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50-Year-Old Curiosities: Ancillarity and
Inference in Capture–Recapture Models
Matthew Schofield and Richard Barker

Abstract. We review developments from the late 1950s, starting with the
work of John Darroch, that led to the models of Cormack [Biometrika
51 (1964) 429–438], Jolly [Biometrika 52 (1965) 225–247] and Seber
[Biometrika 52 (1965) 249–259] that are commemorated in this volume. We
emphasize some of the fundamental contributions that were pivotal and often
ahead of their time. We look at how these early contributions helped to shape
the field and illustrate important concepts in statistics, including sufficiency,
ancillarity, partial likelihoods, missing data and model fitting in the presence
of latent variables. We also identify two curiosities. The first is the long-
held and mistaken belief that the maximum likelihood estimators for various
capture–recapture models are in common. Using various notions of ancillar-
ity, we show that the maximum likelihood estimators from partial models
(like the Cormack–Jolly–Seber model) will in general differ from full like-
lihood approaches (such as the Jolly–Seber model). The second is the belief
that model specification in terms of latent variables is a relatively recent ad-
vance. We highlight how Jolly (1965) used a state-space model to describe
the problem, using latent variables to separate the capture and mortality pro-
cesses. We show how Markov chain Monte Carlo can be used to fit this model
and how it relates to other capture–recapture models specified in terms of la-
tent variables.

Key words and phrases: Ancillarity, capture–recapture, data augmentation,
goodness of fit, sufficiency.

1. INTRODUCTION

The basis for modern capture–recapture analysis was
provided by the models of Cormack (1964), Jolly
(1965) and Seber (1965) that are commemorated in
this volume. These models had their genesis in closed-
population theory which has a long history. The foun-
dation for modern open-population models was estab-
lished by Darroch (1959), who in turn built on earlier
contributions by Fisher and Ford (1947) and Leslie,
Chitty and Chitty (1953), among others. Joan Fisher
Box in her biography of her father provides this enig-
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matic quote: “In the early month of 1939, during Jack-
son’s third visit, it occurred to Fisher that a backward
and forward progression (of capture–recapture data)
would supply separately the rates of birth or immigra-
tion and of death or emigration” (Box, 1978, page 303).
Fisher’s idea was implemented in Jackson (1939) and
it thus appears that Fisher anticipated the dual forward
and backward in time formulation that was fully de-
scribed nearly 60 years later by Pradel (1996). See also
Nichols (2016) in this volume.

We begin by overviewing the development of early
open-population models, starting with Darroch (1959)
and ending with the contributions by Jolly (1965) and
Seber (1965). Our focus is on the underlying prob-
ability models, how they are factored, what unob-
served random variables are included as parameters,
and what quantities are conditioned on. It is these fea-
tures that distinguish among the various models. Key
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TABLE 1
Notation

Term Definition

Fixed constants
k Number of capture occasions.
Parameters and latent variables
Ni Population size at the time of sample i (i = 1, . . . , k).
ν The number of individuals that were ever available for capture in at least one sample.
Ui Number of unmarked individuals in the population at the time of sample i.
Mi Number of marked individuals in the population at the time of sample i.
Mij Number of individuals released in sample i still alive and available for capture in sample j (i = 1, . . . , k − 1, j =

i + 1, . . . , k).
pi Probability that an individual is caught in sample i.
φi Probability that an individual in the population at the time of sample i is still in the population at the time of sample

i + 1.
Bi The number of individuals entering the population between the time of sample i and the time of sample i+1. B0 refers

to the number at the start of the study.
βi Probability that an individual enters the population between samples i and i + 1 (i = 0, . . . , k − 1;∑k−1

i=0 βi = 1)

where β0 is the probability an individual is present at the start of the study.
ηi Probability that an individual caught in sample i is removed (i.e., become a “loss on capture”).
Statistics
xω Number of individuals with capture history ω ∈ �. The value x11001 reflects the number of individuals caught in the

first, second and fifth sampling occasion of a k = 5 study. The number x00...0 is not observable.
xobs Collection of the numbers of individuals with each observable capture history.
mij Number of individuals released in sample i recaptured in sample j .
ui Number of unmarked individuals caught in sample i.
n Number of individuals caught at least once in the study.
mi Number of marked individuals caught in sample i.
Ri Number of individuals released in sample i.
ri Number of individuals released in sample i that were ever recaptured again.
zi Number of marked individuals not caught in sample i but recaptured after i.

to understanding these differences are the fundamen-
tal concepts of sufficiency, ancillarity, partial likeli-
hood and latent variables. This reveals curious dif-
ferences, including that the maximum likelihood es-
timators (MLEs) for the Cormack–Jolly–Seber (CJS)
model do not correspond to MLEs for the Jolly–Seber
(JS) model, despite widely held beliefs to the contrary.

Throughout the manuscript we use notation as de-
fined in Table 1. Occasionally we follow a citation that
uses nonstandard notation: in such cases we define the
notation inline. We use bold letters such as y to repre-
sent collections such as y1, . . . , yn.

2. DARROCH, CORMACK, JOLLY AND SEBER

2.1 Darroch 1959

The model of Darroch (1959) was an extension of
his closed-population model (Darroch, 1958) to allow
for animals entering and leaving the population during
the study. The closed population models xobs as multi-
nomial observations with index ν and probabilities πω

derived as functions of the capture probabilities pi . In
the notation of Table 1 this model can be written as

f
(
xobs|ν,p

) = ν!∏
ω xω!

∏
ω

πxω
ω .(2.1)

Darroch referred to this as model A.
The difficulty in extending model A to open popu-

lations lay in the fact that on each sampling occasion
the number of individuals in the population differs ac-
cording to the combined effect of additions and losses
to the population.

Allowing immigration only, Darroch extended (2.1)
by setting the abundance at the time of the first sample
N1 equal to ν and introduced the births B as parame-
ters. He was then able to find simple expressions for
the MLEs for the model.

Allowing death only, Darroch introduced the param-
eters φ leading to a straightforward extension of the
model (2.1) in which the πω are now functions of the
pi and φi . For this model he was also able to find ex-
plicit formulae for the MLEs.
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For the general case of immigration and death,
Darroch (1959) was unable to find simple expressions
for the MLEs. The stumbling block for Darroch was
parameterizing the model in terms of Ni . The con-
sequence was an intractable likelihood, expressed in
terms of a generating function comprising 2k(k+1)/2

terms, each term itself a product of probabilities. For
a k = 7 study there are ca. 268 million of these terms.
Darroch did point the way to an alternative method
based on equating some class sizes to their expected
values and he was able to solve this for the k = 4 case.
This technique featured in subsequent work by Dar-
roch’s Ph.D. student George Seber.

2.2 Seber 1962

Seber (1962) studied the case where a number ai of
batch-marked animals are added to the population in
sample i. A sample of size bi is then taken, after al-
lowing time for mixing. This sample is permanently
removed from the population (e.g., it might represent a
commercial harvest). The bi contain both marked and
unmarked animals and which batch an individual came
from can be determined by the distinguishing marks.
Also, the model allows for marked animals to die in
the interval between these samples, both indexed by i.

This model has two notable features. The first is that
the releasing of the ai marked animals occurs sepa-
rately from the subsequent removal sampling of bi in-
dividuals. Seber allowed mortality to occur between
samples ai−1 and bi−1, as well as between sample bi−1
and the release of ai . The parameters describing these
two mortality events cannot be separately estimated.
The confounded survival parameter (the probability of
surviving from ai−1 to ai ) can be expressed in the now
standard notation as φi−1.

The second feature was that Seber included a bino-
mial term for the captures of unmarked animals, under
the assumption that all individuals in the population at
the time of sample bi were subject to the same capture
probability pi . The index of each binomial term was
Ui , and Seber’s innovation was to regard these as un-
known parameters. If we use xobs to represent the raw
batch mark data with summaries m representing recap-
tures of marked animals, and u to denote the number of
captured unmarked animals (from a total U), then Se-
ber’s model can be written as

f
(
xobs|U,p,φ

) = f
(
xobs,u,m|U,p,φ

)
= f

(
xobs|m)

f (m|u,p,φ)f (u|U,p).

In providing his likelihood, Seber (1962) did not in-
clude the term f (xobs|m) which does not contain any

parameters, although this can be used for assessment
of goodness of fit, a point we return to later.

The algebraic structure of Seber’s (1962) model for
recaptures conditional on the releases is represented
above by the term f (m|·). This structure coincides
with what became known as model M1 of Brownie
et al. (1976), although this is not generally recognized
except by Seber himself (Seber, 1970, page 314; see
also the comment by Jolly 1965, discussed below). We
also now know that model M1 is algebraically identical
to the model of Cormack (1964).

The full generality of Seber’s (1962) model was not
obvious at the time because it was developed in terms
of dead recovery or band recovery data, that is, data
on individuals that can only be recaptured once. As
discussed by Brownie et al. (1985) (Section 8.2) and
Burnham (1991), the theories for band recovery and
live-recapture data developed separately even though
the basic model describing the data is the same. This
was not fully understood in the early 1960s, although
Jolly pointed out that the estimators from Seber (1962)
were identical to those for the full JS model and that
“there were no essential differences between the multi-
ple and the single recapture method of sampling a pop-
ulation” (Jolly, 1965, page 226). Seber himself did not
recognize the connections between the two models un-
til he wrote his 1970 book (see the Seber interview in
the present volume).

2.3 Jolly 1963

Adopting what is now standard notation, Jolly (1963)
provided maximum likelihood solutions to the open-
population problem with both immigration and death,
but assumed a deterministic model for births and
deaths in which parameters such as survival probability
and immigration rate are replaced by ratios of adjusted
population size (adjustments including allowance for
loss on capture). Jolly derived estimators of these quan-
tities, including the abundances, and showed that these
could be expressed in terms of estimates of the latent
variables Mi , and the usual summary statistics. These
estimators are identical to those given subsequently in
Jolly (1965), the difference being how they were moti-
vated.

The likelihood used by Jolly (1963) was based on
multinomial distributions that condition on mi +ui , the
number caught in each sample, commonly denoted ni .
Jolly realized that this was not strictly correct, as the
sample size is not fixed in practice, but reasoned that
variability in mi + ui would have little effect on infer-
ence under his model. As we will discuss in the next
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section, this can be considered an appeal to near an-
cillarity, a concept that can justify conditioning used
in subsequent developments, including the model of
Cormack (1964).

2.4 Cormack 1964

Cormack (1964) observed that all methods devel-
oped to date focused on estimating population size, and
assumed that animals captured on each sampling occa-
sion were a random sample of the whole population.
Motivated by a mark-resighting study of fulmar pe-
trels, Cormack (1964) introduced his model in which
the focus of inference was on survival probabilities.
In the fulmar study there were two separate sampling
processes, one involving the capture of unmarked birds
and the other involving resightings of marked individu-
als. Since the sole function of the capture of unmarked
birds was to provide individuals for study in future
years, Cormack reasoned that the number of such re-
leases could be taken as fixed. By this he meant that
they could be treated as though they were predeter-
mined by the researcher even if they were not.

Cormack (1964) extended model A of Darroch
(1958) to open populations, conditioning on the num-
bers released on each occasion. He found the MLEs
for the φi and pi for this model, now the standard no-
tation for the survival probability and capture proba-
bility respectively. These equations were in fact iden-
tical to those found for the deterministic survival and
sampling fractions denoted μ and f by Jolly (1963).
Whether Cormack was aware of this is unclear, as no
reference is made to this in Cormack (1964). However,
Cormack had arrived at his estimates through a fully
specified random sampling model up to conditioning
on the numbers released (which is equivalent to con-
ditioning on the u). Thus, Seber (1962) and Cormack
(1964) had now identified a key part of the full prob-
ability model: that of the model for recaptures condi-
tioned on the numbers released, the term f (m|u,p,φ)

in Seber’s (1962) model.

2.5 Jolly (1965) and Seber (1965)

Jolly (1965) described a general model that condi-
tions on the number in the population at the time of
sample 1, and parameterized in terms of numbers of
births Bi , capture probabilities pi , survival probabil-
ities φi and parameters ηi regulating losses on cap-
ture. Starting immediately before the first sample, Jolly
models the progression of an individual through the
study. At the time of sample i, individuals are divided
into survivors from previous occasions or newly joined

individuals. These are then subject to a capture process
at time i, and then a survival process to determine if
they are present at the time of sample i + 1. The model
includes the random variables Bi (i = 0, . . . , k − 1),
Ui (i = 1, . . . , k), and Mij (i = 1, . . . , k − 1, j =
i + 1, . . . , k), the unknown number of individuals last
caught in occasion i and still alive in j . Thus, Jolly
(1965) describes a joint model for the capture history
data as well as for unmarked individuals that is factor-
ized into a term for captures of unmarked animals con-
ditional on the number of unmarked individuals in the
population, a term for survival of individuals, whether
marked or unmarked, and a term for losses on capture.

To derive the likelihood, Jolly noted that we must ei-
ther marginalize over the unobserved variables or treat
them as parameters. Attempting to marginalize leads to
the problems encountered by Darroch (1959). Treating
latent variables as parameters was the key to solving
the problem and led Jolly to the now familiar estima-
tors for N̂i , B̂i , φ̂i , p̂i and η̂i and their covariances.

Seber (1965) took a slightly different route but ob-
tained the same estimators. One difference from Jolly
(1965) was that Seber marginalized across some vari-
ables (the Mij terms of Jolly) while treating the others
as parameters. The result was a different representation
of Seber’s (1962) model, but now expressed in terms of
live recaptures and without the component for losses on
capture included by Jolly (1965).

What is now commonly referred to as the Jolly–
Seber (JS) model follows Seber (1965) in marginaliz-
ing across Mij , leading to

f
(
xobs|U,φ,p,η

)
(2.2)

= f1(u|U,p)f2(R|u,η)f3
(
xobs|R,φ,p

)
,

the term f1 representing the model for captures of un-
marked individuals, f2 the model for losses on cap-
ture, and f3 representing what is now known as the
Cormack–Jolly–Seber (CJS) model. The term f3 is
equivalent to f (m|u,p,φ) described previously for
Seber’s (1962) model when there is no loss on capture.

Jolly’s (1965) paper is a tour de force. In addition
to solving the general problem and providing intuitive
explanations for the estimators, he

• Explains the relationship between his model and
the earlier model of Seber (1962) as well as Seber
(1965). He also showed the relationship between his
1965 estimates and those of Jolly (1963).

• Specified the model in terms of latent variables that
separately describe the demographic and sampling
processes. Indeed, his Table 1 is an early example
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of a graphical description of a state-space model.
The inherently Markovian nature of the underly-
ing demographic model for marked individuals was
also recognized by Seber (1965, page 251). Latent
variable representations of capture–recapture mod-
els have dominated more recent literature with the
advent of modern statistical computation as we de-
scribe later.

• Suggested a way of improving a capture–recapture
study by supplementing the recapture statistics with
resightings of marked animals taken by “untrained
persons over a wide area.” The full model for this
generalization was described by Barker (1997) who
also showed that Jolly’s intuition was correct. At the
same time Jolly anticipated the joint live recapture
and dead recovery model of Burnham (1993).

2.6 An Incomplete Selection of Subsequent
Developments

Following Jolly (1965) and Seber (1965), there was
extensive development of capture–recapture models
(see Seber, 1982, 1986, 1992; Schwarz and Seber,
1999, for reviews). Much of the focus of this work
was on generalizing the term f3 in (2.2), for exam-
ple, to allow for covariates of recapture and survival
(Lebreton et al., 1992; Schwarz, Schweigert and Arna-
son, 1993; Brownie et al., 1993; Bonner and Schwarz,
2006; King et al., 2006) and joint models that include
dead-recoveries (Burnham, 1993) or dead recoveries
and resightings (Barker, 1997). Other key develop-
ments include the robust design of Kendall, Pollock
and Brownie (1995), Pollock (1982) and the popula-
tion growth rate model of Pradel (1996).

Kendall, Pollock and Brownie (1995) conditioned on
u in developing their likelihood for the robust design,
noting a slight loss in efficiency. Pradel (1996) con-
ditioned on n, the total number caught during the ex-
periment. The idea of conditioning on aspects of the
data has been present throughout the development of
capture–recapture theory, but needs to be better under-
stood given that conditioning potentially leads to loss
of information.

Especially important for subsequent development
was the representation of the model given by Schwarz
and Arnason (1996), building on Crosbie (1979) and
Crosbie and Manly (1985). Schwarz and Arnason
pointed out that the JS model was unsatisfactory, as
the births are not explicitly modeled. They express the
model by conditioning on ν, the number of individuals
ever available for capture instead of U. Given ν, the
births can be modeled as multinomial with index ν and

probability β . Subsequently, the model considered dif-
fers in how the unmarked individuals are caught, but
the factors f2 and f3 from (2.2) are retained:

f
(
xobs|ν,β,p,φ,η

)
= f0(n|ν,β,p,φ)f1(u|n,β,p,φ)(2.3)

× f2(R|u,η)f3
(
xobs|R,p,φ

)
.

The factorization (2.3) is appealing, as it fully general-
izes the Darroch (1958) model A to open populations,
makes clear the conditioning involved in each factor,
is expressed in terms of parameters that admit simple
and reasonable constraints, includes the CJS model as a
special case, and is readily generalizable, for example,
to incorporate auxiliary data, or to multiple states, or to
the robust design. We subsequently refer to (2.3) as the
Crosbie–Manly–Schwarz–Arnason (CMSA) model.

3. CONDITIONING, ANCILLARITY AND
SUFFICIENCY

All models that we have considered condition on
random variables. The JS and CMSA approaches treat
unobserved random variables U and ν respectively
as parameters that are estimated. The approaches of
Cormack (1964), Kendall, Pollock and Brownie (1995)
and Pradel (1996) condition either on observed random
variables u or n. To understand the implications of such
conditioning, we consider notions of partial ancillarity
as recently done for continuous time closed-population
capture–recapture models by Barker et al. (2014).

3.1 Definitions of Ancillarity

An ancillary statistic is one that does not depend
on unknown parameters. Ancillary statistics were first
considered by Fisher (1925, 1934) in order to improve
inference of the model parameters in some situations.
Our goal differs from that of Fisher. We wish to use
ancillarity to justify the removal of conditional model
components that contain nuisance parameters. To do
that, we use two definitions of ancillarity: S-ancillarity
and Bayes-ancillarity.

Consider an example where we observe data x and
y with parameters θ = (θ1, θ2). Of interest is θ1 with
θ2 considered a nuisance parameter. As defined by
Barndorff-Nielsen (1976), a statistic x is S-ancillary
for θ1 in the presence of θ2 if we can express the joint
distribution

f (x, y|θ) = f (y|x, θ1)f (x|θ2).

It is straightforward to see that the MLE for θ1 will
be identical if we consider only f (y|x, θ1) or the full
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model f (x, y|θ). As described by Ghosh, Reid and
Fraser (2010), if the joint distribution is expressed as

f (x, y|θ) = f (y|x, θ1)f (x|θ),(3.1)

then x can be S-ancillary if and only if there exists a
reparameterization of (θ1, θ2) to (θ1, α) such that

f (x, y|θ) = f (y|x, θ1)f (x|α).

Bayes-ancillarity is a weaker form of ancillarity de-
fined by Severini (1995) that necessitates a prior distri-
bution for θ2 denoted f (θ2|θ1). Suppose the joint dis-
tribution is expressed as in (3.1). The statistic x is said
to be Bayes-ancillary for θ1 with respect to f (θ2|θ1) if∫

f (x|θ)f (θ2|θ1) dθ2

does not depend on θ1. If we also assume a prior dis-
tribution for θ1, then Bayes-ancillarity of x implies
that the posterior distribution for θ1 found using only
f (y|x, θ1) is equivalent to the posterior distribution
using the full model f (x, y|θ). A statistic that is S-
ancillary is also Bayes-ancillary.

Although Bayes ancillarity presupposes a prior dis-
tribution for θ2, it has relevance for frequentist infer-
ence about θ1 in the context of use of integrated like-
lihood as a device for eliminating nuisance parameters
(Berger, Liseo and Wolpert, 1999).

3.2 Elementary Example: A Pair of Binomials

To illustrate the concepts of ancillarity, we con-
sider an example that represents the simplest form of
capture–recapture. Suppose we carry out an experi-
ment as follows. First we sample the population and
mark the x individuals so caught. We then carry out
a second experiment and determine the proportion of
marked individuals in the population from a sample of
size z. As a model, we might consider x as a binomial
observation with unknown index ν and parameter p,
and y as a binomial observation with index z and pa-
rameter p. The joint model for x and y is

f (x, y|ν,p)

= f1(x|ν,p)f2(y|z,p)(3.2)

=
(

ν

x

)
px(1 − p)ν−x

(
z

y

)
py(1 − p)z−y.

The observation x provides one degree of freedom at
the cost of one parameter ν. Therefore, it might be
supposed that all the information about p is provided
by f2. But this is obviously not the case; the sufficient

FIG. 1. Profile log-likelihood function for p, obtained from the
full likelihood [equation (3.2)], compared to the partial likelihood
[which is proportional to f2 in equation (3.2)] for x = 20, y = 10
and z = 20.

statistic for p is x + y, not y since we can rewrite (3.2)
as

f (x, y|ν,p) =
(ν
x

)(z
y

)
(ν+z
z+y

)
×

(
ν + z

x + y

)
px+y(1 − p)ν+z−x−y.

Nor is the statistic x S-ancillary for p; for x to be S-
ancillary we must be able to find a reparameterization
of (p, ν) into (p,α) such that the term f1 depends only
on α and not on p, that is, f1(x|α). No such reparam-
eterization exists. If we fitted this model by ML, our
estimate for p is not the intuitive p̃ = y/z, and our es-
timate for ν is not x/p̃ = xz/y. Rather, the MLEs are

p̂ = (x + y)/(̂ν + z) and

ν̂ = arg max
ν

ν!
(ν − x)!(1 − p̂)ν+z−x−y.

To see the difference, consider an example where x =
20, y = 10 and z = 20. The intuitive estimates are p̃ =
0.5 and ν̃ = 40. The MLEs are p̂ = 0.5172 and ν̂ = 38.

For inference about p we could choose to ignore f1
in (3.2). In this case, we would be using f2 as a partial
likelihood sensu Cox (1975). Although f1 does contain
information about p, we could justify use of f2 due
to asymptotic equivalence between the full and partial
likelihoods (Sanathanan, 1972). In this example, the
difference between the partial and full likelihood func-
tions is small (Figure 1). This may not always be the
case.

Another justification for ignoring f1 is Bayes-
ancillarity. If we assign ν a scale prior,

f (ν) ∝ ν−1,
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then ∑
ν

f1(x|ν,p)f (ν)

=
∞∑

ν=x

(
ν

x

)
px(1 − p)ν−xν−1

(3.3)

= x−1
∞∑

U=0

(
U + x − 1

U

)
px(1 − p)U

= x−1,

which does not depend on p since the summand in line
2 is a negative-binomial probability mass function for
the observation U = ν − x. For inference about p we
can use the marginal likelihood after integrating over
ν. Using (3.3), this is given by

f (x, y|p) = ∑
ν

f1(x|ν,p)f2(y|z,p)f (ν)

= x−1f2(y|z,p).

For inference regarding p, we are justified in using f2
alone so long as we are willing to use a marginal like-
lihood for p, found by integrating over ν assuming a
scale prior. Even if we do not use the scale prior and
choose instead some other vague prior, we expect lit-
tle difference between estimates obtained under the full
and integrated likelihoods owing to the close agree-
ment evident in Figure 1.

Now suppose that in our experiment, x is modeled as
a Poisson observation with parameter νp. The param-
eter ν now represents some expectation of the size of
the population that was sampled and marked. We can
express f1 as

f1(x|ν,p) = e−νp(νp)x

x! = e−ααx

x!
(3.4)

= f1(x|α),

where α = νp. Thus, under the Poisson model the
statistic x is S-ancillary for p in the presence of α. The
MLE is p̂ = y/z and x now conveys no information
about p. We can safely ignore the model for x knowing
that we can find the MLE for p solely from the infor-
mation in y. In our example with x = 20, y = 10 and
z = 20, the MLEs for the Poisson model correspond to
the intuitive estimates: p̂ = 0.5 and ν̂ = 40.

3.3 Ancillarity and Capture–Recapture

3.3.1 Closed-population models. Sandland and
Cormack (1984) claimed that the MLE for ν in a multi-
nomial model [equivalent to assuming x has a binomial

distribution in (3.2) above] is equivalent to the MLE
for ν in a Poisson model [equivalent to assuming x has
a Poisson distribution in (3.4) above]. As seen by the
pair of binomials example, this is not true. Later papers
by Cormack clarify the relationship. Cormack (1989)
noted that two approaches are possible for estimating
parameters from a multinomial model: conditional (us-
ing only f2 to estimate the capture probabilities) and
unconditional (finding the MLE for the full likelihood).
He was uncertain how the MLE from the Poisson
model related to these different approaches. Cormack
(1992) established that the full Poisson model is equiv-
alent to the conditional multinomial model as we have
shown above.

3.3.2 The Jolly–Seber model. The pair of binomi-
als example also serves us well for extension to open-
population examples. We start with a slight generaliza-
tion of the JS model

f
(
xobs|U,φ,q,p,η

)
= f1(u|U,q)f2(R|u,η)f3

(
xobs|R, ,φ,p

)
.

Here, we have allowed the capture probability for un-
marked animals q to differ from the capture probability
for marked animals p, which makes sense for the ful-
mar petrel study of Cormack (1964) since the marking
and recapture processes are distinct. We subsequently
ignore losses on capture given by f2, as this term con-
tains no parameters of interest; that is, the statistics R
are S-ancillary for p and φ and need not be modeled
once we have conditioned on u.

The model f1 assumes that the number of unmarked
individuals caught can be modeled as independent bi-
nomials, each with index Ui ,

f1(u|U,q) =
k∏

i=1

(
Ui

ui

)
q

ui

i (1 − qi)
Ui−ui .

Since qi �= pi ∀i, the statistics u are S-ancillary for p
and φ. Thus, Cormack (1964) was justified in condi-
tioning on u and the MLEs he would have obtained are
the same as he would have got from the full model.
However, if the marking and recapture processes de-
pend on the same capture parameters (i.e., q = p), then
the statistics u are not S-ancillary and the MLE for
p and, subsequently, φ will differ between the JS and
CJS models. We do not believe this is commonly un-
derstood, as the estimators given by Seber (1965) and
Jolly (1965) are usually referred to as MLEs for both
the JS as well as the CJS models (see, for example,
Pollock et al., 1990, Williams, Nichols and Conroy,
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2002). The differences may not be trivial, as is easily
demonstrated numerically (see supplementary materi-
als, Schofield and Barker, 2016, Section 2).

The statistic u is not S-ancillary, but it is Bayes-
ancillary for p and φ with respect to independent scale
prior distributions for Ui :

f (Ui) ∝ 1

Ui

, i = 1, . . . , k.

The proof follows that used in the pair of binomials ex-
ample. A consequence is that we are justified in using
the CJS model in place of the JS model if we are will-
ing to use a marginal likelihood for p and φ having in-
tegrated out U using these independent scale priors. We
note that assuming prior independence of U may not be
biological reasonable, as it is likely we would expect
some prior dependence between Ui and Uj , i �= j .

Both Seber (1962, 1965) and Jolly (1965) treat the
random variables U as parameters in key steps of the
model derivation. To assess the implications of this
for the JS model, we assume that U1, . . . ,Uk have in-
dependent Poisson distributions with rate parameters
μ1, . . . ,μk . Marginalizing over U leads to an indepen-
dent Poisson model for u with rates piμi ,

f1(u|μ,p) =
k∏

i=1

e−piμi (piμi)
ui

ui ! ,

in place of the independent binomial model for u in
the JS model. Adopting the Poisson model leads to
S-ancillarity of ui in the presence of μi . This is an
interesting result. It means that modeling U as inde-
pendent Poisson random variables leads to identical
MLEs for p and φ to those in the CJS model, but
different MLEs to those from the JS model (supple-
mentary materials, Schofield and Barker, 2016, Sec-
tion 2).

3.3.3 The CMSA model. Similar results to those
described above hold for the CMSA model (2.3).
Schwarz and Arnason (1996) derive the model for un-
marked individuals by first specifying a multinomial
distribution for all unmarked individuals ever available
for capture that we label as f̃1,

f̃1(u|ν,β,φ,p)

= ν!
u1!u2! · · ·uk!(ν − n)!

(
1 −

k∑
j=1

ψjpj

)ν−n

(3.5)

×
k∏

i=1

(ψipi)
ui ,

where n = ∑k
j=1 uj is the observed sample size and

ψ1 = β0, with ψi+1 = ψi(1 − pi)φi + βi, i = 1, . . . ,

k − 1. The components f0 and f1 in (2.3) are factor-
izations of this multinomial distribution:

f0(n|ν,p,β,φ) =
(

ν

n

)
πn(1 − π)ν−n,(3.6)

f1(u|n,β,φ,p) = n!
u1!u2! · · ·uk!

k∏
i=1

ξ
ui

i ,(3.7)

where π = ∑k
j=1 ψjpj and ξi = ψipi/

∑k
j=1 ψjpj ,

i = 1, . . . , k.
Care is needed when establishing ancillarity results

for the CMSA model because the parameter vector β
has only k − 1 free parameters since

∑k−1
i=0 βi = 1.0.

Any reparameterization we consider in an effort to de-
termine S-ancillarity must satisfy this constraint.

We first compare the model where we condition on u
(i.e., the CJS model) to the model where we condition
on n as in Pradel (1996) and Link and Barker (2005).
This involves establishing whether any information
about p and φ is lost by ignoring the model component
f1. We follow Link and Barker (2005) and consider a
reparameterization of β in terms of the k-vector κ with
ξ in (3.7) determined as ξi = κi/

∑k
j=1 κj , i = 1, . . . , k

(supplementary materials, Schofield and Barker, 2016,
Section 1). The vector κ has only k − 1 free parame-
ters as κ1 ≡ 1. It follows that the statistics u|n are S-
ancillary for p and φ in the presence of κ as we have
reparameterized (p,φ,β) to (p,φ,κ) such that f1 in
(3.7) depends only on κ . The MLEs for p and φ from
the model of Link and Barker (2005) are identical to
those from a CJS model.

Less clear is whether the MLEs for p, φ or κ are af-
fected by conditioning on n. The term π = ∑k

j=1 ψjpj

in (3.6) is not a free parameter. It can be seen from
the recursion relationships in the supplementary mate-
rials, Schofield and Barker (2016), Section 1, that π

is a complicated function of p, φ and κ , so that n is
not S-ancillary for p, φ and κ . The MLEs from the
full CMSA model will differ from the MLEs for mod-
els that condition on n or u. However, as before, we
can show that n is Bayes-ancillary for the parameters
p, φ and κ in the presence of the prior distribution
f (ν) ∝ ν−1. This means that conditioning on n (or u)
in place of using the full CMSA model can be justified
with respect to use of a marginal likelihood for p, φ
and κ where we have marginalized across ν with use
of a scale prior.

As with the JS model, we can examine the effect of
treating the random variable ν as a parameter as was
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done by Schwarz and Arnason (1996). If we assume
that ν has a Poisson distribution with rate parameter
μν , then marginalizing over ν implies that the corre-
sponding model for n is a Poisson model with rate pa-
rameter μνπ ,

f0(n|μν,p,φ,β) = e−πμν (πμν)
n

n! ,

in place of the binomial model given in (3.6). Assum-
ing this model, the statistic n is S-ancillary for φ, p
and κ in the presence of μν . This implies that treating
ν as a Poisson random variable leads to identical MLEs
for p, φ and κ to those from a model than conditions
on n, but different MLEs to those found from the full
CMSA model. All results above for the CMSA family
of models are confirmed numerically (see supplemen-
tary materials, Schofield and Barker, 2016, Section 2).

3.3.4 Open-population generalization of Darroch’s
model B. Bayes-ancillarity also provides the neces-
sary context for fully understanding the relationship
between the JS model and the model of Pollock
(1975) that generalized to open-populations model B
of Darroch (1958). First consider the standard multi-
nomial representation of a 2-sample closed-population
capture–recapture study (model A of Darroch, 1958).
We write the model as

f
(
xobs|ν,p

)
= ν!∏

ω∈� xω!
∏
ω∈�

πxω
ω

(3.8)

=
(n1
m2

)( ν−n1
n2−m2

)( ν
n2

) ×
2∏

i=1

(
ν

ni

)
p

ni

i (1 − pi)
ν−ni

= f (m2|n, ν)f (n|p, ν),

where � = {00,01,10,11} and n1 = x11 + x10, n2 =
x11 + x01, m2 = x11.

For inference about ν, we can use f (m2|n, ν) as a
partial likelihood for ν, ignoring the information con-
tributed by f (n|p, ν). This corresponds to model B of
Darroch (1958); the MLE for this model is the well-
known Lincoln–Petersen estimator

N̂ = n1n2

m2
.

The statistics n are not S-ancillary for ν, but they are
Bayes-ancillary in the presence of independent priors
f (pi) ∝ p−1

i (Severini, 1995). Darroch (1958) argued
this partial likelihood could be justified when the ni are
specified in advance, or “we could say that (model B)

is likely to be appropriate when the main limiting fac-
tor on sample size is the trouble involved in marking
animals.” Here we have another justification, which is
that use of the partial likelihood f (m2|n, ν) is justi-
fied if we adopt the prior distribution f (p) ∝ ∏

i p
−1
i

and use a marginal likelihood for inference concerning
ν. This interpretation extends to the open-population
generalization of Darroch’s model B given by Pollock
(1975), with this model also conditioning on the sam-
ple sizes ni .

3.4 Sufficiency and Goodness of Fit

Starting with the raw capture histories xobs and de-
riving the CMSA likelihood conveys another advan-
tage. We can use factorizations of the likelihood that
are functions of the data and sufficient statistics alone
to determine the adequacy of the assumed model. For
example, recall that in the model of Seber (1962) there
was a term f (xobs|m) that was ignored (since it is un-
necessary for the likelihood). Similarly, we can further
factorize the CJS model (2.2) as

f3
(
xobs|R,p,φ

) = f
(
xobs|m, r

)
f (m, r|R,p,φ).

The statistics m and r are sufficient statistics for p and
φ. The term f (xobs|m, r) is a product of multiple hy-
pergeometric distributions and leads to various tests of
model adequacy as described by Pollock, Hines and
Nichols (1985).

4. LATENT VARIABLES

4.1 The Model of Jolly (1965)

A feature of Jolly (1965) is the use of latent variables
to provide a state-space description of the problem,
separating the capture and mortality components of the
model. We do not believe this is well known, with
the state-space relationship often attributed to Dupuis
(1995), Gimenez et al. (2007) or Royle (2008). The
ability of Jolly (1965) to separate capture and mortal-
ity is due to his inclusion of the latent variable Mij , the
true number of marked individuals last seen in occa-
sion i still alive at the time of occasion j . The obser-
vation process of Jolly’s state-space model separately
considers marked and unmarked individuals,

f (uj |Uj) =
(
Uj

uj

)
p

uj

j (1 − pj )
Uj−uj ,

j = 1, . . . , k,

f (mij |Mij ) =
(
Mij

mij

)
p

mij

j (1 − pj )
Mij−mij ,

i = 1, . . . , k − 1, j = i + 1, . . . , k.
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The state process separately models latent variables
that describe the number of surviving (i) unmarked
individuals, (ii) previously marked individuals (not
caught in the current sample), and (iii) individuals
caught in the current sample:

f (Uj+1|uj ,Uj ,Bj )

=
(

Uj − uj

Uj+1 − Bj

)
φ

Uj+1−Bj

j (1 − φj )
Uj−uj−Uj+1+Bj ,

j = 1, . . . , k − 1,

f (Mij+1|mij ,Mij )

=
(
Mij − mij

Mij+1

)
φ

Mij+1
j (1 − φj )

Mij−mij−Mij+1,

i = 1, . . . , k − 2,

j = i + 1, . . . , k − 1,

f (Mjj+1|Rj)

=
(

Rj

Mjj+1

)
φ

Mjj+1
j (1 − φj )

Rj−Mjj+1,

j = 1, . . . , k − 1.

As described in Section 2.5, Jolly treated Mij , Uj and
Bj as parameters to enable specification of a likeli-
hood. Recent advances in statistical methodology now
allow us to consider model fitting with computational
approaches that account for the inclusion of latent
variables. This is often referred to as using a com-
plete data likelihood (CDL) and leads to the idea of
modeling in terms of “the data we wished we had”
(Draper, 1995). One such computational approach is
Markov chain Monte Carlo (MCMC), where Monte
Carlo integration is used to integrate over any latent
variables specified in the model (Tanner and Wong,
1987). We provide JAGS (Plummer, 2003) code for
fitting Jolly’s model above using MCMC. The model
statement is available in the supplementary materi-
als, Schofield and Barker (2016), Section 3, and a
working example using the Dipper dataset of Lebreton
et al. (1992) is available at http://www.stats.otago.ac.
nz/webdata/resources/matthew_schofield/.

Two possible criticisms of the latent variable model
above are as follows:

1. Many of the variables are of little interest. For ex-
ample, we care little for M15, as it depends on the sam-
pling effort in occasions 1–4 as much as it does on the
number of individuals alive in occasion 5.

2. A conditional probability model for Bj is not in-
cluded. While we can predict the unknown number of
births Bj , the dynamics of this process have not been
described and modeled.

The latent variable model of Schofield, Barker and
MacKenzie (2009, page 381) overcomes these two crit-
icisms. Instead of modeling in terms of the sufficient
statistics mij , the modeling is done in terms of the min-
imal sufficient statistics and is specified in terms of Mj ,
the total number of marked individuals alive at sam-
pling occasion j . We note that this is only a modest
improvement over the model of Jolly (1965), as it is
straightforward in the latter to define Mj = ∑j−1

i=1 Mij .
The model of Schofield, Barker and MacKenzie (2009)
then uses Nj = Mj +Uj to specify a Poisson model for
Bj in terms of a per-capita birth rate fj ,

f (Bj ) = e−fjNj (fjNj )
Bj

Bj ! , j = 1, . . . , k − 1.

Such an approach is related to those of Pradel (1996)
and Link and Barker (2005), who also model the birth
process in terms of a per-capita birth rate. A differ-
ence between those approaches and that specified here
is that the birth rate is defined in terms of the latent
population size Nj , whereas Pradel (1996) and Link
and Barker (2005) derive the birth rate in terms of an
expectation of Nj .

4.2 Latent Variables, Missing Data and the CMSA
Model

As far as we are aware, the first instance of model
fitting involving latent variables in a capture–recapture
model is given by Dupuis (1995) in the context of
the Arnason–Schwarz model (Brownie et al., 1993;
Schwarz, Schweigert and Arnason, 1993) used to
model animal movements. While this paper laid a
solid theoretical foundation for future work, it was
not until Dupuis and Schwarz (2007) and Schofield
and Barker (2008) that corresponding versions of the
CMSA model were implemented.

Schofield and Barker (2008) express the CMSA
model in terms of a complete capture history and
individual-specific times of birth and death, denoted bi

and di , for i = 1, . . . , ν respectively. From xobs we have
partial information on these quantities. For example,
we know that bi , the time period in which individual
i first appeared in a population, must have occurred at
or before the sample in which that individual first ap-
peared in the capture record. Similarly, di , the period
in which the individual left the population, must have

http://www.stats.otago.ac.nz/webdata/resources/matthew_schofield/
http://www.stats.otago.ac.nz/webdata/resources/matthew_schofield/
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occurred after the last sample in which the individual
was captured.

Traditionally, when we construct the likelihood, we
sum over all possible values for these partially ob-
served quantities. The parameter ξj in the CMSA
model represents Pr(individual is first seen at j) and is
computed by summing over the probabilities of mutu-
ally exclusive outcomes. Similarly, the parameter χj

represents Pr(individual is not seen again after j). In-
stead of using ξ and χ to marginalize over unobserved
events, we can complete the data and use MCMC to
integrate over the latent variables as described above.

If we suppose that the intervals of birth and death, b
and d, are fully observed for each individual, the mod-
eling is straightforward. Any information contained by
the capture histories is irrelevant (under mild condi-
tions it is S-ancillary for fecundity and survival rates).
As such, we could directly model entry and exit rates
using so-called known fate models (White and Burn-
ham, 1999). Why then, if we include b and d into the
model as latent variables, can we not treat the data
as partially observed known fate data and ignore the
model for the capture histories xobs?

The answer is found by considering the latent vari-
ables as missing data (Dupuis, 1995; Schofield and
Barker, 2008). Rubin (1976) and Little and Rubin
(2002) define three classes of missing data: (i) missing
completely at random (MCAR), (ii) missing at random
(MAR) and (iii) missing not at random (MNAR). The
important distinction between these classes is that if the
missing data can be assumed MCAR or MAR, then the
process by which the data went missing can be ignored
in the statistical model, assuming that the parameters
governing this process and the distribution of interest
are distinct. In effect, the missing data process is S-
ancillary to the unknown quantities of interest in the
model. However, if the missing data are MNAR, then
the process by which the data have gone missing con-
tains information about the quantities of interest and
should be included in the model.

For capture–recapture, the missing data in b and d
are MNAR. As the process by which the data have
gone missing is determined from the observation pro-
cess, we need to include a model for xobs. The CDL of-
fers a convenient factorization; we can specify a model
for b and d|b along with a model for xobs|b,d,

f
(
xobs,b,d|p,φ,β

)
(4.1)

= f
(
xobs|b,d,p

)
f (d|b,φ)f (b|β).

Schofield and Barker (2009) show how the CDL al-
lows for construction of the “mother-of-all-models.”

This idea, first suggested by Barker and White (2004),
is that many of the distinct capture–recapture models
are related to each other in terms of common likelihood
components. As mentioned above, the use of a CDL
shows the relationship between capture–recapture and
other well-studied statistical approaches, such as state-
space modeling and hidden Markov models (Langrock
and King, 2013).

The simplest illustration of this approach is for the
CJS model. If we define the occasion on which an in-
dividual was first released as ti , the CDL is given by

f
(
xobs,d|t,p,φ

) = f
(
xobs|t,d,p

)
f (d|t,φ),

where

f
(
xobs|t,d,p

) =
n∏

i=1

di∏
j=ti+1

p
xij

j (1 − pj )
1−xij ,

f (d|φ) =
n∏

i=1

k∏
j=ti

θ
1di=j

ij ,

where 1E is the indicator for event E.
To fit these models, we require computational ap-

proaches that allow for latent variables. The method
predominantly used in the literature is MCMC. When
using MCMC methods, the latent variables di are in-
cluded in the model and treated as another unknown
quantity, like p1 or φ3. If we specify independent and
conditionally conjugate beta priors for each p and φ,
the model can be fitted using Gibbs sampling (Link
and Barker, 2010, Section 11.3.1). The full conditional
distribution for drawing values of di is a categorical
distribution with support {li , li+1, . . . , k}, where li is
the index of the last sample in which individual i was
recorded.

An alternative to specifying the CMSA model in
terms of b and d is to include this information in the
ν × k availability matrix a, where the value aij = 1 if
individual i is known to have been available for capture
in sample j , aij = 0 if individual i is known to have
been unavailable for capture in sample j and aij = NA
otherwise. Models specified in terms of a are often
used interchangeably with those in terms of b and d.
However, it is likely that these different model speci-
fications will lead to different MCMC algorithms. Our
experience is that models written using a make model
specification in default programs such as BUGS (Lunn
et al., 2009) and JAGS easier, but can mix poorly when
compared to those specified in terms of d. This is be-
cause the direct draw for di allows the Markov chain
to move more quickly through the state space and con-
verge more rapidly than corresponding algorithms for
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a. Moreover, we believe that considering the model in
terms of d opens additional possibilities in terms of
improved algorithms in certain situations, such as us-
ing Gibbs multinomial probit regression (Imai and van
Dyk, 2005; Jiao and van Dyk, 2015).

5. DISCUSSION

The distinction between many of the early contribu-
tions to capture–recapture is in how they treated ran-
dom variables. We have focused on two particular as-
pects. The first involves the observed random variables
that are treated as fixed. We have explored the im-
pact that various choices have upon inference and have
used ancillarity arguments to explain differences in the
MLEs. For example, the MLEs for survival probabili-
ties of the CJS model will differ from either the JS or
CMSA model.

The second aspect is how unobserved random vari-
ables are accounted for when model fitting. A com-
mon feature of Jolly (1965) and Seber (1965) was that
unobserved variables could be treated as parameters
(and conditioned on) to overcome the difficulties en-
countered by Darroch (1959). A difference is that Jolly
(1965) also included additional latent variables (Mij )
that allowed him to formulate what we now refer to as a
state-space model. He also treated these as parameters,
while the model of Seber (1965) marginalizes across
these variables.

These differences are important and have only be-
come more relevant in recent years. The explosion of
state-space and latent variable models are following in
the footsteps of Jolly (1965) and his model develop-
ment. Often there are many possible model variants for
a particular problem, distinctions that can be attributed
to differences in the information that is being condi-
tioned on. Notions of ancillarity can help us to better
understand these differences.

Although this volume is a celebration of the work
of Richard Cormack, George Jolly and George Seber,
we believe it fitting to finish with an acknowledgement
of the pioneering work of John Darroch. Darroch’s
name does not feature in either the Cormack–Jolly–
Seber model or the Jolly–Seber model, but his contri-
butions proved to be the foundation for modern analy-
sis of capture–recapture data based on full probability
models. Darroch got tantalizingly close to a complete
solution in his 1959 paper with the stumbling block his
attempt at a parameterization involving N . This was
solved by Seber (1962, 1965) as well as Jolly (1965),
the beginnings of a proliferation of capture–recapture
models over the subsequent 50 years.

Although the early focus was on abundance estima-
tion, development after the 1960s largely focused on
extensions of the CJS model. Conditioning on the num-
bers released obviates the need to consider how marked
and unmarked individuals differ, although, as noted by
Cormack (1964), the marked individuals have to repre-
sent the study population in critical aspects for results
to be generalizable. In a sense, the CMSA likelihood,
and complete data implementations such as Dupuis and
Schwarz (2007) and Schofield and Barker (2008), rep-
resents a completion of the work begun by Darroch in
the late 1950s. They incorporate latent quantities such
as abundances Ni and births Bi as well as parameters
such as φ and β , providing an approach for the com-
prehensive study of population dynamics.

SUPPLEMENTARY MATERIAL

Supplementary materials for 50-year-old curiosi-
ties: ancillarity and inference in capture-recapture
models (DOI: 10.1214/15-STS550SUPP; .pdf). We
provide additional details about:

• The parameterization of the CMSA model that is
used to determine the ancillarity results in Sec-
tion 3.3.3.

• The numerical methods to confirm the theoretical re-
sults given in Section 3.3.

• A JAGS specification of the latent variable state-
space model Jolly outlined in his 1965 paper.
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