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Abstract: This paper proposes a nonparametric Bayesian framework
called VariScan for simultaneous clustering, variable selection, and predic-
tion in high-throughput regression settings. Poisson-Dirichlet processes are
utilized to detect lower-dimensional latent clusters of covariates. An adap-
tive nonlinear prediction model is constructed for the response, achieving a
balance between model parsimony and flexibility. Contrary to conventional
belief, cluster detection is shown to be a posteriori consistent for a general
class of models as the number of covariates and subjects grows. Simulation
studies and data analyses demonstrate that VariScan often outperforms
several well-known statistical methods.

Keywords and phrases: Dirichlet process, local clustering, model-based
clustering, nonparametric Bayes, Poisson-Dirichlet process.

Received December 2015.

1. Introduction

An increasing number of studies involve the regression analysis of p continuous
covariates and continuous or discrete univariate responses on n subjects, with
p being much larger than n. The development of effective clustering and sparse
regression models for reliable predictions is especially challenging in these “small
n, large p” problems. The goal of the analysis is often three-pronged: (i) Cluster
identification: We wish to identify clusters of covariates with similar patterns
for the subjects. For example, in biomedical studies where the covariates are
gene expression levels, subsets of genes associated with distinctive between-
subject patterns may correspond to different underlying biological processes; (ii)
Detection of sparse regression predictors: From the set of p covariates, we wish
to select a sparse subset of reliable predictors for the subject-specific responses
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and infer the nature of their relationship with the responses. In most genomic
applications, just a few of the biological processes are usually relevant to a
response variable of interest, and we need reliable and parsimonious regression
models; and (iii) Response prediction: Using the inferred regression relationship,
we wish to predict the responses of ñ additional subjects for whom only covariate
information is available. The reliability of an inferential procedure is measured
by its prediction accuracy for out-of-sample individuals.

In high-throughput regression settings with continuous covariates and con-
tinuous or discrete outcomes, we propose a nonparametric Bayesian framework
called VariScan for simultaneous clustering, variable selection, and prediction.

1.1. Motivating applications

Our methods and computational endeavors are motivated by recent high-
throughput investigations in biomedical research, especially in cancer. Advances
in array-based technologies allow for simultaneous measurements of biological
units (e.g. genes) on a relatively small number of subjects. Practitioners wish to
select important genes involved with disease processes and develop efficient pre-
diction models for patient-specific clinical outcomes such as continuous survival
times or categorical disease subtypes. The analytical challenges posed by such
data include not only high-dimensionality but also the existence of considerable
gene-gene correlations induced by biological interactions. In this article, we an-
alyze gene expression profiles assessed using microarrays in patients with diffuse
large B-cell lymphoma (DLBCL) [71] and breast cancer [78]. Both datasets are
publicly available and have the following general characteristics: for individuals
i = 1, . . . , n, the data consist of mRNA expression levels xi1, . . . , xip for p genes,
where n � p, along with censored survival times denoted by wi. More details,
analytic results, and gains using our methods over competing approaches are
discussed in Section 6.

The scope and success of the proposed methodology and its associated the-
oretical results extend far beyond the examples we discuss in this paper. For
instance, the technique is not restricted to biomedical studies; we have success-
fully applied VariScan in a variety of other high-dimensional applications and
achieved higher inferential gains than those achieved by existing methodologies.

1.2. Challenges in high-dimensional predictor detection

Despite the large number of existing methods related to clustering, variable se-
lection and prediction, researchers continue to develop new methods to meet
the challenges posed by newer applications and larger datasets. Predictor de-
tection becomes particularly problematic in big datasets due to the pervasive
collinearity of the covariates.

For a simple demonstration of this fact, consider a process that indepen-
dently samples n-variate covariate column vectors x1 . . . ,xp, so that p = 200
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Fig 1. Pairwise sample correlations for p = 200 vectors independently generated from a
multivariate normal distribution with n = 10 uncorrelated elements.

vectors with n = 10 i.i.d. elements are generated from a common normal dis-
tribution. Although the vectors are independently generated, extreme values of
the pairwise correlations are observed in the sample, as shown in the histogram
of Figure 1. The proportion of extremely high or low correlations typically in-
creases with p, and with greater correlation of the generated vectors under the
true process.

Multicollinearity is common in high-dimensional problems because the n-
dimensional space of the covariate columns becomes saturated with the large
number of covariates. This is disadvantageous for regression because a cohort of
highly correlated covariates is weakly identifiable as regression predictors. For
example, imagine that the jth and kth covariate columns have a sample cor-
relation close to 1, but that neither covariate is really a predictor in a linear
regression model. An alternative model in which both covariates are predictors
with equal and opposite regression coefficients has a nearly identical joint likeli-
hood for all regression outcomes. Consequently, an inferential procedure is often
unable to choose between these competing models as the likely explanation for
the data.

In the absence of strong application-specific priors to guide model selec-
tion, collinearity makes it impossible to pick the true set of predictors in high-
dimensional problems. Furthermore, collinearity causes unstable inferences and
erroneous test case predictions [80]. The problem is exacerbated if some of the re-
gression outcomes are unobserved, as with categorical responses and survival ap-
plications.

1.3. Bidirectional clustering with adaptively nonlinear functional
regression and prediction

Since the data in small n, large p regression problems are informative only about
the combined effect of a cohort of highly correlated covariates, we address the
issue of collinearity using clustering approaches. Specifically, VariScan utilizes
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the sparsity-inducing property of Poisson-Dirichlet processes (PDPs) to first
group the p columns of the covariate matrix into q latent clusters, where q � p,
with each cluster consisting of columns with similar patterns across the sub-
jects. The data are allowed to direct the choice between a class of PDPs and
their special case, a Dirichlet process, for selecting a suitable allocation scheme
for the covariates. These partitions could provide meaningful insight into un-
known biological processes (e.g., signaling pathways) represented by the latent
clusters.

To flexibly capture the within-cluster pattern of the covariates, the n subjects
are allowed to group differently in each cluster via a nested Dirichlet process.
This feature is motivated by genomic studies [e.g., 38] that have demonstrated
that subjects or biological samples often group differently under different bio-
logical processes. In essence, this modeling framework specifies a random, bidi-
rectional (covariate, subject) nested clustering of the high-dimensional covari-
ate matrix.

Clustering downsizes the small n, large p problem to a “small n, small q”
problem, facilitating an effective stochastic search of the indices S∗ ⊂ {1, . . . , q}
of potential cluster predictors. If necessary, we could then infer the indices S ⊂
{1, . . . , p} of the covariate predictors. This feature differentiates the VariScan
procedure from black-box nonlinear prediction methods. In addition, the tech-
nique can detect functional relationships through elements such as nonlinear
functional kernels and basis functions such as splines or wavelets. An adaptive
mixture of linear and nonlinear elements in the regression relationship aims
to achieve a balance between model parsimony and flexibility. These aspects
of VariScan define a joint model for the responses and covariates, resulting in
an effective model-based clustering and variable selection procedure, improved
posterior inference and accurate test case predictions.

Figure 2 illustrates the key ideas of VariScan using a toy example with n = 10
subjects and p = 25 covariates. The plot in the upper left panel represents a
heatmap of the covariates. When investigators are interested in discovering a
sparse prediction model for additional subjects, the posterior analysis averages
over all possible realizations of two basic steps, both of which are stochastic and
may be stylistically described as follows:

1. Clustering The column vectors are allocated in an unsupervised man-
ner to q = 11 number of PDP clusters. This is plotted in the upper right
panel, where the columns are grouped via bidirectional clustering to reveal
the similarities in the within-cluster patterns.

2. Variable selection and regression One covariate is stochastically
selected from each cluster and is known as the cluster representative. The
middle right panel displays the set of representatives, {x7,x4,x11,x5,x24,
x17,x9,x12,x3,x15,x14}, for the 11 clusters. The regression predictors are
stochastically selected from the random set of the cluster representatives.
Some representatives are not associated with the response; the remaining
covariates are outcome predictors and may have either a linear or nonlinear
regression relationship. The linear predictors {x24,x12,x3} and non-linear
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Fig 2. Stylized example illustrating the basic methodology for reliable prediction for n = 10
subjects and p = 25 covariates allocated to q = 11 number of PDP clusters. The column
labels represent the covariate indices. The row labels are the subjects. See the text for further
explanation.

predictors {x11,x9} are shown in the middle left panel. For a nonlinear
function h, the regression equation for a subject is displayed in the lower
panel for a zero-mean Gaussian error, ε. The subscripts of the β parameters
are the cluster labels, e.g., covariate x24 represents the fifth PDP cluster.

When out-of-the-bag prediction is not of primary interest, alternative variable
selection strategies discussed in Section 2.2 may be applied.
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1.4. Existing Bayesian approaches and limitations

There is vast literature on Bayesian strategies for one or more of the three
inferential goals mentioned at the beginning of Section 1. A majority of Bayesian
model-based clustering techniques rely on the celebrated Dirichlet process; see
Müller and Mitra [61, chap. 4] for a comprehensive review. A seminal paper by
[50] advocated the use of Gibbs-type priors [25, 49] for accommodating more
flexible clustering mechanisms than those induced by the Dirichlet process. This
work also demonstrated the practical utility of PDPs in genomic applications.

Among model-based clustering techniques based on Dirichlet processes, the
approaches of [56], [13], and [60] assume that it is possible to globally reshuffle
the rows and columns of the covariate matrix to reveal the clustering pattern.
More closely related to our clustering objectives is the nonparametric Bayesian
local clustering (NoB-LoC) approach of [45], which clusters the covariates lo-
cally using two sets of Dirichlet processes. Although some similarities exist be-
tween NoB-LoC and the clustering aspect of VariScan, there are major differ-
ences. Specifically, the VariScan framework can accommodate high-dimensional
regression in addition to bidirectional clustering. Furthermore, VariScan typi-
cally produces more efficient inferences by its greater flexibility in modeling a
larger class of clustering patterns via PDPs. The distinction becomes especially
important for genomic datasets where PDP-based models are often preferred
to Dirichlet-based models by log-Bayes factors on the order of thousands; see
Section 6 for an example. Moreover, the Markov chain Monte Carlo (MCMC)
implementation of VariScan explores the posterior substantially faster due to its
better ability to allocate outlying covariates to singleton clusters via augmented
variable Gibbs sampling. From a theoretical perspective, contrary to widely held
beliefs about the non-identifiability of mixture model clusters, we discovered a
remarkable theoretical property of VariScan that, as both n and p grow, a fixed
set of covariates that (do not) co-cluster under the true VariScan model, also
(do not) asymptotically co-cluster under its posterior.

From a regression-based Bayesian viewpoint, perhaps the most ubiquitous
approaches are based on Bayesian variable selection techniques in linear and
non-linear regression models. See [16] for a comprehensive review. For Gaussian
responses, the common linear methods include stochastic search variable selec-
tion [23], selection-based priors [43] and shrinkage-based methods [63, 82, 26].
Some of these methods have been extended to non-linear regression contexts [74]
and to generalized linear models [17, 58]. However, most of the aforementioned
regression methods are based on strong parametric assumptions and do not ex-
plicitly account for the multicollinearity commonly observed in high-dimensional
settings. Nonparametric approaches typically assume priors on the error residu-
als [28, 42] or on the regression coefficients using random effect representations
[11, 53]. For nonparametric mean function estimations, they are typically based
on basis function expansions such as wavelets[59] and splines [6]. We take a fun-
damentally different approach in this article by defining a nonparametric joint
model, first on the covariates and then via an adaptive nonlinear prediction
model on the responses.
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The rest of this paper is organized as follows. We introduce the VariScan
model in Section 2. Some theoretical results for the VariScan procedure are
presented in Sections 4. Through simulations in Section 5.1 and 5.2, we demon-
strate the accuracy of the clustering mechanism and compare the prediction
reliability of VariScan with that of several established variable selection pro-
cedures using artificial datasets. In Section 6, we analyze the motivating gene
expression microarray datasets for leukemia and breast cancer to demonstrate
the effectiveness of VariScan and compare its prediction accuracy with those of
competing methods. The supplementary materials contain the theorem proofs,
as well as the results of additional simulation and data analyses.

2. VariScan Model

In this section, we lay out the detailed construction of the VariScan model com-
ponents, which involves two major steps. First, we utilize the sparsity-inducing
property of Poisson-Dirichlet processes to perform a directional nested cluster-
ing of the covariate matrix (Section 2.1). Second, we describe the choice of the
cluster-specific predictors and nonlinearly relate them to Gaussian regression
outcomes of the subjects (Section 2.2). Subsequently, in Section 2.3, we provide
details of the model justifications and generalizations to discrete and survival
outcomes.

2.1. Covariate clustering model

First, each of the p covariate matrix columns, x1, . . . ,xp, is assigned to one of
q latent clusters, where q � p, and where the assignments and q are unknown.
That is, for j = 1, . . . , p and k = 1, . . . , q, an allocation variable cj equals k
if the jth covariate is assigned to the kth cluster.

We posit that the q clusters are associated with latent vectors v1, . . . ,vq

of length n. The covariate columns assigned to a latent cluster are essentially
contaminated versions of the cluster’s latent vector and thus induce high cor-
relations among covariates belonging to a cluster. In practice, however, a few
individuals within each cluster may have highly variable covariates. We model
this aspect by associating a larger error variance with those individuals. This
is achieved via a Bernoulli variable, zik, for which the value zik = 0 indicates a
high variance:

xij | zik, cj = k
indep∼

{
N(vik, τ

2
1 ) if zik = 0

N(vik, τ
2) if zik = 1

where τ21 and τ2 are variance parameters with inverse Gamma priors and τ21 is
much greater than τ2. It is assumed that the support of τ is bounded below by
a small, positive constant, τ∗. Although not necessary from a methodological
perspective, this restriction guarantees the asymptotic result of Section 4. The
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indicator variables for the individual–cluster combinations are a priori modeled
i.i.d as

zik
iid∼ Ber(ξ), i = 1, . . . , n and k = 1, . . . , q,

where ξ ∼ beta(ι1, ι0). The condition ι1 � ι0 guarantees that prior probability
P (zik = 1) is nearly equal to 1, and so only a small proportion of the individuals
have highly variable covariates within each cluster.

Allocation variables. As an appropriate model for the covariate-to-cluster
allocations that accommodate a wide range of allocation patterns, we rely on the
partitions induced by the two-parameter Poisson-Dirichlet process, PDP

(
α1, d

)
,

with discount parameter 0 ≤ d < 1 and precision or mass parameter α1 > 0. In
genomic applications, for example, these partitions may allow for the discovery
of unknown biological processes represented by the latent clusters. We defer
additional details of the empirical and theoretical justifications of using PDP
processes until Section 2.3.

The PDP was introduced by [65] and later investigated by [68] and [69].
Refer to [48] for a detailed discussion of different classes of Bayesian nonpara-
metric models, including Gibbs-type priors [25, 49] such as Dirichlet processes
and PDPs. [50] were the first to implement Gibbs-type priors for clustering
mechanisms that are more flexible than Dirichlet process partitions.

The PDP-based allocation variables are a priori exchangeable and evolve as
follows. Since the cluster allocation labels are arbitrary, we may assume without
loss of generality that c1 = 1, i.e., the first covariate is assigned to the first clus-
ter. Subsequently, for covariates j = 2, . . . , p, suppose there exist q(j−1) distinct

clusters among c1, . . . , cj−1, with the kth cluster containing n
(j−1)
k number of

covariates. The predictive probability that the jth covariate is assigned to the
kth cluster is then

P (cj = k | c1, . . . , cj−1) ∝
{
n
(j−1)
k − d if k = 1, . . . , q(j−1)

α1 + q(j−1) · d if k = q(j−1) + 1

where the event cj = q(j−1)+1 in the second line corresponds to the jth covariate
opening a new cluster. When d = 0, we obtain the well-known Pòlya urn scheme
for Dirichlet processes [21].

In general, exchangeability holds for all product partition models [7, 70] and
species sampling models [36], of which PDPs are a special case. The number
of clusters, q, stochastically increases as α1 and d increase. For d fixed, the p
covariates are each assigned to p singleton clusters in the limit as α1 → ∞.

A PDP achieves dimension reduction in the number of covariates because q,
the random number of clusters, is asymptotically equivalent to{

α1 · log p if d = 0

Td,α1 · pd if 0 < d < 1
(2.1)

for a random variable Td,α1 > 0 as p → ∞. This implies that the number
of Dirichlet process clusters (i.e., when d = 0) is asymptotically of a smaller
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order than the number of PDP clusters when d > 0. This property was effec-
tively utilized by [50] in species prediction problems and applied to gene discov-
ery settings. The use of Dirichlet processes to achieve dimension reduction has
precedence in the literature; see [57], [40], [19] and [18].

The PDP discount parameter d is given the mixture prior 1
2δ0 + 1

2U(0, 1),
where δ0 denotes the point mass at 0. Posterior inference of this parameter
allows us to flexibly choose between Dirichlet processes and more general PDPs
for the best-fitting clustering mechanism.

Latent vectors. The hierarchical prior for the covariates is completed by
specifying a base distribution G(n) in Rn for the latent vectors v1, . . . ,vq. Con-
sistent with our goal of developing a flexible and scalable inferential procedure
capable of fitting large datasets, we impose additional lower-dimensional struc-
ture on the n-variate base distribution. Specifically, since the n subjects are
exchangeable, base distribution G(n) is assumed to be the n-fold product mea-
sure of a univariate distribution, G. This allows the individuals and clusters to
communicate through the nq number of latent vector elements:

vik
iid∼ G for i = 1, . . . , n, and k = 1, . . . , q. (2.2)

The unknown, univariate distribution, G, is itself given a nonparametric Dirich-
let process prior, allowing the latent vectors to flexibly capture the within-
covariate patterns of the subjects:

G ∼ DP(α2) (2.3)

for mass parameter α2 > 0 and univariate base distribution, N(μ2, τ
2
2 ). Being

a realization of a Dirichlet process, distribution G is discrete and allows the
subjects to group differently in different PDP clusters. The number of distinct
values among the vik’s is asymptotically equivalent to α2 · log nq, facilitating fur-
ther dimension reduction and scalability of inference as n approaches hundreds
or thousands of individuals, as commonly encountered in genomic datasets.

2.2. Prediction and regression model

Suppose there are nk covariates allocated to the kth cluster. We posit that
each cluster elects from among its member covariates a representative, denoted
by uk. A subset of the q cluster representatives, rather than the covariates,
feature in an additive regression model that can accommodate nonlinear func-
tional relationships. The cluster representatives may be chosen in several dif-
ferent ways depending on the application. Possible options include the follow-
ing:

(i) Select with a priori equal probability one of the nk covariates belonging
to the kth cluster as the representative. Let sk denote the index of the
covariate chosen as the representative, so that csk = k and uk = xsk .

(ii) Set latent vector vk of Section 2.1 as the cluster representative.
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Option (i) is preferable when practitioners are mainly interested in identifying
the effects of individual regressors, as in gene selection applications in cancer
survival times (as noted in the Introduction). Option (ii) is preferable when
the emphasis is less on covariate selection and more on identifying clusters of
candidate variables (e.g., genomic pathways) that are jointly associated with
the responses.

The regression predictors are selected from among the q cluster represen-
tatives, with their parent clusters constituting the set of cluster predictors,
S∗ ⊂ {1, . . . , q}. Extensions of the spike-and-slab approaches [23, 43, 8] are
applied to relate the regression outcomes to the cluster representatives as

yi
indep∼ N

(
ηi, σ

2
i

)
, where

ηi = β0 +

q∑
k=1

γ
(1)
k β

(1)
k uik +

q∑
k=1

γ
(2)
k h(uik,β

(2)
k ) (2.4)

and h is a nonlinear function. Possible options for the nonlinear function h in
equation (2.4) include reproducible kernel Hilbert spaces [54], nonlinear basis
smoothing splines [20], and wavelets. Alternatively, due to their interpretability
as a linear model, order-r splines with m number of knots [14, 31, 15] are
especially attractive and computationally tractable.

The linear predictor ηi in expression (2.4) implicitly relies on a vector of
cluster-specific indicators, γ = (γ1, . . . ,γq), where the triplet of indicators,

γk = (γ
(0)
k , γ

(1)
k , γ

(2)
k ), add to 1 for each cluster k. If γ

(0)
k = 1, the cluster

representative and none of the covariates belonging to cluster k are associated

with the responses. If γ
(1)
k = 1, the cluster representative appears as a simple

linear regressor in equation (2.4); γ
(2)
k = 1 implies a nonlinear regressor.

The number of linear predictors, nonlinear predictors, and non-predictors

are respectively, q1 =
∑q

j=1 γ
(1)
j , q2 =

∑q
j=1 γ

(2)
j , and q0 = q − q1 − q2. For a

simple illustration of this concept, consider again the toy example of Figure 2,
where one covariate is nominated from each cluster as the representative. Of the
q = 11 cluster representatives, q1 = 3 are linear predictors, q2 = 2 are nonlinear
predictors, and the remaining q0 = 6 representatives are non-predictors.

For nonlinear functions h having a linear representation (e.g., splines), let Uγ

be a matrix of n rows consisting of the intercept column and the independent
regressors based on the cluster representatives. For example, if we use order-r
splines with m number of knots in equation (2.4), then the number of columns,
col(Uγ) = q1 +(m+ r) · q2 +1. With [·] denoting densities of random variables,
the prior,

[γ] ∝ ωq0
0 ωq1

1 ωq2
2 · I

(
col(Uγ) < n

)
, (2.5)

where the probabilities ω = (ω0, ω1, ω2) are given by the Dirichlet distribution
prior, ω ∼ D3(1, 1, 1). The truncated prior for γ is designed to ensure model
sparsity and prevent overfitting, as explained below. Conditional on the vari-
ances of the regression outcomes in equation (2.4), we postulate a weighted
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g prior for the regression coefficients:

βγ |Σ ∼ N|S∗|+1

(
0, σ2

β(Uγ
′Σ−1Uγ)

−1

)
, (2.6)

where matrix Σ = diag(σ2
1 , . . . , σ

2
n).

A schematic representation of the entire hierarchical model involving both
the clustering and prediction components is shown in Figure 3.

2.3. Model justification and generalizations

In this section, we discuss the justification, consequences, and generalizations
of different aspects of the VariScan model. In particular, we investigate the
appropriateness of PDPs in this application as a tool for covariate clustering.
We also discuss the choice of basis functions for the nonlinear prediction model
and consider generalizations to discrete and survival outcomes.

Empirical justification of PDPs. We conducted an exploratory data anal-
ysis (EDA) of the gene expression levels in the DLBCL dataset of Rosenwald
et al. [71]. Randomly selecting a set of p = 500 probes for n = 100 randomly
chosen individuals, we iteratively applied the k-means procedure until the co-
variates were grouped into fairly concordant clusters with a small overall value
of τ2. The allocation pattern depicted in Figure 4 is atypical of Dirichlet pro-
cesses which, as is well known among practitioners, are usually associated with
a relatively small number of clusters and exponentially decaying cluster sizes.
Instead, the large number of clusters (q̂ = 161) and the predominance of small
clusters suggest a non-Dirichlet model for the covariate-cluster assignments.
More specifically, a PDP is favored due to the slower, power law decay in the
cluster sizes typically associated with these models.

Theoretical justifications for a PDP model. [73] derived the stick-breaking
representation for a Dirichlet process, and then [68] extended it to PDPs. These
stick-breaking representations have the following consequences for the induced
partitions. Let N be the set of natural numbers. Subject to a one-to-one mapping
of the PDP cluster labels into set N, the allocation variables c1, . . . , cp may be
regarded as i.i.d. samples from a discrete distribution Fα1,d on N with stick-

breaking probabilities, π1 = V1 and πh = Vh

∏h−1
t=1 (1 − Vt) for h = 2, 3, . . .,

where Vh
indep∼ beta(1− d, α1 + hd). This implies that for large values of p and

for clusters k = 1, . . . , q, the frequencies n
(p)
k /p are approximately equal to πhk

for some distinct integers h1, . . . , hq.
As previously mentioned, the VariScan model assumes that the base distribu-

tion G(n) of the PDP is the n-fold product measure of a univariate distribution,
G, which follows a Dirichlet process with mass parameter α2. This bidirectional
clustering structure has some interesting consequences. Let {φh}∞h=1 be the stick-
breaking probabilities associated with this nested Dirichlet process. For two or
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Fig 3. Directed acyclic graph of the VariScan model in which the cluster representatives are
chosen from the set of co-clustered covariates. Circles represent stochastic model parameters,
solid rectangles represent data and deterministic variables, and dashed rectangles represent
model constants. Solid (dashed) arrows represent stochastic (deterministic) relationships.
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Fig 4. Barchart of cluster sizes obtained by exploratory data analysis.

more of the q PDP clusters, the latent vectors are identical, with a probability
bounded above by

(
q
2

)
·
(∑∞

h=1 φ
2
h

)n
. Applying the asymptotic relationship of p

and q given in expression (2.1), we find that the upper bound tends to 0 as the
dataset grows, provided p grows at a slower-than-exponential rate as n grows. In
fact, for n as small as 50 and p as small as 250, in simulations as well as in data
analyses, we found all the latent vectors associated with the PDP clusters to
be distinct. Consequently, from a practical standpoint, the VariScan allocations
may be regarded as clusters with unique characteristics in even moderate-sized
datasets.

Theorem 2.1 below provides formal expressions for the first and second mo-
ments of the random log-probabilities of the discrete distribution Fα1,d. In con-
junction with equation (2.1), this result justifies the use of PDPs when the
observed number of clusters is large or the cluster sizes decay slowly. Part 2c
provides an explanation for the fact that Dirichlet process allocations typically
consist of a small number of clusters, only a few of which are large, with expo-
nential decay in the cluster sizes. Part 1c suggests that in PDPs with d > 0 (i.e.,
non-Dirichlet realizations), there is a slower, power law decay of the cluster sizes
as d increases. Part 3 indicates that for every α1 and d > 0, a PDP realization
Fα1,d has a thicker tail compared to that of a Dirichlet process realization, Fα1,0.
See Section A.1 of the Appendix for the proof.

It should be noted that the differential allocation patterns of PDPs and
Dirichlet processes are well known, and have been previously emphasized in
several papers, including [49] and [50]. However, it is difficult to come across a
formal proof for this differential behavior. Although the theorem is primarily
of interest when the base measure is non-atomic, it is relevant in this appli-
cation because of the empirically observed uniqueness of the latent vectors in
high-dimensional settings due to VariScan’s nested structure.

Theorem 2.1. Consider the process PDP
(
α1, d

)
with mass parameter α1 >

0 and discount parameter 0 ≤ d < 1. Let ψ(x) = d log Γ(x)/dx denote the
digamma function and ψ1(x) = d2 log Γ(x)/dx2 denote the trigamma function.
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1. For 0 < d < 1, the distribution Fα1,d ∈ N is a realization of a PDP
with stick-breaking probabilities πh, where h ∈ N. However, Fα1,d is not a
Dirichlet process realization because d �= 0. Then

(a) E(log πh) = ψ(1 − d) − ψ(α1) +
1
d

(
ψ(α1/d) − ψ(α1/d + h)

)
. This

implies that limh→∞ E(log πh) = −∞.

(b) Var(log πh) = ψ1(1 − d) − ψ1(α1) +
1
d2

(
ψ1(α1/d) − ψ1(α1/d + h)

)
.

Unlike a Dirichlet process realization, limh→∞ Var(log πh) is finite
regardless of d > 0.

(c) For any α1 > 0 and as h → ∞, log πh/ log h
−1/d p→ 1 for non-

Dirichlet process realizations.

2. For d = 0, the distribution Fα1,0 ∈ N is a Dirichlet process realization with

stick-breaking probabilities π∗
h based on V ∗

h
iid∼ beta(1, α1) for h ∈ N. Then

(a) E(log π∗
h) = ψ(1)− ψ(α1)− h/α1. Thus, limh→∞ E(log π∗

h) = −∞.

(b) Var(log π∗
h) = ψ1(1) − ψ1(α1) + h/α2

1. Thus, limh→∞ Var(log π∗
h) =

∞.

(c) As h → ∞,
√
h
(
1
h log(π∗

h) + 1/α1

) L→ N(0, 1/α2
1). This implies that

as h → ∞, the random stick-breaking Dirichlet process probabilities,
π∗
h, are stochastically equivalent to e−h/α1 .

3. As h → ∞,
√
h
(
1
h log(π∗

h/πh) + 1/α1

) L→ N(0, 1/α2
1). That is, as h → ∞,

the ratios of the Dirichlet process and non-Dirichlet process stick-breaking
random probabilities, π∗

h/πh, are stochastically equivalent to e−h/α1 for
every d > 0.

Remark. By Lemma 1 of [36], limh→∞ E(log π∗
h) = −∞ in Part 2a of Theorem

2.1 implies that
∑∞

h=1 π
∗
h = 1 almost surely for a Dirichlet process. A similar

comment applies in Part 1a for a PDP.

Empirical justification of nested Dirichlet process model for the latent
vector elements. For the DLBCL dataset, Figure 5 presents a summary of
the VariScan model estimates for the 14,000 latent vector elements with esti-
mated Bernoulli indicators ẑik = 1. More than 87% of the nq̂ = 16, 500 latent
vector elements were estimated to have ẑik = 1, implying that a relatively small
proportion of covariate values for the DLBCL dataset can be regarded as ran-
dom noise having no clustering structure. Further details about the inferential
procedure are provided in Section 3. In Figure 5, the small number of clusters
corresponding to the large number of latent vector elements and the sharp de-
cline in the cluster sizes compared with Figure 4 are consistent with Dirichlet
process allocation patterns. Similar results were obtained for the breast cancer
data and for other genomic datasets that we have analyzed.

Choice of basis functions: model parsimony versus flexibility. The re-
liability of inference and prediction rapidly deteriorates as the number of cluster
predictors and additive nonlinear components in equation (2.4) increases beyond
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Fig 5. For the DLBCL dataset, least-squares Dirichlet process configuration of the more than
14,000 latent vector elements with Bernoulli indicators equal to 1.

a threshold value and approaches the number of subjects, n. The restriction in
the prior (2.5) prevents over-fitting. It ensures that the matrix Uγ , consisting
of the independent regression variables, has fewer columns than rows, and is a
sufficient condition for the existence of (Uγ

′Σ−1Uγ)
−1 and the least-squares

estimate of βγ in equation (2.4). In spline-based models, the relatively small
number of subjects also puts a constraint on the order of the splines, often ne-
cessitating the use of linear splines with m = 1 knot per cluster in equation
(2.4). In the applications presented in this paper, we fixed the knot for each
covariate at the sample median.

Unusually small values of σ2
i in equation (2.4) correspond to over-fitted mod-

els, whereas unusually large values correspond to under-fitted models. Any pa-
rameters that determine σ2

1 , . . . , σ
2
n are key, and their priors must be carefully

chosen. For instance, linear regression assumes that σ2
i = σ2. We have found that

non-informative priors for σ2 do not work well because the optimal model sizes
for variable selection are unknown. Additionally, we have found that it is helpful
to restrict the range of σ2 based on reasonable goals for inferential precision.
In the examples discussed in this paper, we assigned the following truncated
prior: σ−2 ∼ χ2

ν · I
(
0.95−1/Var(ŷ) < σ−2 < 0.5−1/Var(ŷ)

)
, where the degrees

of freedom ν were appropriately chosen and the vector ŷ relied on EDA esti-
mates of latent regression outcomes from a previous study or the training set
individuals. The support for σ−2 approximately corresponds to the constraint,
0.5 < R2 < 0.95, quantifying the effectiveness of regression. As Sections 5.2
and 6 demonstrate, the aforementioned strategies often result in high reliability
of the response predictions.

Generalizations for discrete or survival outcomes. In a general inves-
tigation, the subject-specific responses may be discrete or continuous, and/or
may be censored. In such cases, the responses, denoted by w1, . . . , wn, can be
modeled as deterministic transformations of random variables Ri from an expo-
nential family distribution. The Laplace approximation [30] transforms each
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Ri into a Gaussian regression outcome, yi, that can be modeled using our
VariScan model proposed above. The details of the calculation are as follows.
For a set of functions fi, we assume that wi = fi(Ri) and density function

[Ri | �i, ς] = r(Ri, ς) · exp
(

Ri �i−b(�i)
a(ς)

)
, where r(·) is a non-negative function,

ς is a dispersion parameter, �i is the canonical parameter, and [·] represents
densities with respect to a dominating measure. The Laplace approximation
relates the Ri’s to Gaussian regression outcomes: yi = ηi +

∂ηi

∂μi
· (Ri − μi) is

approximately N
(
ηi, σ

2
i

)
with precision σ−2

i = {b′′(μi)}−1 (∂μi/∂ηi)
2
. For an

appropriate link function g(·), the mean ηi equals g(μi). Gaussian, Poisson, and
binary responses are applicable in this setting. Accelerated failure time (AFT)
censored outcomes [10, 12] also fall into this modeling framework.

The idea of using a Laplace-type approximation for exponential families is
not new. Some early examples in Bayesian settings include [83], [2], and [3]. For
linear regression, the approximation is exact with yi = Ri. The Laplace approx-
imation is not restrictive even when it is approximate; for example, MCMC pro-
posals for the model parameters can be filtered through a Metropolis-Hastings
step to obtain samples from the target posterior. Alternatively, inferential strate-
gies relying on normal mixture representations through auxiliary variables could
be used to relate the Ri’s to the yi’s. For instance, [1] used truncated normal
sampling to obtain a probit model for binary responses, and [32] utilized a scale
mixture representation of the normal distribution [4, 81] to implement logistic
regression using latent variables.

3. Posterior inference

Starting with an initial configuration obtained by a näıve, preliminary analysis,
the model parameters are iteratively updated by MCMC methods. Due to the
intensive nature of the posterior inference, the analysis is performed in two
stages, with cluster detection followed by predictor discovery:

Stage 1 Focusing only on the covariates and ignoring the responses:

Stage 1a The allocation variables, latent vector elements, and binary indi-
cators are iteratively updated until the MCMC chain converges.
Monte Carlo estimates are computed for the posterior probabil-
ity of clustering for each pair of covariates. Applying the tech-
nique of [13], these pairwise probabilities are used to compute
a point estimate, called the least-squares allocation, for the al-
location variables. Further details of the MCMC procedure are
provided in Sections C.1 and C.2 of the Appendix.

Stage 1b Conditional on the least-squares allocation being the true clus-
tering of the covariates, a second MCMC sample of the latent
vector elements and binary indicators is generated. Again ap-
plying the technique of [13], we compute a point estimate, called
the least-squares configuration, for the latent vector elements and
binary indicators.
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Stage 2 Conditional on the least-squares allocation and least-squares configu-
ration, and focusing on the responses, the cluster predictors and latent
regression outcomes, if any, are generated to obtain a third MCMC
sample. The MCMC sample is post-processed to predict the responses
for out-of-the-bag test set individuals. The interested reader is referred
to Sections C.3, C.4 and C.5 of the Appendix for details.

As a further benefit of a coherent model for the covariates, VariScan is able
to perform model-based imputations of any missing subject-specific covariates
as part of the MCMC procedure.

4. Clustering consistency

As mentioned in Section 2.1, the latent vectors associated with two or more
PDP clusters may be identical under the VariScan model, but this probability
becomes vanishingly small as n grows. Consequently, for practical purposes,
the VariScan allocations may be interpreted as distinct, identifiable clusters in
even moderately large datasets. In order to study the reliability of VariScan’s
clustering procedure in our targeted big data applications, we make large-sample
theoretical comparisons between the VariScan model’s cluster allocations and
the true allocations of a hypothetical covariate generating process.

In the general problem of using mixture models to allocate p objects to an
unknown number of clusters, the problem of non-identifiability and redundancy
of the detected clusters has been extensively documented in Bayesian and fre-
quentist applications [e.g., see 22]. Some partial solutions are available in the
Bayesian literature. For example, in finite mixture models, rather than assum-
ing exchangeability of the mixture component parameters, [66] regard them as
draws from a repulsive process, leading to fewer, better separated and more in-
terpretable clusters. [72] show that a carefully chosen prior leads to asymptotic
emptying of the redundant components in over-fitted finite mixture models.
The underlying strategy of these procedures is that they focus on detecting
the correct number of clusters rather than the correct allocation of the p ob-
jects.

In contrast to the non-identifiability of the detected clusters in fixed n set-
tings, Theorem 4.1 establishes the interesting fact that, when p and n are both
large, a fixed set of covariates that (do not) co-cluster under the true process,
also (do not) asymptotically co-cluster under the posterior. The key intuition
is that, as with most mixture model applications, when n-dimensional objects
are clustered and n is small, it is possible for the clusters to be erroneously
placed too close together even if p is large. On the other hand, if n is allowed
to grow with p, then objects in Rn eventually become well separated. Conse-
quently, for n and p large enough, the VariScan method is able to infer the true
clustering for a fixed subset of the p covariate columns. In the sequel, using
synthetic datasets in Section 5.1, we exhibit the high accuracy of VariScan’s
clustering-related inferences.
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The true model. The VariScan model’s exchangeability assumption for the
p covariates stems from our belief in the existence of a true, unknown de Finetti
density in Rn from which the column vectors arise as a random sample. In
particular, for any given n and p, we make the following assumptions about the
true covariate-generating process:

(a) The column vectors x1, . . . ,xp are a random sample of size p from an n-

variate distribution P
(n)
0 convolved with n-variate, independent-component

Gaussian errors.
(b) The true distribution P

(n)
0 is discrete in the spaceRn. Let the n-dimensional

atoms of P
(n)
0 be denoted by v

(0)
t = (v

(0)
1t , . . . , v

(0)
nt )

′ for positive integers t.

(c) Due to the discreteness of distribution P
(n)
0 , there exist true allocation vari-

ables, c
(0)
1 , . . . , c

(0)
p , mapping the p covariates to distinct atoms of P

(n)
0 . For

subjects i = 1, . . . , n, and columns j = 1, . . . , p, the covariates are then
distributed as

xij | c(0)j

indep∼ N(v
(0)

i c
(0)
j

, τ20 ), (4.1)

(d) The n-variate atoms of distribution P
(n)
0 are i.i.d. realizations of the n-fold

product measure of a univariate distribution, G0. Consequently, the atom

elements are v
(0)
it

i.i.d.∼ G0 for i = 1, . . . , n, and j = 1, . . . , p.
(e) The true distribution G0 is non-atomic and has compact support on the

real line.

Let L = {j1, . . . , jL} ⊂ {1, . . . , p} be a fixed subset of L covariate indexes.
Given a vector of inferred allocations c = (c1, . . . , cp), we quantify the inferential
accuracy by the proportion of correctly clustered covariate pairs:

κL(c) =
1(
L
2

) ∑
j1 �=j2∈L

I
(
I(cj1 = cj2) = I(c(0)j1

= c
(0)
j2

)

)
. (4.2)

A value near 1 indicates high accuracy of inferred allocations c for the set L.
Notice that the measure κL(c) is invariant to permutations of the clusters labels.
This is desirable because the labels are arbitrary.

Theorem 4.1. Denote the covariate matrix by Xnp. In addition to assump-
tions (a)–(e) about the true covariate-generating process, suppose that the true
standard deviation τ0 in equation (4.1) is bounded below by τ∗, the small, posi-
tive constant postulated in Section 2.1 as a lower bound for the VariScan model
parameters, τ1 and τ .

Let L = {j1, . . . , jL} ⊂ {1, . . . , p} be a fixed subset of L covariate indexes.
Then there exists an increasing sequence of numbers {pn} such that, as n grows
and provided p > pn, the VariScan clustering inferences for the covariate subset
L are a posteriori consistent. That is,

lim
n→∞
p>pn

P
[
κL(c) = 1 | Xnp

]
→ 1.
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Fig 6. 95% posterior credible intervals for the discount parameter, d for different values of
τ0. The true value, d0, is shown by the red dashed line.

See Section E of the Appendix for the proof. The results rely on non-trivial
extensions, in several directions, of the important theoretical insights provided
by [24]. Specifically, we extend Theorem 3 of [24] to densities on Rn arising
as convolutions of vector locations with errors distributed as zero-mean finite
normal mixtures.

5. Simulation studies

5.1. Cluster-related inferences

We investigated VariScan’s accuracy as a clustering procedure using artificial
datasets for which the true clustering pattern is known. We simulated the co-
variates for n = 50 subjects and p = 250 genes from a discrete distribution
convolved with Gaussian noise, and compared the co-clustering posterior prob-
abilities of the p covariates with the truth. The parameters of the true model
were chosen to approximately match the corresponding estimates for the DL-
BCL dataset of [71]. Specifically, for each of 25 synthetic datasets, and for the
true model’s parameter τ0 in Theorem 4.1 belonging to the range [0.60, 0.96],
we generated the following quantities to obtain the matrix X in step 3 below.

1. True allocation variables: We generated c
(0)
1 , . . . , c

(0)
p as the partitions

induced by a PDP with true discount parameter d(0) = 0.33 and mass pa-
rameter α1 = 20. The true number of clusters, Q0, was thereby computed
for this non-Dirichlet allocation.

2. Latent vector elements: For i = 1, . . . , n and k = 1, . . . , Q0, elements

v
(0)
ik

iid∼ G0, where G0 ∼ DP(α2), with mass α2 = 10 and uniform base
distribution U0 on the interval [1.4, 2.6].
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3. Covariates: xij
indep∼ N(v

(0)
icj

, τ20 ) for i = 1, . . . , n and j = 1, . . . , p.

No responses were generated in this study. Applying the general technique of
[13] developed for Dirichlet process models, we computed a point estimate for
the allocations, called the least-squares configuration, and denoted by ĉ1, . . . , ĉp.
For the full set of covariates, we estimated the accuracy of the least-squares
allocation by the estimated proportion of correctly clustered covariate pairs,

κ̂ =
1(
p
2

) ∑
j1 �=j2∈{1,...,p}

I
(
I(ĉj1 = ĉj2) = I(c(0)j1

= c
(0)
j2

)

)
.

A high value of κ̂ is indicative of VariScan’s high clustering accuracy for all p
covariates.

For each value of τ0, the second column of Table 1 displays the percentage
κ̂ averaged over the 25 independent replications. We find that, for each τ0,
significantly less than 5 pairs were incorrectly clustered out of the

(
250
2

)
= 31,125

different covariate pairs, and so κ̂ was significantly greater than 0.999. The
posterior inferences appear to be robust to large noise levels, i.e., large values of
τ0. For every dataset, q̂, the estimated number of clusters in the least-squares
allocation was exactly equal to Q0, the true number of clusters. Recall that the
non-atomicity of true distribution G0 is a sufficient condition of Theorem 4.1.
Although the condition is not satisfied in this setting, we nevertheless obtained
highly accurate clustering-related inferences for the full set of p = 250 covariates.

Accurate inferences were also obtained for the PDP discount parameter,
d ∈ [0, 1). Figure 6 plots the 95% posterior credible intervals for d against dif-
ferent values of τ0. The posterior inferences are substantially more precise than
the prior and each interval contained the true value, d0 = 0.33. Furthermore,
in spite of being assigned a prior probability of 0.5, there is no posterior mass
allocated to Dirichlet process models. The ability of VariScan to discriminate
between PDP and Dirichlet process models was evaluated using the log-Bayes
factor, log(P [d > 0|X]/P [d = 0|X]). With Θ∗ representing all the parame-
ters except d, and applying Jensen’s inequality, the log-Bayes factor exceeds

Table 1

For different values of simulation parameter τ0, column 2 displays the proportion of
correctly clustered covariate pairs, with the standard errors for the 25 independent

replications shown in parentheses. Column 3 presents 95% posterior credible intervals for
the lower bound of the log-Bayes factor of PDP models relative to Dirichlet process models.

See the text for further explanation.

True τ0 Percent κ̂ 95% C.I. for lower
bound of log-BF

0.60 99.984 (0.000) (11.05, 11.10)
0.66 99.978 (0.000) (11.17, 11.25)
0.72 99.976 (0.000) (10.89, 10.98)
0.78 99.973 (0.001) (10.23, 10.31)
0.84 99.971 (0.000) (10.86, 10.93)
0.90 99.960 (0.000) (11.88, 11.94)
0.96 99.941 (0.001) (10.49, 10.56)
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E(log(P [d>0|X,Θ∗]
p[d=0|X,Θ∗] ) | X), which (unlike the log-Bayes factor) can be estimated

using just the post–burn-in MCMC sample. For each τ0, the third column of
Table 1 displays 95% posterior credible intervals for this lower bound. The Bayes
factors are significantly greater than e10 = 22, 026.5 and are overwhelmingly in
favor of PDP allocations, i.e., the true model.

5.2. Prediction accuracy

We evaluate the operating characteristics of our methods using a simulation
study based on the DLBCL dataset of [71]. To generate the simulated data, we
selected p = 500 genes from the original gene expression dataset of 7,399 probes,
as detailed below.

1. Select 10 covariates with pairwise correlations less than 0.5 as the true
predictor set, S ⊂ {1, . . . , 500}, so that |S| = 10.

2. For each value of β∗ ∈ {0.2, 0.6, 1.0}:
(a) For subjects i = 1, . . . , 100, generate failure times ti from distribution

Ei, denoting the exponential distribution with mean exp(β∗∑
j∈Sxij).

Note that the model used to generate the outcomes differs from
VariScan assumption (2.4) for the log-failure times.

(b) For 20% of individuals, generate their censoring times as follows:
ui ∼ Ei · I(ui < ti). Set the survival times of these individuals to
wi = log ui and their failure statuses to δi = 0.

(c) For the remaining individuals, set wi = log ti and δi = 1.

3. Randomly assign 67 individuals to the training set and the remaining 33
individuals to the test set.

4. Assuming the AFT survival model, apply the VariScan procedure with
linear splines and m = 1 knot per spline. Choose a single covariate from
each cluster as the representative as described in Section 2.2. Make pos-
terior inferences using the training data and predict the outcomes for the
test cases.

We analyzed the same set of simulated data using six other techniques for gene
selection with survival outcomes: lasso [76], adaptive lasso [84], elastic net [85],
L2-boosting [33], random survival forests [37], and supervised principal compo-
nents [5], which have been implemented in the R packages glmnet, mboost, ran-
domSurvivalForest, and superpc. The “RSF-VH” version of the random survival
forest procedure was chosen because of its success in high-dimensional problems.
The selected techniques are excellent examples of the three categories of ap-
proaches for small n, large p problems (variable selection, nonlinear prediction,
and regression based on lower-dimensional projections) discussed in Section 1.
We repeated this procedure over fifteen independent replications.

We compared the prediction errors of the methods using the concordance
error rate, which is defined as 1 − C, where C denotes the C index of [29].
Let the set of “usable” pairs of subjects be U = {(i, j) : wi < wj , δi = 1} ∪
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Fig 7. Side-by-side boxplots comparing the percentage concordance error rates of the different
techniques in the simulation study.

{(i, j) : wi = wj , δi �= δj}. The concordance error rate of a procedure is [55]
1 − C = 1

|U|
∑

(i,j)∈U I(w̃i ≥ w̃j) − 1
2|U|

∑
(i,j)∈U I(w̃i = w̃j), where w̃i is the

predicted response of subject i. For example, for the VariScan procedure applied
to analyze AFT survival outcomes, the predicted responses are w̃i = exp(ỹi),
where ỹi are the predicted regression outcomes.

The concordance error rate measures a procedure’s probability of incorrectly
ranking the failure times of two randomly chosen individuals. The accuracy of a
procedure is inversely related to its concordance error rate. The measure is es-
pecially useful for comparisons because it does not rely on the survivor function,
which is estimable by VariScan, but not by some of the other procedures. Fig-
ure 7 depicts boxplots of the concordance error rates of the procedures sorted
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Fig 8. Plot of concordance error rates versus model sizes for the competing methods along
with the standard errors (shown by whiskers). The left, middle and right plots respectively
correspond to effect size β∗ equal to 0.2, 0.6, and 1.

by increasing order of prediction accuracy. We find that as β∗ increases, the
concordance error rates progressively decrease for most procedures, including
VariScan. For larger β∗, the error rates for VariScan are significantly lower than
the error rates for the other methods.

In order to facilitate a more systematic evaluation, we have plotted in Figure 8
the error rates versus model sizes for the different methods, thereby providing
a joint examination of model parsimony and prediction. To aid visual interpre-
tation, we did not include the supervised principal components method, since
it performs the worst in terms of prediction and detects models that are two-
to four-fold larger than those from L2-boosting, which typically produces the
largest models among the depicted methods. The three panels correspond to
increasing effect size, β∗. A few facts are evident from the plots. VariScan seems
to balance sparsity and prediction the best for all values of β∗, with its perfor-
mance increasing appreciably with β∗. Penalization approaches such as lasso,
adaptive lasso, and elastic net produce sparser models but have lower prediction
accuracies. L2-boosting is comparable to VariScan in terms of prediction accu-
racy, but detects larger models for the lower effect sizes (left and middle panel);
VariScan is the clear winner for the largest effect size (right panel). Additionally,
especially for the largest β∗, we observe substantial variability between the sim-
ulation runs for the penalization approaches, as reflected by the large standard
errors. Further simulation study comparisons of VariScan and the competing
approaches are presented in Section F.1 of the Appendix.
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Nonlinearity measure. Unlike some existing approaches, VariScan is able
to measure the degree of nonlinearity in the relationships between the responses
and covariates. For example, we could define nonlinearity measure N as the
posterior expectation,

N = E
( ω2

ω1 + ω2
|w,X

)
. (5.1)

This represents the posterior odds that a hypothetical, new cluster is a non-
linear predictor in equation (2.4) rather than a simple linear regressor. A value
of N close to 1 corresponds to predominantly nonlinear associations between
the responses and their predictors.

Averaging over the 15 independent replications of the simulation, as β∗ varied
over the set {0.2, 0.6, 1.0}, the estimates of the nonlinearity measure N defined
in equation (5.1), were 0.72, 0.41, and 0.25, respectively. The corresponding
standard errors were 0.04, 0.07, and 0.06. This indicates that on the scale of
the simulated log–failure times, simple linear regressors are increasingly pre-
ferred to linear splines as the signal-to-noise ratio, quantified by β∗, increases.
Such interpretable measures of nonlinearity are not provided by the competing
methods.

6. Analysis of benchmark data sets

Returning to the two publicly available datasets of Section 1, we chose p = 500
probes for further analysis. For the DLBCL dataset of Rosenwald et al. [71],
we randomly selected 100 out of the 235 individuals who had non-zero survival
times. Of the individuals selected, 50% had censored failure times. For the breast
cancer dataset of van’t Veer et al. [78], we analyzed the 76 individuals with non-
zero survival times, of which 44 individuals (57.9%) had censored failure times.

We performed 50 independent replications of the three steps that follow. (i)
We randomly split the data into training and test sets in a 2:1 ratio. (ii) We ana-
lyzed the survival times and p = 500 gene expression levels of the training cases
using the techniques VariScan, lasso, adaptive lasso, elastic net, L2-boosting,
random survival forests, and supervised principal components. (iii) The differ-
ent techniques were used to predict the test case outcomes. For the VariScan
procedure, a single covariate from each cluster was chosen to be the cluster
representative.

The numbers of clusters for the least-squares allocation of covariates, q̂, com-
puted in stage 1a of the analysis, were 165 and 117, respectively, for the DLBCL
and breast cancer datasets. The nonlinearity measureN estimates were 0.97 and
0.75, respectively, with small standard errors. This indicates that the responses
in both datasets, but especially in the DLBCL dataset, have predominantly
nonlinear relationships with the predictors. In spite of being assigned a prior
probability of 0.5, the estimated posterior probability of the Dirichlet process
model (corresponding to discount parameter d = 0) was exactly 0 for both
datasets, justifying the PDP-based allocation scheme.

For the DLBCL data, the upper panel of Figure 9 displays the estimated
posterior density of the PDP’s discount parameter d. The estimated posterior
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Fig 9. Posterior summaries for the DLBCL dataset. The top panels and the lower panel
summarize the least-squares covariate-to-cluster PDP allocation of the 500 genes.

probability of the event [d = 0] is exactly zero, implying that a non-Dirichlet
process clustering mechanism is strongly favored by the data, as suggested earlier
by the EDA. The middle panel of Figure 9 plots the estimated posterior density
of the number of clusters. The a posteriori large number of clusters (for p =
500 covariates) is suggestive of a PDP model with d > 0 (i.e., a non-Dirichlet
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Fig 10. For the DLBCL dataset, median pairwise correlations for the q̂ = 165 PDP clusters
in the least-squares allocation of stage 1a.

process model). The lower panel of Figure 9 summarizes the cluster sizes of the
least-squares allocation [13]. The large number of clusters (q̂ = 165) and the
multiplicity of small clusters are very unusual for a Dirichlet process, justifying
the use of the more general PDP model.

The effectiveness of VariScan as a model-based clustering procedure can be
shown as follows. For each of the q̂ = 165 clusters in the least-squares alloca-
tion of stage 1a, we computed the correlations between its member covariates
and the latent vector for individuals with ẑik = 1. The cluster-wise median cor-
relations are plotted in Figure 10. The plots reveal fairly good within-cluster
concordance regardless of the cluster size. Figure 11 displays heatmaps for the
DLBCL covariates that were allocated to column clusters having more than 10
members. The panels display the covariates before and after bidirectional clus-
tering of the subjects and probes, with the lower panel of Figure 11 illustrating
the within-cluster patterns revealed by VariScan. For each column cluster in the
lower panel, the uppermost rows represent the covariates of any subjects that
do not follow the cluster structure and which are better modeled as random
noise (i.e., covariates with ẑik = 0).
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Fig 11. Heatmaps of DLBCL covariates that were assigned to latent column clusters with
more than 10 members. The panels display the covariates before and after bidirectional local
clustering by VariScan. The vertical lines in the bottom panel mark the covariate clusters.
The color key for both panels is displayed at the top of the plot.
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Fig 12. Side-by-side boxplots of percentage concordance error rates for the benchmark
datasets.

Comparing the test case predictions with the actual survival times, boxplots
of numerical summaries of the concordance error rates for all the methods are
presented in Figure 12. The success of VariScan appears to be robust to the
different censoring rates of survival datasets. Although L2-boosting had compa-
rable error rates for the DLBCL dataset, VariScan had the lowest error rates for
both datasets. Further results of the data analysis and comparisons are available
in Section G of the Appendix.

For subsequent biological interpretations, we selected genes having high prob-
ability of being selected as predictors (with the upper percentile decided by the
model size). We then analyzed these genes for their role in cancer progression
by cross-referencing with the existing literature. For the breast cancer dataset,
our survey indicated several prominent genes related to breast cancer devel-
opment and progression, such as TGF-B2 [9], ABCC3, which is known to be
up-regulated in primary breast cancers, and LAPTM4B, which is related to
breast carcinoma relapse with metastasis [47]. For the DLBCL dataset, we found
several genes related to DLBCL progression, such as the presence of multiple
chemokine ligands (CXCL9 and CCL18), interleukin receptors of IL2 and IL5
[52], and BNIP3, which is down-regulated in DLBCL and is a known marker
associated with positive survival [67]. A detailed functional/mechanistic anal-
ysis of the main set of genes for both datasets is provided in Section G of the
Appendix.
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7. Conclusions

Utilizing the sparsity-inducing property of PDPs, VariScan offers an efficient
technique for clustering, variable selection, and prediction in high-dimensional
regression problems. The covariates are grouped into a smaller number of clus-
ters consisting of covariates with similar across-subject patterns. We theoreti-
cally demonstrate how a PDP allocation can be differentiated from a Dirichlet
process allocation in terms of the relative sizes of the latent clusters. We provide
a theoretical explanation for the impressive ability of VariScan to a posteriori
detect the true covariate clusters for a general class of models.

In simulations and real data analysis, we show that VariScan makes highly
accurate cluster-related inferences. The technique consistently outperforms es-
tablished methodologies such as random survival forests, L2-boosting, and su-
pervised principal components, in terms of prediction accuracy. In the analyses
of benchmark microarray datasets, we identified several genes having known im-
plications in cancer development and progression, which further engenders our
hypothesis.

The VariScan methodology focuses on continuous covariates as a proof of
concept, achieving simultaneous clustering, variable selection, and prediction in
high-throughput regression settings and possessing appealing theoretical and
empirical properties. Generalization to count, categorical, and ordinal covari-
ates is possible. It is important to investigate the dependence structures and
theoretical properties associated with the more general framework. This will be
the focus of our group’s future research.

Due to the intensive nature of the MCMC inference, we performed these
analyses in two stages, with cluster detection followed by predictor discovery.
We are currently working on implementing VariScan’s MCMC procedure in a
parallel computing framework using graphical processing units [75]. We plan to
make the software available as an R package for general use in the near future.
The single-stage analysis will allow the regression and clustering results to be
interrelated, as implied by the VariScan model. We anticipate being able to dra-
matically speed up the calculations by multiple orders of magnitude, which will
allow for single-stage inferences of user-specified datasets on ordinary desktop
and laptop computers.

Appendix A: Details of theoretical calculations and results

A.1. Proof of Theorem 2.1

1. (a) Suppose h ≥ 2. Because Vh and (1 − Vt) have beta distributions, it
can be shown that E(log Vh) = ψ(1− d)−ψ (α1 + 1 + (h− 1)d) and
E(log(1− Vt)) = ψ(α1 + td)− ψ (α1 + 1 + (t− 1)d). Now,

E(log πh)− E(log Vh)

=

h−1∑
t=1

E(log(1− Vt))
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=

h−1∑
t=1

{
ψ(α1 + td)− ψ(α1 + 1 + (t− 1)d)

}

=

h−1∑
t=1

{
ψ(α1 + td)− ψ(α1 + (t− 1)d) +

1

α1 + (t− 1)d

}
(recurrence relation for ψ(x))

=

h−1∑
t=1

{
ψ(α1 + td)− ψ(α1 + (t− 1)d)

}
−

h−1∑
t=1

1

α1 + (t− 1)d

= ψ(α1 + (h− 1)d)− ψ(α1)−
h−1∑
t=1

1

α1 + (t− 1)d

= ψ(α1 + (h− 1)d)− ψ(α1)−
1

d

h−1∑
t=1

1

α1/d+ (t− 1)

= ψ(α1 + (h− 1)d)− ψ(α1)

− 1

d

{
ψ(α1/d) +

h−1∑
t=1

1

α1/d+ (t− 1)
− ψ(α1/d)

}

= ψ(α1 + (h− 1)d)− ψ(α1)−
1

d

(
ψ(α1/d+ h− 1)− ψ(α1/d)

)
.

Since E(log Vh) = ψ(1− d)− ψ(α1 + 1 + (h− 1)d), therefore,

E(log πh)

= E(log Vh) + ψ(α1 + (h− 1)d)− ψ(α1)

− 1

d
(ψ(α1/d+ h)− ψ(α1/d))

= ψ(1− d)− ψ(α1 + 1 + (h− 1)d)− ψ(α1 + (h− 1)d)− ψ(α1)

− 1

d
(ψ(α1/d+ h− 1)− ψ(α1/d))

= ψ(1− d)− 1

α1 + (h− 1)d
− ψ(α1)

− 1

d
(ψ(α1/d+ h− 1)− ψ(α1/d))

= ψ(1− d)− ψ(α1)

− 1

d

(
ψ(α1/d+ h− 1) +

1

α1/d+ h− 1
− ψ(α1/d)

)

= ψ(1− d)− ψ(α1)−
1

d
(ψ(α1/d+ h)− ψ(α1/d)) .

It can be verified that the same formula is applicable when h = 1.
Since limx→∞ ψ(x)/ log(x) = 1, we have limh→∞ E(log πh) = −∞.

(b) By a similar calculation, we obtain the expression for Var(log πh).



3404 S. Guha and V. Baladandayuthapani

Since limx→∞ ψ1(x) = 0, limh→∞ Var(log πh) = ψ1(1−d)−ψ1(α1)+
1
d2ψ1(α1/d), which is finite.

(c) Applying Chebychev’s inequality, for any ε > 0,

P

(∣∣ log πh

log h
+

1

d

∣∣ ≥ ε

)
≤

E(log πh + 1
d log h)

2

(log h)2ε2

=
Var(log πh)

(log h)2ε2
+

(E log πh + 1
d log h)

2

(log h)2ε2
.

(A.1)

From Part 1b, we have that limh→∞ Var(log πh)/(log h)
2 = 0. More-

over,

lim
h→∞

E log πh

log h
= lim

h→∞

ψ(1− d)− ψ(α1) +
1
d

(
ψ(α1/d)− ψ(α1/d+ h)

)
log h

= −1

d
lim
h→∞

ψ(α1/d+ h)

log h
= −1

d
.

Therefore, the second term on the right hand side of expression (A.1)

is also 0, and log πh/ log h
p→ −1/d.

2. The expressions for DP models can be easily computed because the V ∗
h

are i.i.d. beta variables. The asymptotic normal distribution in Part 2c
follows from the Central Limit Theorem because

√
h

(
1

h
log(π∗

h)−
1

h

h−1∑
t=1

log(1− V ∗
t )

)
L→ 0.

3. Part 1c implies that
√
h
(
1
h log(πh)

) L→ 0. The stated result follows from
Part 2c and Slutsky’s theorem.

Appendix B: A basic lemma for MCMC updates

Lemma B.1. Suppose we are given the cluster-predictors γ = (γ1, . . . , γq) in
assumption (2.4). Suppose Σ = diag(σ2

1 , . . . , σ
2
n) and σ2

β are also known, so

that Θ = (σ2
β ,γ,Σ) is known. Upon integrating out the regression coefficients in

assumption (2.4) with respect to Zellner’s weighted g prior (2.6), we have that

1. The regression outcomes are marginally distributed as

y | Θ ∼ Nn

(
0,Σ+ σ2

βXγ(Xγ
′Σ−1Xγ)

−1X ′
γ

)
.

2. The density of the regression outcomes has the simplified form:

[y | Θ] = (2π)−n/2
(
1 + σ2

β)
−r/2

n∏
i=1

σ−1
i exp

(
−‖φ‖2

2

)
exp

(
‖Hφ‖2

2(1 + σ−2
β )

)
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where vector φ = Σ−1/2y, matrix H= V (V ′V )−1V ′ with V = Σ−1/2Xγ ,
and r = rank(H).

Proof. Rewriting assumption (2.4) as y | βγ ,Θ ∼ Nn

(
Xγβγ ,Σ

)
,

1. Follows from elementary properties of multivariate normal distributions.
2. Part 1 implies that φ | Θ ∼ Nn(0, In + σ2

βH). Writing Δ = In + σ2
βH,

the density, [φ | Θ] = |Δ|−1/2

(2π)n/2 exp
(
−1

2φ
′Δ−1φ

)
. Applying a well-known

matrix identity, we have that Δ−1 = In − 1/(1 + σ−2
β )H. Since matrix

H is idempotent with eigenvalues that are either 0 or 1, its rank r is the
sum of its eigenvalues. Simultaneously diagonalizing In and H, we get
|Δ| =

(
1 + σ2

β

)r
and

[φ | Θ] = (2π)−n/2
(
1 + σ2

β)
−r/2 exp

(
−‖φ‖2

2

)
exp

(
‖Hφ‖2

2(1 + σ−2
β )

)
,

where ‖Hφ‖2 = φ′Hφ is the squared projection of φ on the column space

of H. Transforming back to y = Σ1/2φ, we obtain the desired expression,
since the Jacobian equals

∏n
i=1 σ

−1
i .

Appendix C: MCMC procedure

C.1. Covariate-to-cluster Allocation

For j = 1, . . . , p, the full conditional of allocation variable cj is available in
closed form given the distinct number of latent vector elements. However, this
calculation becomes very intensive since n and p are large. To accommodate
the updates of the large number of covariate-related parameters, we apply the
fast and accurate Metropolis-Hastings algorithm developed by [27] for Pölya urn
schemes.

C.2. Latent Vectors and Indicators

Among the allocation variables c1, . . . , cp, suppose there are q clusters, with
cluster k consisting of nk =

∑p
j=1 I(cj = k) covariates for k = 1, . . . , q. As

i = 1, . . . , n and k = 1, . . . , q vary, the sufficient statistics x̄ik =
∑p

j=1 xij ·
I(cj = k)/nk are independently distributed as N(0, τ21 /nk) if zik = 0, and as
N(vik, τ

2/nk) if zik = 1. Dirichlet process prior (2.3) is conjugate to the above
distribution and to the sampling distribution of the zik’s. For i = 1, . . . , n, and
k = 1, . . . , q, we can therefore update the bivariate vector (vik, zik) by Gibbs
sampling. To accommodate the large number of latent vector elements, we apply
the fast data squashing algorithm of [27].
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C.3. Cluster Predictors and Cluster Representatives

The choice of basis functions such as splines and wavelets for the nonlinear
functionals h in (2.4) result in non-linear terms that are additive in analytic
(e.g., polynomial or periodic) functions of the cluster representatives. In such
cases, it is possible to integrate out the regression coefficients βγ to iteratively

update the vector of indicators γk = (γ
(0)
k , γ

(1)
k , γ

(2)
k ), for clusters k = 1, . . . , q.

Given the cluster representative uk and the set of indicators for the remaining

(q−1) clusters, the sub-models corresponding to γ
(0)
k = 1, γ

(1)
k = 1, and γ

(2)
k = 1,

are then progressively nested.
The following theorem is exploited to quickly compute, up to a multiplicative

constant, the likelihood functions for these three sub-models. This makes it
possible to easily perform joint updates for uk and γk. After a cycle of updates
of q indicators and cluster representatives has been completed, the regression
coefficients βγ may be jointly generated from the full conditional if necessary.

Theorem C.1. For t = 1, 2, consider the models Mt : y ∼ Nn

(
Xtβt,Σ

)
with

βt distributed according to Zellner’s weighted g prior (2.6). Suppose X2 has m

additional columns relative to X1 so that M1 ⊂ M2. Let V t = Σ−1/2Xt and
φ = (φ1, . . . , φn)

′, where φi = yi/σi. Project the m additional columns of V 2

orthogonal to the column space of V 1. Mutually orthogonalizing the resultant
columns, rescaling the non-zero vectors to unit length, and discarding any zero
vectors, we obtain the basis {e1, . . . , em′} where m′ ≤ m. Then

[y | M2,Σ, σβ ]

[y | M1,Σ, σβ ]
=

(
1 + σ2

β

)−m′/2 · exp
{

1

2(1 + σ−2
β )

m′∑
s=1

(φ′es)
2

}
.

Proof. From Lemma B.1, under models M1 and M2:

[y | Mt,Σ, σβ ] = (2π)−n/2
(
1 + σ2

β)
−rt/2

n∏
i=1

σ−1
i exp

(
−‖φ‖2

2

)
exp

(
‖Htφ‖2

2(1 + σ−2
β )

)
,

t = 1, 2,

where Ht = V t(V t
′V t)

−1V t
′ with V t defined as in Theorem C.1, and rt =

rank(Ht). The nested models M1 ⊂ M2 imply that their respective projection
matrices H1 and H2 are such that

H2 = H1 +

m′∑
s=1

Hes

= H1 +

m′∑
s=1

ese
′
s

because {e1, . . . , em′} is an orthonormal basis and r2 − r1 = m′ ≤ m. Since
‖Htφ‖2 = φ′Htφ, we obtain the stated expression for the ratio of densities.
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C.4. Latent Regression Outcomes

Suppose the regression outcomes yi are latent, but the responses wi are observed
for some subjects. The latent yi’s can be iteratively sampled as follows. Let
V = Σ−1/2Uγ . Compute the symmetric projection or hat matrix of order n:
H = ((hit)) = V (V ′V )−1V ′. The prior distribution of yi given the remaining
regression outcomes is

yi | y−i ∼ N

(
σi

∑
t �=i hityt/σt

ϕ2 − hii
,

σ2
i ϕ

2

ϕ2 − hii

)
(C.1)

where ϕ2 = 1 + σ−2
β . The proof is given below. The conditional prior can then

be updated using the response wi to generate aposteriori, yi ∼ [yi | y−i, wi].

Proof. The conditional prior in equation (C.1) is obtained as follows. Let h−i

be the column vector consisting of the remaining (n − 1) elements on the ith

column of H after excluding hii, the i
th diagonal element of H. Let Σ−i denote

the submatrix of order (n−1) obtained by dropping the ith row and ith column
of Σ. Since matrix Σ is diagonal, yi = σiφi and y−i = Σ−iφ−i. In particular,
yi and y−i involve mutually exclusive components of the vector φ. In Part 2 of
Lemma B.1, the quadratic term

‖Hφ‖2 = φ′Hφ

= hii φ
2
i + 2(h′

−iφ−i)φi + ki

= hii φ
2
i + 2(h′

−iΣ
−1/2
−i y−i)φi + ki

where ki does not involve φi. Since yi is functionally related to φi but not to
φ−i, we isolate the terms involving φi in Part 2 of Lemma B.1:

[yi | y−i,Θ] ∝ exp(−φ2
i

2
) exp(

hii φ
2
i

2ϕ2
) exp

(
2(h′

−iΣ
−1/2
−i y−i)φi

2ϕ2

)

= exp

{
−1

2

(ϕ2 − hii

ϕ2

)(
φ2
i −

2(h′
−iΣ

−1/2
−i y−i)

ϕ2 − hii
φi

)}

∝ exp

{
−1

2

(ϕ2 − hii

ϕ2

)(
φi −

h′
−iΣ

−1/2
−i y−i

ϕ2 − hii

)2}

= exp

{
−1

2

(ϕ2 − hii

ϕ2

)( yi
σi

−
h′
−iΣ

−1/2
−i y−i

ϕ2 − hii

)2}

= exp

{
−1

2

(ϕ2 − hii

σ2
i ϕ

2

)(
yi −

σi h
′
−iΣ

−1/2
−i y−i

ϕ2 − hii

)2}

Since h′
−iΣ

−1/2
−i y−i =

∑
t �=i hityt/σt, we obtained the conditional prior (C.1).
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C.5. Predictions

Suppose there are ñ additional individuals with unobserved responses but with
available covariates x̃i1, . . . , x̃ip for i = 1, . . . , ñ. As with the training set, we
arrange the cluster representative elements for the test cases in an ñ× col(Uγ)
matrix. Given the set of predictors γ and variances σ̃2

1 , . . . , σ̃
2
ñ in relation (2.4),

the following theorem provides expressions for the posterior predictions of the
regression outcomes, ỹ.

Theorem C.2. Given the set of predictors γ in model (2.4), let Ũγ be the ma-
trix of cluster representative elements consisting of ñ rows and col(Uγ) number

of columns. Define Σ̃ = diag(σ̃2
1 , . . . , σ̃

2
ñ). Then ỹ | y ∼ Nñ(

1
1+σ−2

β

ỹlse , Σ̃ +

1
1+σ−2

β

H̃), where ỹlse = Ũγ β̂lse with the vector of the least-squares estimates,

β̂lse=(Uγ
′Σ−1Uγ)

−1Uγ
′Σ−1y, and where H̃= Ũγ(Uγ

′Σ−1Uγ)
−1Ũ

′
γ . There-

fore, under a squared error loss, the vector of the predicted regression outcomes
for the ñ subjects is E[ỹ | y] = 1

1+σ−2
β

ỹlse.

Proof. Using the notation of Lemma B.1, since φ | βγ ,Θ ∼ Nn

(
V βγ , In

)
, the

posterior corresponding to the prior (2.6) is

βγ | φ,Θ ∼ N|S∗|+1

(
β̂lse

1 + σ−2
β

,
1

1 + σ−2
β

(V ′V )−1

)
.

For the ñ additional subjects, define φ̃ = Σ−1/2ỹ and Ṽ = Σ−1/2Ũγ . Then

φ̃ | φ,βγ ,Θ ∼ Nn

(
Ṽ βγ , In

)
, which is independent of φ. Marginalizing over

the above posterior distribution of βγ , we get

φ̃ | φ,Θ ∼ Nñ

(
1

1 + σ−2
β

Ṽ β̂lse , In +
1

1 + σ−2
β

Ṽ (V ′V )−1Ṽ
′
)

Since φ is a 1-1 mapping of y, conditioning on φ is equivalent to conditioning
on y. Re-expressing in terms of ỹ, Xγ , and Ũγ , we get the result.

Appendix D: Some general results on the posterior consistency of
multivariate density estimation

The following lemma extends Theorem 3 of [24] to densities on Rn arising
as convolutions of vector locations with errors distributed as zero-mean finite
normal mixtures. The lemma is a key argument in the proof of the paper’s
Theorem 4.1 presented in Section E of the Appendix.

Lemma D.1. For t ∈ R and a positive integer K, let ζ = (p1, . . . , pK , τ1, . . . ,

τK), where pr ≥ 0 and
∑K

r=1 pr = 1. Define the finite mixture of univari-

ate Gaussian densities, φζ(t) =
∑K

r=1 pr N(t|0, τ2r ). For x = (x1, . . . , xn)
′ and

θ = (θ1, . . . , θn)
′, consider density functions on Rn of the form fζ,P (n)(x) =
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∫
Rn φ

(n)
ζ (x−θ) dP (n)(θ), where φ

(n)
ζ (x−θ) =

∏n
i=1 φζ(xi− θi), and P (n) is an

n-variate distribution. Let ζ and P (n) have the priors μ and Π(n) respectively.
Let Π∗

n be the distribution induced by μ × Π(n) on the set of density functions
{fζ,P (n)}.

Suppose x1, . . . ,xp are a random sample from a true density f0(x) =

f
ζ0,P

(n)
0

(x). Assume that (i) P
(n)
0 is compactly supported in Rn and belongs

to the weak support of the prior Π(n), and (ii) ζ0 belongs to the weak support of
the prior μ. Then, for n fixed:

1. Conditional on x1, . . . ,xp and as p → ∞, the distribution Π∗
n is weakly

consistent at f0.
2. Let Ωn be the set of densities on Rn and the density function f ∼ Π∗

n.
Suppose g : Ωn → R is a continuous mapping. Conditional on x1, . . . ,xp

and as p → ∞, the random variable g(f) weakly converges to g(f0).

Proof.

1. The proof extends the arguments of [24]. For k > 1, suppose S = {x : |x| <
k} ⊂ Rn is such that P

(n)
0 (S) = 1. It is easy to see that f0 has moments

of all orders. For η > 0, choose k′ > k such that
∫
|x|>k′ |x|2f0(x) dx < η.

Since k′ > 1, this implies that both
∫
|x|>k′ f0(x) dx and

∫
|x|>k′ |x|f0(x) dx

are less than η. Now∫
Rn

f0 log

(
f
ζ,P

(n)
0

fζ,P (n)

)
=

∫
A−

f0 log

(
f
ζ,P

(n)
0

fζ,P (n)

)
+

∫
A0

f0 log

(
f
ζ,P

(n)
0

fζ,P (n)

)

+

∫
A+

f0 log

(
f
ζ,P

(n)
0

fζ,P (n)

)
(D.1)

where A0 = {x : |x| < k′}, A+ = {x : x1 > 0, |x| > k′}, and A− = {x :
x1 < 0, |x| > k′}.
Let τmin := minr τr and τmax := maxr τr . With 0n−1 representing the
vector of (n − 1) zeros, for an arbitrary set of probabilities {pj}∞j=1 that
sum to 1, define the vectors ζmin := (p1, , . . . , pK , τmin, . . . τmin), ζmax :=
(p1, , . . . , pK , τmax, . . . τmax), xmin := (|x| − k,0n−1)

′, and xmax := (|x| +
k,0n−1)

′. Also define τ2− = 1/τ2min − 1/τ2max and τ2+ = 1/τ2min + 1/τ2max.

Since P
(n)
0 belongs to the weak support of prior Π(n), it follows that

Π(n){P (n) : P (n)(S) > 1/2} > 0. If P (n)(S) > 1/2, then∫
A−

f0 log

(
f
ζ,P

(n)
0

fζ,P (n)

)
≤

∫
A−

f0 log

(∫
S
φ
(n)
ζ (x− θ) dP

(n)
0 (θ)∫

S
φ
(n)
ζ (x− θ) dP (n)(θ)

)

≤
∫
A−

f0 log

⎛
⎝ φ

(n)
ζmin

(xmin)

φ
(n)
ζmax

(xmax) · 1
2

⎞
⎠

=
−τ2−
2

∫
A−

|x|2f0(x)dx+ kτ2+

∫
A−

|x|f0(x)dx
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+

(−τ2−k
2

2
+ log 2

)∫
A−

f0(x)dx

<

(−τ2−
2

+ kτ2+
−τ2−k

2

2
+ log 2

)
η.

Similarly, we obtain an identical bound for the third term in (D.1).

Clearly, c := inf |x|≤k′ inf |θ|≤k φ
(n)
ζ (x − θ) > 0. The family of functions

{φ(n)
ζ (x− θ) : x ∈ A0}, viewed as a set of functions of θ ∈ S, is uniformly

equicontinuous. By the Arzela-Ascoli theorem applied to compact metric
spaces, there exist finitely many points x∗

1, . . . ,x
∗
m such that for any x ∈

A0, there exists an i with

sup
θ∈S

| φ(n)
ζ (x− θ)− φ

(n)
ζ (x∗

i − θ) |< c δ. (D.2)

Let

E =

{
P (n) :

∣∣∣∣
∫

φ
(n)
ζ (x∗

i − θ) dP
(n)
0 (θ)−

∫
φ
(n)
ζ (x∗

i − θ) dP (n)(θ)

∣∣∣∣ < c δ;

i = 1, . . . ,m

}

Since E is a weak neighborhood of P
(n)
0 , and since P

(n)
0 belongs to the

weak support of Π(n), we have Π(n)(E) > 0. Let P (n) ∈ E. Then for any
x ∈ A0, choosing an appropriate x∗

i from (D.2) and using a triangulation
argument, we get ∣∣∣∣∣

∫
φ
(n)
ζ (x− θ) dP (n)(θ)∫

φ
(n)
ζ (x− θ) dP

(n)
0 (θ)

− 1

∣∣∣∣∣ < 3δ

and therefore ∣∣∣∣∣
∫
φ
(n)
ζ (x− θ) dP

(n)
0 (θ)∫

φ
(n)
ζ (x− θ) dP (n)(θ)

− 1

∣∣∣∣∣ < 3δ

1− 3δ

provided δ < 1/3. Thus, for any fixed ζ, for P (n) in a set of positive
Π(n)-probability, we have∫

Rn

f0 log

(
f
ζ,P

(n)
0

fζ,P (n)

)
< 2

(−τ2−
2

+ kτ2+
−τ2−k

2

2
+ log 2

)
η +

3δ

1− 3δ
.

(D.3)
For any ζ,∫

Rn

f0 log
(
f0/fζ,P (n)

)
=

∫
Rn

f0 log
(
f0/fζ,P (n)

0

)

+

∫
Rn

f0 log
(
f
ζ,P

(n)
0

/fζ,P (n)

)
. (D.4)
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We observe that the first term on the right hand side (RHS) of (D.4)
converges to 0 as ζ → ζ0.
Given any ε > 0, choose a neighborhood N of ζ0 such that τr > 0 for all r
and such that whenever ζ ∈ N , the first term on the RHS of (D.4) is less
than ε/2. Next choose η and δ so that for any ζ ∈ N , the RHS of (D.3) is
less than ε/2. Since ζ0 belongs to the weak support of μ, the result follows.

2. Part 1 establishes the fact that the set of densities Ωn is equipped with the
weak convergence metric. The result follows from the Continuous Mapping
Theorem [refer to 77, pp. 258–259].

The following Lemma establishes the posterior consistency of covariate co-
clustering for a general class of models as p and n both tend to ∞. The result’s
applicability extends well beyond the high-dimensional regression problems in-
vestigated by VariScan. For example, if min(n, p) is large, the posterior consis-
tency of co-clustering is obtained for the NoB-LoC approach of [44].

Lemma D.2. Let the column vectors x1, . . . ,xp of covariate matrix Xnp be a
random sample from the true density f

ζ0,P
(n)
0

defined in Lemma D.1. In addition

to the Lemma D.1 assumptions, suppose that the prior μ for parameter vector
ζ = (p1, . . . , pK , τ1, . . . , τK) allows a strictly positive lower bound for standard
deviations τ1, . . . , τK . In other words, there exists a constant τ∗ > 0 such that
τ∗ ≤ minr τr with probability 1. Suppose also that:

1. The true n-dimensional distribution P
(n)
0 is discrete. Consequently, there

exists a set of true allocation variables, c
(0)
1 , . . . , c

(0)
p , mapping the p co-

variates to the distinct atoms of distribution P
(n)
0 .

2. The n-variate atoms of distribution P
(n)
0 are i.i.d. realizations of the n-fold

product measure of a non-atomic real distribution, G0. The distribution G0

has compact support.

Let L = {j1, . . . , jL} ⊂ {1, . . . , p} be a fixed subset of L covariate indexes.
Then there exists an increasing sequence of numbers {pn} such that, as n grows
and provided p > pn, the clustering inferences for the covariate subset L are
aposteriori consistent. That is,

lim
n→∞
p>pn

P
[
κL(c) = 1 | Xnp

]
→ 1

where κL(c), the proportion of correctly clustered covariate pairs, is defined in
equation (4.2) of the paper.

Proof. Let true distribution P
(n)
0 =

∑∞
t=1 πt δv(0)

t
where {πt}∞t=1 are probabili-

ties that sum to 1, δ
v
(0)
t

is the point mass at the n-dimensional atom, v
(0)
t =

(v
(0)
1t , . . . , v

(0)
nt )

′, where v
(0)
it

i.i.d.∼ G0. Since distribution G0 is non-atomic, the

n-dimensional atoms {v(0)
t }∞t=1 of distribution P

(n)
0 are all distinct. Let j1 and
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j2 be two covariate indices belonging to the set IL. Due to the exchangeability
of the covariates and the allocation variables under the true model, and their
exchangeability also under the inference procedure, we may assume without loss
of generality that j1 = 1 and j2 = 2. Let X∗

np = {xj : j ≥ 3} be the matrix of
the remaining (p− 2) covariates.

Case 1. Suppose that, in reality, c
(0)
1 = c

(0)
2 . That is, for some positive inte-

ger t, covariate x1 and x2 are each equal to the atom v
(0)
t plus an n-vector of

i.i.d. errors. We will prove that limn→∞
p>pn

P
(
c1 = c2 | c(0)1 = c

(0)
2 ,Xnp

)
= 1.

Consider posterior inferences for the hypotheses, H0 : c1 = c2 versus H1 :
c1 �= c2. Given the matrix of the remaining (p − 2) covariates, X∗

np, we define
the conditional log-likelihood ratio of H0 versus H1 as

Lnp := log

(
[x1,x2 | H0,X

∗
np]

[x1,x2 | H1,X
∗
np]

)
, (D.5)

where the symbol [·] represents densities of random variables.
Recall that covariates x1 and x2 have common density fζ,P (n)(x) under

the inference procedure. Therefore, the joint marginal [x1,x2 | H0,X
∗
np] =

EΠ∗
n

([
x1,x2 | H0, ζ, P

(n)
]
| X∗

np

)
, where the distribution Π∗

n on the densi-

ties {fζ,P (n)} is defined in the statement of Lemma D.1, and the expectation
is conditional on the matrix X∗

np. Applying Parts 1 and 2 of Lemma D.1, we

find that, for n fixed and as p → ∞, the integrand
[
x1,x2 | H0, ζ, P

(n)
] L→

[x1,x2 | H0, ζ0, P
(n)
0 ]. Now, being a Gaussian mixture, the integrand

[
x1,x2 |

H0, ζ, P
(n)

]
≤ (2πτ2∗ )

−n, where τ∗ is a positive constant. Hence, by the dom-

inated convergence theorem, the joint marginal [x1,x2 | H0,X
∗
np]

L→ [x1,x2 |
H0, ζ0, P

(n)
0 ]. An identical argument applies when we condition on the alterna-

tive hypothesis. For fixed n and as p → ∞, we therefore have

Lnp
L→ g

(n)
0 := log

(
[x1,x2 | H0, ζ0, P

(n)
0 ]

[x1,x2 | H1, ζ0, P
(n)
0 ]

)
.

In other words, given ε > 0, there exists an increasing sequence of integers {pn}
such that

|Lnp − g
(n)
0 | < ε for every n and whenever p > pn. (D.6)

Now, denoting by c∗1 the latent component of true distribution P
(n)
0 from which

covariate x1 arises,

g
(n)
0 = log

(
Ec∗1 [x1,x2 | c∗1, H0, ζ0, P

(n)
0 ]

Ec∗1 [x1,x2 | c∗1, H1, ζ0, P
(n)
0 ]

)

where Pr[c∗1 = t | ζ0, P
(n)
0 ] = πt for t ∈ N
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≥ logEc∗1

(
[x1,x2 | c∗1, H0, ζ0, P

(n)
0 ]

[x1,x2 | c∗1, H1, ζ0, P
(n)
0 ]

)

(by Jensen’s inequality:
EW1

EW2
≥ E(

W1

W2
))

≥ Ec∗1 log

(
[x1,x2 | c∗1, H0, ζ0, P

(n)
0 ]

[x1,x2 | c∗1, H1, ζ0, P
(n)
0 ]

)

(by Jensen’s inequality)

=

∞∑
c∗1=1

πc∗1
log

(
[x1,x2 | c∗1, H0, ζ0, P

(n)
0 ]

[x1,x2 | c∗1, H1, ζ0, P
(n)
0 ]

)

=

∞∑
c∗1=1

πc∗1
log

(
[x1 | c∗1, ζ0, P

(n)
0 ] · [x2 | c∗1, H0, ζ0, P

(n)
0 ]

[x1 | c∗1, ζ0, P
(n)
0 ] · [x2 | c∗1, H1, ζ0, P

(n)
0 ]

)

=

∞∑
t=1

πt log

(
[x2 | c∗1 = t,H0, ζ0, P

(n)
0 ]

[x2 | c∗1 = t,H1, ζ0, P
(n)
0 ]

)
. (D.7)

Under the hypothesis H0, and conditional on c∗1 = t, [x2 | c∗1 = t,x1, ζ0, P
(n)
0 ] =

φ
(n)
ζ0

(x2 − v
(0)
t ). Similarly, under the hypothesis H1, and conditional on c∗1 = t,

[x2 | c∗1 = t, ζ0, P
(n)
0 ] = 1

(1−πt)

∑
u �=t πu φ

(n)
ζ0

(x2 − v
(0)
u ). Therefore, the right

hand side of (D.7) equals

∞∑
t=1

πt log

⎛
⎝ φ

(n)
ζ0

(x2 − v
(0)
t )∑

u �=t
πu

(1−πt)
φ
(n)
ζ0

(x2 − v
(0)
u )

⎞
⎠

=

∞∑
t=1

πt log

⎛
⎝ φ

(n)
ζ0

(x2 − v
(0)
t )

EUφ
(n)
ζ0

(x2 − v
(0)
U )

⎞
⎠ ,

where Pr[U = u] =
πu

(1− πt)
for u ∈ N− {t}

≥
∞∑
t=1

πt logE
U

⎛
⎝φ

(n)
ζ0

(x2 − v
(0)
t )

φ
(n)
ζ0

(x2 − v
(0)
U )

⎞
⎠

(by Jensen’s inequality:
EW1

EW2
≥ E(

W1

W2
))

≥
∞∑
t=1

πt E
U log

⎛
⎝φ

(n)
ζ0

(x2 − v
(0)
t )

φ
(n)
ζ0

(x2 − v
(0)
U )

⎞
⎠

(by Jensen’s inequality)

=
∑

t:πt>0

πt

∑
u �=t

πu

(1− πt)
log

⎛
⎝φ

(n)
ζ0

(x2 − v
(0)
t )

φ
(n)
ζ0

(x2 − v
(0)
u )

⎞
⎠
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= n ·
∑

t:πt>0

πt

∑
u �=t

πu

(1− πt)
W̄

(n)
tu (D.8)

where W̄
(n)
tu := 1

n

∑n
i=1 log(φ

(n)
ζ0

(xi2−v
(0)
it )/φ

(n)
ζ0

(xi2−v
(0)
iu )) for natural numbers

u �= t. Since hypothesis H0 is true by assumption, as n → ∞, we obtain on a
set of probability 1:

W̄
(n)
tu →

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
log

⎛
⎝ φ

(n)
ζ0

(x− vt)

φ
(n)
ζ0

(x− vu)

⎞
⎠φ

(n)
ζ0

(x− vt) · dx ·G0(dvt) ·G0(dvu)

(D.9)

=

∫ ∞

−∞

∫ ∞

−∞
K(vt, vu) ·G0(dvt) ·G0(dvu), where we define

K(vt, vu) =

∫ ∞

−∞
log

⎛
⎝ φ

(n)
ζ0

(x− vt)

φ
(n)
ζ0

(x− vu)

⎞
⎠φ

(n)
ζ0

(x− vt) dx

Being a KL divergence, the function K(vt, vu) is non-negative. Furthermore, it
is strictly positive whenever vt �= vu, which is a certain event for non-atomic

distribution G0 × G0. This implies that the random variable W̄
(n)
tu in equation

(D.9) converges almost surely to a positive constant whenever indexes u �= t.

Combining expressions (D.7), (D.8) and (D.9), limn g
(n)
0 = ∞ on a set of prob-

ability 1. In conjunction with relation (D.6), this implies that the conditional
log-likelihood ratio satisfies on a set of probability 1:

lim
n→∞
p>pn

Lnp = ∞. (D.10)

The “conditional prior” probability, P [c1 = c2 | X∗
np] = Eζ,P (n)

P
[
c1 = c2 |

ζ, P (n),X∗
np

]
. Parts 1 and 2 of Lemma D.1 and the dominated convergence

theorem give us limp→∞ P [c1 = c2 | X∗
np] = P

[
c1 = c2 | ζ0, P

(n)
0

]
=

∑∞
t=1 π

2
t ∈

(0, 1). Therefore, the “conditional prior” odds ratio of the hypotheses has the
limit:

lim
p→∞

[H0 | X∗
np]

[H1 | X∗
np]

L→
∑∞

t=1 π
2
t

1−
∑∞

t=1 π
2
t

> 0. (D.11)

Applying results (D.10) and (D.11), the limiting posterior odds ratio of the
hypotheses is computed as

[H0 | Xnp]

[H1 | Xnp]
= exp(Lnp) ·

[H0 | X∗
np]

[H1 | X∗
np]

L→ ∞

as n → ∞ and provided p > pn. In other words,

lim
n→∞
p>pn

P
(
c1 = c2 | c(0)1 = c

(0)
2 ,Xnp

)
= 1.
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Case 2. Suppose that c
(0)
1 �= c

(0)
2 in reality. That is, for positive integers u �= t,

the covariate x1 is equal to the atom v
(0)
t plus an n-vector of i.i.d. errors and

covariate x2 is equal to the atom v
(0)
u plus an n-vector of i.i.d. errors. Since the

distribution G0 is non-atomic by assumption, v
(0)
t �= v

(0)
u .

By an identical argument as in Case 1, it can be shown that the conditional
log-likelihood ratio of H0 versus H1, defined in equation (D.5), satisfies on a set
of probability 1:

lim
n→∞
p>pn

(−Lnp) = ∞

and hence, that

lim
n→∞
p>pn

P
(
c1 �= c2 | c(0)1 �= c

(0)
2 ,Xnp

)
= 1.

Applying Slutsky’s theorem, the result is extended to all covariate pairs be-
longing to the finite subset L. Since the correct identification of the cluster
allocations for the set L is equivalent to the event κL(c) = 1, the lemma fol-
lows.

Appendix E: Proof of Theorem 4.1

The sufficient conditions (i) and (ii) of Lemma D.1 of the Appendix are satisfied
by the true model assumed in Theorem 4.1. The VariScan prior for fitting Xnp

can be cast in the framework of Lemma D.1. Specifically, the p columns of

Xnp are distributed as xj
i.i.d.∼ fζ,P (n)(x) for j = 1, . . . , p, where the common

density on Rn has the form fζ,P (n)(x) =
∫
Rn φ

(n)
ζ (x−θ) dP (n)(θ) with φ

(n)
ζ (x−

θ) =
∏n

i=1 φζ(xi − θi) for the finite mixture, φζ(t) = ξ · N(t|0, τ2) + (1 − ξ) ·
N(t|0, τ21 ), so that K = 2 and ζ = (ξ, 1− ξ, τ, τ1). As mentioned in Section 2.1,
the VariScan prior assumes that τ1 � τ > τ∗ for a small, positive constant, τ∗.
The distribution P (n) for the vector θ follows a PDP with parameters (d, α1).
This partitions the p columns of Xnp into q clusters sharing the latent vectors
as their common value of θ. The individual latent vector elements are i.i.d.
from distribution G, which itself has the Dirichlet process prior (2.3) and is
discrete. By well-known properties of the Dirichlet process, the non-atomic true
distribution G0 belongs to its weak support. Lemma D.2 above is therefore
applicable, and the stated posterior consistency follows.

Appendix F: Simulation studies: Further results

F.1. Prediction accuracy

Table 2 displays the number of covariate predictors ( ˆ|S|) for VariScan along
with the model sizes for the other methods. The displayed values are averages
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Fig 13. Plot of concordance error rates versus model sizes for the competing methods along
with the standard errors (shown by whiskers). The left, middle and right respectively corre-
spond to effect size β∗ equal to 0.2, 0.6, and 1.

Table 2

Comparison of model sizes, averaged over the 15 independent replications, for the simulated
data. The standard errors are displayed in parentheses.

Method β∗ = 0.2 β∗ = 0.6 β∗ = 1
VariScan 18.49 (0.35) 17.15 (0.65) 17.19 (0.74)
L2-boosting 21.73 (0.56) 20.13 (1.10) 19.07 (0.83)
Adaptive Lasso 1.00 (0.00) 6.11 (1.09) 8.33 (1.38)
Elastic Net 1.50 (0.50) 9.30 (1.63) 11.60 (1.9)
Lasso 2.67 (0.81) 7.00 (1.56) 13.00 (2.22)
RSF-VH 14.47 (0.27) 15.47 (0.26) 15.13 (0.32)
SuperPC 86.27 (35.3) 31.40 (6.91) 43.53 (13.32)

computed over the 15 independent replications. For the methods VariScan, L2-
boosting, and RSF-VH, the model sizes were approximately unchanged as β∗

varied. The plots of sparsity versus prediction error rates are provided in Fig-
ure 13. For both the datasets, the plots demonstrate the effectiveness of VariScan
in producing highly predictive models with small model sizes.

Appendix G: Analysis of benchmark data sets: Further results

The number of VariScan covariate predictors, ˆ|S|, along with the model sizes
for the other methods, are presented in Table 3. Numerical summaries of these



A nonparametric Bayesian technique for high-dimensional regression 3417

Fig 14. Molecular and cellular functions associated with the genes selected by the VariScan
model.

Table 3

Comparison of the model sizes, averaged over the 50 independent replications, for the
benchmark datasets. The standard errors are displayed in parentheses.

Method DLBCL dataset Breast cancer dataset
VariScan 20.43 (0.06) 14.88 (0.20)
L2-boosting 17.26 (0.35) 15.40 (0.44)
Adaptive Lasso 4.67 (1.12) 4.12 (1.34)
Elastic Net 5.27 (1.46) 7.36 (1.63)
Lasso 8.86 (1.05) 5.62 (0.60)
RSF-VH 8.40 (1.21) 29.98 (3.37)
SuperPC 53.00 (13.23) 85.66 (15.08)

Table 4

Comparison of the percentage concordance error rates, averaged over the 50 independent
replications, for the benchmark datasets. The standard errors are displayed in parentheses.

Method DLBCL dataset Breast cancer dataset
VariScan 26.96 (0.46) 23.87 (0.76)
L2-boosting 27.65 (0.64) 28.53 (0.64)
Adaptive Lasso 33.72 (1.56) 33.93 (1.62)
Elastic Net 34.71 (1.90) 34.36 (1.62)
Lasso 35.25 (1.26) 32.91 (1.13)
RSF-VH 40.64 (1.04) 33.28 (0.88)
SuperPC 48.71 (0.77) 45.02 (0.85)

error rates are computed in Table 4. Figure 14 illustrates the molecular and
cellular functions associated with the genes selected by the VariScan model
using Ingenuity Pathway Analysis software.

Biological interpretations. For subsequent biological interpretations, for
both datasets we selected genes that have high posterior probability of being
selected (0.75 in our case) for prediction in the models, which were then ana-
lyzed for their role in cancer progression by cross-referencing with existing lit-
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erature. For the breast cancer genes our survey indicated that prominent genes
for breast cancer like TGF-B2 are included in this gene set [9]. The functional
roles for various genes of this set in the context of breast cancer are as fol-
lows. ABCC3 is up-regulated in primary breast cancer and known to mediate
the resistance of Taxane in HER2 subtype [64, 62]. The cell adhesion molecule
ALCAM is previously established as a marker of breast cancer to predict the
adjuvant chemotherapy response [35]. MAPK signaling is enhanced by CAMP
(cathelicidin antimicrobial protein), which promotes the metastasis of breast
cancer [79]. Overexpression in non-invasive ductal carcinoma compared to in-
vasive ductal carcinoma of CHGB (chromogranin B), advocates a role of early
marker for CHB in ductal carcinoma [41]. Lysosomal transmembrane protein
LC27 (LAPTM4B) promotes the resistance to anthracyclines and consequently
causes the relapse of breast carcinoma with metastasis [47]. Also, an allele of
LC27 (LAPTM4B*2) is predictive of breast cancer susceptibility and metasta-
sis [46]. The chemokine ligand CCL21 with significant up-regulation acts as a
marker for breast cancer cells with lymph node metastasis [51]. Iron transporter
gene SLC11A2 is over-expressed in breast cancer cells to compensate the en-
hanced demand for iron in proliferating cells [39]. Transactivation of epidermal
growth factor (EGF) enhances the expression of SLC37A1 in breast cancer cells
[34].

For the DLBCL data there are 25 genes with high posterior probability of
more than 0.75. Cytokine interaction is dominant in this gene-set with the pres-
ence multiple chemokine ligands (CXCL9 and CCL18) and interleukin receptors
of IL2 and IL5. Functional analysis performed on these genes by Ingenuity Path-
way Analysis (IPA) software reinforced this notion. IPA is web-based functional
analysis tool that identifies the most relevant pathways, molecular networks, and
biological functions for gene lists. Figure 1 illustrates the molecular and cellular
functions associated with the genes of interest. The significant enrichment of
ontology terms cellular movement, cell-to-cell signaling and interaction might
specify their association with cytokine-cytokine receptor interaction. The en-
richment of the cellular functions such as growth, development, morphology, cell
cycle and protein synthesis indicate the generic proliferative nature associated
with the genes. CCND1, a member of the Cyclin D family which is previously
known to be associated with DLBCL is also a predictor with high probability
[52]. Another interesting gene predictor BNIP3 (BCL2/adenovirus E1B 19kDa
interacting protein 3) which is down-regulated in DLBCL with hyper methy-
lation of the proximal CpG island, can be a marker associated with positive
survival [67].
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[22] S. Frühwirth-Schnatter. Finite Mixture and Markov Switching Models. New
York: Springer, 2006. MR2265601

[23] E. George and R. McCulloch. Variable selection via gibbs sampling. Journal
of the American Statistical Association, 88:881–889, 1993.

[24] S. Ghosal, J.K. Ghosh, and R.V. Ramamoorthi. Posterior consistency of
dirichlet mixtures in density estimation. The Annals of Statistics, 27:143–
158, 1999. MR1701105

[25] A. Gnedin and J. Pitman. Regenerative composition structures. Annals of
Probability, 33:445–479, 2005. MR2122798

[26] J.E. Griffin, P.J. Brown, et al. Inference with normal-gamma prior dis-
tributions in regression problems. Bayesian Analysis, 5(1):171–188, 2010.
MR2596440

[27] S. Guha. Posterior simulation in countable mixture models for large
datasets. Journal of the American Statistical Association, 105:775–786,
2010. MR2724860

[28] T. Hanson and W.O. Johnson. Modeling regression error with a mixture of
polya trees. Journal of the American Statistical Association, 97(460), 2002.
MR1951256

[29] F. Harrell, R. Califf, D. Pryor, K. Lee, and R. Rosati. Evaluating the yield
of medical tests. J. Amer. Med. Assoc., 247:2543–2546, 1982.

[30] D.A. Harville. Maximum likelihood approaches to variance component es-
timation and to related problems. Journal of the American Statistical As-
sociation, 72:320–340, 1977. MR0451550

[31] T.J. Hastie and R.J. Tibshirani. Generalized additive models. London:
Chapman & Hall, 1990. ISBN 0412343908. MR1082147

[32] C.C. Holmes and L. Held. Bayesian auxiliary variable models for binary and
multinomial regression. Bayesian Analysis, 1:145–168, 2006. MR2227368

[33] T. Hothorn and P. Buhlmann. Model-based boosting in high dimensions.
Bioinformatics, 22:2828–2829, 2006.

https://books.google.com/books?id=SIlDWySNuXgC
http://www.ams.org/mathscinet-getitem?mr=1962778
https://books.google.com/books?id=Y5AARf7oTNkC
http://www.ams.org/mathscinet-getitem?mr=1893779
http://www.ams.org/mathscinet-getitem?mr=2521586
http://www.ams.org/mathscinet-getitem?mr=2523991
http://www.ams.org/mathscinet-getitem?mr=1680784
http://www.ams.org/mathscinet-getitem?mr=0350949
http://www.ams.org/mathscinet-getitem?mr=2265601
http://www.ams.org/mathscinet-getitem?mr=1701105
http://www.ams.org/mathscinet-getitem?mr=2122798
http://www.ams.org/mathscinet-getitem?mr=2596440
http://www.ams.org/mathscinet-getitem?mr=2724860
http://www.ams.org/mathscinet-getitem?mr=1951256
http://www.ams.org/mathscinet-getitem?mr=0451550
http://www.ams.org/mathscinet-getitem?mr=1082147
http://www.ams.org/mathscinet-getitem?mr=2227368


A nonparametric Bayesian technique for high-dimensional regression 3421

[34] D. Iacopetta, R. Lappano, A.R. Cappello, M. Madeo, E.M. De Francesco,
A. Santoro, R. Curcio, L. Capobianco, V. Pezzi, M. Maggiolini, and
V. Dolce. SLC37A1 gene expression is up-regulated by epidermal growth
factor in breast cancer cells. Breast Cancer Res. Treat., 122(3):755–764,
Aug 2010.

[35] M. Ihnen, V. Muller, R.M. Wirtz, C. Schroder, S. Krenkel, I. Witzel, B.W.
Lisboa, F. Janicke, and K. Milde-Langosch. Predictive impact of activated
leukocyte cell adhesion molecule (ALCAM/CD166) in breast cancer. Breast
Cancer Res. Treat., 112(3):419–427, Dec 2008.

[36] H. Ishwaran and L.F. James. Generalized weighted chinese restaurant pro-
cesses for species sampling mixture models. Statist. Sinica, 13:1211–1235,
2003. MR2026070

[37] H. Ishwaran, U.B. Kogalur, et al. High-dimensional variable selection for
survival data. Journal of the American Statistical Association, 105:205–217,
2010. MR2757200

[38] D. Jiang, C. Tang, and A. Zhang. Clustering analysis for gene expression
data: A survey. IEEE Transactions on Knowledge and Data Engineering,
16:1370–1386, 2004.

[39] X.P. Jiang, R.L. Elliott, and J.F. Head. Manipulation of iron transporter
genes results in the suppression of human and mouse mammary adenocar-
cinomas. Anticancer Res., 30(3):759–765, Mar 2010.

[40] S. Kim, M.G. Tadesse, and M. Vannucci. Variable selection in cluster-
ing via dirichlet process mixture models. Biometrika, 93:877–893, 2006.
MR2285077

[41] N. Kimura, R. Yoshida, S. Shiraishi, M. Pilichowska, and N. Ohuchi. Chro-
mogranin A and chromogranin B in noninvasive and invasive breast carci-
noma. Endocr. Pathol., 13(2):117–122, 2002.

[42] S. Kundu and D.B. Dunson. Bayes variable selection in semiparametric lin-
ear models. Journal of the American Statistical Association, 109(505):437–
447, 2014. MR3180575

[43] L. Kuo and B. Mallick. Bayesian semiparametric inference for the acceler-
ated failure time model. Canadian J. Stat., 25:457–472, 1997.

[44] J. Lee, P. Müller, and Y. Ji. A nonparametric bayesian model for local
clustering. Technical report, Department of Biostatistics, The University
of Texas M. D. Anderson Cancer Center, 2013a.

[45] J. Lee, P. Müller, Y. Zhu, and Y. Ji. A nonparametric bayesian model for
local clustering with application to proteomics. Journal of the American
Statistical Association, 108:775–788, 2013b. MR3174662

[46] X. Li, X. Kong, X. Chen, N. Zhang, L. Jiang, T. Ma, and Q. Yang.
LAPTM4B allele *2 is associated with breast cancer susceptibility and
prognosis. PLoS ONE, 7(9):e44916, 2012.

[47] Y. Li, L. Zou, Q. Li, B. Haibe-Kains, R. Tian, Y. Li, C. Desmedt,
C. Sotiriou, Z. Szallasi, J.D. Iglehart, A.L. Richardson, and Z.C. Wang.
Amplification of LAPTM4B and YWHAZ contributes to chemotherapy re-
sistance and recurrence of breast cancer. Nat. Med., 16(2):214–218, Feb
2010.

http://www.ams.org/mathscinet-getitem?mr=2026070
http://www.ams.org/mathscinet-getitem?mr=2757200
http://www.ams.org/mathscinet-getitem?mr=2285077
http://www.ams.org/mathscinet-getitem?mr=3180575
http://www.ams.org/mathscinet-getitem?mr=3174662


3422 S. Guha and V. Baladandayuthapani

[48] A. Lijoi and I. Prünster. Models beyond the Dirichlet process, pages 80–
136. Cambridge Series in Statistical and Probabilistic Mathematics, 2010.
MR2730661

[49] A. Lijoi, R.H. Mena, and I. Prünster. Controlling the reinforcement in
bayesian nonparametric mixture models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 69:715–740, 2007a. MR2370077

[50] A. Lijoi, R.H. Mena, and I. Prünster. Bayesian nonparametric estimation of
the probability of discovering new species. Biometrika, 94:769–786, 2007b.
MR2416792

[51] Y. Liu, R. Ji, J. Li, Q. Gu, X. Zhao, T. Sun, J. Wang, J. Li, Q. Du,
and B. Sun. Correlation effect of EGFR and CXCR4 and CCR7 chemokine
receptors in predicting breast cancer metastasis and prognosis. J. Exp. Clin.
Cancer Res., 29:16, 2010.

[52] I.S. Lossos and D. Morgensztern. Prognostic biomarkers in diffuse large
B-cell lymphoma. J. Clin. Oncol., 24(6):995–1007, Feb 2006.

[53] R.F. MacLehose and D.B. Dunson. Bayesian semiparametric multiple
shrinkage. Biometrics, 66(2):455–462, 2010. MR2758825

[54] B.K. Mallick, D. Ghosh, and M. Ghosh. Bayesian classification of tumours
by using gene expression data. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67:219–234, 2005. MR2137322

[55] M. May, P. Royston, M. Egger, A.C. Justice, and J.A.C. Sterne. Devel-
opment and validation of a prognostic model for survival time data: ap-
plication to prognosis of hiv positive patients treated with antiretroviral
therapy. Statist. Medicine, 23:2375–2398, 2004.

[56] M. Medvedovic and S. Sivaganesan. Bayesian infinite mixture model based
clustering of gene expression profiles. Bioinformatics, 18:1194–1206, 2002.

[57] M. Medvedovic, K.Y. Yeung, and R.E. Bumgarner. Bayesian mixture model
based clustering of replicated microarray data. Bioinformatics, 20:1222–
1232, 2004.

[58] M.C. Meyer and P.W. Laud. Predictive variable selection in generalized lin-
ear models. Journal of the American Statistical Association, 97(459):859–
871, 2002. MR1941415

[59] J.S. Morris and R.J. Carroll. Wavelet-based functional mixed models. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
68(2):179–199, 2006. MR2188981

[60] P. Müller, F. Quintana, and G.L. Rosner. A product partition model with
regression on covariates. Journal of Computational and Graphical Statistics,
20:260–278, 2011. MR2816548

[61] P. Müller and R. Mitra. Bayesian nonparametric inference–why and how.
Bayesian analysis (Online), 8(2), 2013. MR3066939

[62] C. O’Brien, G. Cavet, A. Pandita, X. Hu, L. Haydu, S. Mohan, K. Toy, C.S.
Rivers, Z. Modrusan, L.C. Amler, and M.R. Lackner. Functional genomics
identifies ABCC3 as a mediator of taxane resistance in HER2-amplified
breast cancer. Cancer Res., 68(13):5380–5389, Jul 2008.

[63] T. Park and G. Casella. The bayesian lasso. Journal of the American Sta-
tistical Association, 103:681–686, 2008. MR2524001

http://www.ams.org/mathscinet-getitem?mr=2730661
http://www.ams.org/mathscinet-getitem?mr=2370077
http://www.ams.org/mathscinet-getitem?mr=2416792
http://www.ams.org/mathscinet-getitem?mr=2758825
http://www.ams.org/mathscinet-getitem?mr=2137322
http://www.ams.org/mathscinet-getitem?mr=1941415
http://www.ams.org/mathscinet-getitem?mr=2188981
http://www.ams.org/mathscinet-getitem?mr=2816548
http://www.ams.org/mathscinet-getitem?mr=3066939
http://www.ams.org/mathscinet-getitem?mr=2524001


A nonparametric Bayesian technique for high-dimensional regression 3423

[64] L. Partanen, J. Staaf, M. Tanner, V.J. Tuominen, A. Borg, and J. Isola.
Amplification and overexpression of the ABCC3 (MRP3) gene in primary
breast cancer. Genes Chromosomes Cancer, 51(9):832–840, Sep 2012.

[65] M. Perman, J. Pitman, and M. Yor. Size-biased sampling of poisson point
processes and excursions. Probab. Theory Related Fields, 92:21–39, 1992.
MR1156448

[66] F. Petralia, V. Rao, and D.B. Dunson. Repulsive Mixtures. ArXiv e-prints,
April 2012.

[67] B.L. Pike, T.C. Greiner, X. Wang, D.D. Weisenburger, Y.H. Hsu, G. Re-
naud, T.G. Wolfsberg, M. Kim, D.J. Weisenberger, K.D. Siegmund, W. Ye,
S. Groshen, R. Mehrian-Shai, J. Delabie, W.C. Chan, P.W. Laird, and J.G.
Hacia. DNA methylation profiles in diffuse large B-cell lymphoma and their
relationship to gene expression status. Leukemia, 22(5):1035–1043, May
2008.

[68] J. Pitman. Exchangeable and partially exchangeable random partitions.
Probab. Theory Related Fields, 102:145–158, 1995. MR1337249

[69] J. Pitman and M. Yor. The two-parameter poisson-dirichlet distribu-
tion derived from a stable subordinator. Ann. Probab., 25:855–900, 1997.
MR1434129

[70] F.A. Quintana and P.L. Iglesias. Bayesian clustering and product partition
models. J. R. Statist. Soc. B, 65:557–574, 2003. MR1983764

[71] A. Rosenwald et al. The use of molecular profiling to predict survival after
chemotherapy for diffuse large b-cell lymphoma. The New England Journal
of Medicine, 346:1937–1947, 2002.

[72] J. Rousseau and K. Mengersen. Asymptotic behaviour of the posterior dis-
tribution in overfitted mixture models. Journal of the Royal Statistical So-
ciety: Series B, 73:689–710, 2011. MR2867454

[73] J. Sethuraman. A constructive definition of dirichlet priors. Statistica
Sinica, 4:639–650, 1994. MR1309433

[74] M. Smith and R. Kohn. Nonparametric regression using bayesian variable
selection. Journal of Econometrics, 75(2):317–343, 1996.

[75] M.A. Suchard, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West.
Understanding gpu programming for statistical computation: Studies in
massively parallel massive mixtures. Journal of Computational and Graph-
ical Statistics, 19(2):419–438, 2010. MR2758309

[76] R. Tibshirani. The lasso method for variable selection in the cox model.
Stat. Med., 16:385–395, 1997.

[77] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press,
2000. MR1652247

[78] L.J. van’t Veer et al. Gene expression profiling predicts clinical outcome of
breast cancer. Nature, 415:530–536, 2002.

[79] G. Weber, C.I. Chamorro, F. Granath, A. Liljegren, S. Zreika, Z. Saidak,
B. Sandstedt, S. Rotstein, R. Mentaverri, F. Sanchez, A. Pivarcsi, and
M. Stahle. Human antimicrobial protein hCAP18/LL-37 promotes a
metastatic phenotype in breast cancer. Breast Cancer Res., 11(1):R6, 2009.

[80] S. Weisberg. Applied Linear Regression. J. Wiley and Sons, NY, 1985.

http://www.ams.org/mathscinet-getitem?mr=1156448
http://www.ams.org/mathscinet-getitem?mr=1337249
http://www.ams.org/mathscinet-getitem?mr=1434129
http://www.ams.org/mathscinet-getitem?mr=1983764
http://www.ams.org/mathscinet-getitem?mr=2867454
http://www.ams.org/mathscinet-getitem?mr=1309433
http://www.ams.org/mathscinet-getitem?mr=2758309
http://www.ams.org/mathscinet-getitem?mr=1652247


3424 S. Guha and V. Baladandayuthapani

[81] M. West. On scale mixtures of normal distributions. Biometrika, 74:646–
648, 1987. MR0909372

[82] X. Xu, M. Ghosh, et al. Bayesian variable selection and estimation for group
lasso. Bayesian Analysis, 2015. MR3432244

[83] S.L. Zeger and M.R. Karim. Generalized linear models with random effects:
A gibbs sampling approach. Journal of the American Statistical Associa-
tion, 86:79–86, 1991. MR1137101

[84] H. Zou. The adaptive lasso and its oracle properties. Journal of the Amer-
ican Statistical Association, 101:1418–1429, 2006. MR2279469

[85] H. Zou and T. Trevor. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B, 67:301–320, 2005.
MR2137327

http://www.ams.org/mathscinet-getitem?mr=0909372
http://www.ams.org/mathscinet-getitem?mr=3432244
http://www.ams.org/mathscinet-getitem?mr=1137101
http://www.ams.org/mathscinet-getitem?mr=2279469
http://www.ams.org/mathscinet-getitem?mr=2137327

	Introduction
	Motivating applications
	Challenges in high-dimensional predictor detection
	Bidirectional clustering with adaptively nonlinear functional regression and prediction
	Existing Bayesian approaches and limitations

	VariScan Model
	Covariate clustering model
	Prediction and regression model
	Model justification and generalizations

	Posterior inference
	Clustering consistency
	Simulation studies
	Cluster-related inferences
	Prediction accuracy

	Analysis of benchmark data sets
	Conclusions
	Details of theoretical calculations and results
	Proof of Theorem 2.1

	A basic lemma for MCMC updates
	MCMC procedure
	Covariate-to-cluster Allocation
	Latent Vectors and Indicators
	Cluster Predictors and Cluster Representatives
	Latent Regression Outcomes
	Predictions

	Some general results on the posterior consistency of multivariate density estimation
	Proof of Theorem 4.1
	Simulation studies: Further results
	Prediction accuracy

	Analysis of benchmark data sets: Further results
	Acknowledgements
	References

