beneficial in some situations. It does not, however, allow to use standard
models for the spectral measure. Moreover, in this setting the marginal VaRi (p)

are affected by a change of the distribution of Y , and the asymptotic expression for
the ratio (

VaRP (p)

VaR1(p)

)α

→ E

(
d∑

i=1

wiYi

)α/
EYα

1 as p ↓ 0,

see [21], Corollary 2.3, does not fit into our framework since it is given by a ratio
of expectations. A possible way around this problem is to express VaRP (p) using
the slowly varying function corresponding to the scaling sequence at in (8).
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APPENDIX

A.1. Some parametric families of spectral distributions. In the following,
we provide several commonly used parametric models for the spectral distribution
H of (Y1, Y2) ∈ S

1 in the bivariate case under L1-norm. Without loss of generality,
we restrict our attention to the first component Y = Y1, so that H is a probability
measure on [0,1] equipped with its Borel σ -algebra. The following formulas are
known but not readily available in the literature, and so we present them here for
completeness.

A.1.1. Hüsler–Reiss. If the max-stable distribution is a bivariate Hüsler–Reiss
distribution with dependence parameter λ ∈ (0,∞), then the density of the corre-
sponding spectral distribution is

hλ(ω) = 1

ω2(1 − ω)4λ

1√
2π

exp
{
−1

2

(
λ + log 1−ω

w

2λ

)2}
, ω ∈ [0,1].

It is easy to check that this distribution is symmetric around 1/2 and that EY =
1/2. Moreover, A(1/2) = �(λ), where � is the standard normal distribution func-
tion.

A.1.2. Asymmetric logistic. If the max-stable distribution is an asymmetric
logistic distribution with dependence parameter a ∈ (0,1) and asymmetry param-
eters b1, b2 ∈ [0,1], then the corresponding spectral distribution has point masses
P(Y = 0) = (1 − b2)/2 and P(Y = 1) = (1 − b1)/2, and the density is

ha,b1,b2(ω) = 1 − a

2a

(b1b2)
1/a

(ω(1 − ω))1+1/a

{(
b1

ω

)1/a

+
(

b2

1 − ω

)1/a}a−2
,

(27)
ω ∈ (0,1).

A.1.3. Extremal-t . If the max-stable distribution is an extremal-t distribution
with parameters ρ ∈ [−1,1] and a > 0, then the distribution of the corresponding
spectral distribution has point masses

P(Y = 0) = P(Y = 1) = 1 − Fa+1

{
ρ

√
a + 1

1 − ρ2

}
,

and the density for ω ∈ (0,1) is

hρ,a(ω) = (1 − ρ2)
a+1

2 �(a+2
2 )

2a
√

π�(a+1
2 )

(
ω(1 − ω)

)1/a−1

× {
ω2/a − 2ρ

(
ω(1 − ω)

)1/a + (1 − ω)2/a}− a+2
2 .

Here, Fa is the t-distribution function with a > 0 degrees of freedom, that is,

Fa(x) = �(a+1
2 )√

aπ�(a
2 )

∫ x

−∞

(
1 + t2

a

)− a+1
2

dt, x ∈ R.
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A.2. Degenerate optimizers for the Pickands function. In this section, we
study the degenerate case (ii) of Theorem 1 for the Pickands dependence function
A(z) defined in (12); see also Section 5. That is, we assume that

(28) X = X(z) = 2
{
(1 − z)Y ∨ z(1 − Y)

}
, Y ∈ [0,1]

for some fixed z ∈ [0,1], and that the constraint is EY = 1/2. Our aim is to iden-
tify the corresponding optimal values and the thresholds δ∗∗ and δ∗∗; see Re-
mark 2. The following result shows that the degenerate case corresponds to the
trivial bounds z ∨ (1 − z) ≤ A(z) ≤ 1 as expected, but a certain assumption on the
μ-support of Y is necessary.

LEMMA 1. Consider (28) and assume that μ-support of Y contains 0, z,1.
Then the case (ii) of Theorem 1 occurs if and only if there exists a Radon–Nikodym
derivative L∗ (with respect to μ) such that

Eμ

(
L∗ − L

)2 ≤ δ, P
∗(Y = 0) = P

∗(Y = 1) = 1/2,

in which case E
∗X = 1.

In case of the minimization problem, the corresponding requirement on a
Radon–Nikodym derivative L∗ is

Eμ(L∗ − L)2 ≤ δ,

⎧⎪⎪⎨⎪⎪⎩
P∗(Y ≥ z) = 1 z < 1/2,

P∗(Y = 1/2) = 1 z = 1/2,

P∗(Y ≤ z) = 1 z > 1/2,

E∗Y = 1/2,

in which case E∗X = z ∨ (1 − z).

PROOF. Observe that the maximum of X + cY is obtained for Y = 1 or Y = 0
or both (draw a picture). Since E

∗Y = 1/2, we must have P
∗(Y = 0) = P

∗(Y =
1) = 1/2, which yields the result.

The minimum of X + cY is obtained either at Y ≤ z or at Y ≥ z or at the single
points 0, z,1 (z is the bending point). Again the constraint E∗Y = 1/2 leads to the
result. The corresponding optimal value is 2(1 − z)E∗Y = 1 − z when z ≤ 1/2,
and it is z when z > 1/2. �

For the maximization problem, in the case of μ = Leb, it is impossible to have
P

∗(Y = 0),P∗(Y = 0) > 0 and so according to Lemma 1 there cannot be a degen-
erate maximizer for any δ, that is, δ∗∗ = ∞. In the case of μ = P, we have the
following:

(29) δ∗∗ = 1

4p0
+ 1

4p1
− 1,

where pi = P(Y = i), and in particular p0 and p1 must be positive to have δ∗∗ <

∞. This follows from Lemma 1 and the following arguments. Note that

EL∗2 = E
(
L∗2|Y = 0

)
p0 +E

(
L∗2|Y = 1

)
p1 ≥ l2

0p0 + l2
1p1,
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where li = E(L∗|Y = i) and so l0p0 = l1p1 = 1/2. Hence, L∗ = l01{Y=0} +
l11{Y=1} guarantees the minimal value for EL∗2 among the allowed ones for any
fixed δ. Therefore, a sufficient and necessary condition for existence of a degener-
ate maximizer is l2

0p0 + l2
1p1 − 1 ≤ δ, which readily yields (29).

For the minimization problem, the case of z = 1/2 is easy, δ∗∗ = ∞ for
μ = Leb, and δ∗∗ = 1/P(Y = 1/2) − 1 for μ = P. For z �= 1/2, the value of
δ∗∗ depends on the distribution of Y on Y ≥ z if z < 1/2 (on Y ≤ z if z > 1/2).
More precisely, we need to identify a Radon–Nikodym derivative L∗∗ which as-
signs no mass to Y < z, satisfies the constraints Eμ(L∗∗) = 1,Eμ(L∗∗Y) = 1/2
and minimizes Eμ(L∗∗ − L)2. This optimization problem is solved by L∗∗ =
(b + cY + L)+1{Y≥z} for b, c ∈ R such that the constraints hold. Finally, the mini-
mal value Eμ(L∗∗ − L)2 is our δ∗∗.

A.3. Optimization for Rényi and Kullback–Leibler divergences. For com-
pleteness, we consider our optimization problem (13) for some other popular di-
vergences: Rényi divergence of order η > 1 given by

D̂η

(
P

′,P
) = 1

η − 1
logEL′η,

and Kullback–Leibler divergence given by

D̂1
(
P

′,P
) = E

(
L′ logL′),

where it is assumed that P′ � P with L′ = dP′/dP and that the dominating measure
μ coincides with P. An easy adaptation of the proof of Theorem 1 shows that a
maximizer P∗ of

sup
P′

{
E

′X : D̂η

(
P

′,P
) ≤ δ,E′Y = EY

}
must have a Radon–Nikodym derivative L∗ ≥ 0, which satisfies EL∗ = 1,

E(L∗Y ) = EY and one of then following:

(i) D̂η(P
∗,P) = δ and there exist a > 0, b, ci ∈ R such that

L∗ = (
aX + b + c�Y

)1/(η−1)
+ a.s. when η > 1,(30)

L∗ = exp
(
aX + b + c�Y

)
a.s. when η = 1;(31)

(ii) there exist ci such that the distribution of X + c�Y has a positive mass at
its right end, L∗ = 0 everywhere else a.s., and the constraint D̂η(P

∗,P) ≤ δ holds.

Conversely, any such L∗ corresponds to a maximizer P
∗. In the case η > 1,

we assume that E|X|η/(η−1),E|Y |η/(η−1) < ∞, and in the case η = 1 we as-
sume that E(|X|L′),E(|Yi |L′) < ∞ for all L′ satisfy E(L′ logL′) ≤ δ. Further-
more, regardless of these assumptions, if there exists L∗ as above and such that
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E(|X|L∗),E(|Yi |L∗) < ∞ then it must be a maximizer, which can be seen by con-
sidering an appropriate convex subset of L′ in the proof of Theorem 1.

Note that taking η = 2 we retrieve the result of Theorem 1 for μ = P. In the
case d = 1 (no moment constraints), the expression for L∗ in (i) appears in, for
example, [4]. Furthermore, [7] considers more general divergences but the results
are less explicit. Finally, we elaborate on the case of Kullback–Leibler divergence
extending the result of [1] by introducing moment constraints.

PROPOSITION 1. Assume that X,Yi ≥ 0 are positive random variables with
finite expectation, and G(a, c) = EeaX+∑

i ciYi is finite on some domain D ⊂
(0,∞) ×R

d with nonempty interior. Suppose there exist (a, c) ∈ D such that

Gi(a, c)

G(a, c)
= EYi, a

G0(a, c)

G(a, c)
+

d∑
i=1

ciEYi − logG(a, c) = δ,

where Gi(·) is a derivative with respect to the ith variable (pointing inside the
domain if on the boundary). Then

V KL(δ) = sup
P′

{
E

′X : D̂1
(
P

′,P
) ≤ δ,E′Y = EY

} = G0(a, c)

G(a, c)
,

which corresponds to the exponential change of measure L∗ = eaX+∑
i ciYi /G(a,

c).

PROOF. According to (31), we consider

L∗ = exp
(
aX + b + ∑

i

ciYi

)
=: exp(U), a > 0, b, ci ∈ R

together with the constraints: EeU = 1,E(UeU) = δ,E(Yie
U ) = EYi . We may

rewrite these using the moment generating function G:

G(a, c) = e−b,

aG0(a, c) + bG(a, c) + ∑
i

ciGi(a, c) = δe−b,

ebGi(a, c) = EYi,

V KL(δ) = ebG0(a, c).

The equations in the statement are now immediate. Finally, we note that E(XL∗)
and E(YiL

∗) are finite, which completes the proof. �
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