
Statistical Science
2016, Vol. 31, No. 2, 175–190
DOI: 10.1214/16-STS546
In the Public Domain

And the First One Now Will Later Be Last:
Time-Reversal in Cormack–Jolly–Seber
Models
James D. Nichols

Abstract. The models of Cormack, Jolly and Seber (CJS) are remarkable
in providing a rich set of inferences about population survival, recruitment,
abundance and even sampling probabilities from a seemingly limited data
source: a matrix of 1’s and 0’s reflecting animal captures and recaptures at
multiple sampling occasions. Survival and sampling probabilities are esti-
mated directly in CJS models, whereas estimators for recruitment and abun-
dance were initially obtained as derived quantities. Various investigators have
noted that just as standard modeling provides direct inferences about survival,
reversing the time order of capture history data permits direct modeling and
inference about recruitment. Here we review the development of reverse-time
modeling efforts, emphasizing the kinds of inferences and questions to which
they seem well suited.

Key words and phrases: Capture–recapture models, contributions to popu-
lation growth, Cormack–Jolly–Seber models, metapopulations, reverse-time.

“The present now will later be past,
The order is rapidly fading,
And the first one now will later be last,
For the times they are a-changin.”
(Dylan, 1964)

“But I was so much older then,
I’m younger than that now.”
(Dylan, 1965)

“Time is running backwards,
And so is the bride.”
(Dylan, 1989)

1. INTRODUCTION

The 2014 film “The Theory of Everything” ends with
a sequence of clips from the life of physicist Stephen
Hawking, beginning at age 72 and moving sequentially
backward through time to his scientific beginning as a
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young Ph.D. student at Cambridge. The sequence mir-
rored Hawking’s idea that a theory about the beginning
of the universe might be deduced by considering its
current expansion and then reversing time to consider
increasing compactness and the eventual origin. Thus,
clever individuals (e.g., Dylan, Hawking) in various
disciplines have used time reversal as a mental device
to gain insights and inferences about origins.

Cormack–Jolly–Seber (CJS) models (Cormack,
1964, Jolly, 1965, Seber, 1965) consider data that
begin with individuals that are marked at a certain
sampling occasion and released back into the popu-
lation. Recaptures of these marked animals in succes-
sive sampling occasions provide the raw data for infer-
ence about survival rates and probabilities of recapture
(Cormack, 1964). Additional modeling of captures of
previously unmarked animals permits inference about
population size and recruitment of new individuals into
the population (Jolly, 1965, Seber, 1965), referred to
as Jolly–Seber (JS) modeling. These seminal papers
thus demonstrated that it is possible to use capture his-
tory data to obtain inferences about not only population
size, but also associated rates of gain and loss. These
inferences are available by viewing capture history data
in the standard temporal sequence, moving from older
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sampling occasions to more recent ones. However, it
has been recognized at various times that certain in-
ferences about population dynamics (e.g., recruitment)
are more easily and directly obtained by reversing the
temporal ordering of capture–recapture data, beginning
with final recaptures and moving backward to end with
initial captures. In this paper, I will attempt to motivate
reverse-time and temporal symmetry versions of CJS
models and discuss applications.

2. A BRIEF HISTORY

In his studies of tsetse flies in Tanganyika Territory,
C. H. N. Jackson (Jackson, 1936, 1939), with acknowl-
edged statistical assistance from R. A. Fisher, recog-
nized the temporal symmetry of capture–recapture data
and developed “positive” and “negative” methods for
estimating animal abundance, extending basic ideas
presented by Lincoln (1930). The positive method en-
tailed recording the number of animals marked on
a certain sampling occasion and following their de-
clining rates of recapture through time. The negative
method, in contrast, focused on recaptures of previ-
ously marked animals occurring on a particular occa-
sion and on the proportions of these that were origi-
nally marked in successively older sampling occasions.
Jackson (1936, 1939) emphasized the conceptual simi-
larity of the two approaches and noted that they should
give similar abundance estimates. He also considered
rates of loss from, and gain to, the population, noting
that inferences about these could be based on statistics
computed during implementation of his positive and
negative abundance estimation methods, respectively.

The seminal papers of Cormack, Jolly and Seber
were naturally followed by various extensions and new
developments by biostatisticians and quantitative ecol-
ogists. D. S. Robson was among those statisticians who
developed an important research program in capture–
recapture modeling, producing an impressive list of
graduate students who became leaders in this field of
endeavor. The master’s degree work of one of those
students, K. H. Pollock, involved development of for-
mal tests for mortality and recruitment using capture–
recapture data. The test for recruitment was developed
by reversing the temporal order of capture–recapture
data and using an approach equivalent to that for test-
ing for mortality in standard time-ordered data. Specif-
ically, Pollock, Solomon and Robson (1974) noted that
this time reversal of data “produces the backward dual
of definitions and results given for the forward process”
and that “a backward process with recruitment and no

mortality is statistically equivalent to a forward process
with mortality and no recruitment.”

Following the observations of Pollock, Solomon
and Robson (1974), the first applications for open-
population models with time-reversed data used the
conditional approach of Cormack (1964) to estimate
a “seniority” parameter associated with recruitment of
animals to the population (e.g., Pradel, 1996, Pradel
et al., 1997). This same approach was even used with
data on fossil detections to estimate the periods of orig-
ination for invertebrate taxa over geologic time frames
(Nichols et al., 1986). Consistent with the original
model of Cormack (1964), the description and appli-
cations of Nichols et al. (1986) and Pradel (1996) were
based on models that assumed a single group of or-
ganisms (or taxa) subject to the same probabilities of
detection and recruitment. Pradel et al. (1997) used the
same approach to model data from cohorts of flamin-
goes, Phoenicopterus ruber roseus, ringed initially as
chicks (hence of known age when recaptured), and esti-
mate probabilities of age-specific recruitment. Nichols
et al. (2000) introduced the use of multistate models
(Arnason, 1972, 1973, Hestbeck, Nichols and Malecki,
1991, Brownie et al., 1993, Schwarz, Schweigert and
Arnason, 1993) with reverse-time data in order to draw
inferences about contributions to population growth
rate by individuals of different ages or from different
locations. Pradel (1996) recognized that simultaneous
forward- and reverse-time modeling of a single data
set made use of all of the information about population
dynamics found in capture history data. This synthesis
moved beyond the original approaches of Jolly (1965)
and Seber (1965) in which survival and capture prob-
abilities were model parameters that were estimated
directly, whereas population size and recruitment were
treated as random variables that could be obtained as
derived estimates.

3. SINGLE STATE MODELING: OPEN
POPULATION DATA

3.1 Basic Modeling

Both the CJS model and its reverse-time analog
are based on capture–recapture data for individually
marked animals. Animals are captured at discrete sam-
pling occasions, typically short in duration. The time
periods separating consecutive sampling occasions are
typically long, relative to population dynamics, such
that gains and losses are likely to occur between oc-
casions. Such sampling with the expectation of popu-
lation change between successive sampling occasions
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will be referred to as “open population sampling,”
meaning open to change between occasions. Newly
captured animals are given an individually identifiable
mark (e.g., leg band, ear tag) and released back into the
sampled population. Previously captured animals are
recorded as recaptures for that period. Resulting cap-
ture history data are represented as vectors of 1’s, de-
noting captures, and 0’s, denoting no capture, with an
entry for each of K total sampling periods of the study.
For example, capture history (0 1 1 0 1) indicates an
animal that was first caught and marked at sampling
period 2 of a 5-period study (K = 5). It was recaptured
at periods 3 and 5 and not captured at period 4.

The basic CJS model conditions on the initial cap-
ture and models the subsequent capture history with
two kinds of parameters, one of which describes the
ecological survival process and the other the sampling
process. Survival (φt ) denotes the probability that an
animal alive and in the sampled population at time
(sampling period) t is still alive and in the population
(i.e., has not died or permanently emigrated) at time
t + 1. Capture probability (pt ) denotes the probability
that a marked animal alive and in the sampled popula-
tion at time t is captured then. The CJS probability as-
sociated with the example capture history (0 1 1 0 1),
conditional on initial capture in period 2, is given by

PrCJS(0 1 1 0 1|release in period 2)

= φ2p3φ3(1 − p4)φ4p5.

The CJS likelihood is then proportional to the prod-
uct of these conditional probabilities for all animals re-
leased during the study.

The reverse-time (RT) analog of the CJS model con-
ditions on the final capture of each animal and models
the capture history as a function of capture probabil-
ities and seniority parameters (Pradel, 1996). Capture
probabilities are defined as for the CJS model, with the
exception that for most RT applications they now apply
not only to marked animals but also to new unmarked
animals (as in the Jolly–Seber [JS] model, Jolly, 1965,
Seber, 1965). The seniority parameter, γt , is defined as
the probability that an animal alive and in the popula-
tion at time t was also alive and in the population at
time t − 1. This parameter thus deals with “survival”
into the past, distinguishing new (not a member of the
sampled population on a previous sampling occasion)
animals from animals that were members of the popu-
lation at the previous sampling period also. The prob-
ability associated with the above capture history under

the RT model can be written as

PrRT(0 1 1 0 1|last capture in period 5)

= γ5(1 − p4)γ4p3γ3p2(1 − γ2p1).

As for the CJS model, the RT likelihood is proportional
to the product of the probabilities for all observed cap-
ture histories.

Estimation under the RT model can be accomplished
using software developed for the CJS model by sim-
ply reversing the capture histories. So for a reverse-
time analysis, the above standard-time capture history
(0 1 1 0 1) could be entered into CJS software as cap-
ture history (1 0 1 1 0). Output labeled as φ̂1 would
be reinterpreted as γ̂5, φ̂2 as γ̂4 , etc. Program MARK
(White and Burnham, 1999) performs RT analyses di-
rectly with no need to alter data or to relabel estima-
tors. The estimated capture probabilities for the CJS
and RT analyses are identical in sampling situations
where no animals are lost on capture (e.g., caught but
died or for some other reason were not released) and
are otherwise different (with slightly different mean-
ings). Under the full CJS model with all parameters
time-specific (φt ,pt ), p1 cannot be estimated, and only
the product φK−1pK (not the separate parameters) can
be estimated. Similarly, under RT analyses pK cannot
be estimated, and only the product γ2p1 is estimable.

3.2 Recruitment

An important reason for the interest in the seniority
parameter of an RT analysis is the interpretation of its
complement as a measure of recruitment. Thus, 1 − γ̂t

estimates the probability that an animal in the popula-
tion at time t is a new recruit, in the sense that it was
not in the population at time t − 1 (or any time prior
to t). Pradel et al. (1997) used RT modeling to estimate
age-specific probabilities of first breeding in flamin-
goes. They conditioned on cohorts of birds ringed as
young at breeding colonies and recorded subsequent
recaptures when these birds nested at the same breed-
ing colonies. Initial captures as young were removed
from the data set (i.e., for each marked individual, the
initial “1” of the capture history was changed to “0”)
in order to focus the analysis on breeding birds. Times
of recapture corresponded to both calendar year and
age within each cohort, and the analysis focused on
age of first breeding. In this application, 1 − γ̂t esti-
mated the probability that a bird recaptured as nesting
at age t was nesting for the first time. Cooch et al.
(1999) conducted a similar analysis with lesser snow
geese (Anser caerulescens caerulescens), noting that
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this approach does not assume that once recruited, each
bird breeds every year thereafter. Instead, if recruited
birds are viewed as having some probability of breed-
ing each year, then the capture probability parameter
from open population RT models now estimates the
product of this post-recruitment breeding probability
and probability of capture, conditional on having been
recruited as a (potential) breeder (Cooch et al., 1999).
The robust design sampling approach (see Section 3.5)
permits separate inference about probabilities of cap-
ture and breeding.

3.3 Population Growth

Cormack (1964), Jolly (1965) and Seber (1965) pro-
vided estimators for survival (φt ) and capture (pt )
probabilities. With the additional assumption that cap-
ture probabilities apply to unmarked as well as previ-
ously marked animals, Jolly (1965) and Seber (1965)
noted that abundance or population size could be esti-
mated as

N̂t = nt

p̂t

,(1)

where nt denotes the number of animals (marked + un-
marked) captured at time t . They also noted that new
recruits to the population at time t + 1 could be esti-
mated as

B̂t = N̂t+1 − φ̂t N̂t .

So it has long been clear that all of the compo-
nents of population growth could be estimated from
a capture–recapture data set. Pradel (1996) recognized
that a combination of forward-time and reverse-time
views could be used to estimate population growth rate
and recruitment rate directly. Briefly, he proposed mod-
eling a capture–recapture data set simultaneously with
probabilities of capture (pt ), survival (φt ) and seniority
(γt ). Pradel (1996) further noted that by equating two
different ways of writing the expected number of ani-
mals alive and in the population at successive times, it
is possible to write the expectation of realized popula-
tion growth rate directly as the ratio of seniority and
survival parameters. Specifically, consider the set of
animals alive and in the focal population in two suc-
cessive time periods, t and t + 1. The expected value
of the number of animals in this set can be written ei-
ther as the expected number of animals at time t that
survived until period t + 1 (φtNt ) or as the expected
number of animals at time t + 1 that were also in the
population at time t (γt+1Nt+1). Equating these two

expectations and rearranging leads to the following es-
timator for realized population growth rate, λt :

E(λt ) = E

[
Nt+1

Nt

]
= φt

γt+1
.

The above reference to realized population growth
rate is intended to draw a distinction between the ra-
tio of actual population sizes in two successive peri-
ods (the above estimator) and the asymptotic growth
rate (e.g., Caswell, 2001) defined by any set of sur-
vival and reproductive rates (more generally, rates of
loss and gain) assumed to remain constant over time.
The notation λt indicates time-specificity (t), thus dis-
tinguishing this realized population growth rate from a
time-invariant, asymptotic rate.

A natural way to define reproductive or recruitment
rate, ft , is the number of new recruits at time t + 1 per
animal in the population at time t , such that

λt = φt + ft .

The original Pradel (1996) model (φt , γt ,pt ) can
thus be reparameterized in multiple ways, including
(φt , λt ,pt ) and (φt , ft ,pt ), permitting direct modeling
of realized population growth rate and/or recruitment
rate as functions of covariates, for example. The com-
bination of forward- and reverse-time modeling has
thus led to a number of models that focus on different
parameters relevant to population dynamics (Pradel,
1996; also see Williams, Nichols and Conroy, 2002,
pages 511–518). The ability to estimate the realized
population growth rate as a derived parameter using
the formulation of Jolly (1965) and Seber (1965) was
noted above. The superpopulation approach of Crosbie
and Manly (1985) and Schwarz and Arnason (1996)
provides yet another approach to inference about re-
cruitment and realized population growth, and rela-
tionships among all three approaches are discussed
by Nichols and Hines (2002) and Barker, Cooch and
Schwarz (2002).

Population ecologists often profess interest in the
relative contributions of different population processes
or components to population growth. For example,
both the retrospective approach of life table response
experiments and the prospective concepts of sensitiv-
ity and elasticity of asymptotic population growth rate
to elements of population projection matrices reflect
this interest (Caswell, 2001). The seniority parameter
of single-age capture–recapture can be viewed as a bi-
nomial parameter separating members of a population
at any time, t + 1, into contributions associated with
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survivors from the previous period (St ) and new ani-
mals (Bt ) (see Nichols et al., 2000):

E[λt ] ≈ E(Nt+1)

E(Nt)
= E(St ) + E(Bt)

E(Nt)

= γt+1N̄t+1 + (1 − γt+1)N̄t+1

N̄t

,

where N̄t denotes E(Nt).
Thus, for example, the proportional contribution of

survivors (“old animals”) to λt is given by γt+1 and
that of new recruits by (1 − γt+1). These RT parame-
ters (e.g., γt+1) provide a nonasymptotic approach to
questions similar to those for which the asymptotic
approaches of sensitivity and elasticity (for prospec-
tive analyses) and life table response experiments (for
retrospective analyses) were developed (see Caswell,
2001). For example, the contribution parameters can
be used to address questions such as the following: if
survival had been reduced by factor α, by how much
would the realized population growth rate have been
reduced? RT analysis yields the answer: αγt+1.

At the beginning of this section it was noted that
both Jolly (1965) and Seber (1965) showed how to es-
timate all of the parameters associated with population
change from capture–recapture data. Similarly, we do
not have to resort to RT modeling to estimate the pro-
portional contribution parameters, γt . For example, un-
der the original Jolly–Seber parameterization, γt can be
estimated as a derived parameter as follows:

γ̂t = φ̂t−1N̂t−1

N̂t

.

The Pradel (1996) model (φt , ft ,pt ) essentially de-
composes λt into additive survival and recruitment
components such that γt can be estimated as (Williams,
Nichols and Conroy, 2002, page 514)

γ̂t = φ̂t−1

φ̂t−1 + f̂t−1
.

Thus, RT modeling is not the only way to draw infer-
ences about proportional contributions of demographic
parameters to realized population growth. Instead RT
modeling simply provides a natural way to draw such
inferences and permits the direct modeling of the con-
tribution parameters as functions of covariates, for ex-
ample.

3.4 Other Applications: Paleobiology

Paleobiologists interested in rates of taxonomic orig-
ination and extinction face the same basic problem as

that faced by ecologists studying free-ranging animal
populations. For example, just as the population ecol-
ogist who sets traps to catch small mammals in a field
can never hope to catch every animal in the field, pa-
leobiologists who sample rock or sediment from dif-
ferent geologic ages cannot hope to find fossil remains
of every taxon that was extant during the period repre-
sented by the sample. Capture–recapture methods such
as CJS models that explicitly deal with detection prob-
abilities <1 are well suited to inference in paleobiol-
ogy (Nichols and Pollock, 1983). In paleobiological
applications, detection histories correspond to specific
identifiable fossil taxa rather than individual animals.
For each taxon within some taxonomic group of inter-
est, records of detections (denoted as 1) or nondetec-
tions (denoted as 0) at different points in geologic time
provide data that can be analyzed using CJS models,
with φt representing the complement of extinction or
the probability that a taxon extant in geologic period
t is still extant at period t + �t , where �t is the time
separating two consecutive geologic periods. Detection
probability, pt , is interpreted as the probability that at
least one fossil representative of the focal taxon is de-
tected, given that the taxon was extant at that geologic
period. The complement of the RT seniority parame-
ter, 1 − γt , estimates the probability that a taxon extant
at period t is new in the sense that it originated dur-
ing the interval between period t − �t and t (Nichols
et al., 1986, Connolly and Miller, 2001a, Connolly
and Miller, 2001b). Similarly, it is possible to focus
on ft as a per taxon origination rate (Connolly and
Miller, 2001b). These CJS and JS methods have not
been widely adopted in paleobiology but should pro-
vide much stronger inferences than the common anal-
yses assuming that the duration of a taxon is directly
given by geologic periods of first and last detection.

4. SINGLE STATE MODELING: ROBUST DESIGN

4.1 Basic Modeling

All of the above applications of RT modeling have
been based on so-called “open” population data, in
which consecutive sampling occasions are separated by
enough time that gains and losses to the population are
likely to occur. In contrast, “closed” population data
are based on sampling occasions that are sufficiently
close together in time that neither gains nor losses are
expected (e.g., Otis et al., 1978, Chao and Huggins,
2005). The “robust design” of Pollock (1982) com-
bines sampling at these two different temporal scales,
and includes multiple “secondary” sampling periods
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that occur close together in time within “primary” pe-
riods, defined as the periods between which the popu-
lation is assumed to be open to gains and losses. The
original motivation for the robust design was based on
the biases associated with abundance estimates based
on open population models such as JS, when certain
assumptions were violated. Closed models had been
developed to relax these assumptions, permitting more
robust inference about abundance.

The robust design and the associated ability to esti-
mate abundance and capture probability using closed
population models provide several advantages for RT
modeling. One advantage is the ability to relax the crit-
ical assumption for RT modeling that capture probabil-
ities are the same for animals that have and have not
been captured before. Capture–recapture data within
primary periods can be grouped by previous capture
status (caught before or not), and tests of equal capture
probabilities for these two groups can be conducted. If
evidence of differences is found, the 2-group structure
can be retained for RT modeling. Another advantage of
the robust design is the ability to estimate parameters
that cannot be estimated under standard JS or RT mod-
els. For example, multi-age CJS models that use open
population data (e.g., Pollock, 1981) do not permit in-
ference about the capture probability for the youngest
age class. However, multi-age RT modeling requires
the ability to estimate capture probability of young an-
imals, and this is possible under the robust design.

Yet another advantage of the robust design for RT
modeling concerns the phenomenon of temporary em-
igration. In the modeling of open populations, “exte-
rior 0’s” occurring at the beginning (before the first
“1”) or end (after the final “1”) of a capture history
are ambiguous, in the sense that the animal could have
been present but gone undetected or it could have been
absent from the population. This ambiguity can be re-
solved with the help of “interior 0’s” that occur at some
sample period after the first detection and before the fi-
nal detection. For example, the illustrative capture his-
tory from above (0 1 1 0 1) contains an exterior 0 (pe-
riod 1) and an interior 0 (period 4). The animal could
have been present in period 1 and simply not caught,
or it may not have yet entered the sampled population.
But the 0 for period 4 occurred for an animal that was
present in the population; we know this because we
caught it before and after period 4, and we thus know
to model this 0 with (1 − p4).

One consequence of this type of CJS modeling is that
it requires the assumption that temporary emigration
(an animal is still in the overall population but simply

absent from the area exposed to sampling efforts) is
either absent or occurs at random [probability of tem-
porary emigration is the same for all animals in the
overall populaton (Burnham, 1993, Kendall, Nichols
and Hines, 1997)], in which case temporary emigra-
tion is simply a component of nondetection. The two
most widely used approaches for relaxing the assump-
tion of no (or random) temporary emigration are to im-
pose constraints (typically constraining parameters to
be constant over time) on the CJS model (e.g., Kendall
and Nichols, 2002, Schaub et al., 2004) or to use the
“robust design” (Pollock, 1982) for sampling. If the
population is assumed to be closed (no gains or losses
occur) over the secondary samples, then these sam-
ples permit estimation of detection probability (e.g.,
Otis et al., 1978, Chao and Huggins, 2005) for animals
that have not temporarily emigrated, hence providing a
way to separate probabilities of detection and tempo-
rary emigration.

Indeed, both approaches to dealing with temporary
emigration permit an interior 0 to reflect either of two
possible events: the animal is present in the sampled
area and not detected, or the animal is temporarily ab-
sent from the area exposed to sampling and thus has 0
probability of being detected. Both of these approaches
are available for use with RT modeling of capture–
recapture data. The robust design is the more flexi-
ble of the two approaches and is hence the focus of
this section. It should be noted that the original ro-
bust design approach to dealing with temporary emi-
gration (Kendall, Nichols and Hines, 1997) was based
on the CJS framework and viewed as a single state
problem. However, later treaments (e.g., Kendall and
Nichols, 2002) viewed temporary emigration as a mul-
tistate problem (see Section 5), with two observation
states, temporary emigrants with detection probability
p = 0 and nonemigrants with p > 0.

There are many potential reasons for wanting to dis-
entangle capture probability and the probability of tem-
porary emigration in both standard and RT modeling.
One example was noted in Section 3.2 on inferences
about recruitment. Cooch et al. (1999) used RT model-
ing to estimate age-specific probabilities of recruiting
to the adult breeding population for lesser snow geese.
They noted that all adults that had been recruited to
the breeding population did not necessarily breed each
year, instead foregoing breeding in some years (ex-
hibiting temporary emigration) and being unavailable
for sampling at breeding colonies. In the case of ran-
dom temporary emigration with open population data,
the estimated capture probability from a RT analysis
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estimates the product of the probability of capture and
the probability of nonbreeding or temporary emigra-
tion, and other parameters are estimated without bias.
RT modeling with data collected under the robust de-
sign permits direct estimation of the probability of non-
breeding for recruited adults. If the probability of non-
breeding in a year is not random, but instead dependent
on breeding status in the previous year (i.e., Marko-
vian), then analysis using RT analogs of CJS mod-
els will yield biased estimates of all model parame-
ters (Kendall, Nichols and Hines, 1997). However, RT
models using robust design data permit reasonable in-
ferences even in the case of Markovian temporary emi-
gration (Kendall, Nichols and Hines, 1997). In addition
to standard inferences about animal population dynam-
ics, the use of the robust design as a means of separat-
ing nondetection and temporary absence is very impor-
tant in two specific applications of capture–recapture
modeling: community modeling and occupancy mod-
eling.

4.2 Other Applications: Community Modeling

Modeling of animal or plant communities is often
based on lists of species detected in a sampled area
at various sampling occasions under the robust de-
sign. During the spring of each year, for example,
biologists might compile a list of birds detected for
perhaps three consecutive weeks. Species identities
are substituted for individual marked animal identi-
ties, such that detection histories contain information
on the sampling periods in which each species was
and was not detected. For example, a detection his-
tory of (1 1 0 0 0 0) would indicate a species that was
detected during the first two secondary sampling peri-
ods of primary period 1 and was not detected at any
of the three secondary sampling periods of primary pe-
riod 2. Closed population models are then used with
secondary period data within each primary period to
estimate detection probabilities and the total number
of species present for that primary period, recognizing
that some species were likely present but undetected
in some or even all of the secondary sampling peri-
ods. Sampling in multiple primary periods (e.g., years
in this example) permits inference about the probabil-
ity that a species present in primary period t is absent
(locally extinct, εt ) in period t + 1. Local extinction
of this sort is typically viewed as a form of temporary
emigration, in the sense that the species is still in the
species pool associated with the local site, but simply
not present at the site in a particular year. In community

studies, local extinction is thus equated with the pa-
rameter reflecting temporary emigration in population-
dynamic modeling. Permanent extinction (elimination
from the species pool) is viewed as rare and thus typi-
cally not considered in such models, but can be readily
incorporated under a CJS framework as 1 − φt .

Reverse-time modeling is carried out by condition-
ing on species detected at primary period t + 1 and
estimating (again using closed models) how many of
these species were locally present the previous period
(γt+1). The complement of the RT seniority parameter
(1 − γt+1) can be viewed as species turnover, as it es-
timates the fraction of species present at t + 1 that was
not present the previous period, t , and thus immigrated
and colonized the local site (Nichols et al., 1998). The
distinction between this application and the fossil anal-
yses described above is that the fossil analyses dealt
with long-term taxonomic origination and extinction,
usually either globally or over large areas. Analyses
are based on a geologic time scale, and extinction in
this paleobiological case is permanent. In contrast, the
community modeling application of RT modeling is
based on a potential pool of species, each of which may
or may not be locally present in the area exposed to
sampling efforts. Extinction, immigration and turnover
are thus viewed as local phenomena because origina-
tion of new species and permanent extinction are ex-
tremely rare events on an ecological time scale. So RT
modeling is useful for inference about community dy-
namics but requires sampling that corresponds to the
robust design. Original uses of this RT approach were
based on a two-step, ad hoc approach to inference, pri-
marily because the expected substantial heterogeneity
in species detection probabilities dictated use of jack-
knife estimators for abundance that permitted hetero-
geneous detection probabilities (Otis et al., 1978).

4.3 Other Applications: Occupancy Modeling

Multiseason occupancy modeling requires detection-
nondetection sampling of multiple sites or sample units
over time for a single focal species (MacKenzie et al.,
2003, MacKenzie et al., 2006). Within each primary
period, multiple visits provide a detection history for
each site. These histories have the same basic appear-
ance as the capture histories for individual animals,
vectors of 1’s and 0’s indicating detection, or not, at
each secondary period within each primary period. Oc-
cupancy dynamics at a particular site are modeled as a
first order Markov process, with probability of occu-
pancy in primary period t + 1 being different for sites
that were (complement of local extinction probability)



182 J. D. NICHOLS

and were not (local probability of colonization) occu-
pied in primary period t . As with community dynam-
ics, local extinction is viewed as temporary, not perma-
nent, and is thus equivalent to temporary emigration in
population models (Barbraud et al., 2003, MacKenzie
et al., 2003).

RT modeling permits direct inferences about param-
eters relevant to occupancy dynamics. Simply revers-
ing the time order of data and using a standard mul-
tiseason occupancy model (MacKenzie et al., 2003,
MacKenzie et al., 2006) yields RT estimators corre-
sponding to the local colonization and extinction pa-
rameters of forward-time analyses. The “colonization”
probability of RT analysis now estimates the probabil-
ity that a site not occupied at time t was occupied at
time t − 1. Restated, it estimates the expected fraction
of all unoccupied sites at t that were occupied at t − 1,
but went locally extinct. The “local extinction” proba-
bility of RT analysis now estimates the probability that
a site occupied at time t was not occupied at t − 1.
This parameter can thus be viewed as a “turnover” met-
ric, reflecting the expected fraction of sites occupied
at time t that are newly occupied (were not occupied
in primary period t − 1). Applications of the turnover
estimator might include predictions of higher turnover
for areas experiencing species invasions or for edges of
focal species ranges that are becoming more favorable
because of climate change.

5. MULTISTATE MODELING

5.1 Basic Modeling

Arnason (1972, 1973) generalized the CJS model
to multiple geographic strata, permitting time- and
location-specific capture probabilities, pr

t , and proba-
bilities of individuals in stratum r at time t both sur-
viving and being in a specific location s at time t + 1,
φrs

t . Multistate CJS modeling (denoted as MS) saw vir-
tually no use for two decades following the papers by
Arnason (1972, 1973), but was resurrected and fur-
ther developed in the early 1990s (Hestbeck, Nichols
and Malecki, 1991, Schwarz, Schweigert and Arnason,
1993, Brownie et al., 1993) and is now widely used
in animal population ecology (Lebreton et al., 2009).
It was recognized early on that the concept of “state”
could apply not only to an animal’s current location but
also to characteristics of the animal itself, such as body
mass (Nichols et al., 1992) or reproductive condition
(Nichols et al., 1994). RT multistate modeling can be
useful when state is defined as location, animal age and
other individual characteristics.

Sampling for MS models is similar to that for which
CJS models were developed, with the addition that an-
imal state is recorded at each detection. For example,
MS capture history (1 0 2) denotes an animal caught
in state 1 at sampling occasion 1, released, not caught
at sampling occasion 2, but caught at sampling occa-
sion 3 and determined to be in state 2. The associated
probability can be written as

PrMS(1 0 2|release at period 1 in state 1)

= [
φ11

1
(
1 − p1

2
)(

φ12
2

) + φ12
1

(
1 − p2

2
)(

φ22
2

)]
p2

3.

The additive terms in brackets reflect the uncertainty
associated with the animal’s state at occasion 2, when
it was not detected. As with the CJS model, the MS
likelihood is proportional to the product of probabili-
ties associated with the capture histories of all animals
released during the study.

The time-reversed analog of the MS model condi-
tions on the final capture of each animal and models the
capture history as a function of state-specific capture
probabilities and seniority parameters (Nichols et al.,
2000). Capture probabilities are defined as for the MS
model, with the exception that for most RT applica-
tions they now apply not only to marked animals but
also to new unmarked animals. The seniority param-
eter, γ rs

t , is defined as the probability that an animal
of state r that is alive and in the population at time t

was alive in the population in state s at time t − 1. This
parameter thus deals with “survival” into the past and
with state transitions. The probability associated with
the above capture history under the multistate reverse-
time (MRT) model can be written as

PrMRT(1 0 2|last capture at period 3 in state 2)

= [
γ 22

3
(
1 − p2

2
)
γ 21

2 + γ 21
3

(
1 − p1

2
)
γ 11

2
]
p1

1.

Additive terms again reflect state uncertainty in occa-
sion 2 when the animal is not caught, and the likelihood
is again proportional to the product of probabilities as-
sociated with all of the captured animals.

When all captured animals are released back into the
population (e.g., no removals or deaths on capture), the
pr

t from both forward and reverse-time modeling are
the same. State-specific abundance can be estimated
using these capture probability estimates by simply
adding state-specific superscripts to equation (1):

N̂ r
t = nr

t

p̂r
t

.(2)
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5.2 Geographic Strata

Animal populations are seldom isolated to the extent
that population growth depends only on local rates of
survival and reproduction. It is much more common
for animals to move among locations (Clobert et al.,
2001), with animals from one location contributing re-
cruits to other local populations. This reality has led
to the concept of metapopulations (e.g., Hanski, 1998)
and to ideas about sources, sinks and, more generally,
contributions of specific locations to population growth
in other locations and in entire movement-linked sys-
tems (e.g., Holt, 1984, Pulliam, 1988, Runge, Runge
and Nichols, 2006). MRT modeling provides relevant
inferences about the proportional contributions of ani-
mals from multiple locations to other specific locations
or to a system of locations.

Consider two study areas, denoted 1 and 2, in which
animals are marked, released and recaptured over time.
Sampling occasions are temporally separated such that
we expect changes to occur to the populations between
successive occasions. The sampling situation is thus
that for which CJS models were developed, except that
sampling is carried out on two, rather than single, pop-
ulations. Define Srs

t as the number of animals in loca-
tion s at time t + 1 that were in location r at time t ,
and Bs

t as the number of recruits to location s at t + 1
from outside the 2-population study system. We can
write the abundance at location 1 as the sum of three
components:

N1
t+1 = S11

t + S21
t + B1

t .(3)

The three terms in the sum represent the survivors from
time t that remain in location 1, the animals from loca-
tion 2 that moved into location 1 and the immigrants to
location 1 from outside the study system. Each of these
three terms can be viewed as a multinomial random
variable conditional on N1

t+1 and parameters γ 1s
t+1, rep-

resenting the probability that a member of N1
t+1 was in

location s at time t . Thus, γ 11
t+1 is associated with S11

t ,
γ 12
t+1 with S21

t , and 1 − γ 11
t+1 − γ 21

t+1 with B1
t .

Based on equations (2) and (3), the expectation of
realized population growth rate for location 1 can be
written as

E
[
λ1

t

]

≈ E(S11
t ) + E(S21

t ) + E(B1
t )

E(N1
t )

= γ 11
t+1N̄

1
t+1 + γ 12

t+1N̄
1
t+1 + (1 − γ 11

t+1 − γ 12
t+1)N̄

1
t+1

N̄1
t

,

where N̄1
t also denotes E(N1

t ).
Thus, the γ rs

t reflect the proportional contributions
of each study system location to realized population
growth at location r . As with single-state RT model-
ing, these contribution parameters can be used to ad-
dress questions about realized population growth rate
similar to those addressed about asymptotic λ using
approaches such as sensitivity, elasticity and life table
response experiments (Caswell, 2001). As an example,
the proportional reduction in population growth rate for
location 1 (λ1

t ) expected to have resulted from a propor-
tional reduction α in the contribution from location 2
(a reduction in either movement from 2 to 1 or survival
of animals from state 2) would be given by αγ 12

t+1.
In many cases interest will be focused on the popu-

lation size and growth of the entire system rather than
on one of its components. The MRT framework can be
useful for system-wide inferences as well. Population
growth rate for a 2-patch system can be written as

λt = N1
t+1 + N2

t+1

N1
t + N2

t

,(4)

where the absence of a superscript denotes the entire
system rather than a specific location within it. As for
a single location, decomposition of system-wide λt can
be accomplished via

E[λt ] ≈ (
E

(
S11

t

) + E
(
S21

t

) + E
(
B1

t

) + E
(
S22

t

)
+ E

(
S12

t

) + E
(
B2

t

))
/
(
E

(
N1

t

) + E
(
N2

t

))
= (

γ 11
t+1N̄

1
t+1 + γ 12

t+1N̄
1
t+1 + (

1 − γ 11
t+1 − γ 12

t+1
)

· N̄1
t+1 + γ 22

t+1N̄
2
t+1 + γ 21

t+1N̄
2
t+1

+ (
1 − γ 22

t+1 − γ 21
t+1

)
N̄2

t+1
)
/
(
N̄1

t + N̄2
t

)
,

where N̄r
t denotes E(Nr

t ). In the above expression,
members of each state of the system-wide population
at time t + 1 are classified into their respective compo-
nents from the previous time (t) using the γ rs

t+1.
As when focusing on the population of a specific lo-

cation, the γ rs
t+1 parameters can be used to assess the

relative effects on system-wide λt of proportional re-
ductions of component vital rates. For example, con-
sider the relative effect on λt of a reduction α in the
survival rate of animals in location 1 between times t

and t +1. This reduction influences animals in location
1 at time t that remained in location 1 as well as ani-
mals that moved from locations 1 to 2, and the relative
effect on system-wide λt can be estimated as

α(γ̂ 11
t+1N̂

1
t+1 + γ̂ 21

t+1N̂
2
t+1)

N̂1
t+1 + N̂2

t+1

.
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This expression weights the parameter estimates of
γ rs
t+1 by the estimated proportional compositions of the

local populations to which they pertain.

5.3 Age Strata

Age is often associated with variation in vital rates
and is thus frequently incorporated in capture–
recapture modeling. Pollock (1981) developed the first
age-specific extension of CJS models for sampling sit-
uations in which age of newly captured individuals
can be determined without error. Age determination
in many species is limited to first year (young) and af-
ter first year (adult) designations. In the Pollock (1981)
model, age transitions are naturally viewed as deter-
ministic; that is, a young animal caught in year t will
always be an adult in year t +1. Adults actually include
many different annual age classes (2 year olds, 3 year
olds, etc.), but vital rates are often assumed to be the
same for members of this age category. RT models that
incorporate age-specificity and that include a multi-age
“adult” class differ from standard time models in that
transitions from the adult to the young age class, for
example, cannot be viewed as deterministic. Because
a year 2 adult cannot be distinguished from a year 3
or 4 adult, we are forced to view age transitions in RT
as stochastic, so MRT models provide the appropriate
structure.

In addition to stochastic age transitions, another as-
pect of RT modeling that differs from standard time
CJS modeling is the inability to estimate capture prob-
ability for young animals under a standard design for
open capture–recapture models. Pollock’s (1981) age-
specific modeling of survival and capture probabilities
conditions on the initial capture and release of an ani-
mal, so the capture probability of young animals never
appears in the modeling and is simply not relevant
to inference about survival. MRT modeling conditions
on final capture and prior capture probabilities are re-
quired in the modeling. However, if young animals are
only available as initial captures and can only be recap-
tured when they become adults, standard open model
designs do not permit inference about capture probabil-
ity for young. The robust design (Section 4) solves this
problem by permitting inference about capture proba-
bilities of young based on captures and recaptures oc-
curring within a season.

The relevance of age-specific RT models to ecology
concerns the source of new adults in a local population.
Although definitions of ecological sources and sinks
(Pulliam, 1988) appearing in the literature are varied,
many draw a distinction between local populations that

maintain a realized population growth rate λt ≥ 1 via in
situ reproduction versus those that require immigrants
from elsewhere to maintain population growth. Age-
specific RT models can be used to decompose the re-
alized growth rate of the adult population into compo-
nents associated with adult survivors, young survivors
(in situ reproduction) and immigrants, thus permitting
assessments about the relative importance of immigra-
tion to the local population.

Using parenthetical superscripts to denote young
(age 0) and adults (age 1), we can write the realized
population growth rate for adults as

λ
(1)
t =

[
N

(1)
t+1

N
(1)
t

]
.

Define γ
(a)
t+1 as the probability that an adult animal at

time t + 1 was a surviving animal of age a in the local

population at time t . The parameters γ
(0)
t+1 and γ

(1)
t+1 can

then be viewed as multinomial probabilities and used
to decompose the adult abundance at time t + 1, and
thus the realized population growth rate, into 3 compo-
nents:

N
(1)
t+1 = S

(01)
t + S

(11)
t + B

(1)
t .(5)

Thus, an adult at time t + 1 may be a surviving young
animal, S

(01)
t , with probability γ

(0)
t+1, a surviving adult,

S
(11)
t , with probability γ

(1)
t+1, or an immigrant, B

(1)
t ,

with probability 1 − γ
(0)
t+1 − γ

(1)
t+1.

As in the development of Section 5.2, the expected
value of realized adult population growth rate can be
written in terms of these components, and thus the
reverse-time parameters:

E
[
λ

(1)
t

]

≈ E(S
(01)
t ) + E(S

(11)
t ) + E(B

(1)
t )

E(N
(1)
t )

= γ
(0)
t+1N̄

(1)
t+1 + γ

(1)
t+1N̄

(1)
t+1 + (1 − γ

(0)
t+1 − γ

(1)
t+1)N̄

(1)
t+1

N̄
(1)
t

.

As in Section 5.2, the decomposition allows us to
directly address questions about changes to realized
population growth that would have occurred had spe-
cific components, or their associated vital rates, been
increased or reduced. For example, we can compute
the realized population growth rate that would have
been expected if immigration had been eliminated (the
growth rate claimed to be relevant to source-sink clas-
sification) as follows: λ

(1)
t (γ

(0)
t+1 + γ

(1)
t+1). By focusing



TIME-REVERSAL IN CORMACK–JOLLY–SEBER MODELS 185

on the probability that a member of N
(1)
t+1 is a mem-

ber of a specific group of contributing components, the
MRT γ

(a)
t+1 provide a natural parameterization for infer-

ences about relative contributions.
This development of RT modeling inferences about

age-specific contributions to population growth has
been based on the simple case of 2 age classes, a young
class, the duration of which is the same as the period
between sampling occasions, and an adult class that
includes all animals older than young (e.g., >1 year
old in most applications). However, extensions of the
forward time approach of Nichols and Pollock (1990)
permit inference about age-specific contributions to an
adult age class in the more general case of age-specific
probabilities of entering this class (Cooch, Rockwell
and Brault, 2001). For example, many seabirds and
geese exhibit delayed reproduction, in the sense that
they do not all return to the breeding colony to breed
(and to be exposed to sampling efforts) at one year of
age. Rather, some may return at age 1, others at age 2,
etc., as governed by age-specific probabilities of re-
cruiting to the adult breeding population. Although I
am not aware of attempts to apply RT thinking to this
problem, it may be possible to develop a RT model
with seniority parameters indexed by hatch year that
accounts for age-specific breeding and survival proba-
bilities, as well as for detection probabilities of 0 for
animals that are alive but have not yet been recruited to
the adult, breeding population.

5.4 Example Application: Metapopulation
Contributions

Concepts of source and sink populations were in-
troduced by Holt (1984) and Pulliam (1988) and are
widely used in ecological literature and thinking. Sinks
are frequently defined as local populations that are
maintained by immigration; that is, within-population
survival and in situ reproduction do not produce a real-
ized population growth rate λt ≥ 1. However, this view
does not consider emigration from the focal popula-
tion to other local populations. The related concept of
a metapopulation concerns multiple local populations
of conspecifics linked by some movement of individ-
uals (e.g., Hanski, 1998). Runge, Runge and Nichols
(2006) recommended a shift from efforts to categorize
local populations as sources or sinks, to efforts to es-
timate contributions of local populations to the entire
metapopulation systems of which they are a part. This
latter view acknowledges that such contributions in-
clude both internal focal population dynamics and ex-
port of emigrants to other local populations within the
system.

Runge, Runge and Nichols (2006) defined the per
capita contribution of focal population r at time t as
the average number of individuals in the metapopu-
lation system at time t + 1 contributed by each indi-
vidual in the focal population r at time t . Sanderlin
et al. (2012) extended this concept to that of relative
contributions, cr

t , the probability that a member of the
metapopulation system at time t + 1 was contributed
by local population r , or roughly the proportional con-
tribution of local population r to realized metapopula-
tion growth between t and t + 1. The conceptual and
inferential framework for such metapopulation contri-
butions is that presented above (Section 5.2) for mul-
tiple locations, with a focus on system-wide realized
population growth, λt .

For a system comprised of m local populations, the
realized population growth rate can be written as

λt =
∑m

r=1 Nr
t+1∑m

r=1 Nr
t

.(6)

Here we define Nr
t as the population of adults in focal

population r , although the approach is easily general-
ized to include new young when estimating realized
population growth rate. “State” can be defined by both
age (young, first year, denote as state a = 0; adult, after
first year, denote as state a = 1) and local population,
leading to the following MRT seniority parameters,
γ

rs(a)
t+1 , defined as the probability that an adult present

in local population r at time t + 1 was an animal of
age a = 1,0 in population s at time t (see Sanderlin
et al., 2012). For example, the relative contribution of
a particular location state to the realized metapopula-
tion growth rate can be obtained as

cs
t =

∑m
r=1 Nr

t+1(γ
rs(1)
t+1 + γ

rs(0)
t+1 )∑m

r=1 Nr
t+1

.

The numerator expresses the contributions of pop-
ulation s to each component of the metapopulation,
Nr

t+1, and thus to system population growth. If the sys-
tem is closed, in the sense of no immigration from out-
side the m local populations, then

∑m
s=1 cs

t = 1. How-
ever, in the general case of immigration from outside
the system, we can express this proportional contribu-
tion of immigration (denoted with superscript 0) to re-
alized population growth between t and t + 1 as

c0
t = 1 −

m∑
s=1

cs
t .
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Sanderlin et al. (2012) conducted a robust design
capture–recapture study of a metapopulation of banner-
tailed kangaroo rats, Dipodomys spectabilis, distri-
buted among 8 local populations in southeast Ari-
zona, USA. The study covered 7 years of annual sam-
pling (late July and early August each year), and they
were able to designate captured individuals as adult or
young (first year). They used reverse-time modeling
to estimate relative contributions of each local pop-
ulation and to test a priori hypotheses about sources
of variation in these contributions. More specifically,
they computed a contribution matrix, providing model-
averaged estimates of the relative contribution of every
local population (plus outside immigration) to every
other local population. For any pair of local popula-
tions, contributions of one local population to another
were greater for young animals than adults, consistent
with the tendency for greater dispersal of young ani-
mals (Skvarla et al., 2004). Contributions via disper-
sal were larger for nearby local populations than for
distant ones, as expected. More central local popula-
tions received smaller contributions from extra-system
immigration than more peripheral local populations.
Model-averaged estimates of local population abun-
dance and relative contributions of each local popula-
tion to the entire metapopulation system are presented
in Table 1 for two sets of years, selected a priori as
appearing to have relatively high and low densities
system-wide. Estimates of immigration from outside
the study system were larger than expected, a finding
common to the few cases where these contributions
have been estimated (e.g., Connor, Faeth and Sim-
berloff, 1983, Nichols and Pollock, 1990, Saracco, De-
Sante and Kaschube, 2008).

Theory for metapopulation dynamics has outpaced
empirical work (Kawecki and Ebert, 2004), and ap-
proaches based on MRT modeling seem well suited to
testing theoretical ideas. Decomposition of metapopu-
lation change into contributions of specific local pop-
ulations should facilitate the testing of many mecha-
nistic hypotheses about metapopulation dynamics. In
addition to such testing, the described contribution
metrics provide a currency that might be used to assign
relative values to different local populations within a
conservation setting. In the context of management de-
cisions for metapopulation systems, MRT provides a
convenient means of predicting both local and system-
wide effects of actions that target specific local popu-
lations.

TABLE 1
Model-averaged estimates of abundance ˆ̄Nr (SE) and relative

contributions to the entire metapopulation ˆ̄cr (SE) from each local
population for the reverse-time analysis of a kangaroo rat

metapopulation structure in Cochise County, SE Arizona, USA,
for high and low density years

Density Local population (r) ˆ̄Nr (SE) ˆ̄cr (SE)

High 1 23.45 (1.78) 0.152 (0.031)
2 19.86 (1.32) 0.129 (0.031)
3 29.02 (2.39) 0.178 (0.032)
4 7.84 (0.59) 0.049 (0.031)
5 14.56 (0.93) 0.089 (0.031)
6 12.60 (0.99) 0.077 (0.031)
7 2.37 (0.22) 0.018 (0.031)
8 5.87 (0.43) 0.037 (0.031)

Low 1 16.48 (0.73) 0.189 (0.019)
2 10.81 (0.52) 0.124 (0.019)
3 12.25 (0.45) 0.126 (0.019)
4 3.62 (0.28) 0.038 (0.019)
5 14.44 (0.69) 0.149 (0.019)
6 6.16 (0.34) 0.064 (0.019)
7 4.12 (0.28) 0.047 (0.019)
8 3.62 (0.28) 0.038 (0.019)

5.5 Multistate Miscellany

As described in Section 5.1, the original multistate
models of Arnason (1972, 1973) assume that the state
of an animal is correctly recorded at each capture.
Thus, the state of an animal is unknown for each “0”
in the capture history, but the state is known with cer-
tainty for all nonzero entries (captures). However, in
some sampling situations, captures, or, more gener-
ally, detections, may be characterized by uncertainty.
Such uncertainty usually arises not when the relevant
state variable is location, but rather some characteris-
tic of the individual animal, such as reproductive con-
dition (e.g., breeding or not) or even sex, for some
species. State uncertainty or multievent models have
been developed for inference in these sampling situa-
tions (e.g., Kendall, Hines and Nichols, 2003, Pradel,
2005). Although multievent models have not been ap-
plied to RT analyses to my knowledge, if certain ap-
plications are characterized by state uncertainty, then
use of these multievent models with time-reversed data
should present no special problems.

Occupancy modeling (Section 4.3) was discussed
under the robust design, but I noted that occupancy
was a special case of temporary emigration model-
ing, and that the latter could be viewed as a case of
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multiple observation states (available for detection or
unavailable). The general issue of state uncertainty in
capture–recapture models is equivalent to the issue of
false positives in occupancy modeling. False positives
occur when an animal or its sign is incorrectly identi-
fied as the focal species when it is actually some other
species. As with state uncertainty and multievent mod-
eling, approaches have been recently developed to deal
with false positives (e.g., Miller et al., 2013, Chambert,
Miller and Nichols, 2015), and their use with RT occu-
pancy modeling should be straightforward.

The ability to directly estimate λt via a combina-
tion of standard time and RT parameters for the single
state situation (Section 3.3) leads to a natural expecta-
tion that a similar approach should be available for the
multistate case. Such direct estimation would be use-
ful whether states are geographic locations, age classes
or strata produced by any other means of structuring
a population. However, extension of the approach of
Pradel (1996) to multiple states is not so straightfor-
ward and has not yet been fully developed (although
substantial progress has been made, J.-D. Lebreton
pers. comm.) Until this development is completed, it
should be recognized that realized population growth
for a system of multiple states can be estimated only
as a derived parameter by substituting estimates of Nr

t

into equation (6). However, in many cases, such as
those focusing on age-specificity, the ability to draw
inferences about a specific class (e.g., adults) may be
all that is required.

6. DISCUSSION

What makes the CJS model so remarkable in my
opinion is that users can extract so much information
about an animal population from a seemingly meager
data source, a matrix of 0’s and 1’s, with the 0’s char-
acterized by substantial uncertainty. The fact that this
matrix permits model-based inference about popula-
tion size, recruitment, survival and sampling intensity
is certainly impressive, with more recent extensions
adding inference about temporary emigration, recruit-
ment components, etc. RT modeling works with this
same information source, and there is no claim that it
permits inferences that cannot be obtained using the
standard CJS formulation. Rather, the RT perspective
permits direct modeling and inference about popula-
tion growth rate and contributions to this rate, includ-
ing various sources of new recruits.

The temporal symmetry models that combine re-
verse and standard time approaches to permit direct

inference about population growth rate (Pradel, 1996)
have seen a fair amount of use in animal popula-
tion ecology, including, for example, the demographic
meta-analyses of the northern spotted owl data (Strix
occidentalis caurina) from study areas across the Pa-
cific northwestern United States (e.g., Anthony et al.,
2006, Forsman et al., 2011).

Other uses of the RT approach have been limited,
with application areas including animal population
ecology, animal community ecology, paleobiology and
occupancy dynamics. Use of RT modeling with cap-
ture history data from individuals of a single pop-
ulation permits direct modeling and inference about
population growth rate (Pradel, 1996), relative contri-
butions of different demographic components to this
growth rate (Nichols et al., 2000) and age-specific re-
cruitment to breeding populations (Pradel et al., 1997).
Use of RT modeling with species-level detection-
nondetection data permits direct inference about com-
munity turnover, the fraction of species in a local com-
munity that is "new" (not present the previous time pe-
riod) (Nichols et al., 1998). For paleobiological data,
RT modeling permits inference about rates of taxo-
nomic origination (Nichols et al., 1986). And RT mod-
eling applied to single-species detection-nondetection
data across multiple sites permits direct inference
about the fraction of occupied sites at any point in time
that is newly occupied (MacKenzie et al., 2006).

Use of extensions to multiple states with MRT
has been even more limited. However, the study of
Sanderlin et al. (2012), with its full matrix of site-to-
site contribution estimates, should motivate increased
use of this approach for the study of metapopulation
dynamics. The few MRT uses of which I am aware all
focus on location or age or both of these state variables.
However, use of MRT with other state variables char-
acterizing individual animals holds promise as well.
Cooch et al. (2012) suggested an epidemiological ap-
plication in which MRT modeling is based on states
defined by both location and individual disease state
(e.g., susceptible, infected, recovered). They suggested
that an MRT approach could provide direct inferences
about the contributions of animals in different locations
and disease states to population growth of local popula-
tions, and metapopulation systems of such populations
(Cooch et al., 2012).

Ultimately the selection of modeling approaches and
inference methods should be dictated by study objec-
tives. The contention in this paper is that there is a
set of ecological questions for which RT and MRT
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modeling approaches should be the methods of choice.
As suggested by Cooch et al. (2012), I suspect that
there are a number of other potential application ar-
eas for which RT modeling would be especially useful
as well. Finally, I emphasize that, regardless of how
odd or nonstandard these RT approaches may appear
at first glance, they remain firmly grounded in the con-
ceptual framework provided to us a half-century ago
by Richard Cormack, George Jolly and George Seber.
These three scientists certainly deserve our apprecia-
tion and thanks.
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