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ERRATUM:
FIRST PASSAGE PERCOLATION ON RANDOM GRAPHS

WITH FINITE MEAN DEGREES
[Ann. Appl. Probab. 20(5) (2010) 1907–1965]

BY SHANKAR BHAMIDI1, REMCO VAN DER HOFSTAD2 AND

GERARD HOOGHIEMSTRA

University of North Carolina, Eindhoven University of Technology and
Delft University of Technology

In this erratum, we correct a mistake in the above paper, where we were
using an exchangeability result that is obviously false.

1. Description of the error and where it is used. In [4], we considered first
passage percolation for configuration model random graphs with i.i.d. degrees,
where each edge in the constructed graph is assigned an exponential mean one
weight, independently across edges. The aim was to understand both the weight
and the number of edges (hopcount) on the optimal path between two uniformly
chosen vertices, which we will occasionally call sources, thinking of fluid percolat-
ing through the network at rate one, started at the two source vertices. When these
two explorations meet (collide), they generate the shortest path between these two
sources. In the sequel, these exploration processes will sometimes be referred to
as smallest-weight trees from the two source vertices. Using the fact that in the
construction the edges have exponentially distributed weights resulted in an ex-
plicit description of this exploration of the graph in [4]. A rigorous analysis of this
process gave rise to the results in the paper.

One technical result in the analysis was [4], Lemma 6.1, where we claimed that
the sequence of random variables (BRm)m≥1 is exchangeable, which is false. Here,
(BRm)m≥1 are the forward degrees in the exploration of a connected component of
a uniformly chosen vertex U ∈ [n] = {1, . . . , n} in the configuration model with
i.i.d. degrees, ignoring U itself. Indeed, conditionally on the degrees (Di)i∈[n],
the sequence (BRm)m≥1 is a size-biased reordering of the random variables (Di −
1)i∈[n]\{U}. Thus, in particular, the expected values of (BRm)m≥1 are decreasing
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in m, so they cannot be exchangeable. This lemma is crucially used in [4], Proof
of Proposition 4.6(a). In this erratum, we correct this proof.

Since the appearance of [4], new results for first passage percolation (FPP) on
the configuration model (CM) have appeared in rather general setting. We refer to
[3], where we have investigated FPP on the CM for general, but continuous edge-
weight distributions in the case where the degrees have a finite second moment
(with an extra logarithm so that the branching-process approximation satisfies the
X logX condition in the Kesten–Stigum theorem) and are i.i.d. Since the exponen-
tial weight distribution, which we assume in [4], is continuous, the proofs given
in [3] imply those in [4], in the case where the degrees have a finite X2 logX

moment. In [4], we have assumed that the degrees either obey a power law with
exponents τ ∈ (2,3), or a distribution whose tail distribution can be bounded from
above by a power law with exponent τ > 3. In the latter case, [4], Lemma 6.1, is
not used, and thus there is nothing to correct.

The aim of this paper is to correct the argument in [4] that uses [4], Lemma 6.1.
This argument arises in the analysis of the regime τ ∈ (2,3). In this regime, no
general results are known for the number of edges in the smallest-weight path
between two uniform vertices, even though more general results have been proved
for the weight-distance (see [1, 2]). The proofs of the results in these papers do not
rely on [4], Lemma 6.1. Thus, for τ ∈ (2,3), the asserted central limit result [4],
Theorem 3.2, has to be reproved. The only place where [4], Lemma 6.1, was used
in the proof of [4], Theorem 3.2, was in the proof of [4], Proposition 4.6(a). It is
hence sufficient to reprove [4], Proposition 4.6(a), for the case where τ ∈ (2,3).
In fact, we will prove a slightly weaker version of [4], Proposition 4.6(a), and will
explain how this version suffices for the proof of [4], Theorem 3.2.

2. Correction of [4], Proposition 4.6(a). We start by recalling some of the
definitions in [4]. The distribution function F of the i.i.d. degrees D1,D2, . . . is
assumed to satisfy

(2.1) c1x
−(τ−1) ≤ 1 − F(x) ≤ c2x

−(τ−1), x ≥ 1,

where τ ∈ (2,3), and for some constants 0 < c1 ≤ c2 < ∞ (compare [4], (3.8)).
Furthermore, we recall that an is the power of n that indicates the maximal size
of each of the trees grown from the sources Ui, i = 1,2, at the moment when the
smallest-weight path is being formed (i.e., the collision time), equals

(2.2) an = n(τ−2)/(τ−1) for τ ∈ (2,3).

We also recall from [4] the random variables involved in [4], Proposition 4.6 and
Lemma 6.1. Let S0 = 1, S1 = D1, and, for j ≥ 2,

(2.3) Sj = D1 +
j∑

i=2

(Bi − 1),



3248 S. BHAMIDI, R. VAN DER HOFSTAD AND G. HOOGHIEMSTRA

where, in case the chosen half-edge is real, that is, not artificial, and the paired
half-edge is not one of the allowed half-edges, Bi equals the forward degree of the
vertex incident to the ith paired half-edge, whereas Bi = 0 otherwise. Finally, we
recall that, conditionally on �B = (D1,B2,B3, . . . ,Bm) and for 2 ≤ j ≤ m,

(2.4) Gm =
m∑

i=1

Ii where P(I1 = 1| �B) = 1,P(Ij = 1| �B) = Bj/Sj .

We now turn to the proof of [4], Proposition 4.6(a). Let us start by recalling the
content of [4], Proposition 4.6(a).

Reference [4], Proposition 4.6(a), states that, for τ ∈ (2,3) and with m ≤ mn,
for any mn such that log (mn/an) = o(

√
logn),

(2.5)
Gm − logm√

logm

d−→ Z where Z ∼ N (0,1),

i.e., Z has a standard normal distribution. Here, we have used that the parameter β

in [4], Proposition 4.6(a), takes the value 1 for τ ∈ (2,3) (see [4], Proposition 4.3).
We will not prove precisely this version of [4], Proposition 4.6(a), but instead

prove that there exists mn 
 an such that for all m ≤ mn the CLT in (2.5) holds.
That is enough, since [4], Proposition 4.6(a), is used for mn = Cn (recall [4],
(4.30)), the collision time. By [4], Lemma 7.2, Cn = oP(mn) for any mn 
 an,
so this slightly weaker version indeed suffices to prove [4], Theorem 3.2. Now we
adapt the proof.

PROOF OF [4], PROPOSITION 4.6(A). We start with the initial steps of the
proof, which can be performed as before in [4].

Step 1: Coupling to an n-dependent i.i.d. sequence. Take mn = o(an) such that
log(an/mn) = o(

√
logn) and let Ln = ∑

i∈[n] Di . Then, as in the original proof of
the proposition where [4], Lemma 6.1, was not used, the sequence (Bi)

mn

i=1 can be
coupled to an i.i.d. sequence (B̃i)

mn

i=1. Note that the distribution of B̃i depends on
n, as it is given by

(2.6) Pn(B̃i = k) = k + 1

Ln

1{Di=k+1},

where Pn denotes the conditional probability of the CM, given the degrees
(Di)i∈[n]. Let us explain this in more detail. See also [3], Section 2, where this
coupling is worked out in full detail. The law in (2.6) corresponds to the for-
ward degree of a half-edge chosen uniformly at random from the collection of
Ln = ∑

i∈[n] Di half-edges. We grow the smallest-weight graph (SWG) and the
CM at the same time. We investigate what happens when we pair mn half-edges.
The distinction between the law of (Bi)

mn

i=1 and the i.i.d. sequence (B̃i)
mn

i=1 is due
to the fact that the number of half-edges decreases (which we refer to as half-edge
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reuse), and the fact that Bi �= B̃i when the vertex incident to the half-edge has pre-
viously been chosen (which we refer to as vertex reuse). We claim that w.h.p. there
is no half-edge nor vertex reuse in the mn first pairings. Indeed, the probability of
a half-edge or vertex reuse in the mn first pairings is bounded above by

(2.7) m2
n

∑
i∈[n]

D2
i

L2
n

,

since at most m2
n half-edges are involved. To see (2.7), fix a half-edge xi incident to

vertex i. The probability that it is chosen at any time equals 1/Ln, the probability
that it or any other half-edge incident to the same vertex is chosen again (thus
creating a half-edge or vertex reus) is Di/Ln. The union bound then completes the
proof of (2.7).

When (Di)i∈[n] are i.i.d. with distribution function F as in (2.1),

(2.8) n−2/(τ−1)
∑
i∈[n]

D2
i

d−→ Sτ−2,

where Sτ−2 has an α-stable distribution with α = τ − 2 (see [5], IX.8). Thus,

(2.9)
(
n−(τ−2)/(τ−1)mn

)2
n−2/(τ−1)

∑
i∈[n]

D2
i

P−→ 0.

Because of this and since Ln/n
a.s.−→ E[D], the object in (2.7) converges to zero in

probability as n → ∞. This proves the claim and completes the first step.
Step 2: Consequences of the coupling. As a consequence of the above coupling,

we note that Smn
can be coupled to S̃mn

, where

(2.10) S̃mn
≥ max

i≤mn

B̃i ≡ M̃(n)
mn

,

where we have used that B̃i ≥ 1 so that the summands in (2.3) are non-negative.
In turn, we can couple M̃

(n)
mn

to Mmn
= maxi≤mn

Bi . In the following lemma, we
investigate the asymptotics of these maxima.

LEMMA 2.1 (Lower bound on Mmn
and M̃

(n)
mn

). Take εn = o(1) and mn =
εκ
nan with κ ∈ (0, τ − 2). Then the following two statements hold w.h.p.:

(2.11) Mmn
≥ εnn

1/(τ−1) and M̃(n)
mn

≥ εnn
1/(τ−1).

PROOF. We only prove the second statement, the first statement then follows
from the coupling. Observe that

Pn

(
M̃(n)

mn
< εnn

1/(τ−1)) = Pn

(
B̃i ≤ εnn

1/(τ−1) − 1
)mn

(2.12)
≡ F�

n

(
εnn

1/(τ−1) − 1
)mn,
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where

(2.13) F�
n (x) = ∑

i∈[n]

Di

Ln

1{Di≤x+1}.

We note that

(2.14) 1 − F�
n (x) = ∑

i∈[n]

Di

Ln

1{Di>x+1} >
x + 1

Ln/n
[1 − Fn](x + 1),

where Fn is the empirical distribution function of the degrees given by

(2.15) Fn(x) = 1

n

∑
i∈[n]

1{Di≤x}.

We conclude that

(2.16) Pn

(
M̃(n)

mn
< εnn

1/(τ−1)) ≤
(

1 − εnn
1/(τ−1)

Ln/n
[1 − Fn](εnn

1/(τ−1)))mn

.

First, Ln/n
a.s.−→ E[D], so that w.h.p. Ln/n ≤ 2E[D].

Next, note that n[1 − Fn](εnn
1/(τ−1)) has a binomial distribution with n trials

and success probability

(2.17) [1 − F ](εnn
1/(τ−1)) ≥ c1

(
εnn

1/(τ−1))−(τ−1) = c1ε
−(τ−1)
n n−1,

where we have used (2.1). Therefore,

(2.18) E
[
n[1 − Fn](εnn

1/(τ−1))] ≥ c1ε
−(τ−1)
n → ∞,

so that n[1 − Fn](εnn
1/(τ−1)) ≥ c1ε

−(τ−1)
n /2, w.h.p. We conclude that, w.h.p., and

for some c̃1 > 0,

(2.19) 1 − εnn
1/(τ−1)

Ln/n
[1 − Fn](εnn

1/(τ−1)) ≤ 1 − c̃1ε
−(τ−2)
n n−(τ−2)/(τ−1).

Therefore, again w.h.p. and using that mn = εκ
nan and an = n(τ−2)/(τ−1),

Pn

(
M̃(n)

mn
< εnn

1/(τ−1)) ≤ (
1 − c̃1ε

−(τ−2)
n n−(τ−2)/(τ−1))mn

(2.20)
≤ e−c̃1ε

κ−(τ−2)
n = o(1),

whenever κ ∈ (0, τ − 2). �

Step 3: Reduction of the proof to a first moment computation. By the above
(and recall, e.g., [4], (6.5)), the proof is completed when we show that, with En =
{Mmn

≥ εnn
1/(τ−1)},

(2.21) 1En

∑mn

i=mn+1 Ii√
logn

P−→ 0,
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for appropriate mn,mn satisfying log(an/mn) = o(
√

logn) and log(mn/an) =
o(

√
logn). Indeed, for j ≤ mn, we can couple the indicators Ij to an indepen-

dent sequence (Îj )j≤mn
, where, conditionally on the degrees (Di)i∈[n], the random

variables (Îj )j≤mn
are independent, with

(2.22) Pn(Îj = 1) = B̃i∑
i≤j B̃j

,

and (Ij )j≤mn
are also unconditionally independent with

(2.23) E
[
Pn(Îj = 1| �B)

] = E

[
B̃i∑

i≤j B̃j

]
= 1

j
, 2 ≤ j ≤ m.

The unconditional independence of the indicators (Îj )j≤mn
is proved in [4], (5.4).

Further, with

(2.24) Ĝm =
m∑

j=1

Îj ,

we obtain that for any κn → ∞,

(2.25) Pn

(|Gmn
− Ĝmn

| ≥ κn

) = oP(1).

Since Ĝmn
is a sum of independent indicators, the proof as in [4], Proof of Propo-

sition 4.3(a), which relies on the Lindeberg–Lévy–Feller CLT, can be copied ver-

batim to show that (Gmn
− logmn)/

√
logmn

d−→ Z. This proves [4] subject to
(2.21), Proposition 4.6(a).

Step 4: Completion of the proof. Our strategy will be to calculate an upper bound
for the expected value of the random quantity in (2.21) and show that this upper
bound converges to 0. We will take mn = εκ

nan and mn = ε−κ
n an, where κ ∈ (0, τ −

2) and εn 
 (logn)−1/(2+2κ). We will always work under the conditional measure
Pn given the degrees.

Denote the σ -algebra given D1,B2, . . . ,Bi by Fi . Then, for i ≥ 2,

En[Ii |Fi] = Bi

Si

.

Therefore,

En

[
1En

mn∑
i=mn+1

Ii

]
=

mn∑
i=mn+1

En[1EnIi]

=
mn∑

i=mn+1

En

[
1EnEn[Ii |Fi]](2.26)

=
mn∑

i=mn+1

En

[
1En

Bi

Si

]
,

where we have also used that En is Fi -measurable when i > mn.
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We note that, by Lemma 2.1 and w.h.p.,

(2.27) Si ≥ Smn
− (mn − mn) ≥ εnn

1/(τ−1) − mn.

Since mn = anε
−κ
n ,

Si ≥ εnn
1/(τ−1) − anε

−κ
n = εnn

1/(τ−1) − ε−κ
n n(τ−2)/(τ−1)

(2.28)
≥ εnn

1/(τ−1)/2,

where the last inequality follows because we can take for εn some negative power
of logn and since (τ − 2)/(τ − 1) < 1/(τ − 1), for τ ∈ (2,3). Therefore,

(2.29) En

[
1En

mn∑
i=mn+1

Ii

]
≤

(
2

εnn1/(τ−1)

) mn∑
i=mn+1

En[Bi].

For every i ≤ n/2,

(2.30) En[Bi] ≤ ∑
v∈[n]

D2
v

Ln(i)
,

where, with (D(i:n))i∈[n] the order statistics of (Dj )j∈[n] and since Dj ≥ 2 for
every j ∈ [n],
(2.31) Ln(i) = ∑

j≤n−i−1

D(j :n) ≥ n.

We conclude that, by (2.8) and since ann
−1/(τ−1)−1+2/(τ−1) = 1,

En

[
1En

mn∑
i=mn+1

Ii

]
≤ mn

(
2

εnn1/(τ−1)

)
1

n

∑
v∈[n]

D2
v

= OP

(
ε−(1+κ)
n

)
ann

−1/(τ−1)−1+2/(τ−1)(2.32)

= OP

(
ε−(1+κ)
n

) = oP(
√

logn),

whenever εn 
 (logn)−1/(2+2κ). This completes the proof of (2.21), and thus cor-
rects the proof of the required weaker version of [4], Proposition 4.6(a). �
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