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Abstract: We consider the problem of detecting a rectangle of activa-
tion in a grid of sensors in d-dimensions with noisy measurements. This
has applications to massive surveillance projects and anomaly detection in
large datasets in which one detects anomalously high measurements over
rectangular regions, or more generally, blobs. Recently, the asymptotic dis-
tribution of a multiscale scan statistic was established in [18] under the null
hypothesis, using non-constant boundary crossing probabilities for locally-
stationary Gaussian random fields derived in [8]. Using a similar approach,
we derive the exact asymptotic level and power of four variants of the scan
statistic: an oracle scan that knows the dimensions of the activation rect-
angle; the multiscale scan statistic just mentioned; the adaptive variant;
and an ε-net approximation to the latter, in the spirit of [3]. This approxi-
mate scan runs in time near-linear in the size of the grid and achieves the
same asymptotic level and power as the adaptive scan, and has a poly-
logarithmic time parallel implementation. We complement our theory with
some numerical experiments, and make some practical recommendations.

MSC 2010 subject classifications: 62G10, 62M40, 60G32.

Keywords and phrases: Sensor networks, image processing, multiscale
detection, scan statistic, suprema of Gaussian random fields.

Received December 2015.

1. Introduction

Detecting anomalies in networks is important in a number of areas, such as sen-
sor arrays [6, 9], digital images (incl. satellite, medical, etc.) [7, 29, 23, 16, 24],
syndromic surveillance systems [31, 15, 33], and many more. The scan statistic
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[19] is by far the most popular approach, and is given different names in engi-
neering, such as the method of matched filters or deformable templates [23]. It
was perhaps first introduced for finding patterns in point clouds [25, 12] and is
now applied to any setting where the goal is to detect a “localized” anomaly.
In statistics, it corresponds to the generalized likelihood ratio test after a par-
ticular model is assumed, and as such is even more widely applicable, being the
most omnibus approach to hypothesis testing.

In its simplest version, the scan is done over a window of fixed size. In prac-
tice, however, the size of the anomaly may not be known, in which case it makes
sense to scan over windows of different sizes. This was considered in a number
of papers. In particular, some approximations to the distribution of the result-
ing scan statistic is provided in [26, 28] in dimension 1, and in [13, 35, 14] in
dimension 2. First order theoretical performance bounds are established in a
small number of papers, such as [34, 10] in dimension 2 and [3, 2] in arbitrary
dimension. More refined results establishing weak convergence are even fewer.
[17] considers the scan over rectangles in a grid of independent random vari-
ables with negative expectation, while [5] study the scan over intervals of given
length in a Bernoulli sequence. Both works rely heavily on the Chen-Stein Pois-
son approximation. Still in the context of the one-dimensional lattice, but now
with standard normal random variables, [32] provide a weak convergence for the
normalized scan over all intervals. Concretely, suppose that y(1), . . . , y(n) are
iid standard normal, and define

Zn = max
1≤i1≤i2≤n

1√
i2 − i1 + 1

i2∑
i=i1

y(i).

Then [32] show that, for all τ ∈ R,

lim
n→∞

P
(
Zn ≥ un(τ)

)
= 1− e−e−τ

, un(τ) :=
√
2 logn+

1
2 log(2 logn) + κ+ τ√

2 logn
,

for some numeric constant κ. This was recently extended to higher dimensions,
for scans over hypercubes and hyperrectangles, by [18]. Formally, define [n] =
{1, . . . , n} and assume that (y(i) : i ∈ [n]d) are iid standard normal. A (discrete)
hyperrectangle is of the form [a1, b1] × · · · × [ad, bd] ⊂ [n]d. Let R denote the
class of all discrete hyperrectangles of [n]d and define the scan over R as

Zn = max
R∈R

1√
|R|

∑
i∈R

y(i), (1.1)

where |R| denotes the number of nodes in R, equal to
∏

j(bj − aj + 1) when
R = ×j [aj , bj ]. [18] shows that, for all τ ∈ R,

lim
n→∞

P
(
Zn ≥ un(τ)

)
= 1− e−e−τ

(1.2)

for the threshold function,

un(τ) :=
√
2d log n+

(d− 1
2 ) log(2d log n) + κ+ τ√

2d logn
, (1.3)
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for some constant κ depending only on the dimension d. These results allow, in
theory, to control the (asymptotic) level of the test based on the scan statistic
if, indeed, the data is iid standard normal when no anomaly is present and an
anomaly comes in the form of a rectangle with elevated mean. This is what we
assume throughout the paper.

Contribution 1. We establish a weak convergence result when an anomaly
is present which, in theory, allows for precise (asymptotic) power calcula-
tions.

Besides the scan statistic (1.1), we study other variants. One of them, already
considered in [2, 34], is based on a finer normalization for the scans at different
scales. The tests at different scales are combined with a Bonferroni correction.
Similar multiple testing approaches are also proposed in [13, 35]. In detail, define
the class of rectangles with shape h ∈ [n]d as

R(h) =
{
×d

j=1[vj , vj + hj ] : vj ∈ [n− hj ], ∀j ∈ [d]
}
, (1.4)

and let Zn,h denote the scan overR(h), defined as in (1.1) but withR(h) in place
of R. We consider the test that rejects if there is h such that Zn,h ≥ un,h(τ),
for some explicit critical values un,h(τ) defined later. We refer to this procedure
as the (scale or shape) adaptive scan. We note that in the first order analyses
found in [2, 34], un,h(τ) only depends on

∏
j∈[d] hj , which is not quite true in

our situation.

Contribution 2. We establish weak convergence results for the adaptive
scan, both when an anomaly is absent and when it is present.

Both the scan and the adaptive scan are computationally intensive. With
proper implementation, they can be computed in O(n2d) basic operations, which
may nevertheless be prohibitive for scans over large networks. For example, a
typical 2D digital image is of size n×n, where n is in the order of 103, resulting a
computational complexity on of order 1012 basic operations. Aware of that, [3, 2]
and [34] propose to approximate the scan statistic by scanning over a subset of
rectangles that is sufficiently dense inR. For a given metric δ overR, we say that
Rε is an ε-covering if, for allR ∈ R, there isR′ ∈ Rε such that δ(R,R′) ≤ ε. Both
[3, 2] and [34] construct different ε-coverings which can be scanned in roughly
O(nd) basic operations, and show that, when ε = εn → 0 sufficiently slowly,
scanning over an ε-covering yields the same first-order asymptotic performance.

Contribution 3. We establish weak convergence results for the adaptive
scan over a given ε-covering, both when an anomaly is absent and when
it is present. We also construct a new ε-covering and design an efficient
way to scan over it using on the order of O(nd) basic operations when ε
is not too small, and a poly-logarithmic parallel implementation.

As a benchmark we consider an oracle which knows the shape h� of the
anomalous rectangle (but is ignorant of its location) and therefore only scans
over rectangles with the same shape, meaning, over R(h�).
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Contribution 4. We establish weak convergence results for the oracle scan,
both when an anomaly is absent and when it is present.

We note that our method of proof is largely borrowed from [18], whose ap-
proach is based on extensive work of [8] on the extrema of Gaussian random
fields, and related topics, and the Chen-Stein Poisson approximation [4].

We complement our theoretical findings with some numerical experiments
that we performed to compare these various methods, meaning, the oracle scan,
the scan, the adaptive scan, and the adaptive scan over an ε-covering.

The rest of the paper is organized as follows. In Section 2, we set the frame-
work and state the theoretical results announced above, and in Section 3, we
present the result of our numerical experiments. We briefly discuss some exten-
sions and open problems in Section 4, while the technical proofs are gathered
in Section 5.

Before we continue, we pause to introduce some notation. We already used
the notation [n] = {1, . . . , n} for any positive integer n. Cartesian products
of sets are denoted with the × operator and for a set A and integer k ≥ 1,
Ak = A × · · · × A, k times. All vectors are bolded and scalars are not. Some
special vectors are 0 = (0, . . . , 0), 1 = (1, . . . , 1), and the jth canonical basis
vector ej = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the jth component. A vector a
in dimension d will have components denoted a1, . . . , ad. The rectangle with
endpoints a,b will be denoted [a,b] = ×d

i=1[ai, bi]. The symbol ◦ indicates
the component-wise product for vectors and matrices, division between vectors
denoted a/b is component-wise. The Lebesgue measure in Rd will be denoted
by λ. For a discrete set R, |R| denotes its cardinality. For a vector a, ‖a‖
and ‖a‖1 denote its Euclidean and �1 norms, respectively. For a set A, I{A}
(sometimes 1A) will denote the indicator of A. We use the Bachmann-Landau
notation to compare infinite sequences. For example, if {an}∞n=1, {bn}∞n=1 are
such that an/bn → 0 then an = o(bn) and bn = ω(an). For stochastic sequences,
if the convergence is in probability then this is denoted by a subscript as in
an = oP(bn).

2. Model, methodology, and theory

We assume that we are given one snapshot of measurements from a sensor array
in d-dimensional space. This array is arranged by placing one sensor at each
grid point in [n]d. An important example is that of digital images, from CCD
or CMOS cameras, or other modalities such as MRI. It also encompasses video
(incl. fMRI), by letting one dimension represent time (in some unit), although
the time dimension is often treated in a special way.

We denote the measurement at sensor i ∈ [n]d by y(i) and model this as a
signal vector with additive white Gaussian noise,

y(i) = x(i) + ξ(i), i ∈ [n]d, (2.1)

where x is the signal and ξ is white standard normal noise, or in vector notation,

y = x+ ξ,
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where y,x ∈ Rnd

and ξ is a standard normal vector in d dimensions. We ad-
dress the problem of deciding whether the signal x is nonzero, formalized as the
following hypothesis testing problem:

H0 : x = 0,

H1 : x ∈ Xμ,
(2.2)

for some parameter μ, that will be interpreted as the signal size, and some

class Xμ ⊂ Rnd

parametrized by μ and with the property 0 /∈ Xμ. While H0

represents ‘business as usual’, H1 would indicate that there is some anomalous
activity, here modeled by x.

We address the situation where the signal has substantial ‘energy’ over a
rectangle of unknown shape. Given a signal y = (y(i) : i ∈ [n]d), define its
Z-score over a subset R ⊂ [n]d as

y[R] =
1√
|R|
∑
i∈R

y(i). (2.3)

Recalling the class R(h) of rectangles of with shape h defined in (1.4), let Xμ(h)
denote the following set of signals:

Xμ(h) =
{
x ∈ Rnd

: ∃R ∈ R(h) s.t. x[R] ≥ μ & x(i) = 0, ∀i ∈ [n]d\R
}
. (2.4)

Rectangles are useful in practice because of their ease of interpretation and
implementation, and also because they are building blocks for more complicated
shapes. They are also more amenable to a sharp asymptotic analysis, which is
the focus in this paper. See the discussion in Section 4.

Let h� denote the shape of rectangle of activation, defined as the shape h such
that supp(x) ∈ R(h). For the sake of clarity and ease of analysis, we assume
that we are given integers 1 ≤ h ≤ h ≤ n/e (where e = exp(1)) such that
h� ∈ [h, h]d. Redefine R as

R =
⋃

h∈[h,h]d

R(h). (2.5)

We know that, under the alternative, the signal is elevated over a rectangle in
R, namely

x ∈ Xμ :=
⋃

h∈[h,h]d

Xμ(h).

Our analysis is asymptotic with respect to the grid size diverging to infinity,
n → ∞. While the grid dimension d remains fixed, μ, h, and h are allowed to
depend on n. In fact, throughout this paper we assume that

h = hn satisfies h/ logn → ∞, as n → ∞, (2.6)

to avoid special cases and complications that arise when including very small
rectangles in the scan.
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As mentioned in the Introduction, we will use the oracle scan as a benchmark.
Instead of (2.2), the oracle, which knows the shape h�, is faced with the simpler
alternative:

H�
1 : x ∈ Xμ(h

�). (2.7)

We take the asymptotic Neyman-Pearson approach in which we control the
asymptotic probability of type I error (aka false rejection). Consider a test T (y)
which evaluates to 1 if it rejects H0 and 0 otherwise. Throughout, we assume
that a level α ∈ (0, 1) is given and we control the tests at the exact asymptotic
level α, which means that

lim
n→∞

P0{T (y) = 1} = α,

where P0 indicates the distribution of y under H0. The left-hand side is called
the asymptotic size of the test T . For all of the test statistics that we will study,
we provide a threshold that gives us such a type I error control. Once the size
of the test is under control, we examine the power of the test against each
alternative.

2.1. The Oracle scan

When tasked with finding a rectangle of activation in a d-dimensional lattice, the
problem is made easier if one knows the precise shape of the active rectangle.
Having access to an oracle that provides the shape of the anomalous region
simplifies the alternative down to (2.7). In this situation, one would naturally
restrict the scan to rectangles with shape h�. We called this procedure the oracle
scan in the Introduction. Given a critical value u, the oracle scan test is defined
as

To(y) = I
{
y[R] > u for some R ∈ R(h�)

}
. (2.8)

2.1.1. Asymptotic theory

Define the following critical value

un(τ) = vn +
(2d− 1) log(vn) + κ+ τ

vn
, (2.9)

where
vn =

√
2
∑

j log(n/h
�
j ), κ = − log(

√
2π). (2.10)

Given a level α ∈ (0, 1), we choose

τ = τα = − log(− log(1− α)). (2.11)

Theorem 1. Suppose that mini h
�
i = ω(logn). The oracle scan test (2.8) with

critical value (2.9) and τ chosen as in (2.11), has the following asymptotic size

lim
n→∞

P0{To(y) = 1} = 1− e−e−τ

= α.
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Let Φ̄ denote the survival function of the standard normal distribution.

Theorem 2. Suppose that minj h
�
j = ω(logn). The oracle scan test (2.8) with

critical value (2.9) (with (2.11)) has the following asymptotic power

lim
n→∞

inf
x∈Xμ(h�)

Px{To(y) = 1} =

⎧⎪⎨
⎪⎩
1, μ− vn → ∞,

α+ (1− α)Φ̄(c), μ− vn → c, for c ∈ R,

α, otherwise,

where vn is defined in (2.10).

2.1.2. Computational complexity

While a naive implementation runs in O(nd
∏

j h
�
j ) time, the oracle scan can be

computed in O(nd logn) time using the Fast Fourier Transform (FFT), which
is generally faster when the h�

j ’s are not too small. Specifically, let bh be the
boxcar function with shape h, namely

bh(i) =
d∏

j=1

I{ij ≤ hj},

and let ∗ denote the convolution operator, so that, for f : [n]d �→ R,

(f ∗ bh)(t) =
∑

i∈[n]d

f(t+ i)bh(i) =
∑
i∈[h]

f(i+ t).

Thus, computing the convolution y∗bh amounts to computing (y[R] : R ∈ R(h)),
and using the FFT, this convolution can be computed in O(nd logn) time. And
the oracle scan test is based on the maximum of y ∗ bh� .

2.2. The multiscale scan

Perfect knowledge of the shape of the true rectangle of activation is rare. A
simple solution to this problem is to scan over all rectangles in the class R
and report the largest observed Z-score. Formally, given a critical value u, the
multiscale scan test is

Tm(y) = I
{
y[R] > u for some R ∈ R

}
. (2.12)

This is the test based on the scan statistic as defined in (1.1), except that R is
now defined as in (2.5).

2.2.1. Asymptotic theory

Define the following critical value

un(τ) = vn +
(4d− 1) log(vn) + κ+ τ

vn
, (2.13)
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where
vn =

√
2d log(n/h), κ = − log(4d

√
2π). (2.14)

[18, Th 1.2] establishes the asymptotic size of the multiscale scan test when
h = 1 and h = n. We do the same, when h = ω(logn) and h ≤ n/e. We note
that, because of that, the critical value that we use, meaning (2.13), is different
from the one that [18] uses, meaning (1.2). The constants denoted by κ in both
places are in fact different, and the (4d− 1) factor in (2.13) is a (2d− 1) factor
in (1.2).

Theorem 3. [18] Suppose that h = ω(logn). The multiscale scan test (2.12)
with critical value (2.13) (with (2.11)) has the following asymptotic size

lim
n→∞

P0{Tm(y) = 1} = 1− e−e−τ

= α.

Theorem 4. Suppose that mini h
�
i = ω(logn). The multiscale scan test (2.12)

with critical value (2.13) (with (2.11)) has the following asymptotic power

lim
n→∞

inf
x∈Xμ(h�)

Px{Tm(y) = 1} =

⎧⎪⎨
⎪⎩
1, μ− vn → ∞,

α+ (1− α)Φ̄(c), μ− vn → c, for c ∈ R,

α, otherwise,

where vn is defined in (2.14).

Compared with the oracle scan test (see Theorem 2), the multiscale scan test
(at the same level) has strictly less asymptotic power in general. For example,
suppose that h � na and h�

j � nb for all j, for some fixed 0 < a < b <
1. In that case, to have power tending to one, the oracle scan requires μ −√
1− b

√
2d logn → ∞, while the multiscale scan requires μ−

√
1− a

√
2d log n →

∞.

2.2.2. Computational complexity

Using the FFT, the multiscale scan statistic can be computed inO
(
(n2d/hd)logn

)
time, since each shape can be scanned in O

(
nd logn

)
as we saw in Section 2.1.2,

and there are O(nd/hd) shapes in total in R.

2.3. The adaptive multiscale scan

While the multiscale scan uses the same threshold um for all rectangle sizes,
it ignores the fact that detecting small rectangles (at the finer scales) is more
difficult than detecting large rectangles. The approach advocated in [34, 2] is a
refinement of the multiscale scan in that a different threshold is used at each
scale (i.e., rectangle size). See also [13, 35]. Formally, given (possibly) shape-
dependent critical values uh, the adaptive multiscale scan test is

Ta(y) = I
{
y[R] > uh, for some h ∈ [h, h]d and R ∈ R(h)

}
. (2.15)

If in fact u does not depend on h, then this is the multiscale scan test (2.12).



Exact asymptotics for scan statistic 2649

2.3.1. Asymptotic theory

Define the following shape-dependent critical value

un,h(τ) = vn,h +
(4d− 1) log(vn,h) + κ+ τ

vn,h
, (2.16)

where

vn,h =
√
2
∑

j log
[

n
hj

(
1 + log

hj

h

)2]
, κ = − log(4d

√
2π). (2.17)

Theorem 5. Suppose that h = ω(logn). The adaptive multiscale scan test
(2.15) with critical value (2.16) (with (2.11)) has the following asymptotic size

lim
n→∞

P0{Ta(y) = 1} = 1− e−e−τ

= α.

Theorem 6. Suppose that minj h
�
j = ω(logn). The adaptive multiscale scan

test (2.12) with critical value (2.13) (with (2.11)) has the following asymptotic
power

lim
n→∞

inf
x∈Xμ(h�)

Px{Ta(y) = 1} =

⎧⎪⎨
⎪⎩
1, μ− vn,h� → ∞,

α+ (1− α)Φ̄(c), μ− vn,h� → c, for c ∈ R,

α, otherwise,

where vn,h is defined in (2.17).

The adaptive multiscale scan test (at the same level) happens to achieve the
same asymptotic power as the oracle scan (see Theorem 2) in the important case
where h� is not too large. Indeed, suppose for example that minj h

�
j = O(nb)

for some fixed 0 < b < 1. Letting v�n denote the vn in (2.10), we obviously have
vn,h� ≥ v�n, and also

vn,h� ≤ v�n
√

1 + (v�n)
−2d log logn ≤ v�n

[
1 + 1

2 (v
�
n)

−2d log logn
]

= v�n +O
( log log n√

log n

)
= v�n + o(1),

so that vn,h� = v�n + o(1).

2.3.2. Computational complexity

The computational cost for computing the adaptive multiscale scan is the same
as that for computing the multiscale scan, i.e., O

(
(n2d/hd) logn

)
time.



2650 J. Sharpnack and E. Arias-Castro

2.4. Approximate adaptive multiscale scan

The computational complexity of the adaptive multiscale scan, which is qua-
dratic in the grid size, may be prohibitive in some situations. We provide now
an algorithm that has nearly linear computation time while achieving the same
asymptotic power. Inspired by the multiscale approximation developed in [3,
2, 34], we accomplish this by effectively scanning only over a subset of the
rectangles that form an ε-covering for R. We recall that, given a metric δ over
R, Rε ⊂ R is an ε-covering of R for δ if, for all R ∈ R, there is R′ ∈ Rε such
that δ(R,R′) ≤ ε. Recall the definition of ξ in (2.1). We use the canonical metric
for the Gaussian random field {ξ[R], R ∈ R}, which is given by

δ2(R0, R1) = E(ξ[R0]− ξ[R1])
2 = 2

(
1− |R0 ∩R1|√

|R0||R1|

)
, ∀R0, R1 ∈ R. (2.18)

Given an ε-covering Rε and (possibly) shape-dependent critical values uh, the
ε-adaptive multiscale scan test is

Tε(y) = I
{
y[R] > uh, for some h ∈ [h, h]d and R ∈ R(h) ∩Rε

}
. (2.19)

2.4.1. Asymptotic theory

Ideally, we would like to select ε small enough (in fact, decreasing with n) that
the ε-adaptive multiscale scan statistic has asymptotically the same distribution
as the (full) adaptive multiscale scan statistic. As it turns out, it is sufficient
to select ε−1 on the order of

√
logn for this to occur. We will find that with

this choice of ε it is possible to construct an algorithm that can perform an
ε-covering scan in near-linear time.

Consider critical values of the form (2.16) (with (2.11)) and define the fol-
lowing P-value

α̂n,h(z) = inf{α ∈ (0, 1) : z ≥ un,h(τα)}. (2.20)

Then the P-value associated with the adaptive multiscale scan test is

α̂n = min
{
α̂n,h(y[R]) : h ∈ [h, h]d, R ∈ R(h)

}
. (2.21)

Analogously, the P-value associated with the ε-adaptive multiscale scan test is

α̂n,ε = min
{
α̂n,h(y[R]) : h ∈ [h, h]d, R ∈ R(h) ∩Rε

}
. (2.22)

Theorem 7. Consider the P-value for the multiscale scan or the adaptive mul-
tiscale scan, and ε-covering analog, defined in (2.21)–(2.22) respectively. Assum-
ing ε

√
log n → 0, we have

|α̂n,ε − α̂n| = oP(1), n → ∞.

This implies that any such ε-scan test enjoys the same asymptotic size and
power as the corresponding full scan, established in Theorems 3 and 4 for the
multiscale scan, and in Theorems 5 and 6 for the adaptive multiscale scan.
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Algorithm 1 Implementation of the ε-adaptive multiscale scan over the ε-
covering defined in (2.23). n is assumed to be a power of 2 for convenience. The
P-values can be as in (2.20) or completely arbitrary, for example based on a
different parametric model.

Require: Field y over [n]d, integers 1 ≤ h ≤ h ≤ n, ε such that ε2h ≥ 8d, P-value functions
α̂h

1: Initialize dyad1(i) = y(i),∀i ∈ [n]d

2: for a ∈ [log2 n]
d\{1}d do (Downsampling)

3: j′ ← min{j ∈ [d] : aj > 1}
4: for t ∈ [n/2a] do
5: dyada(t) ← dyada−ej′

(t ◦ (1+ ej′ )) + dyada−ej′
(t ◦ (1+ ej′ )− ej′ )

6: end for
7: end for
8: a ← �log2(ε2h/(4d))	
9: a ← 
log2(ε2h/(4d))�
10: Initialize α̂ ← 1
11: for a ∈ [a, a]d do
12: for f ∈ [
8d/ε2�]d do (Convolution)

13: ŝ ←
(∏

jfj2
aj
)− 1

2 maxt∈[n/2a](dyada ∗ bf )(t)

14: α̂ ← min {α̂, α̂f◦2a (ŝ)}
15: end for
16: end for
Ensure: α̂

2.4.2. Implementation and computational complexity

The computational complexity of a scan over an ε-covering depends, of course,
on how the ε-covering is designed. We refer the reader to [3, 2, 34] for some
existing examples in the literature. We design here another ε-covering which we
find easier to scan over in practice. Specifically, assuming that n is a power of 2
for convenience, we consider

Rε =
⋃

a∈[log2 n]d

{
[2a ◦ t, 2a ◦ (t+ f)] : fj ∈ [�8d/ε2�], tj ∈ [n/2aj ], ∀j ∈ [d]

}
.

(2.23)

Proposition 8. Suppose that ε2h → ∞ as n → ∞. When n is large enough,
Rε defined in (2.23) is an ε-covering of R for the metric δ defined in (2.18).

Algorithm 1 gives an efficient implementation of a scan over Rε. As in [3],
we start by summing y over dyadic rectangles, which are defined as rectangles
whose side lengths are a power of 2. Formally, let dyada denote the result of
summing y over all rectangles of shape 2a with the top-left corner at a multiple
of 2a, thought of as a field over the grid [n2−a]. Using dynamic programming,
computing {dyada : a ∈ [log2 n]

d} can be done in time O(nd). This ‘coarsifica-
tion’ allows us to quickly form spatial approximations to the full spatial scan
for a specific shape h. Specifically, for a given dyadic scale given by a ∈ [log2 n]

d

and location and scale given by tj ∈ [n/2aj ], fj ∈ [�8d/ε2�] for all j, we have

y
[
[2a ◦ t, 2a ◦ (t+ f)]

]
= dyada

[
[t, t+ f ]

]
.



2652 J. Sharpnack and E. Arias-Castro

We note that the P-values that appear on Line 14 of Algorithm 1 can be
defined in any way, and in particular could be based on other model assumptions.
Put differently, the sole purpose of Algorithm 1 is to compute the P-value (2.22)
for a given set of critical values in (2.20), which can be completely arbitrary.

Proposition 9. Suppose that ε2h → ∞ as n → ∞. When n is large enough,
Algorithm 1 performs a scan over Rε defined in (2.23).

Proposition 10. Algorithm 1 requires on the order of max
{
nd, ε−4d(n/h)dlogn

}
basic operations (the computational complexity on a CPU). Algorithm 1 requires
on the order of (logn)d downsampling operations, and (log n/ε2)d convolution
operations.

Remark 11. It is important to enumerate details about the implementation of
Algorithm 1 on different computing architectures.

1. Regarding computation on a CPU, if h = na for some fixed a ∈ (0, 1) and
ε = (log n)−1 (which is allowed by Theorem 7), then the computational
complexity of ε-AdaScan is of order O(nd), which is precisely linear in the
grid size.

2. Regarding computation on a GPU, by implementing the methodology by
using the NVIDIA CUDA deep neural network library, cuDNN, we have
been able to parallelize the most expensive operations, downsampling and
convolution, which enables Algorithm 1 to run in poly-logarithmic time.
Moreover, the multiscale scan statistic is a particular instantiation of a
feedforward deep convolutional neural net. Typically, the size of the shared
memory is the bottleneck when implementing multiscale scans on GPUs.

3. Regarding distributed implementation, the formation of the dyad data struc-
ture is simple to parallelize in the map-reduce framework. Furthermore, in
the event that h̄ is of smaller order than n then an image can be broken
into overlapping images of size Ch̄ × . . . × Ch̄ where C is a constant,
whereby each image can be scanned separately where in the computation
of α̂ using n as the side length of the original larger image.

In remote sensing applications, real-time detection requires performing a mul-
tiscale scan in under 1 second. On a standard CPU, performing a multiscale scan
with Algorithm 1 can scale to images of size on the order of 10 kilo-pixels. On
a standard GPU, with roughly 1000 cores and 4 gigabytes of shared memory,
real-time detection can be performed at the mega-pixel scale. For terapixel sized
images that are prevalent in astronomy and satellite surveilance, using the map-
reduce framework, real-time detection is possible as long as the size of the largest
scanned rectangles are at the megapixel scale.

3. Numerical experiments

In this section, we discuss some findings from simulation experiments. In each
of the following experiments, we will generate observations that conform to our
assumptions, namely that the random field y is drawn according to (2.1) and
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Fig 1. (ROC curves for varying rectangle size) The percentage of discoveries that are true
versus the percentage that are false, obtained by varying the τ parameter for d = 2. Con-
structed with 400 repeats from both H0 and H1, with n = 256, h = 6, μ = 6, rectangle of size
34 × 38 on a CPU (left); n = 2048, h = 10, μ = 5, rectangle of size 148 × 231 on a GPU;
n = 6656, h = 10, μ = 7, rectangle of size 580× 326 on 16 distributed GPUs.

that there is a rectangular activation under H1 as in (2.2). We will consider
three questions.

1. For finite n, does the adaptive test Ta(y) have appreciably superior power
compared to the multiscale test Tm(y)?

2. For finite n, do the theoretically-derived thresholds (2.13) and (2.16) con-
trol the level of the tests Tm(y) and Ta(y) as desired?

3. What is the trade-off between computation time and statistical power as
we vary ε in the adaptive ε-scan (Algorithm 1)?

In all our experiments below, we consider the case of a discrete image (d = 2)
and the signal under the alternative is proportional to the indicator function of
a rectangle, i.e., x(i) = μ/

√
|R�| for i ∈ R� and 0 otherwise, for some rectangle

R�. For the multiscale and adaptive scans, we set h = 6.

The first experiment will address the effect that adaptive threshold selection
has on the statistical power. The experiments are on a 256×256 image (n = 256)
computed on a 2.80 Ghz CPU, 2048×2048 image on an NVIDIA GPU with 1,536
cores and 4 GB of shared memory, and 6656×6656 image on 16 such distributed
GPUs. Each method is run with ε < 0.9 using Algorithm 1. We simulate 400
times from both the null H0 and each instance of the alternative H1. Under
H1, we set μ = 6, 5, 7 respectively, and consider rectangle sizes — 34 × 38,
148 × 231, and 580 × 326 respectively — with the location of the activation
rectangle being chosen uniformly at random. For each method, we simulate
the false discovery rate and the true discovery rate — the fraction of the 400
simulations drawn from H0 that were rejected and the fraction from H1 that
were rejected, respectively — and plot them as the parameter τ varies, producing
a receiver operator characteristic (ROC) curve. Our findings (Figure 1) indicate
that the adaptive scan test achieves significantly better performance in large
images when the hidden rectangle size is large. These advantages only manifest
themselves when images are at the megapixel scale or greater, which is the size
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Fig 2. (P-value qq-plot) The ordered P-values of 400 simulations plotted against the quan-
tiles of the uniform(0, 1) distribution for the P-value in Theorem 5 and the aforementioned
calibrated version. The images size is increasing: 2048× 2048 (left) and 6656× 6656 (right)
and h = 10 in both.

of most modern cameras. For images of size 256 × 256 there is no significant
advantage to making the statistic adaptive.

We also provide quantile-quantile plots of the P-value statistics against the
uniform distribution on (0, 1). The motivation for this is to assess if the P-
values computed based on the thresholds (2.13) and (2.16) are accurate. Our
asymptotic theory in Theorem 5 predicts that this is the case in the large sample
limit n, h → ∞. We see that the P-values tend to be over-estimated (Figure 2),
so that they produce more conservative tests, with this effect diminishing as n
increases.

In [1], importance sampling has been proposed as a way to circumvent this
issue for scan statistics. It is not clear how to implement importance sampling
in the context of adaptive threshold selection. Theorem 5 guarantees that

max
h∈[h,h]d

(
vn,h

(
max

R∈R(h)
y[R]− vn,h

)
− (4d− 1) log

(
vn,h

))
(3.1)

has an asymptotic Gumbel distribution with location κ and shape 1 which has a
mean of approximately κ+0.5772. We have found that the statistic (3.1) is nearly
Gumbel distributed but the location parameter κ differs from the asymptotic
theoretical value for most values of h and ε. We estimate κ via Monte Carlo
and the method of moments, specifically we simulate many times from H0 and
average the statistic (3.1) over the simulations and subtract 0.5772. After this
calibration, this gives a close fit to the Gumbel distribution (Figure 2). It is
important to notice that the specific form of vn,h was determined in Theorem 5,
and is needed to compute (3.1).

The final set of experiments are intended to demonstrate the impact of re-
ducing ε on the performance of Algorithm 1 (computed on a CPU). We derive
ROC curves for Algorithm 1 by applying it to 480 simulations with two different
image sizes: 256×256 and 512×512 pixels (Figure 3) with parameters h = 6, 12
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Fig 3. (ROC curve for the ε-adaptive scan) The ROC curve for Algorithm 1 as ε decreases
for a 256 × 256 image (left) and a 512 × 512 image (right) with h = 6, 12, μ = 4, 5, and a
61× 47 and 82× 35 active rectangle, respectively. Each setting is repeated 480 times.

Fig 4. (Running time) Same setting as in Figure 3. Here we plot the running time in seconds
on a 2.80 Ghz virtual CPU as a function of ε. The line indicates the average time, the triangles
are the 5 and 95 percentiles, and the error bars extend from the minimum to the maximum
of the 480 simulations.

and μ = 4, 5, and active rectangle of size 61× 47 and 82× 35, respectively. We
selected the values for ε by making 8d/ε2 equal to the integers 1, . . . , 6 and se-
lecting from these 4 representative curves. We interpret the results to mean that
as ε decreases, the performance quickly converges to the optimal ROC plot. We
also considered the running time as ε changes (Figure 4). In this simple exper-
iment we find that, while it is advantageous to have an ε small to increase the
power, the improvements in power are generally outweighed by the additional
computational burden.

4. Discussion

We briefly discuss some generalizations and refinements of our work here.
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More general signals. In this paper we work in a context where the signal has
substantial energy over some rectangle of unknown shape and location. This mo-
tivates the scans over classes of rectangles that we define and study in detail. Al-
though one could scan over more complicated shapes, to increase power, as done
for example in [2, 3, 11, 20], the implementation of such scans is generally very
complicated and often ad hoc search methods are implemented. For example, the
software SaTScan (Kulldorff and Information Management Services, Inc) offers
two options (for spatial data): scanning over circles or discs. In contrast, scan-
ning over rectangles (and other simple shapes such as circles) can be done effi-
ciently and the mathematical analysis can be carried to the exact asymptotics,
as we show here — see also [3, 34]. Moreover, rectangles are building blocks for
more complicated shapes and are representative of ‘thick’ or ‘blob-like’ shapes
— see [2].

Signals of arbitrary sign. For concreteness and ease of exposition, we consider
signals that are ‘mostly’ positive over a rectangle. This is clear from the class of
signals that we consider, defined in (2.4). This would not be the most appropriate
definition when one is expecting signals of arbitrary sign, for example, when
the signal x is such that x(i) are IID normal with zero mean and variance
τ , over some rectangle R. In that case, assuming R is asymptotically large,
we have x[R] ∼ N (0, τ), and is negative with probability 1/2. For a signal
x = (x(i) : i ∈ [n]d) and R ⊂ [n]d, define x2[R] =

∑
i∈R x(i)2. Instead of the

class of signals defined in (2.4), consider

X 2
τ (h) =

{
x ∈ Rnd

: min
R∈R(h)

x2[R] ≥ |R|+ τ
√

2|R|
}
. (4.1)

In that case, the most natural scans are based on the chi-squared scores y2[R], R ∈
R. Presumably, a similar analysis can be carried in this setting, in particular
since the results of [8] — upon which Kabluchko’s arguments (and therefore
ours too) are founded — apply to approximately Gaussian fields, which is the
case of y2[R], R ∈ R. This brings us to the following.

Other parametric models. Obtaining similar results for other parametric mod-
els may be of interest, for example, in epidemiology where the Poisson distribu-
tion is used to model counts, and would replace the Gaussian distribution here.
[2] extend their first-order analysis to distributions with finite moment generat-
ing function, proving that the bounds obtained under normality still apply as
long as h � logn. It is possible that a similar phenomenon (essentially due to
the Central Limit Theorem) applies at a more refined level, and that our results
apply to such distributions, again, as long as h is sufficiently large.

Dependencies. A more involved extension of our results would be to allow the
observations y(i), i ∈ [n]d to be dependent. The results of [8] apply unchanged
to the setting where short-range dependencies are present. So, in principle, an
extension of our work in that direction is possible following similar lines. But
we did not pursue this here for the sake of concreteness and conciseness of
presentation.
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5. Proofs

Our method of proof is largely based on [18], which relies on the work of [8] on the
extrema of Gaussian random fields and the Chen-Stein Poisson approximation
[4].

Signals that are indicators of rectangles. We will focus the remaining of the
paper on signals x that are proportional to the indicator of a rectangle. This is
asymptotically the most difficult case for all the scans that we consider. Indeed,
we show in this section that the limits in Theorems 2, 4, and 6, hold when the
signal is μ|R�|−1/21R� , while for a signal x such that x[R�] ≥ μ, these are seen
to hold as lower bounds when taking the limit inferior. Together, this shows
that the minimax asymptotics stated in Theorems 2, 4, and 6 hold.

We will often leave n implicit, but even then, all the limits are with respect
to n → ∞, unless otherwise stated.

5.1. Locally stationary Gaussian random fields

We will begin the proof section with an introduction to some theory for locally-
stationary Gaussian random fields (GRFs), particularly their smoothness and
extreme value properties. Throughout this work, we approximate the discrete
GRF given by {ξ[R], R ∈ R} with a continuous version. For that, define the
continuous analog to R, that is,

R̄ =
{
[t, t+ h] : h ∈ [h, h]d, t ∈ [0, n1− h]

}
.

Let Ξ be a (canonical) Gaussian white noise on Rd, meaning a random mea-
sure on the Borel sets of Rd such that, for any integer k ≥ 1 and any Borel
sets R1, . . . , Rk, Ξ(R1), . . . ,Ξ(Rk) are jointly Gaussian, with zero mean and
Cov(Ξ(Ri),Ξ(Rj)) = λ(Ri ∩ Rj) for all i, j ∈ [k]. Consider the GRF on R̄ de-

fined by Ξ[R] = Ξ(R)/
√

λ(R), where λ(R) denotes the Lebesgue measure of R
when R is a continuous rectangle. This GRF is denoted Ξ henceforth. It has
zero-mean and covariance structure

Cov(Ξ[R0],Ξ[R1]) =
λ(R0 ∩R1)√
λ(R0)λ(R1)

, R0, R1 ∈ R̄.

Consequently, it is invariant with respect to translations and scalings. Following
the approach taken by [18], we approximate the discrete GRF ξ with its continu-
ous counterpart Ξ. Therefore, we will be interested in the excursion probabilities
of Ξ, which will require an introduction to locally stationary GRFs. For conve-
nience, consider the parametrization of the rectangles R̄ via the one-to-one map
w = (h, t) �→ R(w) := [t, t + h] for w ∈ (0,∞)2d. We then use the shorthand
Ξ(w) = Ξ[R(w)] for w ∈ (0,∞)2d. In this way, Ξ can be thought of as a GRF
over (0,∞)2d with the following covariance structure,

Cov(Ξ(h, t),Ξ(g, s)) =

d∏
j=1

(hjgj)
−1/2[(tj + hj) ∧ (sj + gj)− tj ∨ sj ]+ , (5.1)
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for pairs (h, t), (g, s) ∈ (0,∞)2d, where x+ = x ∨ 0. Furthermore, define the set
of shapes and location that correspond to rectangles in R̄ as

W =
{
(h, t) ∈ (0,∞)2d : h ∈ [h, h]d, t ∈ [0, n1− h]

}
.

This describes the continuous version of the data under the null distribution
H0. Under the alternative, there is a signal, and the continuous counterpart to
the discrete GRF is

Υ(w) = m(w) + Ξ(w), (5.2)

where
m(w) = μCov(Ξ(w),Ξ(w�)), (5.3)

w� = (h�, t�) being the scale and location of the active rectangle. (Recall that
under the alternative we are considering the signal μ|R�|−1/21R� .) We are now
prepared to review some relevant results on boundary crossing probabilities of
locally-stationary GRFs.

5.1.1. Boundary crossing probabilities for locally stationary GRFs

In order to analyze the GRF Ξ we must introduce the notion of local stationarity
and the tangent process. The definitions below are given in [8, 30], and utilized
in [18].

We note that we work in dimension p = 2d, except when analyzing the oracle
scan, in which case p = d, because the shape h� is given. Given K ⊂ Rp and
γ > 0, define

[K]γ = {w + u : w ∈ K, ‖u‖ ≤ γ}.
A function L : R+ → R+ is said to be slowly varying if

lim
x→0

L(αx)

L(x)
= 1, ∀α > 0.

Let Sp−1 denote the unit sphere in Rp. We say that the GRF Ξ is locally sta-
tionary over the set W , if for W within the domain of Ξ, there exists α ∈ (0, 2],
γ > 0, and a slowly varying function L, such that [W ]γ ⊂ (0,∞)2d and for all
w ∈ [W ]γ ,

E[Ξ(w)Ξ(w + u)] = 1− (1 + gw(u))‖u‖αL(‖u‖)rw(u/‖u‖), (5.4)

where rw : Sp−1 → R+ are continuous functions such that

sup
v∈Sp−1

|rw(v)− rw+u(v)| → 0, as u → 0,

and gw : Rp → R are such that

sup
w∈[W]γ

|gw(u)| → 0, as u → 0.



Exact asymptotics for scan statistic 2659

For such processes, the local structure is defined as

Cw(u) = ‖u‖αL(‖u‖)rw(u/‖u‖),

and we say that the local structure is homogeneous of order α. Let the tangent
process at w ∈ W be {Hw(u)}u∈Rp , and defined as the GRF satisfying

EHw(u) = −Cw(u), u ∈ Rp,

and

Cov(Hw(u0), Hw(u1)) = Cw(u0) + Cw(u1)− Cw(u0 − u1), u0,u1 ∈ Rp.

The high excursion intensity is defined as

Λ(w) = lim
m→∞

1

mp
E exp

[
supu∈[0,m]pHw(u)

]
and has been shown to exist within (0,∞) in [8, Lem 5.2], which in fact states
that this convergence is uniform within w ∈ W . [18] proves the following re-
sult by observing that Ξ has the same local structure as a tensor product of
normalized differences of Brownian motions.

Lemma 12 ([18]). The GRF Ξ is locally stationary over W with α = 1 and
L(x) = 1, with local structure given by

C(h,t)(g, s) =
1

2

d∑
j=1

|sj |+ |sj + gj |
hj

,

and high excursion intensity given by

Λ(h, t) = 4−d
d∏

j=1

h−2
j .

Define the function

ψ(x) =
1

x
√
2π

e−
1
2x

2

, x ∈ R.

Lemma 13 ([8] Th 2.1). For K ⊂ W ⊂ Rp fixed, bounded, and Jordan mea-
surable, and a GRF Ξ that is locally stationary over W with homogeneity α and
high-excursion intensity Λ,

P
{
∃w ∈ K : Ξ(w) > c

}
∼ c

2p
α ψ(c)

∫
K

Λ(w)dw, as c → ∞.

[8] generalized this theorem for calculating the non-constant boundary cross-
ing probability of a locally stationary GRF, which we will use in our analysis
of the adaptive scan. In fact, [8, Th 2.8] allows a non-constant boundary, a set
that is growing with n, and holds for non-Gaussian random fields. We specialize
the theorem to our setting.
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Lemma 14 ([8] Th 2.8). Let Ξ be a GRF that is locally stationary over W
with homogeneity α and high-excursion intensity Λ, and take a fixed bounded
and Jordan measurable set K such that [K]γ ⊂ W for some γ > 0. Let (cζ : ζ ∈
(0, 1)) be a family of real-valued functions defined on W satisfying

sup
w∈[K]γ

cζ(w)−2p/α = o(ζ), ζ → 0, (5.5)

for some γ0 > 0 fixed and

sup
{
cζ(w)2−cζ(w

′)2 : w,w′ ∈ [K]2ζ , ‖w−w′‖∞ ≤ ζ
}
= o(1), ζ → 0. (5.6)

Then

P
{
∃w ∈ K : Ξ(w) > cζ(w)

}
∼
∫
K

cζ(w)
2p
α ψ(cζ(w))Λ(w)dw, ζ → 0.

Lemma 14 differs from the statement in [8, Th 2.8] which includes additional
conditions. This is due to the fact that we assume that K is fixed and Ξ is
Gaussian. Their conditions (2.16) and (2.18) are precisely (5.5) and (5.6), while
the condition (2.14) is trivially true for fixed K. In the proof of [8, Th 2.1] their
conditions (A1)–(A5) were shown to hold for locally stationary GRFs, and as
a consequence so do (B1)–(B5) since the process is exactly Gaussian and the
domain K is fixed.

5.2. Approximating Ξ with an ε-covering

In this section we state and prove results on the covering properties of W and
the continuity of Ξ. The metric δ over R introduced in (2.18) translates into the
following metric on W (we overload the notation)

δ(w0,w1) = δ(R(w0), R(w1)), ∀w0,w1 ∈ W .

An ε-covering ofW is defined analogously. To be sure, it is a subsetWε ⊂ W such
that, for all w ∈ W , there is w′ ∈ Wε such that δ(w,w′) ≤ ε. The ε-covering
number for the metric space (W , δ), denoted N(W , δ, ε), is the cardinality of a
smallest ε-covering of W for δ, and logN(W , δ, ε) is the ε-entropy of W .

Lemma 15. For any 0 < ε <
√
4d,

logN(W , δ, ε) ≤ d log

(
32d2n

hε4

)
.

Proof. Let (h, t), (g, s) ∈ W . Starting with (2.18) and (5.1), and using the fact
that

1−
d∏

j=1

(1− aj) ≤
d∑

j=1

aj , for any a1, . . . , ad ∈ [0, 1],
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which follows from the union bound or a simple recursion, we have

1

2
δ2((h, t), (g, s)) = 1−

d∏
j=1

(hjgj)
−1/2[(tj + hj) ∧ (sj + gj)− tj ∨ sj ]+ (5.7)

≤
d∑

j=1

(
1− 1√

hjgj
[(tj + hj) ∧ (sj + gj)− tj ∨ sj ]+

)

≤
d∑

j=1

(
1− 1√

hjgj
[tj ∧ sj + hj ∧ gj − tj ∨ sj ]+

)

≤
d∑

j=1

1√
hjgj

[
√
hjgj − tj ∧ sj − gj ∧ hj + tj ∨ sj ]+

≤
d∑

j=1

1√
hjgj

[hj ∨ gj − tj ∧ sj − gj ∧ hj + tj ∨ sj ]+

≤
d∑

j=1

θ((hj , tj), (gj , sj)), (5.8)

where θ((h, t), (g, s)) =
|h− g|+ |t− s|√

hg
. (5.9)

Notice that because

δ((h, t), (g, s)) ≤
√
2
∑
j

θ((hj , tj), (gj , sj)),

and W ⊂ [h, n]d × [0, n]d, it suffices to construct an (ε2/2d)-covering for each
[h, n]× [0, n] with respect to θ. (We define a covering in θ analogously although
it is not necessarily a metric.) We divide by h everywhere, so that we may focus
on [1, T ] × [0, T ], where T = n/h, by the scale invariance of θ. Fix α ∈ (0, 1).
We have

[1, T ]× [0, T ] ⊆
[log T/ log(1/α)]⋃

k=0

[1/(αk(1−α))]⋃
�=0

Ik × Ik,�,

where Ik = [αk+1T, αkT ] and Ik,� = [�αk(1 − α)T, (� + 1)αk(1 − α)T ]. Take
h, g ∈ Ik and t, s ∈ Ik,� for some k and � in these ranges. Then

θ((h, t), (g, s)) ≤ (1− α)αkT + (1− α)αkT

αk+1T
=

2(1− α)

α
.

The cardinality of the resulting covering is equal to

[log T/ log(1/α)]∑
k=0

([1/(αk(1− α))] + 1) ≤ T

(1− α)2
+

log T

log(1/α)
≤ 2T

(1− α)2
,
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using the fact that log(1 + x) ≥ x2 log(2) for all x ∈ [0, 1] and t ≥ log(t)/ log(2)
for all t ≥ 1. When we choose α = 4d/(4d + ε2), the tensor product of these
coverings, repeated over j = 1, . . . , d, is an ε-covering of W , of cardinality

( 2T

(1− α)2

)d
= (2T (4d/ε2)2)d,

since 1− α ≤ ε2/(4d).

We use this bound on the entropy and a continuity property of Ξ to bound
Ξ. This bound will be crude relative to the asymptotic guarantees which are
the focus of this work, but is necessary as a lemma. For an ε-covering, Wε ⊂
W , define the interpolated GRF Ξε over W , with value at w ∈ W given by
Ξε(w) = Ξ(w′), where w′ = argmin{δ(w0,w) : w0 ∈ Wε}; if the minimizer is
not unique, then choose a minimizer arbitrarily. For a real-valued function f
over W , let ‖f‖∞ = supw∈W |f(w)|.

Lemma 16. Consider the GRF Ξ introduced in Section 5.1. In our context, it
has the following properties.

1. The supremum of Ξ has the following behavior

‖Ξ‖∞ = OP

(√
log(n/h)

)
.

2. Let U ⊂ W be such that there exists a constant C > 0 with the property that
maxj |tj − sj | ≤ C and maxj | log hj − log gj | ≤ C for all (h, t), (g, s) ∈ U .
Then

sup
w∈U

Ξ(w) = OP(1).

3. Let Ξε be an interpolated GRF built on an ε-covering of W where ε < 1.
Then

‖Ξ− Ξε‖∞ = OP

(
ε
√
log(n/(hε4))

)
.

Proof. We prove each part in turn.
Part 1. Let T = n/h. Note that δ(w,w′) ∈ [0,

√
2]. Dudley’s metric entropy

theorem [22, Th 6.1.2], along with Lemma 15, can be applied to show that

E(‖Ξ‖∞) ≤ 16
√
2

∫ √
2

0

√
logN(W , δ, ε)dε

≤ 16
√
2

∫ √
2

0

√
d log (32d2T/ε4)dε = O

(√
log T

)
.

The result now follows by Markov’s inequality.
Part 2. This can be proven by noticing that for any ε, the entropy of U

satisfies

logN(U , δ, ε) ≤ C0 log(1/ε)
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for some constant C0, using a construction analogous to that used in the proof
of Lemma 15. The rest follows as in the proof of Part 1.

Part 3. As before let T = n/h. By the definition of Ξε,

E (‖Ξε − Ξ‖∞) ≤ E
(
sup{Ξ(w1)− Ξ(w2) : w1,w2 ∈ W : δ(w1,w2) ≤ ε}

)
.

Applying Dudley’s theorem and Lemma 15, we bound the RHS by

99

∫ ε

0

√
logN(W , δ, η)dη ≤ 99ε

∫ 1

0

√
d log (32d2T/ε4) + 4d log (1/η)dη

= O
(
ε
√
log (T/ε4)

)
.

The result follows by Markov’s inequality.

We will now analyze the P-values resulting from our various scan statistics by
their Lipschitz property. This will allow us to demonstrate that if ε is decreasing
quickly enough, the P-value of each test when evaluated over an ε-covering
is asymptotically indistinguishable from the P-value when evaluated over the
entire set W . In the end, we will have proven Theorem 7, but these results will
also be useful to prove other results. For convenience, we work with τ instead
of α, related by (2.11). For each scan statistic, let τ̂ be the value of τ such that
the scan statistic equals its threshold ((2.9), (2.13), or (2.16)). It takes the form

τ̂ = max
w∈W′

a(w) (y[R(w)]− a(w)) + b(w)

= max
w∈W′

a(w) (ξ[R(w)] +m(w)− a(w)) + b(w), (5.10)

where m is defined in (5.3) (with m ≡ 0 under H0), while a, b and W ′ ⊂ Z2d∩W
will depend on which scan statistic we are considering. In all cases,

√
2d ≤

√
2d log(n/h) ≤ a(w) ≤

√
2d log(n/h), ∀w ∈ W ′.

We will relate the statistic τ̂ with the random variable

τ̃ = max
w∈W

a(w) (Ξ(w) +m(w)− a(w)) + b(w). (5.11)

Lemma 17. Suppose there are constants L > 0 and ε0 > 0 such that

∣∣a(w1)− a(w2)
∣∣ ∨ ∣∣b(w1)− b(w2)

∣∣ ≤ Lδ(w1,w2), (5.12)

for all w1,w2 ∈ W such that δ(w1,w2) ≤ ε0. Then |τ̂ − τ̃ | = oP(1) if W ′ is an
ε-covering of W with

ε
(
μ+

√
log (n/(hε4))

)√
log(n/h) = o(1). (5.13)
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Proof. Applying the triangle inequality,

|τ̂ − τ̃ |
≤ max

w∈W
min

w′∈W′
|a(w) (Ξ(w) +m(w)− a(w))− a(w′) (Ξ(w′) +m(w′)− a(w′)) |

+ max
w∈W

min
w′∈W′

|b(w)− b(w′)|.

For the second term, we use the fact that b is Lipschitz and that W ′ is an
ε-covering, to get

max
w∈W

min
w′∈W′

|b(w)− b(w′)| ≤ max
w,w′∈W:δ(w,w′)≤ε

|b(w)− b(w′)| ≤ Lε.

For the first term, it is bounded by

max
w∈W

(Ξ(w) +m(w)− a(w)) min
w′∈W′

|a(w)− a(w′)|

+ max
w∈W

a(w) min
w′∈W′

[|Ξ(w)− Ξ(w′)|+ |m(w)−m(w′)|+ |a(w)− a(w′)|] .

We have
min

w′∈W′
|a(w)− a(w′)| ≤ Lε, ∀w ∈ W ,

by the fact that a is Lipschitz and W ′ is an ε-covering for W ; we have

max
w∈W

(Ξ(w) +m(w)− a(w)) ≤ max
w∈W

Ξ(w) + μ = OP

(√
log(n/h)

)
+ μ,

by Lemma 16, the fact that m(w) ≤ μ and a(w) ≥ 0 for any w ∈ W ; we have

max
w∈W

a(w) ≤
√
2d log(n/h),

as well as

minw′∈W′ [|Ξ(w)− Ξ(w′)|+ |m(w)−m(w′)|+ |a(w)− a(w′)|]
≤ OP

(
ε
√

log(n/(hε4)
)
+ με/2 + Lε,

for all w ∈ W , by Lemma 16. From this, we conclude.

For the oracle and multiscale scan statistics, a and b are constant in w and
so they are trivially Lipschitz. For the adaptive multiscale scan, we verify below
that they indeed satisfy (5.12).

Lemma 18. For the adaptive multiscale scan, based on (2.17), we have
a((h, t)) = vn,h and b((h, t)) = −κ− (4d− 1) log (vn,h), and they satisfy (5.12)
for some L > 0 and ε0 > 0 depending only on d.

Proof. Let f(h) = v2n,h/2. Since 2f(h) ≥ 1 and log x has derivative bounded by
1 over [1,∞), it is sufficient to show that (h, t) → f(h) is Lipschitz with respect
to δ. From (5.7), we see that δ2((h, t), (g, s)) ≥ δ‡(h,g), where

1
2δ‡(h,g) =
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1−
∏

j(hj ∧ gj)/
√
hjgj , so that we may work with δ‡ instead of δ2. By the fact

that log has derivative bounded by 1 on [1,∞),

|f(h)− f(g)| ≤
d∑

j=1

| log hj − log gj |

+ 2

d∑
j=1

| log(1 + log(hj/h))− log(1 + log(gj/h))|

≤ 3

d∑
j=1

| log hj − log gj |,

with

d∑
j=1

| log hj − log gj | = 2

d∑
j=1

log

√
hjgj

hj ∧ gj
= −2 log

(
1− 1

2δ‡(h,g)
)
≤ 2δ‡(h,g),

when δ‡(h,g) ≤ 1. Finally, if δ((h, t), (g, s)) ≤ ε0 as in (5.12), then we have
δ2((h, t), (g, s)) ≤ ε0δ((h, t), (g, s)).

The following lemma allows us to approximate a discrete scan with its con-
tinuous counterpart.

Lemma 19. W ′ = W ∩ Z2d is a (
√
4d/h)-covering for W with respect to δ.

Proof. Let w = (h, t) ∈ W and define w′ = (�h1�, . . . , �hd�, �t1�, . . . , �td�),
which is in W ′ by construction. By (5.9), and recalling that h is an integer,

δ2(w,w′) ≤ 2

d∑
j=1

|hj − �hj�|+ |tj − �tj�|√
hj�hj�

≤ 4d

h
.

5.3. Proofs: main results

The following lemma will allow us to derive the asymptotic threshold from the
excursion probabilities that we will derive in the following proofs.

Lemma 20. Let s and t be constants, let (ηm) be a sequence tending to 0, and
define

um =
√
2 logm+

s log(
√
2 logm) + t+ ηm√

2 logm
. (5.14)

Then

etmus
me−

1
2u

2
m = 1 +O

(
ηm +

(log logm)2

logm

)
, m → ∞.
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Proof. We have

u2
m = 2 logm+ 2t+ s log(2 logm) +O

(
ηm +

(log logm)2

logm

)
,

log um = 1
2 log(2 logm) +O

( log logm
logm

)
.

From this, we get that

log
(
etmus

me−
1
2u

2
m

)
= O

( log logm
logm

)
+O

(
ηm +

(log logm)2

logm

)

= O
(
ηm +

(log logm)2

logm

)
,

and the result follows by applying the exponential.

5.3.1. Proof of Theorem 1

Since the shape h� is given, in this section we let Ξ(t) = Ξ(h�,h� ◦ t), indexed
only by the spatial parameter t ∈ T = ×d

j=1[0, Tj ] where Tj = n/h�
j . This

is after rescaling, where we divided the jth coordinate by h�
j . Specifically, the

reparametrized GRF has zero mean and covariance structure,

Cov(Ξ(t),Ξ(t′)) =
λ(R(h�, t ◦ h�) ∩R(h�, t′ ◦ h�))√
λ(R(h�, t ◦ h�))λ(R(h�, t′ ◦ h�))

= λ(R(t) ∩R(t′)),

where R(t) := [t, t + 1]. The GRF Ξ restricted to T is stationary, thus it is
locally stationary over T , but in p = d dimensions. Moreover, it has the local
structure Ct(s) = ‖s‖1, by evaluating the local structure in Lemma 12 to the
case in which h = 1 and g = 0. Hence, we know that it is homogeneous of order
α = 1 with L = 1 and rt(u/‖u‖) = ‖u‖1/‖u‖. Due to the restriction to T ,
the tangent process of {Ξ(t)}t∈T must also be restricted T . This will alter the
high-excursion intensity from that given in Lemma 12, which we derive next.

In order to prove Lemma 12, [18] developed a technique for analyzing the
tangent process using sums of independent Brownian motions. We use the same
approach. First, note that a version of the tangent process is given by

U(s) =
d∑

j=1

√
2Vj(sj), s = (s1, . . . , sd) ∈ Rd

+,

where Vj are independent versions of the standard Brownian motion with drift
−|sj |/

√
2. (Notice that, when calculating the high excursion intensity Λ, the tan-

gent process is restricted to the positive orthant.) To see that U is indeed a ver-
sion of the tangent process, notice that, for all s, s′ ∈ Rd

+, E[U(s)] = −‖s‖1 and

Cov(U(s), U(s′)) = 2

d∑
j=1

Cov(Vj(sj), Vj(s
′
j))

= 2

d∑
j=1

sj ∧ s′j = ‖s‖1 + ‖s′‖1 − ‖s− s′‖1 .
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Evaluating Λ,

Λ = lim
T→∞

1

T d
E exp

(
sups∈[0,T ]dU(s)

)

=

[
lim

T→∞

1

T
E exp

(
sups∈[0,T ]

√
2V1(s)

)]d
= Hd

1 ,

whereH1 = 1 is Pickands constant for α = 1 [27]. We may now apply Lemma 13,
and the high excursion probability becomes

P
{
supt∈KΞ(t) > u

}
∼ λ(K)√

2π
u2d−1e−u2/2. (5.15)

Until further notice, we take u to be the critical value (2.9). Recall that λ is the
Lebesgue measure, here in Rd. Define

I = ×d
j=1[�Tj�], I = ×d

j=1[�Tj� − 1].

Consider the events Ei =
{
supt∈R(i) Ξ(t) > u

}
for i ∈ I. Notice that by

translational invariance,

∀i ∈ I, P(Ei) = P(E0), (5.16)

where, applying (5.15),

P(E0) = P
{
supt∈R(0)Ξ(t) > u

}
∼ λ(R(0))√

2π
u2d−1e−u2/2 ∼ e−τ

d∏
j=1

T−1
j , (5.17)

where the second equivalence comes from by applying Lemma 20.
We will now establish a Poisson limit for the above process over the entire

set T based on finite range dependence. Two events, Ei, Ei′ , are independent if
|ij − i′j | > 1, for some j ∈ [d]. Consider thus the ‘blanket’ sets Bi = {i′ �= i :

|ij − i′j | ≤ 1, ∀j ∈ [d]}, and note that |Bi| ≤ 3d, for all i ∈ I. Hence, by (5.16)

and (5.17), and the fact that |I| = O(
∏

j Tj), we have

A1 :=
∑
i∈I

∑
i′∈Bi

P(Ei)P(Ei′) ≤ |I|(3d)P(E0)
2 = O(

∏
jT

−1
j ) = o(1).

Now take i ∈ I and i′ ∈ Bi. We have

P(Ei ∩ Ei′) = 2P(E0)− P(Ei ∪ Ei′).

We have (5.16) and (5.17), and as in (5.17), except that λ(R(i) ∪ R(i′)) = 2
when i′ �= i, we also have

P(Ei ∪ Ei′) = P
{
∃t ∈ R(i) ∪R(i′) : Ξ(t) > u

}
∼ 2e−τ

d∏
j=1

T−1
j ∼ 2P(E0).
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This implies that

P(Ei ∩ Ei′) = o
(∏

jT
−1
j

)
.

This holds uniformly over i by translation invariance (translating the whole
blanket set Bi) and also uniformly over i′ in the blanket because there are at
most 3d of these. Hence,

A2 :=
∑
i∈I

∑
i′∈Bi

P(Ei ∩ Ei′) ≤ |I|(3d) o
(∏

jT
−1
j

)
= o(1).

Finally, by (5.16) and (5.17),

M :=
∑
i∈I

P(Ei) = |I|P(E0) ∼ e−τ |I|
d∏

j=1

T−1
j = e−τ

d∏
j=1

�Tj�
Tj

→ e−τ .

In our context, the Poisson approximation result stated in [4, Th 1] implies that∣∣∣P( ∩i∈I Ec
i

)
− e−M

∣∣∣ ≤ A1 +A2,

from which we derive

P
(
∩i∈IE

c
i

)
→ e−e−τ

.

In exactly the same way, we can also derive

P
(
∩i∈IE

c
i

)
→ e−e−τ

.

Because

P
(
∩i∈IE

c
i

)
≤ P{∃t ∈ T : Ξ(t) ≤ u} ≤ P

(
∩i∈IE

c
i

)
we conclude that

P{∃t ∈ T : Ξ(t) ≤ u} → e−e−τ

. (5.18)

We can then express this result in terms of the behavior of τ̃ , defined in (5.11),

P {τ̃ ≤ τ} → e−e−τ

= 1− α,

when (2.11) holds. This being true for all fixed τ , by Lemma 17 with Lemma 19,
for τ̂ defined in (5.10), we have

P{τ̂ > τ} ∼ P {τ̃ > τ} → α.

We then invert this to get

lim
n→∞

P
{
supt∈T ∩Zdξ[R(h�,h� ◦ t)] > u

}
= α,

which is what we needed to prove.
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5.3.2. Proof of Theorem 2

We keep the same notation used in Section 5.3.1. While we worked under the
null, we are now working under the alternative. Redefine t� such that h� ◦ t�

is the true location of the rectangle of activation. Let T ′ = T ∩ ×j(Z/h
�
j ) and

define
Uη =

{
t ∈ T : λ(R(t) ∩R(t�)) ≥ 1− η

}
and

U =
{
t ∈ T : R(t) ∩R(t′) �= ∅, for some t′ ∈ Uη

}
.

Recall the definition of Υ in (5.2). In our present context, we can parameterize
it by t ∈ T , and it satisfies

Υ(t) = μλ(R(t) ∩R(t�)) + Ξ(t).

Throughout the following we assume that μ − v → c ∈ R ∪ {−∞,+∞}, where
v = vn is defined in (2.10). Recall the definition of the power and write it as a
function of c,

β(c) = lim
n→∞

P
{
supt∈T ′y[R((h�,h� ◦ t))] > u

}
.

Note that β(c) is well defined by Slutsky’s theorem and is clearly nondecreasing
in c. Hence, it suffices to consider the case where c ∈ R. By Lemma 16, Part 2,
and the fact that u → ∞,

P
{
supt∈UΞ(t) ≥ u

}
= o(1).

Thus, since

P
{
supt∈T Ξ(t) ≥ u

}
− P

{
supt∈UΞ(t) ≥ u

}
≤ P

{
supt∈T \UΞ(t) ≥ u

}
≤ P

{
supt∈T Ξ(t) ≥ u

}
,

we have
P
{
supt∈T \UΞ(t) ≥ u

}
→ α, (5.19)

by (5.18). Hence,

P
{
supt∈T Υ(t) > u

}
≥ P

{
supt∈T \UΥ(t) > u

}
+ P{Υ(t�) > u}P

{
supt∈T \UΥ(t) ≤ u

}
→ α+ Φ̄(c)(1− α).

Select η → 0 such that μη → ∞. By Lemma 16, Part 2, we know that

supt∈Uη
Υ(t)−Υ(t�) ≤ supt∈Uη

|Ξ(t)− Ξ(t�)| = OP(1).
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Hence,

P
{
supt∈Uη

Υ(t) > u
}
→ Φ̄(c). (5.20)

Again by Lemma 16, Part 2,

sup
t∈U\Uη

Υ(t) ≤ μ(1− η) +OP(1).

Thus, in probability, μ− supt∈U\Uη
Υ(t) → ∞, implying that

P
{
supt∈U\Uη

Υ(t) > u
}
→ 0. (5.21)

We then have

P
{
supt∈T Υ(t) > u

}
≤ P

{
supt∈T \UΥ(t) > u

}
+ P

{
supt∈U\Uη

Υ(t) > u
}

+ P
{
supt∈Uη

Υ(t) > u
}
P
{
supt∈T \UΥ(t) ≤ u

}
→ α+ Φ̄(c)(1− α),

where the inequality is by independence of (Ξ(t), t ∈ Uη) and (Ξ(t), t ∈ T \ U),
and the convergence is by (5.19), (5.20), and (5.21). We conclude that

β(c) = α+ Φ̄(c)(1− α),

and by Lemma 17 and Lemma 19, we find that this holds for the discrete scan
statistic as long as h = ω(logn), so that (5.13) is satisfied.

5.3.3. Proof of Theorem 3

We now redefine u as the critical value in (2.13). We assume that we are under
the null. Applying [18, Th 1.4], with a ← 1 and n ← n/h, we get

lim
n→∞

P
{
supw∈WΞ(w) ≥ u

}
= α.

This translates into

lim
n→∞

P{τ̃ > τ} = α.

Now we may apply Lemma 17 with Lemma 19 to obtain that the statistic τ̂
defined in (5.10) satisfies |τ̃ − τ̂ | = oP(1) and, therefore, we also have

lim
n→∞

P{τ̂ > τ} = α.

We then invert this to get

lim
n→∞

P
{
supw∈W∩Z2dξ[R(w)] ≥ u

}
= α.
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5.3.4. Proof of Theorem 4

We assume that we are under the alternative. The arguments are essentially
identical to those in Section 5.3.2, except that this time both the scale and
location vary. In particular, we work with W ′ = W ∩ Z2d, and

Uη =

{
w ∈ W :

λ(R(w) ∩R(w�))√
λ(R(w))λ(R(w�))

≥ 1− η

}

U =
{
w ∈ W : R(w) ∩R(w′) �= ∅, ∀w′ ∈ Uη

}
,

where w� denotes the true scale and location of the rectangle of activation. The
remaining of the proof is now exactly the same.

5.3.5. Preliminaries

The lemmata stated and proved in this section will be used to prove of Theo-
rems 5 and 6. Until further notice, u(h) (or un(h) if we choose not to suppress the
dependence on n) denotes the critical value defined in (2.16) while v(h) = vn,h
denotes the function of h in (2.17). The parameter τ remains fixed throughout.

The following technical lemma is used throughout this section.

Lemma 21. There exists L > 0 such that for all w = (h, t),w′ = (h′, t′) ∈ W
such that δ(w,w′) ≤ ε0 as specified in Lemma 18,

|u(h)− u(h′)| ≤ Lδ(w,w′).

Proof. Recall the notation introduced in (5.10), where we now abbreviate a(h) =
a((h, t)) and b(h) = b((h, t)), and these functions are specified in Lemma 18.
We have

|u(h)− u(h′)| ≤ |a(h)− a(h′)|+ τ
∣∣∣ 1

a(h)
− 1

a(h′)

∣∣∣+ ∣∣∣ b(h)
a(h)

− b(h′)

a(h′)

∣∣∣.
By Lemma 18, |a(h) − a(h′)| ≤ Lδ(w′,w) for some L > 0 and δ(w′,w) ≤ ε0.
Working with the second term, we obtain,∣∣∣ 1

a(h)
− 1

a(h′)

∣∣∣ = |a(h)− a(h′)|
a(h)a(h′)

≤ L
δ(w,w′)

a(h)a(h′)
≤ Lδ(w,w′),

using the fact that a(h), a(h′) ≥ 1 because n/h ≥ n/h ≥ e by assumption.
Working with the third term,∣∣∣ b(h)

a(h)
− b(h′)

a(h′)

∣∣∣ ≤ ∣∣∣ b(h)
a(h)

− b(h′)

a(h)

∣∣∣+ ∣∣∣b(h′)

a(h)
− b(h′)

a(h′)

∣∣∣
≤ Lδ(w,w′)

a(h)
+

b(h′)

a(h′)

∣∣∣a(h)− a(h′)

a(h)

∣∣∣ ≤ L(1 + C)δ(w,w′),

because there exists a C such that b(h)/a(h) ≤ C for all allowed h. Combining
these we find that u(h) is indeed (locally) Lipschitz with respect to δ, with
constant L′ = L(2 + τ + C).
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We will introduce some notation for the following lemmata. Let h ∈ [eh, h]d,
define T (h) = ×d

j=1hj [�n/hj�], and let t ∈ T (h). Define the set

K(h,t) =
{
(g, s) ∈ W : g/h ∈ [e−1, 1]d, s ∈ [t− h, t]

}
and the event

E(h,t) =
{
∃(g, s) ∈ K(h,t) : Ξ(g, s) > u(g)

}
. (5.22)

Lemma 22. Let k ∈ Zd
+ be fixed in n, define h = hek, and let t ∈ T (h). We

have

P
(
E(h,t)

)
∼ e−τn−d

d∏
j=1

hj [k
−1
j − (1 + kj)

−1].

Proof. First, by location invariance

P
{
∃(g, s) ∈ K(h,t) : Ξ(g, s) > un(g)

}
= P

{
∃(g, s) ∈ K(h,h) : Ξ(g, s) > un(g)

}
.

Also, because for (g0, s0), (g1, s1) ∈ W ,

λ(R(h−1g0, h
−1s0) ∩R(h−1g1, h

−1s1))√
λ(R(h−1g0, h

−1s0))λ(R(h−1g1,ah
−1s1))

=
λ(R(g0, s0) ∩R(g1, s1))√
λ(R(g0, s0))λ(R(g1, s1))

,

rescaling the set W by h−1 does not change the covariance structure of Ξ[R̄].
Thus,

P
{
∃(g, s) ∈ K(h,h) : Ξ(g, s) ≥ un(g)

}
= P

{
∃(g, s) ∈ K0 : Ξ(g, s) ≥ un(hg)

}
.

(5.23)
for

K0 = h−1K(h,h) = [ek−1, ek]× [0, ek].

Let Λ(h) = 4−d
∏d

i=1 h
−2
i be the high excursion intensity from Lemma 12. Set

c = 4d
√
2π. We now check the conditions of Lemma 14. Here the boundary

functions are un(h) defined in (2.16), and satisfy (5.5) with ζ = (log n)−3/2. To
see this, first, notice that K0 is fixed and Jordan measurable. By (5.9), for any
fixed γ > 0 small enough and w0 = (g0, s0),w1 = (g1, s1) ∈ [K0]γ such that
‖w0 −w1‖∞ ≤ ζ,

δ2(hw0, hw1) = δ2(w0,w1) ≤ 2
∑
j

|g0,j − g1,j |+ |s0,j − s1,j |√
g0,jg1,j

≤ 4ζCγ

∑
j

e1−kj

where Cγ is a small constant. Thus by Lemma 21, for ζ small enough,

|un(hg0)− un(hg1)| ≤ Lδ(hw0, hw1) ≤ L

√
4ζCγ

∑
j

e1−kj .
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We also have that
sup

(g,s)∈[K0]2ζ

un(g) = O(
√

logn) (5.24)

and so
|un(hg0)

2 − un(hg1)
2| = O(

√
ζ logn) = o(1) (5.25)

uniformly over such w0,w1, which verifies (5.6). Furthermore, recalling that in
the notation of Lemma 14, we have α = 1 and p = 2d, we finally get (5.5)

sup
(g,s)∈[K0]ζ

un(g)
−4d = O((log n)−2d) = o(ζ).

Hence, we have established the conditions of Lemma 14. Applying it we have

P
{
∃(g, s) ∈ K0 : Ξ(g, s) > un(hg)

}
∼
∫
[0,ek]

∫
[ek−1,ek]

ψ(un(hg))Λ(g)un(hg)
4ddgdt

=
e
∑

j kj

√
2π

∫
[ek−1,ek]

Λ(g)un(hg)
4d−1e−un(hg)

2/2dg

=
e
∑

j kj

4d
√
2π

∫
[ek−1,ek]

(∏
j

g−2
j

)
un(hg)

4d−1e−un(hg)
2/2dg.

We have from Lemma 20 that

un(hg)
4d−1e−un(hg)

2/2
/[ c

eτ
∏

j(n log2(egj)/(hgj))

]
→ 1, ∀g ∈ [ek−1, ek],

which implies that

nd

hd
un(hg)

4d−1e−un(hg)
2/2 → ce−τ

∏
j

gj

log2(egj)
, ∀g ∈ [ek−1, ek].

We see by Lemma 20, uniformly over n,

sup
(g,s)∈K0

nd

hd
un(hg)

4d−1e−un(hg)
2/2 < +∞.

By dominated convergence,

nd

hd

∫
[ek−1,ek]

∏
j

g−2
j (un(hg))

4d−1e−un(hg)
2/2dg

→
∫
[ek−1,ek]

ce−τ
∏
j

[gj log
2(egj)]

−1dg.

Thus,

e
∑

j kj

4d
√
2π

∫
[ek−1,ek]

(∏
j

g−2
j

)
un(hg)

4d−1e−un(hg)
2/2dg
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∼ hde
∑

j kj

ndeτ

∏
j

[k−1
j − (1 + kj)

−1].

We have our result because hj = hekj , j ∈ [d].

Lemma 23. Resume the notation of Lemma 22. There exists a constant C > 0
not depending on n, k, or t (but possibly dependent on τ or d) such that

P
(
E(h,t)

)
≤ C

∏
j

hj

nk2j
.

Proof. Let w = (h, t). By (5.23),

P(Ew) = P
{
∃(g, s) ∈ K0 : Ξ(g, s) > u(hg)

}
≤ P

{
∃(g, s) ∈ K0 : Ξ(g, s) > cw

}
where

cw = min
(g,s)∈Kw

u(g) = min
g∈[e−1h,h]

u(g).

By scale invariance,

P
{
∃(g, s) ∈ K0 : Ξ(g, s) ≥ cw

}
= P

{
∃g ∈ [e−1, 1]d, s ∈ [0, 1]d : Ξ(g, s) ≥ cw

}
≤ C1c

4d
w ψ(cw)

∫
w′∈[e−1,1]d×[0,1]d

Λ(w′)dw′,

for some constant C1 > 0, by an application of Lemma 13. On the one hand,
using the form for Λ given in Lemma 12, we get∫

w′∈[e−1,1]d×[0,1]d
Λ(w′)dw′ = 4−d

∏
j

∫ 1

e−1

gj
−2dgj < ∞.

On the other hand, by Lemma 20 there is a constant C2 (not dependent on k,
n, or t) such that ∀(g, s) ∈ K0,

u(hg)4dψ(u(hg)) ≤ e−τ−κe−v(hg)2/2
(
1 + C2

log v(hg)

v(hg)

)
.

Since ming∈[ek−1,ek] v(hg) → ∞ uniformly over k ∈ Zd
+, we have

c4dw ψ(cw) ≤ (1+o(1))e−τ−κ exp
[
− 1

2 min
g∈[ek−1,ek]

v2(hg)
]
≤ C3

∏
j

hj

n
log−2(hj/h),

where C3 is some constant, using the fact that minh′∈[e−1h,h] v(h
′) = v(h) for

hj ≥ eh, ∀j. We conclude that there exists a constant C4 such that, for all such
w,

P(Ew) ≤ C4

∏
j

hj

n
log−2(hj/h).
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Lemma 24. For all A ∈ Z+, let UA =
{
(h, t) ∈ W : hj ≤ heA, ∀j ∈ [d]

}
. Then

lim
A→∞

lim
n→∞

P
{
Ξ(h, t) > un(h) for some (h, t) ∈ UA

}
= α.

Proof. Resume the notation and definitions of Lemma 23. We partition the
space W into blocks in the scale and location parameters. Define

I =
{
(h, t) ∈ W : ∃k ∈ [A]d,h = hek, t ∈ T (h)

}

and I = I ∩ UA whereby ∪w∈IKw ⊆ UA ⊆ ∪w∈IKw. Recall that for k ∈ [A]d

and h = hek,

P
(
E(h,t)

)
= P

(
E(h,h)

)
, ∀t ∈ T (h)

by translation invariance. By Lemma 22,

P
(
E(h,h)

)
∼ |T (h)|−1e−τ

∏
j

[
k−1
j − (1 + kj)

−1
]
.

We partition the set UA into the blocks {Kw : w ∈ I} and then use the Chen-
Stein Poisson approximation to derive P(∪w∈IEw). We have

M :=
∑
w∈I

P(Ew) =
∑

k∈[A]d

∑
t∈T (hek)

P
(
E(hek,t)

)
=

∑
k∈[A]d

|T (hek)|P
(
E(hek,hek)

)

→ e−τ
∑

k∈[A]d

∏
j

[
k−1
j − (1 + kj)

−1
]
.

We then have that

∑
k∈[A]d

∏
j

[
k−1
j − (1 + kj)

−1
]
=
(∑A

k=1[k
−1 − (1 + k)−1]

)d
=
(
1− 1/(1 +A)

)d
.

Thus, we obtain that

lim
A→∞

lim
n→∞

M → e−τ .

Two events, E(h,t), E(g,s), are independent if |tj − sj | > 2(hj ∨ gj), for some
j ∈ [d]. Consider then the ‘blanket’ sets

B(h,t) =
{
(g, s) ∈ I \ {(h, t)} : ∀j ∈ [d], |tj − sj | ≤ 2(hj ∨ gj)

}
.

We have

|B(h,t)| ≤
∑

k∈[A]d

∣∣∣{s ∈ T (hek) : ∃j ∈ [d], |tj − sj | ≤ 2heA
}∣∣∣

≤ 4d
∑

k∈[A]d

⌈
e
∑d

j=1(A−kj)
⌉
.
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which is a constant depending only on d and A. Thus,

A1 :=
∑
w∈I

∑
w′∈Bw

P(Ew)P(Ew′)

≤
(
max
w∈I

|Bw|P(Ew)
)∑

w∈I

P(Ew) = o
(∑

w∈I

P(Ew)
)
,

since maxw∈I P(Ew) = o(1) by Lemma 23. Take w ∈ I and w′ = (h′, t′) ∈ Bw.
We have

P(Ew ∩ Ew′) = P(Ew) + P(Ew′)− P(Ew ∪ Ew′).

By same exact arguments underlying the proof of Lemma 22,

P(Ew∪Ew′) = P
{
∃(h0, t0) ∈ Kw∪Kw′ : Ξ(h0, t0) > u(h0)

}
∼ P(Ew)+P(Ew′).

We can also see from Lemma 23 that, uniformly over w′ ∈ Bw,

P(Ew′) = O(P(Ew)).

Again by translation invariance and the fact that both |[A]d| and |Bw| are
bounded in n,

A2 : =
∑

k∈[A]d

∑
t∈T (hek)

∑
w′∈B

(hek,t)

P(E(hek,t) ∩ Ew′)

=
∑

k∈[A]d

|T (hek)|
∑

w′∈B
(hek,hek)

o
[
P(E(hek,hek)) + P(Ew′)

]
= o(M) = o(1).

This shows that the events Ew over I have finite-range dependence. Hence, by
[4, Th 1] we have that∣∣∣P (∩w∈IE

c
w

)
− e−M

∣∣∣ ≤ A1 +A2 = o(1).

This also holds with I in place of I, and with limn→∞ M unaffected. So the
proof is complete.

Lemma 25. With UA defined in Lemma 24, we also have

lim
A→∞

lim
n→∞

P
{
∃(h, t) ∈ W \ UA : Ξ(h, t) > u(h)

}
= 0.

Proof. We keep the same notation as in the previous proof. Define the event

EA =
{
∃(h, t) ∈ W\UA : Ξ(h, t) > u(h)

}
.

Note that EA depends on n via u(h) in (2.16). By the union bound,

P(EA) ≤
∑

k∈[logn]d\[A]d

pn,k, (5.26)
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where
pn,k :=

∑
t∈T (hek)

P(E(hek,t)) =
(∏

j�n/hekj�
)
P(E(hek,hek)),

by translation invariance. By Lemma 22,∑
k∈Zd

+\[A]d

lim
n→∞

pn,k

= e−τ
∑

k∈Zd
+\[A]d

d∏
j=1

[
k−1
j − (1 + kj)

−1
]

= e−τ
( ∑

k∈Zd
+

∏
j

[
k−1
j − (1 + kj)

−1
]
−

∑
k∈[A]d

∏
j

[
k−1
j − (1 + kj)

−1
])

= e−τ
(
1−

(
1− 1/(1 +A)

)d)
.

By Lemma 23,

pn,k ≤
(∏

j

�n/hj�
)
C
∏
j

hekj

nk2j
≤ C1

∏
j

k−2
j

for C1 > 0 not dependent on n or k. Hence, Dk := C1

∏
j k

−2
j is a dominating

sequence that is independent of n and summable over Zd
+, and satisfies pn,k ≤

Dk. Thus, we can apply dominated convergence and conclude that

lim
n→∞

P(En,A) ≤ lim
n→∞

∑
k∈Zd

+\[A]d

pn,k

=
∑

k∈Zd
+\[A]d

lim
n→∞

pn,k = e−τ
(
1−

(
1− 1/(1 +A)

)d)
.

Since the RHS tends to zero as A → ∞, the proof is complete.

5.3.6. Proof of Theorem 5

By Lemma 24 and Lemma 25,

lim
n→∞

P
{
∃(h, t) ∈ W : Ξ(h, t) > u(h)

}
(5.27)

= lim
A→∞

[
lim

n→∞

(
P
{
∃(h, t) ∈ UA : Ξ(h, t) > u(h)

}
+ lim

n→∞
P
{
∃(h, t) ∈ W\UA : Ξ(h, t) > u(h)

}]
= α. (5.28)

Hence, the random variable τ̃ defined in (5.11) satisfies

lim
n→∞

P{τ̃ > τ} = lim
n→∞

P
{
∃(h, t) ∈ W : Ξ(h, t) > u(h)

}
= α.
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Now, we may apply Lemma 17 with Lemma 19 to obtain that the statistic τ̂
defined in (5.10) satisfies |τ̃ − τ̂ | = oP(1) and, therefore,

lim
n→∞

P
{
∃(h, t) ∈ W ∩ Z2d : ξ[R(h, t)] > u(h)

}
= lim

n→∞
P{τ̂ > τ} = α.

5.3.7. Proof of Theorem 6

We resume the notation introduced in Sections 5.3.2 and 5.3.4. The arguments
here are very similar, so that we will omit some details. We focus on the case in
which μ− v(h�) → c. By Lemma 16, Part 2, and the fact that minh v(h) → ∞,

P
{
∃(h, t) ∈ U : Ξ(h, t) > u(h)

}
≤ P

{
∃(h, t) ∈ U : Ξ(h, t) > v(h)− o(1)

}
= oP(1).

Thus, combining this with (5.28), we have

P
{
∃(h, t) ∈ W\U : Ξ(h, t) > u(h)

}
→ α.

Hence,

P
{
∃(h, t) ∈ W : Υ(h, t) > u(h)

}
≥ P

{
∃(h, t) ∈ W\U : Υ(h, t) > u(h)

}
+ P

{
Υ(w�) > u(h�)

}
P
{
∃(h, t) ∈ W\U : Υ(h, t) ≤ u(h)

}
→ α+ Φ̄(c)(1− α).

By Lemma 21, there is some L > 0 such that for all w = (h, t) ∈ Uη,
u(h�)− u(h) ≤ Lδ(w�,w) for δ(w�,w) ≤ ε0. Select η → 0 such that μη → ∞.
For w = (h, t) ∈ Uη,

(Υ(w)− u(h))− (Υ(w�)− u(h�))

= [Ξ(w)− Ξ(w�)] + [m(w)−m(w�)] + [u(h�)− u(h)]

≤ |Ξ(w)− Ξ(w�)|+ Lδ(w,w�).

By Lemma 16, Part 2,

sup
w∈Uη

|Ξ(w)− Ξ(w�)| = OP(1).

By this, the fact that if η → 0 then supw∈Uη
δ(w,w�) → 0, and that m(w�) ≥

m(w),
sup
w∈Uη

[Υ(w)− u(h)]− [Υ(w�)− u(h�)] = OP(1).

Hence,
P
{
∃(h, t) ∈ Uη : Υ(h, t) > u(h)

}
→ Φ̄(c).

Again by Lemma 16, Part 2,

sup
w∈U\Uη

Υ(w) ≤ μ(1− η) +OP(1).
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Thus,
μ− sup

w∈U\Uη

Υ(w) → ∞.

Hence,
P
{
∃(h, t) ∈ U \ Uη : Υ(h, t) > u(h)

}
→ 0.

The probability of exceedance can be bounded by

P
{
∃(h, t) ∈ W : Υ(h, t) > u(h)

}
≤ P

{
∃(h, t) ∈ W \ U : Υ(h, t) > u(h)

}
+ P

{
∃(h, t) ∈ U \ Uη : Υ(h, t) > u(h)

}
+ P

{
∃(h, t) ∈ Uη : Υ(h, t) > u(h)

}
P
{
�(h, t) ∈ W\U : Υ(h, t) > u(h)

}
→ α+ Φ̄(c)(1− α),

by independence of {Υ(w) : w ∈ Uη} and {Υ(w) : w ∈ W \ U}.
We conclude that

P
{
∃(h, t) ∈ W : Υ(h, t) > u(h)

}
→ α+ Φ̄(c)(1− α).

By Lemma 17 and Lemma 19, we find that this also holds when W is replaced
by W ′, as long as h = ω(logn). And from this we conclude as in Section 5.3.2.

5.3.8. Proof of Theorem 7

For adaptive multiscale scan, Lemma 18 allows us to apply the conclusion
of Lemma 17 to the critical value (2.16). For the multiscale scan statistic,
Lemma 17 applies to the constant critical value (2.13). Let τ̂ be the result of the
scan over the discrete set,W∩Z2d, for either the (resp. adaptive) multiscale scan,
and let τ̂ε be the scan over the ε-covering. Then by Lemma 19, W∩Z2d is an ε′-
covering of W for ε′ =

√
4d/h = o((log n)−1/2). Thus, we may apply Lemma 17,

unless μ = ω(
√
log(n/h)) under H1, to show that |τ̃ − τ̂ | = oP(1). Likewise,

when ε = o((log n)−1/2) then τ̂ε fulfills the conditions of Lemma 17 unless
μ = ω(

√
log(n/h)) under H1. But μ = ω(

√
log(n/h)) implies that τ̂ , τ̂ε, τ̃ → ∞

because then y[R�] = ωP(
√

log(n/h)). In this case, α̂, α̂ε → 0. When this is
not the case then |τ̂ − τ̃ | = oP(1) and |τ̂ε − τ̃ | = oP(1) by Lemma 17, and so
|τ̂− τ̂ε| = oP(1). Because α̂ = 1−exp(− exp(−τ̂)) and α̂ε = 1−exp(− exp(−τ̂ε)),
the result follows by the continuous mapping theorem.

5.3.9. Proof of Proposition 8

We now show that Rε is an ε-covering of R. Specifically, for each (h, t) ∈ W ,
we construct (g, s) such that R(g, s) ∈ Rε and δ(R(h, t), R(g, s)) ≤ ε. Take

aj = �log2
hjε

2

4d � ≥ a, for each j ∈ [d]. Define

gj = argmin{|h− hj | : h ∈ 2ajZ+}, sj = argmin{|s− tj | : s ∈ 2ajZ+}.
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We know that

4d

hjε2
= 2− log2

hjε
2

4d ≤ 2−aj ≤ 2− log2

hjε

4d +1 =
8d

hjε2
.

By the construction,

2−aj |gj − hj | ≤
1

2
.

Hence, we have that

2−ajgj ∈
[
2−ajhj −

1

2
, 2−ajhj +

1

2

]
⊆
[
4d

ε2
− 1

2
,
8d

ε2
+

1

2

]
. (5.29)

But because 2−ajgj is constructed to be in Z+ then we know that it lies within
[�8d/ε2�]. Therefore, R(g, s) ∈ Rε. Let ε2 < 4d. It remains to show that
θ((hj , tj), (gj , sj)) ≤ ε2/2d for all j, so that δ(h, t), (g, s)) ≤ ε by (5.9). We
can see that

|gj − hj |, |sj − tj | ≤ 2aj−1, and hj ∈ 2aj

[
4d

ε2
,
8d

ε2

]
.

Because 4d/ε2 ≥ 1 then hj ≥ 2aj . Furthermore, h2
j − 2aj−1hj is an increasing

function for hj ≥ 2aj . Hence,

gjhj = h2
j − (hj − gj)hj ≥ h2

j − 2aj−1hj ≥ 22aj
(
16d2

ε4 − 2d
ε2

)
.

We then have

θ((hj , tj), (gj , sj)) ≤
|gj − hj |+ |sj − tj |√

gjhj

≤
(
16d2

ε4
− 2d

ε2

)−1/2

≤ ε2

2d

(
4− ε2

2d

)− 1
2 <

ε2

2d
,

since ε2 < 4d.

5.3.10. Proof of Proposition 9

First, we establish that, for a ∈ {a, . . . , a}d,

(dyada ∗ bf )(t) = (y ∗ b2a◦f )(2a ◦ t), t ∈ [n/2a]. (5.30)

An induction on ‖a‖1, based on the recursion in Line 5, gives

dyada(t) =
∑
i∈[2a]

y(2a ◦ t+ i), ∀t ∈ ×j [n/2
aj ].

Based on this, we have

(dyada ∗ bf )(t) =
∑
i∈[f ]

dyada(i+ t) =
∑
i∈[f ]

∑
k∈[2a]

y(2a ◦ (i+ t) + k)

=
∑

i∈[2af ]

y(i+ 2a ◦ t) = (y ∗ b2a◦f )(2a ◦ t).
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With (5.30), we can see that the statistic ŝ in Algorithm 1 is equivalently ex-
pressed as

max
t∈[n/2a]

y
[
[2a, 2a(t+ f)]

]
,

confirming that Algorithm 1 does scan over Rε.

5.3.11. Proof of Proposition 10

First, the construction of dyad takes O(nd) operations. Indeed, the computation
of dyada(t) over a ∈ [log2 n]

d\{1}d and t ∈ [n/2a] is done from Line 2 to Line 7
in Algorithm 1, and is easily seen to require on the order of

∑
a∈[log2 n]d

∏
j

(n/2aj ) ≤ nd
(∑

a≥1

2−a
)d

= nd

basic operations.
Second, defining a+ =

∑d
j=1 aj , the convolution dyada ∗ bf takes

O(nd2−a+ logn) operations with the FFT, since the convolution happens on
a grid of size

∏
j(n/2

aj ) = nd2−a+ . Therefore, the computation on Line 13

requires O(nd2−a+ logn) basic operations. Hence, once dyad is computed, com-
puting α̂ requires on the order of

∑
a∈[a,a]d

d
(∏

j |Fj |
)( nd

2a+
logn

)

= O(ε−2dnd log n)
(∑

a≥a2
−a
)d

= O(ε−2dnd2−da logn),

with 2−a = O(1/ε2h) since εh ≥ 1. From this, we conclude.
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