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Abstract: We discuss in detail the asymptotic distribution of sample ex-
pectiles. First, we show uniform consistency under the assumption of a
finite mean. In case of a finite second moment, we show that for expec-
tiles other then the mean, only the additional assumption of continuity
of the distribution function at the expectile implies asymptotic normality,
otherwise, the limit is non-normal. For a continuous distribution function
we show the uniform central limit theorem for the expectile process. If, in
contrast, the distribution is heavy-tailed, and contained in the domain of
attraction of a stable law with 1 < α < 2, then we show that the expectile
is also asymptotically stable distributed. Our findings are illustrated in a
simulation section.
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1. Introduction

Expectile regression, that is, regression on a parameter that generalizes the
mean and characterizes the tail behaviour of a distribution, has been intro-
duced by Newey and Powell (1987) as an alternative to more standard quantile
regression; Breckling and Chambers (1988) considered regression based on more
general asymmetric M-estimators. For a recent comparison between quantile
and expectile regression and references see Schulze-Waltrup et al. (2014).

Let Y be a random variable with distribution function F and finite mean
E|Y | < ∞. For a fixed τ ∈ (0, 1), the τ -expectile μτ = μτ (F ) of Y has been
introduced by Newey and Powell (1987) as the minimizer of an asymmetric
quadratic loss

μτ (F ) = argmin
x∈R

E Sτ (x, Y ),

Sτ (x, y) = τ/2
[
((y − x)+)2 − (y+)2

]
+ (1− τ)/2

[
((y − x)−)2 − (y−)2

]
.

(1)

Apparently, for τ = 1/2 one obtains the mean. Alternatively to Sτ (x, y) in
(1), one may use other scoring functions for the expectile; these were recently
characterized by Gneiting (2011, Theorem 10).
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Compared to quantiles, expectiles require the existence of a first moment and
hence lack robustness. On the other hand, for any distribution with finite mean,
the expectile is unique for each τ , and the expectile curve is always strictly
increasing and continuous.

More importantly, as a risk measure it has been shown recently that expec-
tiles have the attractive property of coherence (see Bellini et al. (2014)), while
quantiles suffer from the lack of subadditivity. Indeed, expectiles were shown
to be the only coherent, elicitable risk measures in Ziegel (2014); for a discus-
sion and comparison between value at risk (quantiles), expectiles and expected
shortfall see Emmer et al. (2015). Further discussion and application of expec-
tiles as risk measures are given in Delbaen (2013) and Bellini and Di Bernardino
(2015).

In this note we study in detail the statistical, that is, asymptotic properties
of the sample expectiles. Somewhat surprisingly and in contrast to the mean,
for τ �= 1/2 we find that even under the assumption of a finite second moment,
the sample expectile is only asymptotically normal if the distribution function
F is continuous at μτ (F ), otherwise, the limit distribution is non-normal.

First, in Section 2.1 we show uniform consistency under the assumption of
a finite mean. Next, in Section 2.2 we show that if the distribution function F
is continuous at its τ -expectile μτ (F ), there is an asymptotic linearization of
the sample expectile for this τ . In case of finite second moments, this implies
asymptotic normality, but if F is in the domain of attraction of a stable law, the
sample expectile is also asymptotically stable distributed. If F has a jump at
μτ (F ), we show in Section 2.3 that also under the assumption of a finite second
moment, the asymptotic distribution of the sample expectile is non-normal.
Finally, for a continuous distribution function with second moments, we show
the uniform central limit theorem for the expectile process. We illustrate our
findings in a simulation in Section 3, using the t-distribution with low degrees of
freedom as a prototypical example for heavy-tailed distributions. Based on an
explicit representation of the expectile for discrete distributions, we exemplify
the nonstandard asymptotic behavior of the empirical expectile by a three-point
distribution. Proofs are deferred to Section 4.

In a recent paper, Krätschmer and Zähle (2016) obtained results on the
asymptotics of expectiles which are to some extend complementary to our re-
sults. Using a non-standard version of the functional delta-method allows them
to treat both the case of dependent data as well as expectiles of parametric
estimates of the distribution. However, they only consider the case of a finite
second moment (they even assume slightly more) and a distribution which is
continuous at the expectiles, and further do not investigate properties of the
expectile process.

2. Asymptotic properties of sample expectiles

Newey and Powell (1987) state a number of useful properties of expectiles,
mainly for absolutely continuous distributions F . Below we state an extension,
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and in particular point out the assumptions on F which are actually required.
Introducing the identification function

Iτ (x, y) = τ(y − x)1{y≥x} − (1− τ) (x− y)1{y<x}

of the expectile, it is well-known that μτ (F ) can equivalently be defined as
unique solution of the first-order condition

EIτ (x, Y ) = 0, x ∈ R. (2)

The following identity, obtained by a partial integration, is important for us:

Iτ (x, F ) :=EIτ (x, Y ) = τ

∫ ∞

x

(
1− F (y)

)
dy − (1− τ)

∫ x

−∞
F (y) dy. (3)

Proposition 1. Let F be a distribution function with finite mean.

(i) For each τ ∈ (0, 1) there is a unique solution μτ (F ) to (1) or, equivalently,
to (2).

(ii) The function μ·(F ) : (0, 1) → R, τ �→ μτ (F ), is continuous, strictly in-
creasing, and has range {y ∈ R : 0 < F (y) < 1}.

(iii) If F is continuous in a neighborhood of μτ (F ) for a given τ ∈ (0, 1), then
μ·(F ) is continuously differentiable in a neighborhood of τ with derivative

∂τ μτ (F ) =

∫∞
μτ

(
1− F (y)

)
dy +

∫ μτ

−∞ F (y) dy

τ
(
1− F

(
μτ

))
+ (1− τ)F

(
μτ

) .

2.1. Sample expectiles and uniform consistency

In this section we show strong uniform consistency of sample expectiles. Let
Y have distribution function F , with finite first moment EF |Y | = E|Y | < ∞,
and let Y1, Y2, . . . be i.i.d. copies of Y , and let F̂n be the empirical distribution
function. The empirical τ -expectile

μ̂τ,n = μτ

(
F̂n

)
can be defined as solution of the equation

Iτ
(
x, F̂n

)
=

1

n

n∑
k=1

Iτ (x, Yk) = 0. (4)

This type of estimator is often termed Z-estimator, and a large amount of the-
ory is available to obtain asymptotic properties for this type of estimators.
Alternatively, asymptotic results can be derived using the representation as an
M-estimator, that is,

μ̂τ,n = argminx∈R
Ŝn(x), Ŝn(x) =

1

n

n∑
k=1

Sτ (x, Yk) =

∫
R

Sτ (x, y) dF̂n(y).

(5)
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Here, any other scoring function for the expectile (Gneiting, 2011) could be used
instead, they all result in the same estimator, the expectile of the empirical
distribution function.

The measurability of μ̂τ,n follows from Theorem (1.9) in Pfanzagl (1969),
who studied M-estimators under the heading of minimum contrast estimation.
More directly, measurability follows from the explicit representation of μ̂τ,n in
Subsection 3.2.

Theorem 2. Let Y, Y1, Y2, . . . be i.i.d. with distribution function F , and assume
EF |Y | < ∞. For any τl, τu ∈ (0, 1), τl < τu, we have

sup
τl≤τ≤τu

∣∣μ̂τ,n − μτ (F )
∣∣ → 0 a.s.

2.2. Asymptotic linearization and convergence to stable
distributions

Let us consider the representation (5) of the sample expectile as an M-estimator.
Asymptotic normality or, more generally, asymptotic linearization, requires that
the asymptotic contrast function has a second order Taylor expansion at the true
parameter. Since |∂xSτ (x, y)| = |Iτ (x, y)| ≤ c(|x| + |y|) for a suitable constant
c, we may differentiate the asymptotic contrast function

ψτ (x) = ESτ (x, Y ) =

∫
Sτ (x, y) dF (y) (6)

under the integral sign to obtain

ψ′
τ (x) = −EIτ (x, Y ) =: −Iτ (x, F ).

We see from (3) that ψ′
τ (x) has

right derivative ψ
′′+
τ (x) = τ

(
1− F (x)

)
+ (1− τ)F (x)

left derivative ψ
′′−
τ (x) = τ

(
1− F (x−)

)
+ (1− τ)F (x−)

(7)

at x, where F (x−) = P(Y < x) is the left limit of F at x. For τ = 1/2 (i.e. the
mean), these are always equal, but generally only coincide at μτ (F ) if F has no
point mass in its τ -expectile. From Theorems 1 and 10 in Arcones (2000) we
deduce the following linearization.

Theorem 3 (Asymptotic linearization). Let Y, Y1, Y2, . . . be i.i.d. with dis-
tribution function F . Assume that EF |Y | < ∞ and that F is continuous at
μτ = μτ (F ) for a given τ ∈ (0, 1). Let {an} be a sequence of positive numbers
which converges to infinity with supn≥1 n

−1a2n < ∞, such that

an
n

n∑
k=1

Iτ (μτ , Yk) = OP(1). (8)

Then

an (μ̂τ,n − μτ ) =
an
n

(
τ
(
1− F (μτ )

)
+ (1− τ)F (μτ )

)−1
n∑

k=1

Iτ (μτ , Yk) + oP(1).
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Asymptotic normality

In case of finite second moments, (8) is satisfied with an =
√
n by the cen-

tral limit theorem, and we obtain asymptotic normality for a finite number of

expectiles. In the following, we write Yn
L→ F as a short-hand notation for

Yn
L→ Y ∼ F , where F denotes the distribution function of Y .

Corollary 4. Suppose that EY 2 < ∞. Let τi ∈ (0, 1), i = 1, . . . ,m be such that
F does not have a point mass at any of the μτi , i = 1, . . . ,m. Then

√
n
(
μ̂τ1,n − μτ1 , . . . , μ̂τm,n − μτm

)′ L→ N
(
0,Σ

)
,

where

Σi,j =
E
[
Iτi (μτi , Y ) Iτj

(
μτj , Y

)](
τi
(
1− F (μτi)

)
+ (1− τi)F (μτi)

) (
τj
(
1− F (μτj )

)
+ (1− τj)F (μτj )

)
(9)

for i, j = 1, . . . ,m.

Convergence to stable distributions

A random variable X has an α-stable distribution if its characteristic function
is given by

E
[
eiuX

]
=

{
exp

(
−|u|α

[
1− iβ tan

(
πα
2

)
sign(u)

])
, α �= 1,

exp
(
−|u|

[
1 + iβ 2

π sign(u) log |u|
])

, α = 1,

where 0 < α ≤ 2, β ∈ [−1, 1]. Assume that Y belongs to the domain of at-
traction of an α-stable distribution (Y ∈ DA(α)) with 0 < α < 2 (see, e.g.,
Embrechts et al. (1997, Def. 2.2.7)). This is the case if and only if Y has tail
probabilities that satisfy

P (Y > y) =
c+ + o(1)

yα
L(y) and P (Y < −y) =

c− + o(1)

yα
L(y), y → ∞,

(10)

where L is slowly varying and c+, c− ≥ 0 with c+ + c− > 0 (Embrechts et
al., 1997, Th. 2.2.8). In the following, we assume 1 < α < 2 to ensure that
E|Y | < ∞.

Corollary 5. Let Y, Y1, Y2, . . . be i.i.d. r.v. with distribution function F ∈
DA(α), where 1 < α < 2. Assume further that F has no point mass in μτ .
Then,

n1−1/α

L1(n)
(μ̂τ,n − μτ (F ))

L−→ Z̃

τ
(
1− F (μτ )

)
+ (1− τ)F (μτ )

.

Here, Z̃ follows an α-stable distribution, and L1 is an appropriate slowly varying
function.
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Proof. Since F ∈ DA(α), from (10) we obtain that

P (I(μτ , Y ) > y) = τα
c+ + o(1)

yα
L(y) and

P (I(μτ , Y ) < −y) = (1− τ)α
c− + o(1)

yα
L(y) as y → ∞.

Consequently, I(μτ , Y ) ∈ DA(α), and the general CLT (Embrechts et al., 1997,
Th. 2.2.15) yields

(
n1/αL1(n)

)−1
(

n∑
k=1

I(μτ , Yk)− nEI(μτ , Y )

)
L−→ Z̃ as n → ∞,

where Z̃ follows an α-stable distribution and L1 is an appropriate slowly varying
function. This implies that (8) is satisfied, and an application of Theorem 3
together with the general CLT yields the statement of the corollary.

Instead of using the assumptions Y ∈ DA(α), suppose more specifically that
Y belongs to the domain of normal attraction of some α-stable distribution with
1 < α < 2, i.e. Y has tail probabilities that satisfy

yαP (Y > y) → c+ and yαP (Y < −y) → c−, y → ∞, (11)

with c+ + c− > 0 and 1 < α < 2.

Corollary 6. Let Y, Y1, Y2, . . . be i.i.d. r.v. with distribution function F that
belongs to the normal domain of attraction of an α-stable distribution, where
1 < α < 2, that is, satisfies (11). Assume further that F has no point mass in
μτ . Then

n1−1/α c̃ (μ̂τ,n − μτ )
L−→ S(α, β̃)

τ
(
1− F (μτ )

)
+ (1− τ)F (μτ )

,

where

c̃ =

(
2Γ(α) sin(πα/2)

π(ταc+ + (1− τ)αc−)

)1/α

, β̃ =
ταc+ − (1− τ)αc−

ταc+ + (1− τ)αc−)
.

Proof. Since

yαP (I(μτ , Y ) > y) → τα c+ and yαP (I(μτ , Y ) < −y) → (1− τ)α c−

as y → ∞, this follows from the general CLT for distributions in the normal
domain of attraction of a corresponding stable law (Nolan, 2015, p. 22).
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2.3. Further asymptotics under finite second moments

Suppose that Y ∼ F with E Y 2 < ∞ and V ar Y > 0. In contrast to the mean,
asymptotic normality of general expectiles as in Corollary 4 actually requires
the additional assumption that Y has no point mass at μτ (F ), otherwise, the
limit distribution is non-normal, as the following result shows.

Theorem 7. Let Y, Y1, Y2, . . . be i.i.d. with distribution function F with E Y 2 <
∞. Let τ ∈ (0, 1) and denote μτ = μτ (F ). Then

√
n (μ̂τ,n − μτ )

L→ σ1 W 1W>0 + σ2 W 1W<0,

where W ∼ N
(
0, E[Iτ (μτ , Y )2]

)
,

σ1 =
[
τ
(
1− F

(
μτ

))
+ (1− τ)F

(
μτ

)]−1
,

σ2 =
[
τ
(
1− F

(
μτ −

))
+ (1− τ)F

(
μτ −

)]−1
,

and F (x−) = P (Y < x) denotes the left limit of F at x.

We prove Theorem 7 by using empirical process methods and the argmax
continuity theorem as presented in Van der Vaart (1998). Alternatively one
could exploit the convexity of the contrast and modify the assumptions and the
proof in Hjort and Pollard (1993, Theorem 2.1) to give an alternative argument.

In case of a continuous distribution function, we also have convergence of the
expectile process.

Theorem 8. Let Y, Y1, Y2, . . . be i.i.d. with distribution function F with E Y 2 <
∞. Let 0 < τl < τu < 1 and suppose that F is continuous in a neighborhood of[
μτl , μτu

]
. Then the sequence of processes

τ �→
(√

n (μ̂τ,n − μτ )
)
n≥1

, τ ∈
[
τl, τu

]
, (12)

converges weakly in C
[
τl, τu

]
to a Gaussian process with continuous sample paths

and covariance function given in (9).

Tran et. al. (2014) also show convergence of the expectile process. They argue
via convergence of an associated quantile process, and therefore require that F
has a density, further, they do not specify the covariance function of the limit
process.

Theorem 7 shows that process convergence, at least in C
[
τl, τu

]
or even in

l∞
[
τl, τu

]
, cannot be expected if F has a discontinuity in [τl, τu], since in this

case the limit process would be discontinuous as well.
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3. Some Simulations

3.1. Illustration of convergence to a stable distribution

As an example for a distribution with finite expectation but infinite variance we
consider Student’s t-distribution tα, 1 < α < 2, with symmetric density

fα(x) =
Γ((α+ 1)/2)

Γ(α/2)
√
απ

(
1 +

x2

α

)−α+1
2

, x ∈ R.

For Yα ∼ tα,

lim
y→∞

yαP (Yα > y) = lim
y→∞

yαP (Yα < −y) =
Γ((α+ 1)/2)

Γ(α/2)

αα/2−1

√
π

.

Accordingly, tα belongs to the domain of normal attraction of some α-stable
distribution. To compute the theoretical τ -expectile, which is the unique solution
of

μτ − EY =
2τ − 1

1− τ
E
[
(Y − μτ )

+
]
, (13)

one can use the identity

E
[
(Yα − μτ )

+
]
=

√
αΓ((α+ 1)/2)√
π(α− 1)Γ(α/2)

(
1 +

μ2
τ

α

) 1−α
2

− μτ (1− Fα(μτ )) ,

where Fα(·) denotes the distribution function of tα. The limiting behavior of
the empirical τ -expectile then follows directly from Corollary 5. Figure 1 shows
the distribution function of n1−1/α c̃ (μ̂τ,n − μτ ) (more precisely the empirical
distribution function based on 10000 replications) for sample sizes of 20, 200
and 2000 for several values of τ and α. It can be observed that the quality of
the approximation by the corresponding limiting stable law depends on both τ
and α: the approximation improves for decreasing α (see Figure 1 (a)–(c)) and
for τ approaching the value 0.5 (see Figure 1 (d)–(f)).

3.2. Illustration of nonstandard asymptotics under finite second
moments

To illustrate the convergence to a non-normal distribution stated in Theorem 7,
we first give an explicit formula for the empirical expectile which is interesting in
itself. From (13), it follows directly that the τ -expectile satisfies the equivalent
conditions

τ =
E [(Y − μτ )

−]

E [|Y − μτ |]
, (14)

μτ =
(1− τ)E

[
Y 1{Y≤μτ}

]
+ τE

[
Y 1{Y >μτ}

]
(1− τ)P (Y ≤ μτ ) + τP (Y > μτ )

. (15)
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Fig 1. Convergence of the cumulative distribution function (cdf) of the empirical expectile to
the corresponding limiting stable cdf. Upper row: Data follow tα-distribution with different α,
τ = 0.8 fixed. Lower row: Data follow tα-distribution with α = 1.5, different values of τ .

The subsequent representation follows Bellini (2012), but formulated for the
empirical distribution, and allowing for ties. Let Y(1) ≤ . . . ≤ Y(n) denote the
order statistics of Y1, . . . , Yn. From (15), the empirical expectile satisfies

μ̂τ,n =
(1− τ)

∑
k Y(k)1{Y(k)≤μ̂τ,n} + τ

∑
k Y(k)1{Y(k)>μ̂τ,n}

(1− τ)
∑

k 1{Y(k)≤μ̂τ,n} + τ
∑

k 1{Y(k)>μ̂τ,n}
.

Hence, for μ̂τ,n ∈ [Y(i), Y(i+1)), where Y(i) < Y(i+1), one has

μ̂τ,n =
(1− τ)

∑i
k=1 Y(k) + τ

∑n
k=i+1 Y(k)

(1− τ)i+ τ(n− i)
. (16)

Defining

τ∗i :=
iY(i) −

∑i
k=1 Y(k)∑n

k=1 |Y(k) − Y(i)|
, i = 1, . . . , n, (17)

we have μ̂τ,n = Y(i) iff τ = τ∗i for i = 1, . . . , n (and then, (17) is the empirical
counterpart of (14)). Note that τ∗0 = 0, τ∗n = 1, and since μ̂τ,n is nondecreasing
in τ , we obtain that τ∗i ≤ τ∗i+1, i = 1, . . . , n− 1. As a consequence,

μ̂τ,n ∈ [Y(i), Y(i+1)) ⇔ τ ∈ [τ∗i , τ
∗
i+1), i = 1, . . . , n− 1.
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Fig 2. Density function of the standardized empirical expectile for n = 500 and of the cor-
responding limiting distribution. Data follow a three point distribution in 0,1,2. (a) τ = 0.7,
normal limiting distribution. (b) τ = 0.8, non-normal limiting distribution.

Remark. 1. Formulas (17) and (16) are especially well-suited for plotting
purposes without the need of any numerical root-finding.

2. From (16), μ̂τ,n is piecewise differentiable in τ with

dμ̂τ,n

dτ
=

i
∑n

k=i+1 Y(k) − (n− i)
∑i

k=1 Y(k)

((1− τ)i+ τ(n− i))2
for τ ∈ (τ∗i , τ

∗
i+1).

If Y has a discrete distribution on 0, 1, 2, . . . (say), an analogous reasoning
leads to the following explicit formula for the theoretical expectiles μτ . Define

τ∗i :=

∑i−1
k=0(i− k)P (Y = k)∑
k≥0 |i− k|P (Y = k)

, i = 0, 1, 2, . . . . (18)

For τ ∈ [τ∗i , τ
∗
i+1), and accordingly μτ ∈ [i, i+ 1), one has

μτ =
(1− τ)

∑
k≤i kP (Y = k) + τ

∑
k>i kP (Y = k)

(1− τ)P (Y ≤ i) + τP (Y > i)
. (19)

Now, assume that Y follows a three-point distribution with P (Y = i) = pi, i =
0, 1, 2, with p0, p1, p2 > 0, p0 + p1 + p2 = 1. Then, from (18) and (19), we get
τ∗0 = 0, τ∗1 = p0/(p0 + p2), τ

∗
2 = 1 and

μτ =

{
τ(p1+2p2)

(1−τ)p0+τ(p1+p2)
, 0 < τ < τ∗1 ,

(1−τ)p1+2τp2

(1−τ)(p0+p1)+τp2
, τ∗1 ≤ τ < 1.

Next, we make the choice p0 = 4/10, p1 = 5/10, p2 = 1/10. Then, μ0.8 = 1,
i.e. the distribution of Y has a point mass in μτ for τ = 0.8, but not for other
values of τ . Figure 2 (a) shows the density of

√
n (μ̂τ,n − μτ ) (estimated by a

nonparametric density estimator based on 20000 replications) for sample size 500
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and τ = 0.7 (hence, μτ = 49/54) together with the limiting normal distribution
given in Corollary 4. Figure 2 (b) shows the corresponding plot for τ = 0.8
together with the limiting non-normal distribution given in Corollary 7.

4. Proofs

Proof of Proposition 1. Parts (i) and (ii) are from Newey and Powell (1987)
except for the general continuity of μτ (F ) in τ . From (3) we see that Iτ (x, F )
is a continuous function of (τ, x). To show continuity of the expectile, first let
τn ↓ τ , and let μ̃τ = limn μτn(F ) for which by monotonicity μτ (F ) ≤ μ̃τ . By
continuity of Iτ (x, F ) we have

0 = lim
n

Iτn
(
μτn(F ), F

)
= Iτ

(
μ̃τ , F

)
,

but since μτ (F ) is the unique zero, it follows that μτ (F ) = μ̃τ , that is, right-
continuity. The argument for left-continuity is the same.

(iii) From (3) we see that if F is continuous in a neighborhood of x, then
Iτ (·, F ) is continuously differentiable at x with derivative −τ

(
1− F (x)

)
− (1−

τ)F (x). The conclusion follows from the implicit function theorem.

Proof of Theorem 2. We start with strong consistency of individual expectiles,
that is,

μ̂τ,n −→ μτ (F ) a.s. (20)

We may use the representation (4) of the empirical expectile as a Z-estimator
and strengthen Van der Vaart (1998, Lemma 5.10) to almost sure convergence.
Since x �→ Iτ (x, F ) is strictly decreasing, we have for every ε > 0 that

Iτ (μτ − ε, F ) > 0 > Iτ (μτ + ε, F ).

Since I(μτ ± ε, F̂n) → Iτ (μτ ± ε, F ) a.s. as n → ∞, we have a.s. that I(μτ −
ε, F̂n) > 0 > I(μτ +ε, F̂n) for large n ∈ N. Since each map x → I(x, F̂n), n ∈ N,
is continuous and has exactly one zero μ̂τ,n, this zero must a.s. lie between μτ±ε
for large n ∈ N, that is,

lim sup
n→∞

∣∣μ̂τ,n − μτ (F )
∣∣ ≤ ε a.s. ∀ ε > 0,

showing (20).
Using Proposition 1 (ii) and individual consistency, the classical Glivenco-Can-
telli argument may be applied. Let d = μτu(F ) − μτl(F ), m ∈ N, and choose
by continuity τl = τ0 ≤ τ1 ≤ . . . ≤ τm = τu such that μτk(F ) = μτl(F ) + kd/m,
k = 1, . . . ,m. By monotonicity, for τk ≤ τ ≤ τk+1,

μ̂τ,n − μτ (F ) ≤ μ̂τk+1,n − μτk+1
(F ) + μτk+1

(F )− μτk(F ).

Therefore

sup
τl≤τ≤τu

(
μ̂τ,n − μτ (F )

)
≤ max

0≤k≤m

∣∣μ̂τk,n − μτk(F )
∣∣+ d/m.
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Similarly,

sup
τl≤τ≤τu

(
μτ (F )− μ̂τ,n

)
≤ max

0≤k≤m

∣∣μ̂τk,n − μτk(F )
∣∣+ d/m.

Since

sup
τl≤τ≤τu

∣∣μ̂τ,n−μτ (F )
∣∣ = max

(
sup

τl≤τ≤τu

(
μ̂τ,n−μτ (F )

)
, sup
τl≤τ≤τu

(
μτ (F )−μ̂τ,n

))
,

we have for any m ∈ N that

lim sup
n

sup
τl≤τ≤τu

∣∣μ̂τ,n − μτ (F )
∣∣ ≤ lim sup

n
max

0≤k≤m

∣∣μ̂τk,n − μτk(F )
∣∣+ d/m

= d/m a.s.

We shall derive Theorem 3 from Theorems 1 and 10 in Arcones (2000). For
convenience, we state a version of these results, tailored to our needs.

Theorem (Theorems 1 and 10 in Arcones (2000)). Let Y, Y1, Y2, . . . be i.i.d. with
distribution function F . Let g : R2 → R be a function such that g(·, ϑ) : R → R

is measurable for each ϑ ∈ R. Let ϑ̂n be a sequence of r.v.’s satisfying

n−1
n∑

k=1

g(Yk, ϑ̂n) = inf
ϑ∈R

n−1
n∑

k=1

g(Yk, ϑ).

Suppose that:

(A.1) ϑ̂n
P−→ ϑ0, ϑ0 ∈ R.

(A.2) There is a positive constant V such that

E[g(Y, ϑ)− g(Y, ϑ0)] = V (ϑ− ϑ0)
2 + o(|ϑ− ϑ0|2),

as ϑ → ϑ0.
(A.3) Let ϕ : R → R and let {an} be a sequence of positive numbers which

converges to infinity with supn≥1 n
−1a2n < ∞ such that

an

⎛
⎝n−1

n∑
j=1

ϕ(Yj)− E[ϕ(Y )]

⎞
⎠ = OP(1).

(A.4) There is a function ζ : R → R with E|ζ(Y )| < ∞ such that

lim
δ→0

E

[
sup
|ϑ|≤δ

|r(Y, ϑ)− ϑ2 ζ(Y )|
ϑ2

]
= 0,

where r(y, ϑ) = g(y, ϑ0 + ϑ)− g(y, ϑ0)− ϑϕ(y).
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Then,

an(ϑ̂n − ϑ0) +
an
2V

⎛
⎝ 1

n

n∑
j=1

ϕ(Yj)− E[ϕ(Y )]

⎞
⎠ P−→ 0.

Proof of Theorem 3. We verify the conditions of the above theorem for ϑ0 =
μτ (F ), g(y, ϑ) = Sτ (ϑ, y), ϕ(y) = −Iτ

(
μτ (F ), y

)
and

ζ(y) =
τ

2
1{y>μτ} +

1− τ

2
1{y<μτ} .

(A1) follows from Theorem 2.
(A2) follows from (6), (7), the assumption of continuity of F at μτ (F ), and

Taylor’s theorem, which holds under the minimal assumption of an existing
second derivative.

(A3) is (8). Finally, for (A4) we compute that for x > 0,

Sτ (μτ + x, y)− Sτ (μτ , y) + xIτ (μτ , y)

= −τ

2
(y − μτ − x)2 1{μτ<y≤μτ+x} +

τ

2
x21{y>μτ}

+
1− τ

2
(y − μτ − x)2 1{μτ≤y<μτ+x} +

1− τ

2
x21{y<μτ}

and similarly for x < 0. Therefore for some c > 0 we may estimate∣∣Sτ (μτ + x, y)− S(μτ , y) + xIτ (μτ , y)− x2ζ(y)
∣∣

≤ c (y − μτ − x)2 1{μτ−|x|≤y≤μτ+|x|}

≤ c x2 1{μτ−|x|≤y≤μτ+|x|} ,

and therefore

E

[
sup
|x|≤δ

|Sτ (μτ + x, Y )− Sτ (μτ , Y ) + xIτ (μτ , Y )− x2ζ(Y )|
x2

]

≤ c P
(
μτ − δ ≤ Y ≤ μτ + δ

)
→ 0, δ → 0,

since Y does not have a point mass at μτ .

Proof of Theorem 7. We start by establishing Lipschitz continuity of Sτ (x, y)
as a function of x with square-integrable Lipschitz constant. Since ∂xSτ (x, y) =
−Iτ (x, y), we have for x1, x2 ∈ Bδ(μτ )

|Sτ (x1, y)− Sτ (x2, y)| ≤ cm(y)|x1 − x2|, m(y) := sup
x∈Bδ(μτ )

∣∣Iτ (x, y)∣∣. (21)

Then, the inequality

m(y) ≤ sup
x∈Bδ(μτ )

|x− y| ≤ sup
x∈Bδ(μτ )

|x|+ |y|
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yields E[m(Y )2] < ∞ if EY 2 < ∞, that is, the Lipschitz constant has finite
second moment.

Next, the asymptotic contrast in (6) is continuously differentiable with left
and right derivatives in μτ given in (7). From Taylors formula, we obtain

ψτ (x)− ψτ (μτ ) = (x− μτ )
2ψ

′′+
τ (μτ )/2 + o(|x− μτ |2), x > μτ ,

ψτ (x)− ψτ (μτ ) = (x− μτ )
2ψ

′′−
τ (μτ )/2 + o(|x− μτ |2), x < μτ ,

(22)

where ψ
′′±
τ (μτ ) are right/left second derivatives.

Therefore, the assumptions of Theorem 5.52 in Van der Vaart (1998) are
satisfied with α = 2 and β = 1 (see the argument in Corollary 5.53, that the
Lipschitz property (21) implies the concentration inequality), and we obtain the√
n-rate of convergence:

√
n (μ̂τ,n − μτ ) = OP(1).

To obtain the asymptotic distribution, we apply the argmax-continuity theorem,
Corollary 5.58 in Van der Vaart (1998). To this end, for a measurable function
f with Ef2(Y ) < ∞, denote

Pnf =
1

n

n∑
k=1

f(Yk), Pf = EF (Y ), and Gn(f) =
√
n
(
Pn − P

)
f.

By the Lipschitz property (21), from the proof of Lemma 19.31 in Van der Vaart
(1998) we obtain for any M > 0 that

sup
|h|≤M

Gn

[√
n
(
Sτ (μτ + h/

√
n, ·)− Sτ (μτ , ·)

)
+ h Iτ (μτ , ·)

] n→∞→ 0 (P).

Therefore, for any M > 0, the difference between the processes

h �→
√
nPn

[√
n
(
Sτ (μτ + h/

√
n, ·)− Sτ (μτ , ·)

)]
, |h| ≤ M,

and

h �→ n
[
ψτ

(
μτ + h/

√
n
)
− ψτ (μτ )

)]
− hGnIτ (μτ , ·), |h| ≤ M,

tends to 0 in probability in sup-norm. Using (22), the second process converges
to the Gaussian process

h �→ 1

2σ1
h21h>0 +

1

2σ2
h21h<0 − hW, (23)

where W is normally distributed as in the theorem, hence so does the first. From
the argmax - continuity theorem, we obtain weak convergence of the minimizers√
n (μ̂τ,n − μτ ) to the minimizer of the limit process. Now, a parabola h �→

−hW + h2/(2σ) for some σ > 0 is minimized at h = σW , yielding the negative
value −σW 2/2. Therefore, the minimizer of (23) is at h = σ1W for W > 0 and
at h = σ2W for W < 0, which gives the statement of the theorem.
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Proof of Theorem 8. We shall apply Van der Vaart (1995, Theorem 1), which
gives asymptotic normality of functional Z-estimators; see also Kosorok (2008,
Theorem 13.4), which additionally implies validity of the bootstrap. First, The-
orem 2 gives the uniform consistency. Given ν ∈ C

[
τl, τu

]
⊂ l∞

[
τl, τu

]
, the

functions τ �→ Iτ
(
ν(τ), F

)
and τ �→ Iτ

(
ν(τ), F̂n

)
are also in C

[
τl, τu

]
, and

τ �→ Iτ
(
μτ , F

)
= 0, τ �→ Iτ

(
μ̂τ,n, F̂n

)
= 0.

Next, we check the conditions (2), (3) and (4) in Van der Vaart (1995). Suppose
that ν ∈ C

[
τl, τu

]
is such that F is continuous on the image of ν (this is true

by our assumption if ‖ν − μ‖[τl,τu] is small enough). Then we apply the mean
value theorem for each τ ∈ [τl, τu] to obtain∣∣Iτ(ν(τ), F )

− Iτ
(
μτ , F

)
+
[
τ
(
1− F (μτ )

)
+ (1− τ)F (μτ )

](
ν(τ)− μτ

)∣∣
≤

∣∣F (ξτ )− F (μτ )
∣∣ ∣∣ν(τ)− μτ

∣∣,
where ξτ is between ν(τ) and μτ . Since F is uniformly continuous in a compact
neighborhood of [τl, τu], we obtain

sup
τ∈[τl,τu]

∣∣Iτ(ν(τ), F )
− Iτ

(
μτ , F

)
+
[
τ
(
1− F (μτ )

)
+ (1− τ)F (μτ )

](
ν(τ)− μτ

)∣∣
= o

(
‖ν − μ‖[τl,τu]

)
, (24)

showing Fréchet differentiability, that is, (4) in Van der Vaart (1995). Note that
the derivative, multiplication with the function

τ �→ −
[
τ
(
1− F (μτ )

)
+ (1− τ)F (μτ )

]
,

is continuously invertible.
Since by Proposition 1, (iii), μτ (F ) is continuously differentiable in τ , we have
for an appropriate constant c > 0 that∣∣Iτ1(μτ1(F ), y

)
−Iτ2

(
μτ2(F ), y

)∣∣ ≤ c|y| |τ1−τ2|, τ1, τ2 ∈ [τl, τu], y ∈ R, (25)

so that (
Iτ
(
μτ (F ), ·

))
τ∈[τl,τu]

(26)

is a Donsker class of functions, see Van der Vaart (1998, Example 19.7.), taking
care of (2) in Van der Vaart (1995).

Finally, to show (3) in Van der Vaart (1995), we choose δn ↓ 0, and estimate
in the first step

sup
‖ν−μ‖[τl,τu]≤δn

sup
τ∈[τl,τu]

√
n
∣∣Iτ(ν(τ), F̂n

)
− Iτ

(
ν(τ), F

)
−
[
Iτ
(
μτ , F̂n

)
− Iτ

(
μτ , F

)]∣∣
≤ sup

|x|≤δn

sup
τ∈[τl,τu]

√
n
∣∣Iτ(μτ + x, F̂n

)
− Iτ

(
μτ + x, F

)
−
[
Iτ
(
μτ , F̂n

)
− Iτ

(
μτ , F

)]∣∣ .
(27)
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Now, for a constant C > 0, y ∈ R, τ, τ1,∈ [τl, τu], |x|, |x1| ≤ 1,∣∣Iτ1(μτ1 + x1, y
)
− Iτ1

(
μτ1 , y

)
−

[
Iτ
(
μτ + x, y

)
− Iτ

(
μτ , y

)]∣∣
≤C|y|

(
|x1 − x|+ |τ1 − τ |

)
,

and ∣∣Iτ(μτ + x, y
)
− Iτ

(
μτ , y

)
≤ C |y| |x|.

Therefore,

sup
|x|≤δn

sup
τ∈[τl,τu]

E
(
Iτ
(
μτ + x, Y

)
− Iτ

(
μτ , Y

))2 ≤ C EY 2 δn,

and each

Fn =
{
(x, τ) �→ Iτ

(
μτ + x, y

)
− Iτ

(
μτ , y

)
, |x| ≤ δn, τ ∈ [τl, τu]

}
is a Lipschitz-class of functions. Therefore we may estimate (27) by the brack-
eting integral J[]

(
δn,Fn, L2(F )

)
and an additional sequence converging to zero,

by Van der Vaart (1998, Lemma 19.34 and Example 19.7), which together → 0
as n → ∞ and δn ↓ 0.

Next, we show that weak convergence is actually in C
[
τl, τu

]
. The expectile

processes (12) have continuous sample paths. As for the limiting Gaussian pro-
cess, it suffices to show continuity of the sample paths of the limit Gaussian
process of the empirical process corresponding to the function class (26), since
the inverse of the Fréchet derivative in (24) is simply multiplication by a fixed
continuous function. By Van der Vaart (1998, Lemma 18.15), the limit process
can be constructed to have continuous sample paths w.r.t. its standard devia-
tion semimetric. In order to check that continuity also holds w.r.t. the ordinary
distance on [τl, τu], we show that

E
(
Iτ2(μτ2 , Y )−Iτ1(μτ1 , Y )

)2 ≤ C2(τ2−τ1)
2, τj ∈

[
μτl , μτu

]
, j = 1, 2 (28)

for some C > 0. But this follows immediately from (25) upon squaring and
integrating. This concludes the proof of the theorem.
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