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A Paradox from Randomization-Based
Causal Inference1

Peng Ding

Abstract. Under the potential outcomes framework, causal effects are de-
fined as comparisons between potential outcomes under treatment and con-
trol. To infer causal effects from randomized experiments, Neyman proposed
to test the null hypothesis of zero average causal effect (Neyman’s null), and
Fisher proposed to test the null hypothesis of zero individual causal effect
(Fisher’s null). Although the subtle difference between Neyman’s null and
Fisher’s null has caused a lot of controversies and confusions for both theo-
retical and practical statisticians, a careful comparison between the two ap-
proaches has been lacking in the literature for more than eighty years. We
fill this historical gap by making a theoretical comparison between them and
highlighting an intriguing paradox that has not been recognized by previ-
ous researchers. Logically, Fisher’s null implies Neyman’s null. It is there-
fore surprising that, in actual completely randomized experiments, rejection
of Neyman’s null does not imply rejection of Fisher’s null for many real-
istic situations, including the case with constant causal effect. Furthermore,
we show that this paradox also exists in other commonly-used experiments,
such as stratified experiments, matched-pair experiments and factorial exper-
iments. Asymptotic analyses, numerical examples and real data examples all
support this surprising phenomenon. Besides its historical and theoretical im-
portance, this paradox also leads to useful practical implications for modern
researchers.

Key words and phrases: Average null hypothesis, Fisher randomization
test, potential outcome, randomized experiment, repeated sampling property,
sharp null hypothesis.

1. INTRODUCTION

Ever since Neyman’s seminal work, the potential
outcomes framework (Neyman, 1923/1990; Rubin,
1974) has been widely used for causal inference in
randomized experiments (e.g., Neyman, 1935; Hinkel-
mann and Kempthorne, 2008; Imbens and Rubin,
2015). The potential outcomes framework permits
making inference about a finite population of interest,
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with all potential outcomes fixed and randomness com-
ing solely from the physical randomization of the treat-
ment assignments. Historically, Neyman (1923/1990)
was interested in obtaining an unbiased estimator with
a repeated sampling evaluation of the average causal
effect, which corresponded to a test for the null hy-
pothesis of zero average causal effect. On the other
hand, Fisher (1935a) focused on testing the sharp null
hypothesis of zero individual causal effect, and pro-
posed the Fisher Randomization Test (FRT). Both Ney-
manian and Fisherian approaches are randomization-
based inference, relying on the physical randomization
of the experiments. Neyman’s null and Fisher’s null are
closely related to each other: the latter implies the for-
mer, and they are equivalent under the constant causal
effect assumption. Both approaches have existed for
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many decades and are widely used in current statisti-
cal practice. They are now introduced at the beginning
of many causal inference courses and textbooks (e.g.,
Rubin, 2004; Imbens and Rubin, 2015). Unfortunately,
however, a detailed comparison between them has not
been made in the literature.

In the past, several researchers (e.g., Rosenbaum,
2002, page 40) believed that “in most cases, their dis-
agreement is entirely without technical consequence:
the same procedures are used, and the same conclu-
sions are reached.” However, we show, via both nu-
merical examples and theoretical investigations, that
the rejection rate of Neyman’s null is higher than that
of Fisher’s null in many realistic randomized exper-
iments, using their own testing procedures. In fact,
Neyman’s method is always more powerful if there is
a nonzero constant causal effect, the very alternative
most often used for the Fisher-style inference. This
finding immediately causes a seeming paradox: logi-
cally, Fisher’s null implies Neyman’s null, so how can
we fail to reject the former while rejecting the latter?

We demonstrate that this surprising paradox is not
unique to completely randomized experiments, because
it also exists in other commonly-used experiments such
as stratified experiments, matched-pair experiments
and factorial experiments. The result for factorial ex-
periments helps to explain the surprising empirical ev-
idence in Dasgupta, Pillai and Rubin (2015) that inter-
val estimators for factorial effects obtained by inverting
a sequence of FRTs are often wider than Neymanian
confidence intervals.

The paper proceeds as follows. We review Neyma-
nian and Fisherian randomization-based causal infer-
ence in Section 2 under the potential outcomes frame-
work. In Section 3, we use both numerical examples
and asymptotic analyses to demonstrate the paradox
from randomization-based causal inference in com-
pletely randomized experiments. Section 4 shows that
a similar paradox also exists in other commonly-used
experiments. Section 5 extends the scope of the pa-
per to improved variance estimators and comments on
the choices of test statistics. Section 6 illustrates the
asymptotic theory of this paper with some finite sam-
ple real-life examples. We conclude with a discussion
in Section 7, and relegate all the technical details to the
Supplementary Material (Ding, 2017).

2. RANDOMIZED EXPERIMENTS AND
RANDOMIZATION INFERENCE

We first introduce notation for causal inference in
completely randomized experiments, and then review

the Neymanian and Fisherian perspectives for causal
inference.

2.1 Completely Randomized Experiments and
Potential Outcomes

Consider N units in a completely randomized exper-
iment. Throughout our discussion, we make the Sta-
ble Unit Treatment Value Assumption (SUTVA; Cox,
1992; Rubin, 1980), that is, there is only one version
of the treatment, and interference between subjects is
absent. The SUTVA allows us to define the potential
outcome of unit i under treatment t as Yi(t), with t = 1
for treatment and t = 0 for control. The individual
causal effect is defined as a comparison between two
potential outcomes, for example, τi = Yi(1) − Yi(0).
However, for each subject i, we can observe only one
of Yi(1) and Yi(0) with the other one missing, and
the individual causal effect τi is not observable. The
observed outcome is a deterministic function of the
treatment assignment Ti and the potential outcomes,
namely, Y obs

i = TiYi(1) + (1 − Ti)Yi(0). Let Y obs =
(Y obs

1 , . . . , Y obs
N )′ be the observed outcome vector. Let

T = (T1, . . . , TN)′ be the treatment assignment vec-
tor, and t = (t1, . . . , tN )′ ∈ {0,1}N be its realization.
Completely randomized experiments satisfy pr(T =
t) = N1!N0!/N !, if

∑N
i=1 ti = N1 and N0 = N − N1.

Note that in Neyman’s (1923/1990) potential outcomes
framework, all the potential outcomes are fixed num-
bers, and only the treatment assignment vector is ran-
dom. In general, we can view this framework with fixed
potential outcomes as conditional inference given the
values of the potential outcomes. In the early litera-
ture, Neyman (1935) and Kempthorne (1955) are two
research papers, and Kempthorne (1952), Hodges and
Lehmann (1964), Chapter 9, and Scheffé (1959), Chap-
ter 9, are three textbooks using potential outcomes for
analyzing experiments.

2.2 Neymanian Inference for the Average
Causal Effect

Neyman (1923/1990) was interested in estimating
the finite population average causal effect:

τ = 1

N

N∑
i=1

τi = 1

N

N∑
i=1

{
Yi(1) − Yi(0)

} = Ȳ1 − Ȳ0,

where Ȳt = ∑N
i=1 Yi(t)/N is the finite population av-

erage of the potential outcomes {Yi(t) : i = 1, . . . ,N}.
He proposed an unbiased estimator

τ̂ = Ȳ obs
1 − Ȳ obs

0(1)
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for τ , where Ȳ obs
t = ∑

{i:Ti=t} Y obs
i /Nt is the sample

mean of the observed outcomes under treatment t . The
sampling variance of τ̂ over all possible randomiza-
tions is

var(τ̂ ) = S2
1

N1
+ S2

0

N0
− S2

τ

N
,(2)

depending on S2
t = ∑N

i=1{Yi(t) − Ȳt }2/(N − 1), the
finite population variance of the potential outcomes
{Yi(t) : i = 1, . . . ,N}, and S2

τ = ∑N
i=1(τi − τ)2/

(N − 1), the finite population variance of the indi-
vidual causal effects {τi : i = 1, . . . ,N}. Note that
previous literature sometimes used slightly differ-
ent notation for S2

τ , for example, S2
1–0 (Rubin, 1990;

Imbens and Rubin, 2015). Because we can never
jointly observe the pair of potential outcomes for each
unit, the variance of individual causal effects, S2

τ , is
not identifiable from the observed data. Recogniz-
ing this difficulty, Neyman (1923/1990) suggested us-
ing

V̂ (Neyman) = s2
1

N1
+ s2

0

N0
(3)

as an estimator for var(τ̂ ), where s2
t = ∑

{i:Ti=t}(Y obs
i −

Ȳ obs
t )2/(Nt − 1) is the sample variance of the ob-

served outcomes under treatment t . However, Ney-
man’s variance estimator overestimates the true vari-
ance, in the sense that E{V̂ (Neyman)} ≥ var(τ̂ ), with
equality holding if and only if the individual causal
effects are constant: τi = τ or S2

τ = 0. The randomiza-
tion distribution of τ̂ enables us to test the following
Neyman’s null hypothesis:

H0(Neyman) : τ = 0.

Under H0(Neyman) and based on the Normal approx-
imation in Section 3.3, the p-value from Neyman’s ap-
proach can be approximated by

p(Neyman) ≈ 2�

{
− |τ̂ obs|√

V̂ (Neyman)

}
,(4)

where τ̂ obs is the realized value of τ̂ , and �(·) is the
cumulative distribution function of the standard Nor-
mal distribution. With nonconstant individual causal
effects, Neyman’s test for the null hypothesis of zero
average causal effect tends to be “conservative,” in the
sense that it rejects less often than the nominal signifi-
cance level when the null is true.

2.3 Fisherian Randomization Test for the
Sharp Null

Fisher (1935a) was interested in testing the following
sharp null hypothesis:

H0(Fisher) : Yi(1) = Yi(0), ∀i = 1, . . . ,N.

This null hypothesis is sharp because all missing
potential outcomes can be uniquely imputed under
H0(Fisher). The sharp null hypothesis implies that
Yi(1) = Yi(0) = Y obs

i are all fixed constants, so that
the observed outcome for subject i is Y obs

i under any
treatment assignment. Although we can perform ran-
domization tests using any test statistics capturing the
deviation from the null, we will first focus on the
randomization test using τ̂ (T ,Y obs) = τ̂ as the test
statistic, in order to make a direct comparison to Ney-
man’s method. We will comment on other choices of
test statistics in Section 5.1. Again, the randomness of
τ̂ (T ,Y obs) comes solely from the randomization of the
treatment assignment T , because Y obs is a set of con-
stants under the sharp null. The p-value for the two-
sided test under the sharp null is

p(Fisher) = pr
{∣∣τ̂ (

T ,Y obs)∣∣ ≥ ∣∣τ̂ obs∣∣|H0(Fisher)
}
,

measuring the extremeness of τ̂ obs with respect to the
null distribution of τ̂ (T ,Y obs) over all possible ran-
domizations. In practice, we can approximate the exact
distribution of τ̂ (T ,Y obs) by Monte Carlo. We draw,
repeatedly and independently, completely randomized
treatment assignment vectors {T 1, . . . ,T M}, and with
large M the p-value can be well approximated by

p(Fisher) ≈ 1

M

M∑
m=1

I
{∣∣τ̂ (

T m,Y obs)∣∣ ≥ ∣∣τ̂ obs∣∣}.
Eden and Yates (1933) performed the FRT empir-

ically, and Welch (1937) and Pitman (1937, 1938)
studied its theoretical properties. Rubin (1980) first
used the name “sharp null,” and Rubin (2004) viewed
the FRT as a “stochastic proof by contradiction.”
For more discussion about randomization tests, please
see Rosenbaum (2002) and Edgington and Onghena
(2007).

3. A PARADOX FROM NEYMANIAN AND
FISHERIAN INFERENCE

Neymanian and Fisherian approaches reviewed in
Section 2 share some common properties but differ
fundamentally. They both rely on the distribution in-
duced by the physical randomization, but they test two
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different null hypotheses and evolve from different sta-
tistical philosophies. In this section, we first compare
Neymanian and Fisherian approaches using simple nu-
merical examples, highlighting a surprising paradox.
We then explain the paradox via an asymptotic anal-
ysis.

3.1 Initial Numerical Comparisons

We compare Neymanian and Fisherian approaches
using numerical examples with both balanced and un-
balanced experiments. In our simulations, the potential
outcomes are fixed, and the simulations are carried out
over randomization distributions induced by the treat-
ment assignments. The significance level is 0.05, and
M is 105 for the FRT.

EXAMPLE 1 (Balanced experiments with N1 = N0).
The potential outcomes are independently generated
from Normal distributions Yi(1) ∼ N(1/10,1/16) and
Yi(0) ∼ N(0,1/16), for i = 1, . . . ,100. The individ-
ual causal effects are not constant, with S2

τ = 0.125.
Further, once drawn from the Normal distributions
above, the potential outcomes are fixed. We repeat-
edly generate 1000 completely randomized treatment
assignments with N = 100 and N1 = N0 = 50. For
each treatment assignment, we obtain the observed out-
comes and implement two tests for Neyman’s null and
Fisher’s null. As shown in Table 1(a), it never happens
that we reject Fisher’s null but fail to reject Neyman’s
null. However, we reject Neyman’s null but fail to re-
ject Fisher’s null in 15 instances.

EXAMPLE 2 (Unbalanced experiments with
N1 �= N0). The potential outcomes are independently
generated from Normal distributions Yi(1) ∼ N(1/10,

1/4) and Yi(0) ∼ N(0,1/16), for i = 1, . . . ,100. The
individual causal effects are not constant, with S2

τ =
0.313. They are kept as fixed throughout the simula-
tions. The unequal variances are designed on purpose,
and we will reveal the reason for choosing them later
in Example 3 of Section 3.4. We repeatedly generate
1000 completely randomized treatment assignments
with N = 100,N1 = 70 and N0 = 30. After obtain-
ing each observed data set, we perform two hypothesis
testing procedures, and summarize the results in Ta-
ble 1(b). The pattern in Table 1(b) is more striking than
in Table 1(a), because it happens 62 times in Table 1(b)
that we reject Neyman’s null but fail to reject Fisher’s
null. For this particular set of potential outcomes, Ney-
man’s testing procedure has a power 62/1000 = 0.062,
slightly larger than 0.05, but Fisher’s testing procedure
has a power 8/1000 = 0.008, much smaller than 0.05
even though the sharp null is not true. We will explain
in Section 3.4 the reason why the FRT could have a
power even smaller than the significance level under
some alternative hypotheses.

3.2 Statistical Inference, Logic and Paradox

Logically, Fisher’s null implies Neyman’s null.
Therefore, Fisher’s null should be rejected if Neyman’s
null is rejected. However, this is not always true from
the results of statistical inference in completely ran-
domized experiments. We observed in the numerical
examples above that it can be the case that

p(Neyman) < α0 < p(Fisher),(5)

in which we reject Neyman’s null but not Fisher’s
null, if we choose the significance level to be α0 (e.g.,

TABLE 1
Numerical examples

(a) Balanced experiments with N1 = N0 = 50, corresponding to Example 1

Not reject H0(Fisher) Reject H0(Fisher)

Not reject H0(Neyman) 488 0
Reject H0(Neyman) 15 497 power(Neyman) = 0.512

power(Fisher) = 0.497

(b) Unbalanced experiments with N1 = 70 and N0 = 30, corresponding to Example 2

Not reject H0(Fisher) Reject H0(Fisher)

Not reject H0(Neyman) 930 0
Reject H0(Neyman) 62 8 power(Neyman) = 0.070

power(Fisher) = 0.008
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α0 = 0.05). When (5) holds, an awkward logical prob-
lem appears. In the remaining part of this section, we
will theoretically explain the empirical findings in Sec-
tion 3.1 and the consequential logical problem.

3.3 Asymptotic Evaluations

While Neyman’s testing procedure has an explicit
form, the FRT is typically approximated by Monte
Carlo. In order to compare them, we first discuss
the asymptotic Normalities of τ̂ and the randomiza-
tion test statistic τ̂ (T ,Y obs). We provide a simplified
way of doing variance calculation and a short proof
for asymptotic Normalities of both τ̂ and τ̂ (T ,Y obs),
based on the finite population Central Limit Theorem
(CLT; Hoeffding, 1952; Hájek, 1960; Lehmann, 1999;
Freedman, 2008). Although recent work by Li and
Ding (2017) for general cases can imply our result, we
provide an elementary discussion of the problem. Be-
fore the formal asymptotic results, it is worth mention-
ing the exact meaning of “asymptotics” in the context
of finite population causal inference. We need to em-
bed the finite population of interest into a hypothetical
infinite sequence of finite populations with increasing
sizes, and also require the proportions of the treatment
units to converge to a fixed value. Essentially, all the
population quantities (e.g., τ, S2

1 , etc.) should have the
index N , and all the sample quantities (e.g., τ̂ , s2

1 , etc.)
should have double indices N and N1. However, for the
purpose of notational simplicity, we sacrifice a little bit
of mathematical precision and drop all the indices in
our discussion.

THEOREM 1. As N → ∞, the sampling distribu-
tion of τ̂ satisfies

τ̂ − τ√
var(τ̂ )

d−→ N (0,1).

In practice, the true variance var(τ̂ ) is replaced by
its “conservative” estimator V̂ (Neyman), and the re-
sulting test rejects less often than the nominal signifi-
cance level on average. While the asymptotics for the
Neymanian unbiased estimator τ̂ does not depend on
the null hypothesis, the following asymptotic Normal-
ity for τ̂ (T ,Y obs) is true only under the sharp null hy-
pothesis.

THEOREM 2. Under H0(Fisher) and as N → ∞,
the null distribution of τ̂ (T ,Y obs) satisfies

τ̂ (T ,Y obs)√
V̂ (Fisher)

d−→ N (0,1),

where Ȳ obs = ∑N
i=1 Y obs

i /N , s2 = ∑N
i=1(Y

obs
i −

Ȳ obs)2/(N − 1), and V̂ (Fisher) = Ns2/(N1N0).

Therefore, the p-value under H0(Fisher) can be ap-
proximated by

p(Fisher) ≈ 2�

{
− |τ̂ obs|√

V̂ (Fisher)

}
.(6)

From (4) and (6), the asymptotic p-values obtained
from Neymanian and Fisherian approaches differ only
due to the difference between the variance estimators
V̂ (Neyman) and V̂ (Fisher). Therefore, a comparison
of the variance estimators will explain the different be-
haviors of the corresponding approaches. In the follow-
ing, we use the conventional notation RN = op(N−1)

for a random quantity satisfying N · RN → 0 in proba-
bility as N → ∞ (Lehmann, 1999).

THEOREM 3. Asymptotically, the difference be-
tween the two variance estimators is

V̂ (Fisher) − V̂ (Neyman)

= (
N−1

0 − N−1
1

)(
S2

1 − S2
0
) + N−1(Ȳ1 − Ȳ0)

2(7)

+ op

(
N−1)

.

The difference between the variance estimators de-
pends on the ratio of the treatment and control sample
sizes, and differences between the means and variances
of the treatment and control potential outcomes. The
“conservativeness” of Neyman’s test does not cause the
paradox; if we use the true sampling variance rather
than the estimated variance of τ̂ for testing, then the
paradox will happen even more often.

In order the verify the asymptotic theory above, we
go back to compare the variances in the previous nu-
merical examples.

EXAMPLE 3 (Continuations of Examples 1 and 2).
We plot in Figure 1 the variances V̂ (Neyman) and
V̂ (Fisher) obtained from the numerical examples in

FIG. 1. Variance estimators in balanced and unbalanced experi-
ments.
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Section 3.1. In both the left and the right panels,
V̂ (Fisher) tends to be larger than V̂ (Neyman). This
pattern is more striking on the right panel with un-
balanced experiments designed to satisfy (N−1

0 −
N−1

1 )(S2
1 − S2

0) > 0. It is thus not very surprising that
the FRT is much less powerful than Neyman’s test, and
it rejects even less often than nominal 0.05 level as
shown in Table 1(b).

3.4 Theoretical Comparison

Although quite straightforward, Theorem 3 has sev-
eral helpful implications to explain the paradoxical re-
sults in Section 3.1.

Under H0(Fisher), Ȳ1 = Ȳ0, S
2
1 = S2

0 , and the dif-
ference between the two variances is of higher order,
namely, V̂ (Fisher) − V̂ (Neyman) = op(N−1). There-
fore, Neymanian and Fisherian methods coincide with
each other asymptotically under the sharp null. This is
the basic requirement, because both testing procedures
should generate correct type one errors under this cir-
cumstance.

For the case with constant causal effect, we have
τi = τ and S2

1 = S2
0 . The difference between the two

variance estimators reduces to

V̂ (Fisher) − V̂ (Neyman) = τ 2/N + op

(
N−1)

.(8)

Under H0(Neyman), Ȳ1 = Ȳ0, and the difference be-
tween the two variances is of higher order, and two
tests have the same asymptotic performance. However,
under the alternative hypothesis, τ = Ȳ1 − Ȳ0 �= 0, and
the difference above is positive and of order 1/N , and
Neyman’s test will reject more often than Fisher’s test.
With larger effect size |τ |, the powers differ more.

For balanced experiments with N1 = N0, the differ-
ence between the two variance estimators reduces to
the same formula as (8), and the conclusions are the
same as above.

For unbalanced experiments, the difference between
two variances can be either positive or negative. In
practice, if we have prior knowledge S2

1 > S2
0 , un-

balanced experiments with N1 > N0 are preferable
to improve estimation precision. In this case, we
have (N−1

0 − N−1
1 )(S2

1 − S2
0) > 0 and V̂ (Fisher) >

V̂ (Neyman) for large N . Surprisingly, we are more
likely to reject Neyman’s null than Fisher’s null, al-
though Neyman’s test itself is conservative with non-
constant causal effect implied by S2

1 > S2
0 .

From the above cases, we can see that Neyma-
nian and Fisherian approaches generally have different
performances, unless the sharp null hypothesis holds.

Fisher’s sharp null imposes more restrictions on the po-
tential outcomes, and the variance of the randomization
distribution of τ̂ pools the within and between group
variances across treatment and control arms. Conse-
quently, the resulting randomization distribution of τ̂

has larger variance than its repeated sampling variance
in many realistic cases. Paradoxically, in many situa-
tions, we tend to reject Neyman’s null more often than
Fisher’s null, which contradicts the logical fact that
Fisher’s null implies Neyman’s null.

Finally, we consider the performance of the FRT
under Neyman’s null with Ȳ1 = Ȳ0, which is often
of more interest in social sciences. If S2

1 > S2
0 and

N1 > N0, the rejection rate of Fisher’s test is smaller
than Neyman’s test, even though H0(Neyman) holds
but H0(Fisher) does not. Consequently, the difference-
in-means statistic τ̂ (T ,Y obs) has no power against the
sharp null, and the resulting FRT rejects even less of-
ten than the nominal significance level. However, if
S2

1 > S2
0 and N1 < N0, the FRT may not be more “con-

servative” than Neyman’s test. Unfortunately, the FRT
may reject more often than the nominal level, yielding
an invalid test for Neyman’s null. Gail et al. (1996),
Lang (2015), and Lin et al. (2017) found this phe-
nomenon in numerical examples, and we provide a the-
oretical explanation.

3.5 Binary Outcomes

We close this section by investigating the special
case with binary outcomes, for which more explicit re-
sults are available. Let pt = Ȳ (t) be the potential pro-
portion and p̂t = Ȳ obs

t be the sample proportion of one
under treatment t . Define p̂ = Ȳ obs as the proportion of
one in all the observed outcomes. The results in the fol-
lowing corollary are special cases of Theorems 1 to 3.

COROLLARY 1. Neyman’s test is asymptotically
equivalent to the “unpooled” test

(9)
p̂1 − p̂0√

p̂1(1 − p̂1)/N1 + p̂0(1 − p̂0)/N0

d−→N (0,1)

under H0(Neyman); and Fisher’s test is asymptotically
equivalent to the “pooled” test

p̂1 − p̂0√
p̂(1 − p̂)(N−1

1 + N−1
0 )

d−→ N (0,1)(10)

under H0(Fisher). The asymptotic difference between
the two tests is due to

V̂ (Fisher) − V̂ (Neyman)

= (
N−1

0 − N−1
1

){
p1(1 − p1) − p0(1 − p0)

}
(11)

+ N−1(p1 − p0)
2 + op

(
N−1)

.
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FIG. 2. Binary outcome with different proportions r = N1/N .
Neyman’s test is more powerful in the regions marked by “Ney-
man.”

For the case with binary outcomes, we can draw
analogous but slightly different conclusions to the
above. Under Neyman’s null, p1 = p0 and the two tests
are asymptotically equivalent. Therefore, the situation
that the FRT is invalid under Neyman’s null will never
happen for binary outcomes. In balanced experiments,
Neyman’s test is always more powerful than Fisher’s
test under the alternative with p1 �= p0. For unbal-
anced experiments, the answer is not definite, but equa-
tion (12) allows us to determine the region of (p1,p0)

that favors Neyman’s test for a given level of the ratio
r = N1/N . When r > 1/2, Figure 2 shows the regions
in which Neyman’s test is asymptotically more power-
ful than Fisher’s test according to the value of r . When
r < 1/2, the region has the same shape by symmetry.
We provide more details about Figure 2 in the Supple-
mentary Material (Ding, 2017).

Note that Fisher’s test is equivalent to Fisher’s ex-
act test, and (10) is essentially the Normal approxima-
tion of the hypergeometric distribution (Barnard, 1947;
Cox, 1970; Ding and Dasgupta, 2016). The two tests
in (9) and (10) are based purely on randomization in-
ference, which have the same mathematical forms as
the classical “unpooled” and “pooled” tests for equal
proportions under two independent Binomial models.
Our conclusion is coherent with Robbins (1977) and
Eberhardt and Fligner (1977) that the “unpooled” test
is more powerful than the “pooled” one with equal
sample size. For hypothesis testings in two by two ta-
bles, Greenland (1991) observed similar theoretical re-
sults as Corollary 1 but gave a different interpretation.
Recently, Rigdon and Hudgens (2015) and Li and Ding
(2016) constructed exact confidence intervals for τ by
inverting a sequence of FRTs.

4. UBIQUITY OF THE PARADOX IN
OTHER EXPERIMENTS

The paradox discussed in Section 3 is not unique to
completely randomized experiments. As a direct gen-
eralization of the previous results, the paradox will ap-
pear in each stratum of stratified experiments. We will
also show its existence in two other widely-used ex-
periments: matched-pair designs and factorial designs.
In order to minimize the confusion about the notation,
each of the following two subsections is self-contained.

4.1 Matched-Pair Experiments

Consider a matched-pair experiment with 2N units
and N pairs matched according to their observed
characteristics. Within each matched pair, we ran-
domly select one unit to receive treatment and the
other to receive control. Let Ti be i.i.d. Bernoulli(1/2)

for i = 1, . . . ,N , indicating treatment assignments
for the matched pairs. For pair i, the first unit re-
ceives treatment and the second unit receives con-
trol if Ti = 1; and otherwise if Ti = 0. Under the
SUTVA, we define (Yij (1), Yij (0)) as the potential
outcomes of the j th unit in the ith pair under treat-
ment and control, and the observed outcomes within
pair i are Y obs

i1 = TiYi1(1) + (1 − Ti)Yi1(0) and Y obs
i2 =

TiYi2(0) + (1 − Ti)Yi2(1). Let T = (T1, . . . , TN)′ and
Y obs = {Y obs

ij : i = 1, . . . ,N; j = 1,2} denote the
N × 1 treatment assignment vector and the N × 2 ob-
served outcome matrix, respectively. Within pair i,

τ̂i = Ti

(
Y obs

i1 − Y obs
i2

) + (1 − Ti)
(
Y obs

i2 − Y obs
i1

)
is unbiased for the within-pair average causal effect

τi = {
Yi1(1) + Yi2(1) − Yi1(0) − Yi2(0)

}
/2.

Immediately, we can use

τ̂ = 1

N

N∑
i=1

τ̂i

as an unbiased estimator for the finite population aver-
age causal effect

τ = 1

N

N∑
i=1

τi = 1

2N

N∑
i=1

2∑
j=1

{
Yij (1) − Yij (0)

}
.

Imai (2008) discussed Neymanian inference for τ

and identified the variance of τ̂ with the corresponding
variance estimator. To be more specific, he calculated

var(τ̂ ) = 1

4N2

N∑
i=1

{
Yi1(1)+Yi1(0)−Yi2(1)−Yi2(0)

}2
,
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and proposed a variance estimator

V̂ (Neyman) = 1

N(N − 1)

N∑
i=1

(τ̂i − τ̂ )2.

Again, the variance estimator is “conservative” for
the true sampling variance because E{V̂ (Neyman)} ≥
var(τ̂ ) unless the within-pair average causal effects are
constant. The repeated sampling evaluation above al-
lows us to test Neyman’s null hypothesis of zero aver-
age causal effect:

H0(Neyman) : τ = 0.

On the other hand, Rosenbaum (2002) discussed in-
tensively the FRT in matched-pair experiments under
the sharp null hypothesis:

H0(Fisher) : Yij (1) = Yij (0),

∀i = 1, . . . ,N; ∀j = 1,2,

which is, again, much stronger than Neyman’s null. For
the purpose of comparison, we choose the test statistic
with the same form as τ̂ , denoted as τ̂ (T ,Y obs). In fact,
Fisher (1935a) used this test to analyze Charles Dar-
win’s data on the relative growth rates of cross- and
self-fertilized corns. In practice, the null distribution
of this test statistic can be calculated exactly by enu-
merating all the 2N randomizations or approximated
by Monte Carlo. For our theoretical investigation, we
have the following results.

THEOREM 4. Under the sharp null hypothesis,
E{τ̂ (T ,Y obs)|H0(Fisher)} = 0, and

V̂ (Fisher) ≡ var
{
τ̂
(
T ,Y obs)|H0(Fisher)

}
= 1

N2

N∑
i=1

τ̂ 2
i .

Therefore, for matched-pair experiments, the differ-
ence in the variances is

V̂ (Fisher) − V̂ (Neyman) = τ 2/N + op

(
N−1)

.

The asymptotic Normality of the two test statistics
holds because of the Lindberg–Feller CLT for inde-
pendent random variables and, therefore, the differ-
ent power behaviors of Neyman and Fisher’s tests is
again due to the above difference in the variances. Un-
der H0(Neyman), the difference is a higher order term,
leading to asymptotically equivalent behaviors of Ney-
manian and Fisherian inferences. However, under the
alternative hypothesis with nonzero τ , the same para-
dox appears again in matched-pair experiments: we

tend to reject with Neyman’s test more often than with
Fisher’s test.

For matched-pair experiments with binary outcomes,
we let mobs

y1y0
be the number of pairs with treat-

ment outcome y1 and control outcome y0, where
y1, y0 ∈ {0,1}. Consequently, we can summarize the
observed data by a two by two table with cell counts
(mobs

11 ,mobs
10 ,mobs

01 ,mobs
00 ). Theorem 4 can then be fur-

ther simplified as follows.

COROLLARY 2. In matched-pair experiments with
binary outcomes, Neyman’s test is asymptotically
equivalent to

mobs
10 − mobs

01√
mobs

10 + mobs
01 − (mobs

10 − mobs
01 )2/N

d−→ N (0,1)(12)

under H0(Neyman), and Fisher’s test is asymptotically
equivalent to

mobs
10 − mobs

01√
mobs

10 + mobs
01

d−→ N (0,1)(13)

under H0(Fisher). And the asymptotic difference be-
tween the two tests is due to

V̂ (Fisher) − V̂ (Neyman)

= (
mobs

10 − mobs
01

)2
/N3 + op

(
N−1)

.

Note that the number of discordant pairs, mobs
10 +

mobs
01 , is fixed over all randomizations under the sharp

null hypothesis and, therefore, Fisher’s test is equiva-
lent to the exact test based on mobs

10 ∼ Binomial(mobs
10 +

mobs
01 ,1/2). Its asymptotic form (13) is the same as the

McNemar test under a super population model (Agresti
and Min, 2004).

4.2 Factorial Experiments

Fisher (1935a) and Yates (1937) developed the clas-
sical factorial experiments in the context of agricul-
tural experiments, and Wu and Hamada (2009) pro-
vided a comprehensive modern discussion of design
and analysis of factorial experiments. Although rooted
in randomization theory (Kempthorne, 1955; Hinkel-
mann and Kempthorne, 2008), the analysis of facto-
rial experiments is dominated by linear and generalized
linear models, with factorial effects often defined as
model parameters. Realizing the inherent drawbacks of
the predominant approaches, Dasgupta, Pillai and Ru-
bin (2015) discussed causal inference from 2K factorial
experiments using the potential outcomes framework,
which allows for defining the causal estimands based
on potential outcomes instead of model parameters.
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We first briefly review the notation for factorial
experiments adopted by Dasgupta, Pillai and Rubin
(2015). Assume that we have K factors with levels
+1 and −1. Let z = (z1, . . . , zK)′ ∈ FK = {+1,−1}K ,
a K-dimensional vector, denote a particular treatment
combination. The number of possible values of z is
J = 2K , for each of which we define Yi(z) as the
corresponding potential outcome for unit i under the
SUTVA. We use a J -dimensional vector Y i to denote
all potential outcomes for unit i, where i = 1, . . . ,N =
r × 2K with an integer r representing the number
of replications of each treatment combination. With-
out loss of generality, we will discuss the inference
of the main factorial effect of factor 1, and analo-
gous discussion also holds for general factorial effects
due to symmetry. The main factorial effect of factor
1 can be characterized by a vector g1 of dimension
J , with one half of its elements being +1 and the
other half being −1. Specifically, the element of g1
is +1 if the corresponding z1 is +1, and −1 other-
wise. For example, in 22 experiments, we have Y i =
(Yi(+1,+1), Yi(+1,−1), Yi(−1,+1), Yi(−1,−1))′
and g1 = (+1,+1,−1,−1)′. We define τi1 =
2−(K−1)g′

1Y i as the main factorial effect of factor 1
for unit i, and

τ1 = 1

N

N∑
i=1

τi1 = 2−(K−1)g′
1Ȳ

as the average main factorial effect of the factor 1,
where Ȳ = ∑N

i=1 Y i/N .
For factorial experiments, we define the treatment

assignment as Wi(z), with Wi(z) = 1 if the ith unit
is assigned to z, and 0 otherwise. Therefore, we use
W i = {Wi(z) : z ∈ FK} as the treatment assignment
vector for unit i, and let W be the collection of all
the unit-level treatment assignments. The observed
outcomes are deterministic functions of the poten-
tial outcomes and the treatment assignment, namely,
Y obs

i = ∑
z∈FK

Wi(z)Yi(z) for unit i, and Y obs =
(Y obs

1 , . . . , Y obs
N )′ for all the observed outcomes. Be-

cause

Ȳ obs(z) = 1

r

∑
{i:Wi(z)=1}

Y obs
i = 1

r

N∑
i=1

Wi(z)Yi(z)

is unbiased for Ȳ (z), we can unbiasedly estimate τ1 by

τ̂1 = 2−(K−1)g′
1Ȳ

obs
,

where Ȳ
obs

is the J -dimensional vector for the average
observed outcomes. Dasgupta, Pillai and Rubin (2015)

showed that the sampling variance of τ̂1 is

var(τ̂1) = 1

22(K−1)r

∑
z∈FK

S2(z) − 1

N
S2

1 ,(14)

where S2(z) = ∑N
i=1{Yi(z) − Ȳ (z)}2/(N − 1) is the

finite population variance of the potential outcomes
under treatment combination z, and S2

1 = ∑N
i=1(τi1 −

τ1)
2/(N − 1) is the finite population variance of the

unit level factorial effects {τi1 : i = 1, . . . ,N}. Simi-
lar to the discussion in completely randomized experi-
ments, the last term S2

1 in (14) cannot be identified, and
consequently the variance in (14) can only be “con-
servatively” estimated by the following Neyman-style
variance estimator:

V̂1(Neyman) = 1

22(K−1)r

∑
z∈FK

s2(z),

where the sample variance of outcomes s2(z) =∑
{i:Wi(z)=1}{Y obs

i − Ȳ obs(z)}2/(r − 1) under treatment
combination z is unbiased for S2(z). The discussion
above allows us to construct a Wald-type test for Ney-
man’s null of zero average factorial effect for factor 1:

H 1
0 (Neyman) : τ1 = 0.

On the other hand, based on the physical act of ran-
domization in factorial experiments, the FRT allows us
to test the following sharp null hypothesis:

H0(Fisher) : Yi(z) = Y obs
i ,

(15)
∀z ∈ FK,∀i = 1, . . . ,N.

This sharp null restricts all factorial effects for all the
individuals to be zero, which is much stronger than
H 1

0 (Neyman). For a fair comparison, we use the same
test statistic as τ̂1 in our randomization test, and denote
τ̂1(W ,Y obs) as a function of the treatment assignment
and observed outcomes. Under the sharp null (15), the
randomness of τ̂1(W ,Y obs) is induced by randomiza-
tion, and the following theorem gives us its mean and
variance.

THEOREM 5. Under the sharp null,
E{τ̂1(W ,Y obs)|H0(Fisher)} = 0, and

V̂1(Fisher) ≡ var
{
τ̂1

(
W ,Y obs)|H0(Fisher)

}
= 1

22(K−1)r
J s2,

where Ȳ obs = ∑N
i=1 Y obs

i /N and s2 = ∑N
i=1(Y

obs
i −

Ȳ obs)2/(N − 1) are the sample mean and variance of
all the observed outcomes.
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Based on Normal approximations, comparison of
the p-values reduces to the difference between
V̂1(Neyman) and V̂1(Fisher), as shown in the theorem
below.

THEOREM 6. With large r , the difference between
V̂1(Neyman) and V̂1(Fisher) is

V̂1(Fisher) − V̂1(Neyman)

= 1

23K−1r

∑
z∈FK

∑
z′∈FK

{
Ȳ (z) − Ȳ

(
z′)}2(16)

+ op

(
r−1)

.

Formula (8) is a special case of formula (17) with
K = 1 and r = N1 = N0 = N/2, because complete
randomized experiments are special cases of factorial
experiments with a single factor. Therefore, in factorial
experiments with the same replicates r at each level,
the paradox always exists under alternative hypothesis
with nonzero τ1, just as in balanced completely ran-
domized experiments.

5. IMPROVEMENTS AND EXTENSIONS

We have shown that the seemingly paradoxical phe-
nomenon in Section 3 is due to the fact that Neyman’s
test is more powerful than Fisher’s test in many real-
istic situations. The previous sections restrict the dis-
cussion on the difference-in-means statistic. We will
further comment on the importance of this choice, and
other possible alternative test statistics. Moreover, the
original forms of Neyman’s and Fisher’s tests are both
suboptimal. We will discuss improved Neymanian and
Fisherian inference, and the corresponding paradox.

5.1 Choice of the Test Statistic

First, as hinted by Ding and Dasgupta (2016), for
randomized experiments with binary outcomes, all
test statistics are equivalent to the difference-in-means
statistic. We formally state this conclusion in the fol-
lowing theorem.

THEOREM 7. For completely randomized exper-
iments, matched-pair experiments, and 2K factorial
experiments, if the outcomes are binary, then all test
statistics are equivalent to the difference-in-means
statistic.

Therefore, for binary data, the choice of test statistic
is not a problem.

Second, for continuous outcomes, the difference-in-
means statistic is important, because it not only serves

as a candidate test statistic for the sharp null hypothesis
but also an unbiased estimator for the average causal
effect. In the illustrating example in Section 6.3, prac-
titioners are interested in finding the combination of
several factors that achieves an optimal mean response.

For continuous outcomes, we have more options of
test statistics. For instance, the Kolmogorov–Smirnov
and Wilcoxon–Mann–Whitney statistics are also use-
ful candidates for the FRT. However, the Neymanian
analogues of these two statistics have not been estab-
lished in the literature, and direct comparisons of the
Fisherian and Neymanian using these two statistics are
not obvious at this moment. In the Supplementary Ma-
terial (Ding, 2017), we illustrate by numerical exam-
ples that the conservative nature of the FRT is likely to
be true for these two statistics, because we find that
the randomization distributions under the sharp null
hypothesis is more disperse than those under weaker
null hypotheses. Please see the Supplementary Materi-
als (Ding, 2017) for more details, and it is our future
research topic to pursue the theoretical results.

5.2 Improving the Neymanian Variance Estimators

For completely randomized experiments, Neyman
(1923/1990) used S2

τ ≥ 0 as a lower bound, which
is not the sharp bound. Recently, for general out-
comes Aronow, Green and Lee (2014) derived the
sharp bound of S2

τ based on the marginal distributions
of the treatment and control potential outcomes using
the Frechét–Hoeffding bounds (Nelsen, 2006); for bi-
nary outcomes Robins (1988) and Ding and Dasgupta
(2016) gave simple forms. These improvements result
in smaller variance estimators.

For matched-pair experiments, Imai (2008) im-
proved the Neymanian variance estimator by using the
Cauchy–Schwarz inquality. We are currently working
on deriving sharp bounds for the variance of estimated
factorial effects.

In summary, Neyman’s test is even more powerful
with improved variance estimators, which further bol-
sters the paradoxical situation wherein we reject Ney-
man’s null but fail to reject Fisher’s sharp null.

5.3 Improving the FRT and Connection with the
Permutation Test

In the permutation test literature, some authors (e.g.,
Neuhaus, 1993; Janssen, 1997; Chung and Romano,
2013; Pauly, Brunner and Konietschke, 2015) sug-
gested using the Studentized version of τ̂ , that is,

τ̂ /

√
V̂ (Neyman), as the test statistic. When the exper-

iment is unbalanced, the FRT using this test statistic



A PARADOX FROM RANDOMIZATION-BASED CAUSAL INFERENCE 341

has exact type one error under Fisher’ null and cor-
rect asymptotic type one error under Neyman’s null.
However, this does not eliminate the paradox discussed
in this paper. First, we have shown that this paradox
arises even in balanced experiments, but this test statis-
tic tries to correct the invalid asymptotic type one er-
ror under Neyman’s null in unbalanced experiments.
Second, Section 5.1 has shown that for binary out-
comes any test statistic is equivalent to τ̂ and, there-
fore, this Studentized test statistic will not change the
paradox at least for binary outcomes. Third, the the-
ories of permutation tests and randomization tests do
not have a one-to-one mapping, although they often
give the same numerical results. The theory of permu-
tation tests assumes exchangeable units drawn from an
infinite super-population, and the theory of randomiza-
tion tests assumes fixed potential outcomes in a finite
population and random treatment assignment. Conse-
quently, the correlation between the potential outcomes
never plays a role in the theory of permutation tests, but
it plays a central role in the theory of randomization in-
ference as indicated by Neyman’s (1923/1990) seminal
work and our discussion above.

6. ILLUSTRATIONS

In this section, we will use real-life examples to illus-
trate the theory in the previous sections. The first two
examples have binary outcomes and, therefore, there is
no concern about the choice of test statistic. The goal
of the third example, a 24 full factorial experiment, is to
find the optimal combination of the factors and, there-
fore, the difference-in-means statistic is again a natural
choice for a test statistic.

6.1 A Completely Randomized Experiment

Consider a hypothetical completely randomized ex-
periment with binary outcome (Rosenbaum, 2002,
page 191). Among the 32 treated units, 18 of them have
outcome being 1, and among the 21 control units, 5 of
them have outcome being 1. The Neymanian p-value
based on the improved variance estimator in Robins
(1988) and Ding and Dasgupta (2016) is 0.004. The
Fisherian p-value based on the FRT or equivalently
Fisher’s exact test is 0.026, and the Fisherian p-value
based on Normal approximation in (10) is 0.020. The
Neymanian p-value is smaller, and if we choose sig-
nificance level at 0.01 then the paradox will appear in
this example.

6.2 A Matched-Pair Experiment

The observed data of the matched-pair experiment
in Agresti and Min (2004) can be summarized by the
two by two table with cell counts (mobs

11 ,mobs
10 ,mobs

01 ,

mobs
00 ) = (53,8,16,9). The Neymanian one-sided p-

value based on (12) is 0.049. The Fisherian p-value
based on the FRT is 0.076, and the Fisherian p-
value based on Normal approximation in (13) is 0.051.
Again, Neyman’s test is more powerful than Fisher’s
test.

6.3 A 24 Full Factorial Experiment

In the “Design of Experiments” course in Fall 2014,
a group of Harvard undergraduate students, Taylor
Garden, Jessica Izhakoff and Zoe Rosenthal, followed
Box’s (1992) famous paper helicopter example for
factorial experiments, and tried to identify the opti-
mal combination of the four factors: paper type (con-
struction paper, printer paper), paperclip type (small
paperclip, large paperclip), wing length (2.5 inches,
2.25 inches) and fold length (0.5 inch, 1.0 inch), with
the first level coded as −1 and the second level coded
as +1. For more details, please see Box (1992). For
each combination of the factors, they recorded two
replicates of the flying times (in seconds) of the heli-
copters. We display the data in Table 2.

We show the Neymanian and Fisherian results in the
upper and lower panel of Figure 3, respectively. Fig-

TABLE 2
A 24 factorial design and observed outcomes

F1 F2 F3 F4 Replicate 1 Replicate 2

−1 −1 −1 −1 1.60 1.55
−1 −1 −1 1 1.70 1.63
−1 −1 1 −1 1.44 1.38
−1 −1 1 1 1.56 1.61
−1 1 −1 −1 1.40 1.45
−1 1 −1 1 1.36 1.38
−1 1 1 −1 1.43 1.40
−1 1 1 1 1.32 1.27

1 −1 −1 −1 1.81 1.86
1 −1 −1 1 1.70 1.57
1 −1 1 −1 2.04 2.06
1 −1 1 1 1.68 1.61
1 1 −1 −1 1.58 1.28
1 1 −1 1 1.43 1.49
1 1 1 −1 1.51 1.54
1 1 1 1 1.53 1.38



342 P. DING

(a)

(b)

FIG. 3. Randomization-based inference for a 24 full factorial ex-
periment. (a) Neymanian inference. Factorial effects F1, F2, F4,
F1F2, F1F3, F1F4 and F1F2F4 are significant at level 0.05.
(b) Fisherian inference. Factorial effects F1 and F2 are significant.

ure 3(a) shows both Neymanian point estimates and
p-values for the 15 factorial effects. Seven of them,
F1,F2,F4,F1F2,F1F3,F1F4 and F1F2F4, are signifi-
cant at level 0.05, and after the Bonferroni correction,
three of them, F1,F2,F1F2F4, are still significant. Fig-
ure 3(b) shows the randomization distribution of the
factorial effects under the sharp null hypothesis by a
grey histogram. Note that all factorial effects have the
same randomization distribution, because all of them
are essentially a comparison of a random half versus
the other half of the observed outcomes. Even though
the sample size 32 is not huge, the randomization dis-
tribution is well approximated by the Normal distri-
bution with mean zero and variance V̂1(Fisher). Strik-
ingly, only two factorial effects, F1 and F2, are sig-
nificant, and after the Bonferroni correction only F2

is significant. We further calculate the variance esti-
mates: V̂1(Neyman) = 0.025 and V̂1(Fisher) = 0.034.
The empirical findings in this particular example with
finite sample are coherent with our asymptotic theory
developed in Section 4.2. In this example, the Neyma-
nian method can help detect more significant factors
for achieving optimal flying time, while the more con-
servative Fisherian method may miss important fac-
tors.

7. DISCUSSION

7.1 Historical Controversy and Modern Discussion

Neyman (1923/1990) proposed to use potential out-
comes for causal inference and derived mathematical
properties of randomization; Fisher (1926) advocated
using randomization in physical experiments, which
was considered by Neyman “as one of the most valu-
able of Fisher’s achievements” (Reid, 1982, page 44).
Fisher (1935a), Section II, pointed out that “the ac-
tual and physical conduct of an experiment must gov-
ern the statistical procedure of its interpretation.” Ney-
man and Fisher both proposed statistical procedures
for analysis of randomized experiments, relying on the
randomization distribution itself. However, whether
Neyman’s null or Fisher’s null makes more sense in
practice goes back to the famous Neyman–Fisher con-
troversy in a meeting of the Royal Statistical Society
(Neyman, 1935; Fisher, 1935b). After their 1935 con-
troversy, Anscombe (1948), Kempthorne (1952) and
Cox (1992) provided some further discussion on the
usefulness and limitations of the two null hypotheses.
For instance, the authors acknowledged that Neyman’s
null is mathematically weaker than Fisher’s null, but
both null hypotheses seem artificial requiring either in-
dividual causal effects or the average causal effect be
exactly zero for finite experimental units. For Latin
square designs, Wilk and Kempthorne (1957) devel-
oped theory under Neyman’s view, and Cox (1958) ar-
gued that in most situations the Fisherian analysis was
secure. Recently, Rosenbaum (2002), page 39, gave a
very insightful philosophical discussion about the con-
troversy, and Sabbaghi and Rubin (2014) revisited this
controversy and its consequences. Fienberg and Tanur
(1996) and Cox (2012) provided more historical as-
pects of causal inference and in particular the Neyman–
Fisher controversy.

While the answer may depend on different perspec-
tives of practical problems, we discussed only the con-
sequent seeming paradox of Neymanian and Fishe-
rian testing procedures for their own null hypotheses.
Both our numerical examples and asymptotic theory
showed that we encounter a serious logical problem in
the analysis of randomized experiments, even though
both Neyman’s and Fisher’s tests are valid Frequen-
tists’ tests, in the sense of controlling correct type one
errors under their own null hypotheses. Our numerical
examples and theoretical analysis reach a conclusion
different from Rosenbaum (2002).
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7.2 Randomization-Based and Regression-Based
Inference

In the current statistical practice, it is also very
popular among applied researchers to use regression-
based methods to analyze experimental data (Angrist
and Pischke, 2008). Assume the a linear model for
the observed outcomes: Y obs

i = α + βTi + εi , where
εi, . . . , εN are independently and identically distributed
(i.i.d.) as N (0, σ 2). The hypothesis of zero treatment
effect is thus characterized by H0(LM) : β = 0. The
usual ordinary least squares variance estimator for the
regression coefficient may not correctly reflect the true
variance of τ̂ under randomization. Schochet (2010),
Samii and Aronow (2012), Lin (2013) and Imbens
and Rubin (2015) pointed out that we can solve this
problem by using the Huber–White heteroskedasticity-
robust variance estimator (Huber, 1967; White, 1980),
and the corresponding Wald test is asymptotically the
same as Neyman’s test. In Theorem A.1 of the Sup-
plementary Material (Ding, 2017), we further build an
equivalence relationship between Rao’s score test and
the FRT. For more technical details, please see the Sup-
plementary Material (Ding, 2017). Previous results, as
well as Theorem A.1, do justify the usage of linear
models in analysis of experimental data.

7.3 Interval Estimation

Originally, Neyman (1923/1990) proposed an unbi-
ased estimator for the average causal effect τ with a re-
peated sampling evaluation, which was later developed
into the concept of the confidence interval (Neyman,
1937). In order to compare Neyman’s approach with
the FRT, we converted the interval estimator into a
hypothesis testing procedure. As a dual, we can also
invert the FRT for a sequence of null hypotheses to
get an interval estimator for τ (Pitman, 1937, 1938;
Rosenbaum, 2002). For example, we consider the se-
quence of sharp null hypotheses with constant causal
effects:

Hδ
0 (Fisher) : Yi(1) − Yi(0) = δ, ∀i = 1, . . . ,N.(17)

The interval estimator for τ with coverage rate 1 −α is{
δ : Fail to reject Hδ

0 (Fisher)

by the FRT at significant level α
}
.

Dasgupta, Pillai and Rubin (2015) found some empir-
ical evidence in factorial designs that the above inter-
val is wider than the Neymanian confidence interval.
Due to the duality between hypothesis testing and in-
terval estimation, our results about hypothesis testing

can partially explain the phenomenon about interval es-
timation in Dasgupta, Pillai and Rubin (2015). To avoid
making assumptions such as constant causal effects in
(17), we restricted the theoretic discussion to only hy-
pothesis testings. It is our future work to extend the
theory to interval estimations.

7.4 Practical Implications

We highlight some practical implications of our the-
ory developed in the above sections.

First, the FRT is usually less powerful than Ney-
man’s test, even for the simplest case with constant
causal effect. Practitioners should keep in mind that
the FRT may miss important treatment factors. Our
examples in Section 6 and the empirical evidence in
Dasgupta, Pillai and Rubin (2015) have confirmed our
theoretical results.

Second, in the presence of treatment effect hetero-
geneity, the FRT may not be a valid test for the null hy-
pothesis of zero average causal effect. Therefore, prac-
titioners, especially those who are interested in social
sciences, should always be aware of this potential dan-
ger of using the FRT, if the observed data show sub-
stantive heterogeneity in treatment and control groups.
Furthermore, as Cox (1958) pointed out, in the pres-
ence of treatment effect heterogeneity, focusing only
on the average causal effect is often not adequate, and
detecting and explaining such heterogeneity may be
more helpful. Treatment effect variation is another im-
portant issue beyond the current scope of our paper.
Ding, Feller and Miratrix (2016) investigate this prob-
lem under the randomization framework.

Third, although we have shown that the FRT is less
powerful in many realistic cases, we do not conclude
that Neymanian inference trumps Fisherian inference.
All our comparisons are based on asymptotics under
regularity conditions, and the conclusion may not be
true with small sample sizes or “irregular” potential
outcomes. Therefore, Fisherian inference is still useful
for small sample problems and exact inference. In prac-
tice, we should always check the discrepancy between
the Normal approximation and the exact randomiza-
tion distribution as in Figure 3(b) before applying our
theoretical results to applied problems.
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SUPPLEMENTARY MATERIAL

Supplementary Material (DOI: 10.1214/16-
STS571SUPP; .pdf). Appendix A.1 gives two useful
lemmas for randomized experiments. Appendix A.2
gives the proofs of all the theorems and corollaries
in the main text. Appendix A.3 comments on the
regression-based causal inference, and establishes a
new connection between Rao’s score test and the FRT.
Appendix A.4 shows more details about generating
Figure 2 in the main text. Appendix A.5 discusses the
behaviors of the FRT using the Kolmogorov–Smirnov
and Wilcoxon–Mann–Whitney statistics.
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