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Abstract: Bayesian analysis is increasingly popular for use in social sci-
ence and other application areas where the data are observations from an
informative sample. An informative sampling design leads to inclusion prob-
abilities that are correlated with the response variable of interest. Model
inference performed on the observed sample taken from the population will
be biased for the population generative model under informative sampling
since the balance of information in the sample data is different from that for
the population. Typical approaches to account for an informative sampling
design under Bayesian estimation are often difficult to implement because
they require re-parameterization of the hypothesized generating model, or
focus on design, rather than model-based, inference. We propose to con-
struct a pseudo-posterior distribution that utilizes sampling weights based
on the marginal inclusion probabilities to exponentiate the likelihood con-
tribution of each sampled unit, which weights the information in the sample
back to the population. Our approach provides a nearly automated estima-
tion procedure applicable to any model specified by the data analyst for the
population and retains the population model parameterization and poste-
rior sampling geometry. We construct conditions on known marginal and
pairwise inclusion probabilities that define a class of sampling designs where
L1 consistency of the pseudo posterior is guaranteed. We demonstrate our
method on an application concerning the Bureau of Labor Statistics Job
Openings and Labor Turnover Survey.
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1. Introduction

Bayesian formulations are increasingly popular for modeling hypothesized distri-
butions with complicated dependence structures. Their popularity stems from
the ease of capturing this dependence by employing models with random ef-
fects parameters with a hierarchical construction that regulates the borrowing
of information for estimation. Latent parameters are often used in the model to
permit flexibility in the estimation of the dependencies among the observations
(Dunson, 2010). In social science applications, utilization of latent parameters
may be useful for making inference about intrinsic belief states of people from
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their observed actions(see for example, Savitsky & Dalal (2013)) Other appli-
cation areas in which latent parameters may be employed include, engineering
and natural science, which use them to parameterize elements of an evolving
process.

Data used in these type of applications are often acquired through a com-
plex sample design, resulting in probabilities of inclusion that are associated
with the variable of interest. This association could result in an observed data
set consisting of units that are not independent and identically distributed. A
sampling design that produces a correlation between selection probabilities and
observed values is referred to as informative. Failure to account for this depen-
dence caused by the sampling design could bias estimation of parameters that
index the joint distribution hypothesized to have generated the population (Holt
et al., 1980).

1.1. Examples

We next outline some examples of survey instruments that employ informa-
tive sampling designs and associated inferential goals for models estimated on
observed samples realized from these surveys.

Example 1: The Survey of Occupational Illnesses and Injuries (SOII) is ad-
ministered to U.S. business establishments by the U.S. Bureau of Labor Statis-
tics (BLS), in partnership with individual states, in order to capture workplace
induced injuries and illnesses. A stratified sampling design is used where strata
are indexed by state-industry-size-injury rate. Strata containing establishments
that historically express higher injury rates are assigned higher sample inclusion
probabilities. The resulting sample will contain a larger proportion of establish-
ments that express higher injury rates than the population, as a whole. States
desire to perform regression modeling with variable selection to discover the
root causes that predict illnesses and injuries among the population of establish-
ments, estimated from the observed sample. The model-estimated coefficients
from the sample will be biased absent correction for over-representation of es-
tablishments that tend to express relatively high injury rates.

Example 2: The Current Establishment Statistics (CES) is a BLS survey of
U.S. business establishments that collects employment count data across states
and industries under a stratified sampling design with strata indexed by the
number of employees in each establishment. Strata containing relatively larger
establishments are assigned higher inclusion probabilities than those which hold
establishments with relatively fewer employees. The distribution of employment
totals in the observed sample of establishments will be skewed towards rela-
tively larger values as compared to the population of establishments. An impor-
tant area of modeling inference is to understand industry-indexed differences in
monthly employment trends and correlations among industries in the popula-
tion. We would use a mixed effects model, parameterized with random effects
indexed by industry and month. Estimation of the population distribution un-
der our model from the observed sample will be biased absent some correction
for the skewness in the sample towards larger-sized establishments.
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Example 3: BLS collects establishment-indexed employment totals in both
the Quarterly Census of Employment and Wages (QCEW) and the CES sur-
vey. CES survey participants also provide submissions to the QCEW, such that
their reported monthly employment totals for an overlapping time period of
interest should be equal between the two instruments, but they are not for ap-
proximately 10000 establishments, indicating one or more employment count
submission errors for those respondents. A response variable of interest, termed
the “error time series”, was created by taking the absolute value of the difference
in reported employment totals among the 10000 establishments for each month
over a 12 month period. A “response analysis survey” (RAS) of approximately
2000 establishments was taken from this population with the goal to understand
the process drivers for committing errors so that BLS may target resources to es-
tablishments that mitigate them. The modeling focus is to identify probabilistic
clusters of establishments with similar error patterns over the 12 month period
and to examine the process by which establishments in each cluster construct
their data submissions to BLS. The RAS survey design stratified the population
of 10000 establishments based on phenomena of interest expressed in portions
of each time series; for example, a big jump in the reported difference at year-
end may indicate establishments who count checks that include regular pay
and bonuses for each employee, instead of counting employees. Higher inclusion
probabilities were assigned to those strata expressing phenomena of relatively
greater interest to BLS researchers. Modeling the number of and memberships
in probabilistic clusters of error patterns expressed in the population from the
RAS sample may be biased because the proportions of error patterns expressed
in the sample are designed to be different from the population.

Example 4: The Current Expenditure (CE) survey is administered to U.S.
households by BLS for the purpose of determining the amount of spending for a
broad collection of goods and service categories and it serves as the main source
used to construct the basket of goods later used to formulate the Consumer
Price Index. The CE employs a multi-stage sampling design that draws clusters
of core-based statistical areas (CBSAs), such as metropolitan and micropoli-
tan areas, from which Census blocks and, ultimately, households are sampled.
Economists desire to model the propensity or probability of purchase for a vari-
ety of goods and services. The balance of sampled clusters may not be reflective
of those in the population; for example, if particularly high income ares are
included in the sample. So inference on purchase propensities for the popula-
tion made from the observed sample will be biased absent correction for the
informative sampling design.

Example 5: BLS administers the Job Openings and Labor Turnover survey
(JOLTS) to business establishments with the focus to measure labor market dy-
namics by reporting the number of job openings, hires and separations, which is
a leading indicator for employment trends. The sampling design assigns larger
inclusion probabilities to establishments with relatively more employees because
larger establishments drive the variance in the reported statistics. Our modeling
goals are to understand differences in labor force dynamics based on employment
ownership (e.g., private, public) and region as part of imputing missing values
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with respect to the population generating distribution. As with the CES sam-
pling design, however, our sample will tend to over-represent relatively larger-
sized establishments, so that inference and imputation using the sample will be
biased for the population. We develop a multivariate count data population gen-
erating model in Section 4, where we illustrate the resulting estimation bias from
failure to account for the correlations between assigned inclusion probabilities
and the response variables of interest for our sample.

The target audience for this article are data analysts who wish to perform
some distributional inference using data obtained from an informative sample
design on a population using a model they specify, p (yi|λ) , λ ∈ Λ, for density,
p. We discuss, in the next section, how the limited literature on this topic does
not adequately provide a general method for making distributional inference on
a population while adjusting for the unequal probabilities of selection.

In this article, we propose an approach that replaces the likelihood with the
“pseudo” likelihood (Chambers & Skinner, 2003), p (yi|δi = 1,λ)

wi , using sam-
pling weight, wi ∝ 1/πi. This re-weights the likelihood contribution for each
observed unit with intent to re-balance the information in the observed sample
to approximate the balance of information in the target finite population; cor-
recting for the informativeness. We show that the proposed method for Bayesian
estimation on complex sample data allows for asymptotically consistent infer-
ence on any population-generating model specified by the data analyst.

Additionally, this method does not require information about the complex
design, other than the probabilities of selection, or about the full population,
other than the observed data. We believe this makes the method applicable to
more situations. Indeed, it is often the case that the data analyst does not have
access to the full design information or auxiliary variables on the population,
z1, . . . , zN , used to assign the probabilities of selection π1, . . . , πN . However, it is
common for the probabilities of selection for the units in the sample, π1, . . . , πn,
to be provided with the observed sample data.

1.2. Review of Methods to Account for Informative Sampling

One current approach is to account for the informativeness by parameterizing
the sampling design into the model (Little, 2004). Parameterizing even a sim-
ple informative design is often difficult to accomplish and may disrupt desired
inference by requiring a change to the underlying population model parameter-
ization. The analyst in Example 3, above, desires to perform inference on an
a priori unknown clustering of sampled units with their population model for
data acquired under a stratified sampling design. Specifying random effects to
be indexed by strata will likely conflict with the identification and composition
of inferred clusters. Further, the data analyst may not have access to the sam-
pling design, but only indirect information in form of sampling weights. Lastly,
the analyst is sometimes required to impute the unobserved units in the finite
population, which may be computationally infeasible.

Another approach incorporates the sampling weights into inference about the
population, as is our intent, but requires a particular form for the likelihood that
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does not allow the analyst to impose their own population model formulation
of inferential interest. For example, Dong et al. (2014) specifies an empirical
likelihood, while Kunihama et al. (2014) constructs a non-parametric mixture
for the likelihood and Rao & Wu (2010) uses a sampling-weighted (pseudo) em-
pirical likelihood. All of these approaches impose Dirichlet distribution priors
for the mixture components with hyperparameters specified as a function of
the first-order sampling weights. Si et al. (2015) regress the response variable
on a Gaussian process function of the weights for sampling designs where sub-
groups of sampled units have equal weights (e.g., a stratified sampling design).
These approaches are designed for inference about simple mean and total statis-
tics, rather than inference for parameters that characterize an analyst-specified
population model that is the focus for our proposed method.

One method that uses a plug-in estimator, as do we in our method, is to
construct a joint likelihood of the population distribution and sample inclusion
in a simple logistic regression model (Malec et al., 1999). This allows one to
analytically marginalize over the parameters indexed by the non-sampled units.
This approach is limited in application to a class of simple population models
that permit analytic integration and may not be applied to more general classes
of Bayesian models for the population that we envision in development of our
approach.

Perhaps the most general Bayesian approach constructs models to co-estimate
parameters for conditional expectations of inclusion probabilities jointly with
the population-generating model parameters at each level of a hierarchical con-
struction (Pfeffermann et al., 2006). This formulation is fully Bayesian such
that it accounts for all sources of uncertainty in population generation and in-
clusion of units, but requires a custom implementation of an MCMC sampler
for each specified population model, such as their simple two-level linear regres-
sion model. The implementations may increase the complexity of the specified
model and reduce the quality of posterior mixing in the MCMC, so that they
are suitable for relatively simple population probability models.

The method we propose is intended to allow Bayesian inference from any
population model that may be specified by the the data analyst under an infor-
mative sampling design, unlike the alternative methods. It provides asymptot-
ically unbiased estimation using only the distribution for the observed sample
units and normalized Hájek-like sampling weights. The “plug-in” type method
accounts for the informative sampling design by raising the likelihood contri-
bution of each sampled observation to the power of their associated sampling
weight. The implementation of the plug-in procedure for Bayesian estimation
multiplies the sampling weight into each full conditional log-posterior density.
This can then sampled in the typical sequential scan MCMC.

Unlike these other methods that are prominent in the literature, this method:
1) does not impose a population model (implicitly or explicitly), unlike the
most recently-developed methods (Dong et al., 2014; Kunihama et al., 2014;
Rao & Wu, 2010; Si et al., 2015); 2) requires only the sampling weights and
does not require parameterizing the sampling design unlike Little (2004); 3)
does not require a customized MCMC sampling procedure unlike Pfeffermann
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et al. (2006), so can be done automatically; 4) does not require imputing the
non-sampled units in the finite population. Our data application and estimation
model in the sequel are intended to be representative of common problems for
Bayesian inference, and the application data are not readily estimated with
these other methods that account for informative sampling.

We formulate the pseudo-posterior density as sampling weight-adjusted plug-
in from which we conduct model inference about the population under a depen-
dent, informative sampling design in Section 2. Conditions are constructed that
guarantee a frequentist L1 contraction of the pseudo posterior distribution on
the true generating distribution in Section 3. We make an application of the
pseudo posterior estimator to construct a regression model for count data using
a dataset of monthly job hires and separations collected by the U.S. Bureau of
Labor Statistics in Section 4. We reveal large differences for parameter estimates
between incorporation versus ignoring the sampling weights. This section also
includes a simulation study that compares the pseudo posterior estimated on
the observed sample to the posterior estimated on the entire finite population.
The paper concludes with a discussion in Section 5. The proofs for the main
result, along with two enabling results are contained in an Appendix.

2. Method to account for informative sampling

We begin by constructing the pseudo likelihood and associated pseudo posterior
density under any analyst-specified prior formulation on the model, λ ∈ Λ.

2.1. Pseudo posterior

Suppose there exists a Lebesgue measurable population-generating density,
π (y|λ), indexed by parameters, λ ∈ Λ. Let δi ∈ {0, 1} denote the sample
inclusion indicator for units i = 1, . . . , N from the population under sam-
pling without replacement. The density for the observed sample is denoted by,
π (yo|λ) = π (y|δi = 1,λ), where “o” indicates “observed”.

The plug-in estimator for posterior density under the analyst-specified model
for λ ∈ Λ is

π̂ (λ|yo, w̃) ∝
[

n∏
i=1

p (yo,i|λ)w̃i

]
π (λ) , (1)

where
∏n

i=1 p (yo,i|λ)
w̃i denotes the pseudo likelihood for observed sample re-

sponses, yo. The joint prior density on model space assigned by the analyst is de-
noted by π (λ). This pseudo likelihood employs sampling weights, {w̃i ∝ 1/πi},
constructed to be inversely proportional to unit inclusion probabilities. Each
sampling weight assigns the relative importance of the likelihood contribution
for each sample observation to approximate the likelihood for the population.
We use π̂ to denote the noisy approximation to posterior distribution, π, and
we make note that the approximation is based on the data, yo , and sampling
weights, {w̃}, confined to those units included in the sample, S.
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The total estimated posterior variance is regulated by the sum of the sam-
pling weights. We define unnormalized weights, {wi = 1/πi}, and subsequently
normalize them, w̃i = wi∑

wi
n

, i = 1, . . . , n, to sum to the sample size, n, the

asymptotic units of information in the sample. Incorporation of the sampling
weights to formulate the pseudo posterior estimator is expected to increase the
estimated parameter posterior variances relative to the (unweighted) posterior
estimated on a simple random (non-informative) sample because the weights en-
code the uncertainty with which samples represent the finite population under
repeated sampling. This increase in estimated posterior variance may be partly
or wholly offset to the extent that the informative sampling design is more ef-
ficient than simple random sampling; for example, a stratified sampling design
that takes simple random samples within each stratum may produce samples
that provide better coverage of the population. Although our method utilizes
the weights as a “plug-in”, rather than imposing a prior, Pfeffermann & Sver-
chkov (2009) use Bayes rule to demonstrate one may replace the weights with
their conditional expectation given the observed response to correct for infor-
mative sampling. Replacing the raw weights with their conditional expectation
given the observed response may serve to reduce the total variation attributed
to weighting (and the resulting posterior uncertainty) in the case where the
actual sampled observations express information in different proportions than
intended in the sampling design. Even though the conditional distribution of the
weights given the response is generally different for the observed sample than
for the population, nevertheless their conditional expectations are equal.

3. Pseudo posterior consistency

We formulate a pseudo posterior distribution in this section and specify con-
ditions under which it contracts on the true generating distribution in L1. Let
ν ∈ Z+ index a sequence of finite populations, {Uν}ν=1,...,Nν , each of size,

|Uν | = Nν , such that Nν < Nν′ , for ν < ν
′
, so that the finite population

size grows as ν increases. Suppose that Xν,1, . . . ,Xν,Nν are independently dis-
tributed according to some unknown distribution P, (with density, p) defined
on the sample space, (X ,A) . If Π is a prior distribution on the model space,
(P , C) to which P is known to belong, then the posterior distribution is given
by

Π (B|X1, . . . ,XNν ) =

∫
P∈B

∏Nν

i=1
p
p0
(Xi)dΠ(P )∫

P∈P
∏Nν

i=1
p
p0
(Xi)dΠ(P )

, (2)

for any B ∈ C, where we refer to {Xν,i}i=1,...,Nν as {Xi}i=1,...,Nν for readability
when the context is clear.

Ghosal & van der Vaart (2007) study the rate at which this posterior dis-
tribution converges to the assumed true (and fixed) generating distribution P0.
They prove, under certain conditions on the model space, P , and the prior dis-
tribution, Π, that in P0-probability, the posterior distribution concentrates on
an arbitrarily small neighborhood of P0 as Nν ↑ ∞.
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The observed data on which we focus is not the entire finite population,
X1, . . . ,XNν , but rather a sample, X1, . . . ,Xnν , with nν ≤ Nν , drawn under
a sampling design distribution applied to the finite population under which
each unit, i ∈ (1, . . . , Nν), is assigned a probability of inclusion in the sample.
These unit inclusion probabilities are constructed to depend on the realized
finite population values, X1, . . . ,XNν , at each ν.

3.1. Pseudo posterior distribution

A sampling design is defined by placing a known distribution on a vector of in-
clusion indicators, δν = (δν1, . . . , δνNν ), linked to the units comprising the pop-
ulation, Uν . The sampling distribution is subsequently used to take an observed
random sample of size nν ≤ Nν . Our conditions needed for the main result
employ known marginal unit inclusion probabilities, πνi = Pr{δνi = 1} for all
i ∈ Uν and the second-order pairwise probabilities, πνij = Pr{δνi = 1∩ δνj = 1}
for i, j ∈ Uν , which are obtained from the joint distribution over (δν1, . . . , δνNν ).
The dependence among unit inclusions in the sample contrasts with the usual
iid draws from P . We denote the sampling distribution by Pν .

Under informative sampling, the marginal inclusion probabilities,
πνi = P{δνi = 1}, i ∈ (1, . . . , Nν), are formulated to depend on the finite
population data values, XNν = (X1, . . . ,XNν ). Since the resulting balance
of information would be different in the sample, the posterior distribution for
(X1δν1, . . . ,XNν δνNν ), that we employ for inference about P0, is not equal to
that of Equation 2.

Our task is to perform inference about the population generating distribution,
P0, using the observed data taken under an informative sampling design. We
account for informative sampling by “undoing” the sampling design with the
weighted estimator,

pπ (Xiδνi) := p (Xi)
δνi/πνi , i ∈ Uν , (3)

which weights each density contribution, p(Xi), by the inverse of its marginal
inclusion probability. This construction re-weights the likelihood contributions
defined on those units randomly-selected for inclusion in the observed sample
({i ∈ Uν : δνi = 1}) to approximate the balance of information in Uν . This
approximation for the population likelihood produces the associated pseudo
posterior,

Ππ (B|X1δν1, . . . ,XNν δνNν ) =

∫
P∈B

∏Nν

i=1
pπ

pπ
0
(Xiδνi)dΠ(P )∫

P∈P
∏Nν

i=1
pπ

pπ
0
(Xiδνi)dΠ(P )

, (4)

that we use to achieve our required conditions for the rate of contraction of
the pseudo posterior distribution on P0. We recall that both P and δν are
random variables defined on the space of measures and possible samples, re-
spectively. Additional conditions are later formulated for the distribution over
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samples, Pν , drawn under the known sampling design, to achieve contraction of
the pseudo posterior on P0. We assume measurability for the sets on which
we compute prior, posterior and pseudo posterior probabilities on the joint
product space, X × P . For brevity, we use the superscript, π, to denote the
dependence on the known sampling probabilities, {πνi}i=1,...,Nν ; for example,
Ππ (B|X1δν1, . . . ,XNν δνNν ) := Π (B| (X1δν1, . . . ,XNν δνNν ) , (πν1, . . . , πνNν )).

Our main result is achieved in the limit as ν ↑ ∞, under the countable set of
successively larger-sized populations, {Uν}ν∈Z+ . We define the associated rate

of convergence notation, O(bν), to denote limν↑∞
O(bν)
bν

= 0.

3.2. Empirical process functionals

We employ the empirical distribution approximation for the joint distribution
over population generation and the draw of an informative sample that produces
our observed data to formulate our results. Our empirical distribution construc-
tion follows Breslow & Wellner (2007) and incorporates inverse inclusion proba-
bility weights, {1/πνi}i=1,...,Nν , to account for the informative sampling design,

P
π
Nν

=
1

Nv

Nν∑
i=1

δνi
πνi

δ (Xi) , (5)

where δ (Xi) denotes the Dirac delta function, with probability mass 1 onXi and
we recall that Nν = |Uν | denotes the size of of the finite population. This con-

struction contrasts with the usual empirical distribution, PNν = 1
Nv

∑Nν

i=1 δ (Xi),
used to approximate P ∈ P , the distribution hypothesized to generate the finite
population, Uν .

We follow the notational convention of Ghosal et al. (2000) and define the
associated expectation functionals with respect to these empirical distributions
by Pπ

Nν
f = 1

Nν

∑Nν

i=1
δνi

πνi
f (Xi). Similarly, PNνf = 1

Nν

∑Nν

i=1 f (Xi). Lastly, we

use the associated centered empirical processes, Gπ
Nν

=
√
Nν

(
P
π
Nν

− P0

)
and

GNν =
√
Nν (PNν − P0).

The sampling-weighted, (average) pseudo Hellinger distance between dis-

tributions, P1, P2 ∈ P , dπ,2Nν
(p1, p2) = 1

Nν

∑Nν

i=1
δνi

πνi
d2 (p1(Xi), p2(Xi)), where

d (p1, p2) =
[∫ (√

p1 −
√
p2
)2

dμ
] 1

2

(for dominating measure, μ). We need this

empirical average distance metric because the observed (sample) data drawn
from the finite population under Pν are no longer independent. The implication
is that our result apply to finite populations generated as inid from which in-
formative samples are taken. The associated non-sampling Hellinger distance is
specified with, d2Nν

(p1, p2) =
1
Nν

∑Nν

i=1 d
2 (p1(Xi), p2(Xi)).

3.3. Main result

We proceed to construct associated conditions and a theorem that contain our
main result on the consistency of the pseudo posterior distribution under a
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class of informative sampling designs at the true generating distribution, P0.
Our approach extends the main in-probability convergence result of Ghosal &
van der Vaart (2007) by adding new conditions that restrict the distribution
of the informative sampling design. Suppose we have a sequence, ξNν ↓ 0 and
Nνξ

2
Nν

↑ ∞ and nνξ
2
Nν

↑ ∞ as ν ∈ Z
+ ↑ ∞ and any constant, C > 0,

(A1) (Local entropy condition – Size of model)

sup
ξ>ξNν

logN (ξ/36, {P ∈ PNν : dNν (P, P0) < ξ}, dNν ) ≤ Nνξ
2
Nν

,

(A2) (Size of space)

Π (P\PNν ) ≤ exp
(
−Nνξ

2
Nν

(2(1 + 2C))
)

(A3) (Prior mass covering the truth)

Π

(
P : −P0 log

p

p0
≤ ξ2Nν

∩ P0

[
log

p

p0

]2
≤ ξ2Nν

)
≥ exp

(
−Nνξ

2
Nν

C
)

(A4) (Non-zero Inclusion Probabilities)

sup
ν

⎡
⎣ 1

min
i∈Uν

πνi

⎤
⎦ ≤ γ, with P0-probability 1.

(A5) (Asymptotic Independence Condition)

lim sup
ν↑∞

max
i �=j∈Uν

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ = O
(
N−1

ν

)
, with P0-probability 1

such that for some constant, C3 > 0,

Nν sup
ν

max
i �=j∈Uν

[
πνij

πνiπνj

]
≤ C3, for Nν sufficiently large.

(A6) (Constant Sampling fraction) For some constant, f ∈ (0, 1), that we term
the “sampling fraction”,

lim sup
ν

∣∣∣∣ nν

Nν
− f

∣∣∣∣= O(1), with P0-probability 1.

Condition (A1) denotes the logarithm of the covering number, defined as the
minimum number of balls of radius ξ/36 needed to cover
{P ∈ PNν : dNν (P, P0) < ξ} under distance metric, dNν . This condition restricts
the growth in the size of the model space, or as noted by Ghosal et al. (2000),
the space, PNν , must be not too big in order that the condition specifies an
optimal convergence rate (Wong & Shen, 1995). This condition guarantees the
existence of test statistics, φnν (X1δν1, . . . ,XNν δνNν ) ∈ (0, 1), needed for en-
abling Lemma B.1, stated in the Appendix, that bounds the expectation of the
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pseudo posterior mass assigned on the set {P ∈ PNν : dnν (P, P0) ≥ ξNν}. Con-
dition (A3) ensures the prior, Π, assigns mass to convex balls in the vicinity of
P0. Conditions 3.3 and 3.3, together, define the minimum value of ξNν , where
if these conditions are satisfied for some ξNν , then they are also satisfied for
any ξ > ξNν . Condition (A2) allows, but restricts, the prior mass placed on the
uncountable portion of the model space, such that we may direct our inference
to an approximating sieve, PNν . This sequence of spaces “trims” away a por-
tion of the space that is not entropy bounded (in condition (A1)). In practice,
trimming the space may usually be performed to ensure the entropy bound.

The next three new conditions impose restrictions on the sampling design
and associated known distribution, Pν , used to draw the observed sample data
that, together, define a class of allowable sampling designs on which the contrac-
tion result for the pseudo posterior is guaranteed. Condition (A4) requires the
sampling design to assign a positive probability for inclusion of every unit in the
population because the restriction bounds the sampling inclusion probabilities
away from 0. Since the maximum inclusion probability is 1, the bound, γ ≥ 1.
No portion of the population may be systematically excluded, which would pre-
vent a sample of any size from containing information about the population
from which the sample is taken. Condition (A5) restricts the result to sampling
designs where the dependence among lowest-level sampled units attenuates to
0 as ν ↑ ∞; for example, a two-stage sampling design of clusters within strata
would meet this condition if the number of population units nested within each
cluster (from which the sample is drawn) increases in the limit of ν. Such would
be the case in a survey of households within each cluster if the cluster domains
are geographically defined and would grow in area as ν increases. In this case of
increasing cluster area, the dependence among the inclusion of any two house-
holds in a given cluster would decline as the number of households increases with
the size of the area defined for that cluster. Condition (A6) ensures that the ob-
served sample size, nν , limits to ∞ along with the size of the partially-observed
finite population, Nν .

Theorem 3.1. Suppose conditions (A1)–(A6) hold. Then for sets PNν ⊂ P,
constants, K > 0, and M sufficiently large,

EP0,PνΠ
π
(
P : dπNν

(P, P0) ≥ MξNν |X1δν1, . . . ,XNν δνNν

)
≤

16γ2 [γ + C3]

(Kf + 1− 2γ)
2
Nνξ2Nν

+ 5γ exp

(
−
Knνξ

2
Nν

2γ

)
, (6)

which tends to 0 as (nν , Nν) ↑ ∞.

We note that the rate of convergence is injured for a sampling distribution,
Pν , that assigns relatively low inclusion probabilities to some units in the fi-
nite population such that γ will be relatively larger. Samples drawn under a
design that expresses a large variability in the sampling weights will express
more dispersion in their information similarity to the underlying finite popu-
lation. Similarly, the larger the dependence among the finite population unit
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inclusions induced by Pν , the higher will be C3 and the slower will be the rate
of contraction.

The separability of the conditions on P and Π (P ), on the one hand, from
those on the sampling design distribution, Pν , on the other hand, coupled with
the sequential process of taking the observed sample from the finite population
reveal that the pseudo posterior, defined on the partially-observed sample from
a population, contracts on P0 through converging to the posterior distribution
defined on each fully-observed population. We demonstrate this property of the
pseudo posterior in a simulation study conducted in Section 4.1. By contrast,
if the posterior distribution, defined on each fully-observed finite population,
fails to meet conditions 3.3, 3.3 and 3.3 for the main result from Equation 6,
such that it fails to contract on P0, then the associated pseudo posterior cannot
contract on P0, even if the sampling design satisfies conditions (A4), (A5) and
(A6).

The proof generally follows that of Ghosal et al. (2000) with substantial
modification to account for informative sampling. The L1 rate of contraction
of the pseudo posterior distribution with respect to the joint distribution for
population generation and the taking of informative samples is derived. Our
approach includes two unique enabling results. Please see Appendix sections A
and B for details.

4. Application

We construct a model for count data and perform inference on survey responses
collected by the Job Openings and Labor Turnover Survey (JOLTS), introduced
in Example 5 of Section 1.1, which is administered by BLS on a monthly basis to
a randomly-selected sample from a frame composed of non-agricultural U.S. pri-
vate (business) and public establishments. JOLTS focuses on the demand side
of U.S. labor force dynamics and measures job hires, separations (e.g. quits,
layoffs and discharges) and openings. The JOLTS sampling design assigns in-
clusion probabilities (under sampling without replacement) to establishments
to be proportional to the number of employees for each establishment (as ob-
tained from the Quarterly Census of Employment and Wages (QCEW)). This
design is informative in that the number of employees for an establishment will
generally be correlated with the number of hires, separations and openings. We
perform our modeling analysis on a May, 2012 data set of n = 8595 responding
establishments.

We begin by specifying a finite population regression probability model from
which we formulate the sampling-weighted pseudo posterior joint distribution
that we use to make inference on model parameters from the population gen-
erating distribution with only the observed sample of a finite population. We
demonstrate that failing to incorporate sampling weights (e.g. by estimating the
posterior distribution defined for the finite population on the observed sample)
produces large differences in estimates of parameters.

Our regression model defines a multivariate response as the number of job
hires (Hires) for the first response variable and total separations (Seps) as the
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second response variable. We construct a single multivariate model (as con-
trasted with the specification of two univariate models) because these variables
of interest tend to be highly correlated such that we expect the regression pa-
rameters to express dependence; for example, these two variables are correlated
at 60% in our May 2012 dataset.

We formulate a model for count data that accommodates the high degree of
over-dispersion expressed in our establishment-indexed multivariate responses
due to the large employment size differences across the establishments. Were
we working with domain-indexed (e.g., by state or county) responses, we may
consider to use a Gaussian approximation for the count data likelihood, but such
is not appropriate for us due to the presence of many small-sized establishments.
The modeling of count data outcomes is very typical for the analysis of BLS
survey data for establishments focused on (un)employment.

We specify the following count data model for the population,

yid
ind∼ Pois (exp (ψid)) (7)

N×D

Ψ ∼
N×D

X
P×D

B + NN×D

(
IN ,

D×D

Λ−1

)
(8)

B ∼ 0+NP×D

(
P×P

M−1, [τBΛ]
−1

)
(9)

Λ ∼ WD ((D + 1), ID) (10)

τB ∼ G (1, 1) (11)

M ∼ WP ((P + 1), IP ) , (12)

where i = 1, . . . , N indexes the number of establishments and d = 1, . . . , D
indexes the number of dimensions for the multivariate response, Y. The N ×D

log-mean, Ψ =

(
D×1

ψ
′

1 , . . . ,ψ
′

N

)
, may be viewed as a latent response whose

columns index the number of job hires (Hires) and total separations (Seps)
under our JOLTS application, so that D = 2. The number of predictors in the
design matrix, X, is denoted by P and B are the unknown matrix of population
coefficients that serve as the focus for our inference. Our model is formulated
as a multivariate Poisson-lognormal model, under which the Gaussian prior of
Equation 8 for the logarithm of the Poisson mean allows for over-dispersion (of
different degrees) in each of the D dimensions. The priors in Equation 8 and
Equation 9 are formulated in matrix variate (or, more generally, tensor product)
Gaussian distributions using the notation of Dawid (1981); for example, the
prior for the P × D matrix of coefficients, B, assigns the P × D mean 0 for
a Gaussian distribution that employs a separable covariance structure where
the P × P, M, denotes the precision matrix for the columns of B, and the
D×D, τBΛ, denotes the precision matrix for the rows. This prior formulation is
the equivalent of assigning a PD dimensional Gaussian prior to a vectorization
of B accomplished by stacking its columns with PD × PD precision matrix,
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M⊗ (τBΛ). (See Hoff (2011) for more background). Precision matrices, (M,Λ),
each receive Wishart priors with hyperparameter values that impose uniform
marginal prior distributions on the correlations (Barnard et al., 2000).

We regress the multivariate latent response, Ψ, on predictors representing
the logarithm of the overall establishment-indexed number of employees (Emp),
obtained from the QCEW, the logarithm of the number of job openings (Open),
region (Northeast, South, West, Midwest (Midw)) and ownership type (Private,
Federal Government, State Government (State), Local Government (Local)).
We convert region and ownership type to binary indicators and leave out the
Northeast region and Federal Government ownership to provide the baseline of
a full-column rank predictor matrix. We summarize our regression model on the
logarithm scale by: (ψHires, ψSeps) ∼ 1 + West + Midw + South + State + Local
+ Private + log(Emp) + log(Opens) + error, where 1 denotes an intercept (Int).

Our population model is hypothesized to generate the finite population of
the U.S. non-agricultural establishments, from which we have taken a sample
of size n = 8595 for May, 2012 as our observations. For ease of reading, we
will continue to use Y and X, to next define the associated pseudo posterior,
though each possesses n < N rows representing the sampled observations, in
this context.

The population model likelihood contribution for establishment, i, on dimen-
sion, d, is formed with the integration,

p (yid|xi,B,Λ) =

∫
R

p (yid|ψid)× p (ψid|xi,B,Λ) dψid, (13)

where sampling weight, wi = 1/πi and w̃i = n × wi/
∑n

i=1 wi, such that the
adjusted weights sum to n, the asymptotic amount of information contained in
the sample (under a sampling design that obeys condition (A5)). This integrated
likelihood induces the following pseudo likelihood,

pπ (yid|xi,B,Λ) =

⎡
⎣∫

R

p (yid|ψid)× p (ψid|xi,B,Λ) dψid

⎤
⎦
w̃i

, (14)

which is analytically intractable, so we perform the integration, numerically,
in our MCMC using the prior for each ψid exponentiated by the normalized
sampling weight, w̃i, which we use to construct its pseudo posterior distribution.
Using Bayes rule we present the logarithm of the pseudo posteriors for the latent
set of D × 1 log-mean parameters, {ψi}, (which are a posteriori independent
over i = 1, . . . , n), with,

log pπ (ψi|yi,xi,B,Λ) ∝ (15a)

log

⎧⎨
⎩
[

D∏
d=1

exp (ψid)
yid exp (− exp (ψid))

]w̃i

×
[
ND

(
ψi

∣∣∣x′

iB,Λ−1
)]w̃i

⎫⎬
⎭ (15b)
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∝ w̃i

D∑
d=1

[yidψid − exp (ψid)]−
1

2

(
ψi − x

′

iB
)′

w̃iΛ
(
ψi − x

′

iB
)
, (15c)

where we note in the second expression in Equation 15c that the sampling
weights influence the prior precision for each ψi, such that a higher-weighted
observation will exert relatively more influence on posterior inference because
this observation is relatively more representative of the population. We take
samples from the pseudo posterior distribution specified Equation 15c in our
MCMC using the elliptical slice sampler of Murray et al. (2010), where we draw

ψi
ind∼ ND

(
x

′

iB, (w̃iΛ)
−1
)
and formulate a proposal as a convex combination

(parameterized on an ellipse) of this draw from the prior and the value selected
on the previous iteration of the MCMC. We evaluate each proposal using the
weighted likelihood in the first expression of Equation 15c.

We next illustrate the construction of the pseudo posterior distribution for the
P×D matrix of regression coefficients,B, (which by D-separation is independent
of the observations, ((yid), given (ψid)),

pπ (B|Y,X,Ψ,Λ,M, τB) ∝
[

n∏
i=1

Nn×D

(
ψi|B

′
xi, In,Λ

−1
)w̃i

]

×NP×D

(
B|M−1, (τBΛ)

−1
)

(16a)

log pπ (B|Y,X,Ψ,Λ,M, τB) ∝
n∑

i=1

[
w̃i

2
log |Λ| − w̃i

2

(
ψi −B

′
xi

)′

Λ
(
ψi −B

′
xi

)]

+ log NP×D

(
B|M−1, (τBΛ)

−1
)
. (16b)

In a Bayesian setting, the sum of the weights (n =
∑n

i=1 w̃i) impacts the esti-
mated posterior variance as we observe in Equation 16b. We see that weights
scale the quadratic product of the Gaussian kernel in Equation 16b such that
we may accomplish the same result using the matrix variate formation to define

the pseudo likelihood,Nn×D

(
Ψ−XB|W̃,Λ−1

)
, where W̃ = diag (w̃1, . . . , w̃n),

the weights for the sampled observations, from which we compute the following
conjugate conditional pseudo posterior distribution defined on the n observa-
tions,

pπ (B|Y,X,Ψ,Λ,M, τB) = hπ
B +NP×D

(
B|(φπ

B)
−1,Λ−1

)
, (17)

where φπ
B = X

′
W̃X+ τBM and hπ

B = (φπ
B)

−1X
′
W̃Ψ.

Under employment of a simpler continuous response framework, the condi-
tional posterior for B retains the same form as Equation 17, except the latent
response on the logarithm scale, Ψ, would be replaced by the observed data,
Y. Intuitively, we note using a sampling-weighted pseudo prior for the latent
response, Ψ, for sampling coefficients, B, is analogous to using the sampling-
weighted likelihood in the case of an observed, continuous response, Y.
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Fig 1. Comparison of posterior densities for the each coefficient in the (P = 9) × (D = 2)
coefficient matrix, B, within 95% credible intervals, based on inclusion sampling weights in
a pseudo posterior (the left-hand plot in each panel) and exclusion of the sampling weights
using the posterior distribution defined for the population (in the right-hand plot). Each plot
panel is labeled by “predictor,response” for the two included response variables, “Hires”, and
“Seps” (total separations).

Each plot panel in Figure 1 compares estimated posterior distributions for a
coefficient in B (within 95% credible intervals), labeled by “predictor, dimension
(of the multivariate response)”, when applied to the May, 2012 JOLTS dataset
between two estimation models: 1. The left-hand plot in each panel employs
the sampling weights to estimate the pseudo posterior for B, induced by the
pseudo posterior for the latent response in Equation 15c; 2. The right-hand
plot estimates the coefficients using the posterior distribution defined on the
finite population, which may be achieved by replacing W̃ by the identity matrix
to equally weight establishments. Equal weighting of establishments assumes
that the sample represents the same balance of information as the population
from which it was drawn, which is not the case under an informative sampling
design. Comparing estimation results from the pseudo posterior and population
posterior distributions provides one method to assess the sensitivity of estimated
parameter distributions to the sampling design.

We observe that the estimated results are quite different in both location and
variation between estimations performed under the pseudo posterior and popu-
lation posterior distributions, indicating a high degree of informativeness in the
sampling design. The 95% credible intervals for the coefficients of the contin-
uous predictors – (the log of) job openings (Opens) and employment (Emp) –
don’t even overlap on both the number of hires (Hires) and separations (Seps)
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Table 1

Characteristics of single stage, fixed size pps sampling design used in simulation study. nν

denotes the sample size. CUs denotes the number of certainty units (with inclusion
probabilities equal to 1). πν denotes the inclusion probabilities (proportional to square root
of JOLTS employment), CV(πν) denotes the coefficient of variation of πν , Cor(yhires,πν)

denotes correlation of the number of hires and πν and Cor(ySeps,πν) denotes the correlation
of the number of separations and πν .

nν CUs min(πν) max(πν) CV(πν) Cor(yhires, πν) Cor(ySeps, πν)
1 500 56 0.02 1.00 2.11 0.80 0.62
2 1000 196 0.04 1.00 1.60 0.69 0.50
3 1500 357 0.07 1.00 1.29 0.61 0.44
4 2500 722 0.14 1.00 0.91 0.51 0.36

responses. The coefficient for the State ownership predictor and the number of
hires response is bounded away from 0 when estimated under the (unweighted)
population posterior, but is centered on 0 under the sampling-weighted, pseudo
posterior. The coefficient posterior variances estimated on the observed sam-
ple under the population posterior are understated because they don’t reflect
the uncertainty with which the information in the sample expresses that in the
population (which is captured through the sampling weights).

4.1. Simulation Study

We implement a simulation study to compare the marginal pseudo posterior
distributions to the (unweighted) population posterior distributions for the re-
gression coefficients, where both are estimated on the observed sample drawn
under an informative sampling design. For this study we use the N = 8595
observations from the JOLTS May, 2012 data as our population. We take 100
Monte Carlo samples of size nν = (500, 1000, 1500, 2500) establishments using
an informative single-stage sample design with unequal inclusion probabilities
based on the proportional to size sample used for the real JOLTS survey. Char-
acteristics of the the sampling design, used for this study, at each sample size
are presented in Table 1.

This sampling design will induce distributions of the observed samples that
will be different from those for the population. The designed correlation be-
tween the response and inclusion probabilities will produce observed samples
with values skewed towards higher numbers of hires and separations than in the
population. Figure 2 demonstrates this difference between the distributions for
realized samples under the informative sampling design compared to those for
the finite population. The left-most box plot in each of the two panels displays
the population distribution for a response value. A single sample is drawn under
a sequence of increasing sample sizes for illustration. The next set of box plots
displays the resulting distributions for the response values in each sample with
size increasing from left-to-right. The left-hand plot panel displays the distribu-
tions for the Hires response, while the right-hand panel displays those for the
Seps (separations) response variable.
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Fig 2. Distributions of response values for population compared to informative samples. The
left-most box plot in each of the two plot panels contains the distribution for the JOLTS
sample that we use as our “population” in the simulation study. The next set of box plots
show the distribution for the response values for increasing sample sizes (from left-to-right) for
each sample drawn under our single stage proportion-to-size design. The left-hand plot panel
displays the Hires response variable and the right-hand panel displays the Seps (separations)
response variable.

Pseudo posterior and population posterior distributions are estimated on each
Monte Carlo sample at each sample size in nν . Figure 3 compares estimation
of the posterior distribution from the fully-observed population (left-hand box
plot) to estimation using the pseudo posterior from sample observations taken
under the proportional-to-size sampling design. The third box plot in each panel
shows the estimation of the posterior distribution estimated on the same sam-
ple ignoring the informative sampling design. The last box plot in each panel
displays the estimates of the posterior distribution from a simple random sam-
ple of the same size, where no correction for the sampling design is required,
as a gold standard against which to measure the performance of the pseudo
posterior distribution. We estimate the distributions on each of the 100 Monte
Carlo draws for each sample size and concatenate the results such that they
incorporate both the variation of population generation and repeated sampling
from that population. The sample sizes, nν , increase from left-to-right across
the plot panels. The top set of plot panels display the posterior distributions
of the regression coefficient for the employment predictor (Emp) and the hires
response (Hires), while the bottom set of panels display the coefficient distribu-
tions for the employment predictor (Emp) and the total separations response
(Seps).

Scanning from left-to-right in each row across the increasing sample sizes,
we readily note a consistent difference in the estimated posterior mean, as ex-
pected, between the population model estimated on the samples without ad-
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Fig 3. Comparison of posterior densities for 2 coefficients, Employment-Hires (top row of
plot panels) and Employment-Separation (bottom row of plot panels) in B, within 95% credi-
ble intervals, between estimation on the population (left-hand plot in each panel), estimations
from informative samples data taken from that population, which include sampling weights
in a pseudo posterior (the second plot from the left in each panel) and exclusion of the sam-
pling weights using the population posterior distribution (the third plot from the left) under a
simulation study. The right-most plot presents the posterior density estimated from a simple
random sample of the same size for comparison. The simulation study uses the May, 2012
JOLTS sample as the “population” and generates 500 informative samples for a range of
sample sizes (of 500, 1000, 1500, 2500, from left-to-right) under a sampling without replace-
ment design with inclusion probabilities set proportionally to the square root of employment
levels. A separate estimation is performed on each Monte Carlo sample and the draws from
estimated distributions are concatenated over the samples.

justment for the informative sampling design as compared to the mean of the
posterior distribution estimated on the entire finite population. The application
of the pseudo posterior model, however, produces much less difference (relative
to estimation on the fully observed population), though the difference between
the estimated pseudo-posterior and the population posterior is yet notably more
than that for the simple random sampling result (estimated on samples of the
same size as the informative sample). The estimated difference for the pseudo-
posterior converges to 0, however, as the sample size increases. The posterior
variance for the estimated posterior under simple random sampling remains
larger than that for the pseudo posterior estimated on the informative sam-
ple because our proportion-to-size sampling design over-samples the highest
variance units, which provides better capture of information in the population
(which is why this design is used). So, in this case, the improved capture of
information in the finite population provided by our sampling design more than
overcomes the added variation induced by estimation with the sampling weights.
In summary, this simulation study demonstrates the contraction of the pseudo
posterior distribution estimated on the sample onto the posterior distribution
estimated on a fully-observed finite population.
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We were able to directly perform posterior inference about the population
using only quantities available for the observed sample under the pseudo pos-
terior full conditional distributions outlined in Section 4. By contrast, Little
(2004) offer no modeling approach that parameterizes a proportion-to-size sam-
pling design because they note that each unit is in its own group under the
stratum-indexed construction they generally suggest. A typical naive approach,
however, is to simply include the sampling weights or a variable highly cor-
rected with them as a predictor only for observed units with no imputation
of the non-sampled units. This is precisely the construction of the alternative
that estimates the population posterior distribution on the informative sample,
which is shown as the third box plot in each plot panel of Figure 3, because
the employment variable, Emp, is included as a predictor and is highly corre-
lated with the sampling weights. This option includes Emp only for the sampled
units as does the model for the pseudo posterior. The reason for biased inference,
even when including a predictor that is highly correlated with sampling weights,
is because the distribution for the sampled data conditioned on the sampling
weights is not generally equal to the distribution for the population conditioned
on the sampling weights by Bayes rule (Pfeffermann & Sverchkov, 2009).

The JOLTS respondent-level data from which samples were drawn for our
Monte Carlo simulation study may not be publicly released due to restrictions
that protect confidentiality of survey participants. A Monte Carlo simulation
study using our pseudo posterior plug-in method may, however, be generated
under a Bayesian nonparametric model for functional data that is available from
the growfunctions package for R (Savitsky, 2015). The package includes a syn-
thetic data generator whose use is illustrated in Savitsky (2014), along with
a Monte Carlo simulator that compares parameter estimates when correcting
versus ignoring an informative sampling design. Although the functional data
model is more complicated than our count data application, the Monte Carlo
simulation function available in growfunctions produces a figure that demon-
strates results very similar to those displayed in Figure 3.

5. Discussion

A variety of broadly applicable approaches are available for incorporating sam-
pling weights into weighted maximum likelihood estimation procedures (Pfeffer-
mann & Sverchkov, 2009) to account for an informative sampling design. Defin-
ing easily adaptable algorithms that account for sampling design informativeness
under any model for the population specified by the data analyst has proved
more challenging for estimating Bayesian probability models. Solutions have fo-
cused on parameterizing the sampling design or co-estimating the conditional
expectation of inclusion, along with the population-generating model. While
these approaches allow estimation using the sampled observations, the imple-
mentations typically require a high degree of customization to each population
model. We take a different approach that constructs a sample-weighted pseudo-
posterior to account for an informative sampling design in our plug-in method
that is readily accommodated to any Bayesian population probability model.
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We demonstrated the applicability of the plug-in method to a poisson – log-
normal model for count data. We showed that the plug-in method reduces es-
timation bias and posterior estimation includes the uncertainty with which the
sample reflects the population on these covariance parameters.

The plug-in method is as easily-implemented and broadly applicable as those
methods used for likelihood based optimization. We illustrated in Section 4 that
the full conditional posterior distributions defined for the population generating
model are easily updated by multiplying the log-likelihoods for ({yid}, ψid), by
the sampling weights, {w̃i}, without changing the constructions for full condi-
tional posterior distributions. The same concerns that apply in the use of sam-
pling weights under likelihood optimization also apply for Bayesian estimation.
The quality of posterior estimation is highly dependent on the population rep-
resentativeness of the realized sample. Sampling weights may be adjusted based
on the composition of the realized sample through estimating the conditional
expectation of the weights, given the response values for the observed units.
Regressing the weights on the response variables using the observed data and
replacing the raw weights with their conditional expectation, known as “weight
smoothing”, would be expected to reduce the posterior variances for estimated
parameters to the extent that the weights express variance unrelated to the re-
sponse. While the conditional distribution for the sampling weights given the
response under the realized sample is not generally expected to be the same
as that for the finite population, their expectations are equal (Pfeffermann &
Sverchkov, 2009). We explored such smoothing for our sampling weights for the
JOLTS application, but there was little reduction in variance, so we employed
the published weights for simplicity.

Even after adjustment, if the composition of the realized sample unevenly re-
flects information in the population, the weights would express a high variation.
Approaches that calibrate the sampling weights to actual population totals,
where known, may improve the quality of estimation produced from the plug-in
method. BLS performs a calibration adjustment of the JOLTS sampling weights
such that the weighted difference of hires and separations reported in the sample
ties to the monthly total employment change from the CES survey. (The CES
survey is introduced and discussed in Section 1.1). This step adjusts the sam-
pling weights computed from inclusion probabilities under the JOLTS sampling
design based on the actual sample achieved in each month.

One may, alternatively, implement a more fully Bayesian approach that pa-
rameterizes a joint model for the response and sampling weights, specific to
a given population generating model, as a method that smoothes the weights
in the presence of the response values. Doing so, however, requires imputation
of weights and response values for non-sampled units, which can be computa-
tionally expensive for a survey that samples from the entire U.S. population of
business establishments, as does JOLTS.

Lastly, we construct conditions which, together, define a class of sampling
designs under which L1 consistency of the pseudo posterior is guaranteed. One
of these conditions requires that the pairwise sample inclusion dependencies
asymptotically decrease to 0. While there are many sampling designs, in prac-
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tice, which are members of this class, including the proportion-to-size sampling
design used for our JOLTS application, there are some designs which are not –
such as a cluster sampling design where the number of clusters grows, but the
number of units in each cluster remains relatively fixed. A direction for future
research will be to widen the class of allowable designs by incorporating second
order (or pairwise) inclusion probabilities for inference, though doing so will
introduce some practical restrictions on the specifications for the population
generating model.

Appendix A: Proof of Theorem 3.3

Proof. Condition (A1) establishes the existence of test statistics,
φnν (X1δν1, . . . , XNν δνNν ) ∈ (0, 1) used to achieve the following result,

EP0,Pνφnν

≤ exp
(
nνξ

2
Nν

)
·

exp
(
−KnνM

2ξ2nν

)
1− exp

(
−KnνM2ξ2Nν

)
≤ 2 exp

(
−Knνξ

2
Nν

)
, (18)

in Lemmas 2 and 9 of Ghosal & van der Vaart (2007) by setting ξ = MξNν , and
by choosing constant M > 0 sufficiently large, such that KM2 − 1 > K.

We will bound the expectation (under (P0, Pν), jointly) of the mass assigned
by pseudo posterior distribution for those P at some minimum distance from
P0,

Ππ
(
P ∈ P : dπNν

(P, P0) ≥ MξNν |X1δν1, . . . , XNν δνNν

)
=

Ππ
(
P ∈ P : dπNν

(P, P0) ≥ MξNν |X1δν1, . . . , XNν δνNν

)
(φnν + 1− φnν ) . (19)

Equation 18 establishes the bound,

EP0,PνΠ
π
(
P ∈ P : dπNν

(P, P0) ≥ MξNν

∣∣X1δν1, . . . , XNν δNν

)
φnν ≤ EP0φnν ≤

2 exp
(
−Knνξ

2
Nν

)
, (20)

since the pseudo posterior mass is bounded from above by 1. We next enumerate
the pseudo posterior distribution for the second term of Equation 19,

Ππ
(
P ∈ P : dπNν

(P, P0) ≥ MξNν

∣∣XNνδNν

)
(1− φnν ) =∫

P∈P:dπ
Nν

(P,P0)≥MξNν

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

∫
P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P )

. (21)
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We may bound the denominator of Equation 21 from below, in probability.
Define the event,

BNν =

{
P : −P0 log

(
p

p0

)
≤ ξ2Nν

, P0

(
log

p

p0

)2

≤ ξ2Nν

}

We have from Lemma B.2,

Pr

⎧⎨
⎩
∫

P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) ≥ exp

[
−(1 + C)Nνξ

2
]⎫⎬⎭ ≥ 1− γ + C3

C2Nνξ2
,

for every P ∈ BNν and any C > 0, γ > 1, where γ may be set closer to 1 for
sampling designs that define a low gradient for inclusion probabilities, {πνi}. The
constant, C3 > 0, and will be close to 1 for sufficiently large ν. Condition (A3)
restricts the prior on BNν ,

Π (BNν ) ≥ exp
(
−Nνξ

2
Nν

C
)
.

Then with probability at least 1− 16γ2[γ+C3]

(KM2f−2γ)2Nνξ2
,

∫
P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) ≥ exp

[
−(1 + C)Nνξ

2
]
Π(BNν )

≥ exp
(
−(1 + 2C)Nνξ

2
)

≥ exp

(
−
KM2nνξ

2
Nν

2γ

)
,

where we set 1 + 2C = KM2f
2γ , where we use condition (A6) to replace f ×Nν

with nν for ν sufficiently large.
Denote this event by,

Aπ
Nν

=

⎧⎨
⎩
∫

P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) ≥ exp

(
−
KM2nνξ

2
Nν

2γ

)⎫⎬
⎭ , (22)

such that,

Ππ
(
P ∈ P : dπNν

(P, P0) ≥ MξNν

∣∣XNνδNν

)
(1− φnν ) =⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∫
{P∈P:dπ

nν
(P,P0)≥MξNν}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φNν )

∫
P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P )

(
I
([
Aπ

Nν

]c)
+ I
(
Aπ

Nν

))
⎤
⎥⎥⎥⎥⎥⎥⎥⎦



1700 T. D. Savitsky and D. Toth

≤ I
([
Aπ

Nν

]c)
+ I
(
Aπ

Nν

)
×
[
exp

(
KM2nνξ

2
Nν

2γ

)
Π(P\PNν )

+ exp

(
KM2nνξ

2
Nν

2γ

) ∫
{P∈PNν :d

π
Nν

(P,P0)≥MξNν}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

]

Taking the expectation of both sides with respect to the joint distribution,
(P0, Pν),

EP0,PνΠ
π
(
P ∈ P : dπNν

(P, P0) ≥ MξNν

∣∣XNνδNν

)
(1− φnν )

≤ P
([
Aπ

Nν

]c)
+ exp

(
KM2nνξ

2
Nν

2γ

)
Π(P\PNν )

+ exp

(
KM2nνξ

2
Nν

2γ

)
×

EP0,Pν

∫
{P∈PNν :d

π
Nν

(P,P0)≥MξNν}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

(i)

≤ 16γ2 [γ + C3]

(KM2f − 2γ)
2
nνξ2Nν

+ exp

(
−
KM2nνξ

2
Nν

2γ

)

+ exp

(
KM2nνξ

2
Nν

2γ

)
×

EP0,Pν

∫
{P∈PNν :d

π
Nν

(P,P0)≥MξNν}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν ) , (23)

where in (i) we have used condition 3.3 that bounds from above Π (P\PNν ),
the prior mass assigned on the portion of the model space that lies outside the
sieve, and have plugged in for constant, C.

By conditions (A1), (A4) and Lemma B.1,

EP0,Pν

∫
{P∈PNν :d

π
Nν

(P,P0)≥MξNν}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φNν )

≤ 2γ exp

(−KM2nνξ
2
Nν

γ

)

Returning to the expectation in Equation 23,

EP0,PνΠ
π
(
P ∈ P : dπNν

(P, P0) ≥ MξNν

∣∣XNνδNν

)
(1− φnν )

≤ 16γ2 [γ + C3]

(KM2 − 2γ)
2
Nνξ2Nν

+ exp

(
−
KM2nνξ

2
Nν

2γ

)

+ exp

(
KM2nνξ

2
Nν

2γ

)
× 2γ exp

(
−
KM2nνξ

2
Nν

γ

)
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(i)

≤ 16γ2 [γ + C3]

(Kf − 2γ)
2
Nνξ2Nν

+ 3γ exp

(
−
KM2nνξ

2
Nν

2γ

)
, (24)

where in (i) we use our earlier stated bound, KM2 − 1 > K → KM2 > K + 1.

Bringing all the pieces together,

EP0,PνΠ
π
(
P ∈ P : dπNν

(P, P0) ≥ MξNν

∣∣X1δν1, . . . , XNν δNν

)
≤ 2 exp

(
−Knνξ

2
Nν

)
+

16γ2 [γ + C3]

(Kf − 2γ)
2
Nνξ2Nν

+ 3γ exp

(
−
KM2nνξ

2
Nν

2γ

)

≤ 16γ2 [γ + C3]

(Kf − 2γ)
2
Nνξ2Nν

+ 5γ exp

(
−
Knνξ

2
Nν

2γ

)
(25)

where γ ≥ 1 and C3 > 0. The right-hand side of Equation 25 tends to 0 (as
ν ↑ ∞) in P0 probability. This concludes the proof.

Appendix B: Enabling Lemmas

We next construct two enabling results needed to prove Theorem 3.1 to ac-
count informative sampling under (A4), (A5) and (A6). The first enabling re-
sult, Lemma B.1, extends the applicability of Ghosal & van der Vaart (2007)
– Lemmas 2 and 9 for inid models to informative sampling without replace-
ment. This result is used to bound from above the numerator for the expec-
tation with respect to the joint distribution for population generation and
the taking of the informative sample, (P0, Pν), of the pseudo posterior dis-
tribution in Equation 4 on the restricted set of measures, {P ∈ B}, where
B = {P ∈ P : dNν (P, P0) > δξNν}, (for any δ > 0). The restricted set includes
those P that are at some minimum distance, δξNν , from P0 under pseudo
Hellinger metric, dπNν

. The second result, Lemma B.2, extends Lemma 8.1 of
Ghosal et al. (2000) to bound the probability of the denominator of Equation 4
with respect to (P0, Pν), from below.

Lemma B.1. Suppose conditions (A1) and (A4) hold. Then for every ξ > ξNν ,
a constant, K > 0, and any constant, δ > 0,

EP0,Pν

⎡
⎢⎣ ∫
P∈P\PNν

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

⎤
⎥⎦ ≤ Π(P\PNν ) (26)

EP0,Pν

⎡
⎢⎣ ∫
P∈PNν :d

π
Nν

(P,P0)>δξ

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

⎤
⎥⎦ ≤

2γ exp

(
−Knνδ

2ξ2

γ

)
. (27)
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The constant multiplier, γ ≥ 1, defined in condition (A4), restricts the distri-
bution of the sampling design by bounding all marginal inclusion probabilities
for population units away from 0. As with the main result, the upper bound is
injured by γ.

Proof. We proceed constructively to simplify the form of the expectations on
the left-hand side of both Equations 26 and 27 and follow with an application
of Lemma 2 (and result 2.2) and Lemma 9 of Ghosal & van der Vaart (2007),
which is used to establish the right-hand bound of Equation 27 (based on the
existence of tests, φnν ).

Fixing ν, we index units that comprise the population with, Uν = {1, . . . , Nν}.
Next, draw a single observed sample of nν units from Uν , indexed by subse-
quence,
{i� ∈ Uν : δνi� = 1, 
 = 1, . . . , nν}. Without loss of generality, we simplify nota-
tion to follow by indexing the observed sample, sequentially, with 
 = 1, . . . , nν .

We next decompose the expectation under the joint distribution with respect
to population generation, P0, and the drawing of a sample, Pν ,

Suppose we draw P from some set B ⊂ P . By Fubini,

EP0,Pν

⎡
⎣ ∫
P∈B

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

⎤
⎦

≤
∫

P∈B

[
EP0,Pν

Nν∏
i=1

pπ

pπ0
(Xiδνi) (1− φnν )

]
dΠ(P ) (28)

≤
∫

P∈B

{ ∑
δν∈Δν

EP0

[
nν∏
�=1

[
p

p0
(X�)

] 1
πν�

(1− φnν )

∣∣∣∣∣δν
]
PPν (δν)

}
dΠ(P ) (29)

≤
∫

P∈B

max
δν∈Δν

EP0

[
nν∏
�=1

[
p

p0
(X�)

] 1
πν�

(1− φnν )

∣∣∣∣∣δν
]
dΠ(P ) (30)

≤
∫

P∈B

EP0

[
nν∏
�=1

[
p

p0
(X�)

] 1
πν�

(1− φnν )

∣∣∣∣∣δ∗ν
]
dΠ(P ) (31)

≤
∫

P∈B

EP0

[
nν∏
�=1

[
p

p0
(X�)

]
(1− φnν )

∣∣∣∣∣δ∗ν
]
dΠ(P ) (32)

≤
∫

P∈B

Pδ∗
ν
(1− φnν ) dΠ(P ) ,

where
∑

δν∈Δν

PPν (δν) = 1 (Särndal et al., 2003) and

δ∗ν ∈ Δν =
{
{δ∗νi}i=1,...,Nν

, δ∗νi ∈ {0, 1}
}

denotes that sample, drawn from the

space of all possible samples, Δν , which maximizes the probability under the
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population generating distribution for the event of interest. The inequality in
Equation 32 results from p

p0
≤ 1 and 1

πν�
≥ 1. The conditional expectation of

(1− φnν ) given δ∗ν is denoted by, Pδ∗
ν
(1− φnν ).

If P ∈ P\PNν ,

EP0,Pν

⎡
⎢⎣ ∫
P∈P\PNν

Nν∏
i=1

pπ

pπ0
(Xiδνi) (1− φnν )

⎤
⎥⎦ dΠ(P )

≤
∫

P∈P\PNν

Pδ∗
ν
(1− φnν ) dΠ(P ) ≤

∫
P∈P\PNν

dΠ(P ) = Π (P\PNν ) ,

since (1− φnν ) ≤ 1.

We next establish a bound for Pδ∗
ν
(1− φnν ) on a sieve or slice. Let Aπ

r =
{P ∈ PNν : rεNν ≤ dπNν

(P, P0) ≤ 2rεNν} for integers, r. Under observed(
X1δ

∗
ν1, . . . ,XNν δ

∗
νNν

)
∈ X , by conditions (A1) and (A4) we have,

sup
P∈Aπ

r

Pδ∗
ν
(1− φnν ) (33)

= sup
{P∈PNν :rξ≤dπ

Nν
(P,P0)≤2rξ}

Pδ∗
ν
(1− φnν ) (34)

(i)

≤ sup{
P∈PNν :

rξ√
γ ≤dNν (P,P0)≤ 2rξ√

γ

} Pδ∗
ν
(1− φnν ) (35)

(ii)

≤ exp

(
−Knνr

2ξ2

γ

)
, (36)

where the smaller range in (i), P ∈ PNν : rξ√
γ ≤ dNν (P, P0) ≤ 2rξ√

γ , increases

Pδ∗
ν
(1− φnν ). The result in (ii) uses condition (A2) to obtain the result of

Lemmas 2 and 9 in Ghosal & van der Vaart (2007) where we set ξ → ξ/
√
γ.

Finally, fixing some value for δ > 0, set r = 2�δ for a given, for integers, 
 ≥ 0.
Following the approach for bounding the sum over the slices in Wong & Shen
(1995), let L be the smallest integer such that 22Lδ2ξ2 > 2γ, since dπNν

<
√
2γ

(by our definition of the pseudo Hellinger metric in Section 3.2). Then,

EPθ0
,Pν

⎡
⎢⎢⎣

∫
{P∈PNν :d

π
Nν

(P,P0)≥δξ}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

⎤
⎥⎥⎦ (37)

=

L∑
�=0

EPθ0
,Pν

∫
{P∈PNν :2

�δξ≤dπ
Nν

(P,P0)≤2�+1δξ}

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φNν )

(38)
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≤ γ

L∑
�=0

exp

(
−22�Knνδ

2ξ2

γ

)
(39)

≤ 2γ exp

(
−Knνδ

2ξ2

γ

)
, (40)

for nν sufficiently large such that Knνδ
2ξ2

γ ≥ 1.
This concludes the proof.

Lemma B.2. For every ξ > 0 and measure Π on the set,

B =

{
P : −P0 log

(
p

p0

)
≤ ξ2, P0

(
log

p

p0

)2

≤ ξ2

}

under the conditions (A2), (A3), (A4), and (A5), we have for every C > 0
and Nν sufficiently large,

Pr

⎧⎨
⎩
∫

P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) ≤ exp

[
−(1 + C)Nνξ

2
]⎫⎬⎭ ≤ γ + C3

C2Nνξ2
, (41)

where the above probability is taken with the respect to P0 and the sampling
generating distribution, Pν , jointly.

The bound of “1” in the numerator of the result for Lemma 8.1 of Ghosal
et al. (2000), is replaced with γ + C3 for our generalization of this result in
Equation 41. The sum of positive constants, γ + C3, is greater than 1 and will
be larger for sampling designs where the inclusion probabilities, {πνi}, express
relatively higher gradients. Observing each finite population in a skewed fashion
through the taking of an informative sample may only slow the rate of posterior
contraction (as compared to contraction of the posterior distribution defined on
the fully observed finite population).

Proof. By Jensen’s inequality,

log

∫
P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) ≥

Nν∑
i=1

∫
P∈P

log
pπ

pπ0
(Xiδνi) dΠ(P )

= Nν · PNν

∫
P∈P

log
pπ

pπ0
dΠ(P ) ,

where we recall that the last equation denotes the empirical expectation func-
tional taken with respect to the joint distribution over population generating
and informative sampling. By Fubini,

PNν

∫
P∈P

log
pπ

pπ0
dΠ(P ) =

∫
P∈P

[
PNν log

pπ

pπ0

]
dΠ(P )
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=

∫
P∈P

[
PNν

δν
πν

log
p

p0

]
dΠ(P )

=

∫
P∈P

[
P
π
Nν

log
p

p0

]
dΠ(P )

= P
π
Nν

∫
P∈P

log
p

p0
dΠ(P ) ,

where we, again, apply Fubini.
Then, the probability statement in the result of Equation 41 is bounded (from

above) by,

Pr

⎧⎨
⎩G

π
Nν

∫
P∈P

log
p

p0
dΠ(P ) ≤ −

√
Nνξ

2 (1 + C)−
√

NνP0

∫
P∈P

log
p

p0
dΠ(P )

⎫⎬
⎭

= Pr

⎧⎨
⎩G

π
Nν

∫
P∈P

log
p

p0
dΠ(P ) ≤ −

√
Nνξ

2 (1 + C)−
√

Nν

∫
P∈P

P0log
p

p0
dΠ(P )

⎫⎬
⎭

= Pr

⎧⎨
⎩G

π
Nν

∫
P∈P

log
p

p0
dΠ(P ) ≤ −

√
Nνξ

2 (1 + C) +
√

Nνξ
2 = −

√
Nνξ

2C

⎫⎬
⎭ ,

where we have again applied Fubini in the second inequality and also the bound
for P0 log

p
p0

≤ ξ2 for P on the set B.
We now apply Chebyshev and Jensen’s inequality to bound the probability,

Pr

⎧⎨
⎩G

π
Nν

∫
P∈P

log
p

p0
dΠ(P ) ≤ −

√
Nνξ

2C

⎫⎬
⎭

≤
Var
[∫

P∈P G
π
Nν

log p
p0
dΠ(P )

]
Nνξ4C2

(42a)

≤

∫
P∈P

[
Var

(
G

π
Nν

log
p

p0

)]
dΠ(P )

Nνξ4C2
(42b)

≤

∫
P∈P

[
EP0,Pν

(
G

π
Nν

log
p

p0

)2
]
dΠ(P )

Nνξ4C2
(42c)

≤

∫
P∈P

[
EP0,Pν

(√
NνP

π
Nν

log
p

p0

)2
]
dΠ(P )

Nνξ4C2
, (42d)
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where EP0,Pν (·) denotes the expectation with respect to the joint distribution
over population generation and sampling (from that population) without re-
placement. We apply Jensen’s inequality in Equation 42b and use E

(
X2
)
>

Var (X) in the third inequality, stated in Equation 42c, and drop the center-
ing term in Equation 42d. We now bound the expectation inside the square
brackets on the right-hand side of Equation 42d, which is taken with respect
to this joint distribution. In the sequel, define Aν = σ (X1, . . . ,XNν ) as the
sigma field of information potentially available for the Nν units in popula-
tion, Uν .

EP0,Pν

(√
NνP

π
Nν

log
p

p0

)2

=
1

Nν

∑
i,j∈Uν

EP0,Pν

(
δνiδνj
πνiπνj

log
p

p0
(Xi) log

p

p0
(Xj)

)

=
1

Nν

∑
i=j∈Uν

EP0

[
EPν

{(
δνi
π2
νi

(
log

p

p0
(Xi)

)2
)∣∣∣∣∣Aν

}]

+
1

N2
ν

∑
i �=j∈Uν

EP0

[
EPν [δνiδνj |Aν ]

πνiπνj
log

p

p0
(Xi) log

p

p0
(Xj)

]

=
1

Nν

∑
i=j∈Uν

EP0

[(
1

πνi

)(
log

p

p0
(Xi)

)2
]

+
1

Nν

∑
i �=j∈Uν

EP0

[
πνij

πνiπνj
log

p

p0
(Xi) log

p

p0
(Xj)

]

≤ ξ2 sup
ν

⎡
⎣ 1

min
i∈Uν

πνi

⎤
⎦+ ξ2 (Nν − 1) sup

ν
max

i �=j∈Uν

[∣∣∣∣ πνij

πνiπνj

∣∣∣∣
]

≤ ξ2 (γ + C3) ,

for sufficiently large Nν , where we have applied the condition for P ∈ B for the
first term of the last two inequalities and conditions and (A4) and (A5) for
the last inequality. We additionally note that πνij = πνj when i = j, i, j ∈ Uν .
This concludes the proof.
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