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Abstract

We study the linear statistics of the circular β-ensemble with a Stein’s method argu-
ment, where the exchangeable pair is generated through circular Dyson Brownian
motion. This generalizes previous results obtained in such a way for the CUE and
provides a novel approach for studying linear statistics of β-ensembles. This approach
allows studying simultaneously a collection of linear statistics whose number grows
with the dimension of the ensemble. Also this approach requires estimating only low
order moments of the linear statistics.
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1 Introduction

The goal of this note is to study linear statistics of the circular β-ensemble (which
we will usually denote by CβE or CβE(n) if we wish to stress the dimension). More
precisely, if (eix1 , ..., eixn) is a realization of the n-dimensional CβE, we shall study the
Wasserstein-1 distance of the law of

Td =

 n∑
j=1

eikxj

d

k=1

(1.1)

to the law of

Gd =

(√
2

β
jZj

)d
j=1

, (1.2)

where Zj are i.i.d. standard complex Gaussians.
Our main result will be that if d grows slowly enough with n, the distance goes to zero

as n→∞. Our approach will be to apply Stein’s method for which we shall generate an
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Linear statistics of the circular β-ensemble

exchangeable pair through circular Dyson Brownian motion. The estimates one will then
need to apply Stein’s method involve some low order moments of Td for which we can
make use of results of [16].

The motivation for this approach comes from [12, 10], where a similar approach is
used for β = 2 (as well as the circular real ensemble and circular quaternion ensemble,
i.e. the Haar measure on the orthogonal and symplectic groups), though the relevant
dynamics is interpreted through the heat kernel on the unitary group which does not
generalize so obviously to other values of β.

While the fact that finite collections of such linear statistics converge jointly in law to
independent Gaussians with suitable variances, is certainly known (e.g. the approach
of [17] should be easily adapted to the circular case and more recently such a result is
proven in [16] - for other work related to the linear statistics of the CβE, see e.g. [25, 11]),
what our approach offers is a rate of convergence (which is likely to be extremely far
from the true one - in the case of CUE the rate is known to be superexponential, see [18]
- which is much faster than the one our approach suggests) as well as a possibility to
study the joint convergence of linear statistics whose number grows with n. Another
benefit of this approach is that one only needs to estimate only rather few moments. To
the author’s knowledge, such results aren’t known for CβE. Moreover, this approach
through Stein’s method coupled with Dyson Brownian motion has potential to be applied
to other β-ensembles.

The outline of this note is the following: we begin by recalling the definition of the
CβE and the relevant Wasserstein distance as well as stating our main result. Next we
shall recall the approach in [10] for multivariate complex normal approximation, the
definition of circular Dyson Brownian motion, and point out what the relevant estimates
we shall need for applying Stein’s method to our case. These estimates involve the
generator of circular Dyson Brownian motion acting on certain power sums, which are
simple to calculate exactly, along with moment bounds of power sums which can be
estimated with results from [16]. Finally we point out as an application of the results of
[16] a limit theorem for the logarithm of the characteristic polynomial of the CβE. This
is very similar to a result of [15] for the CUE.

2 The circular β ensemble, the Wasserstein distance, and the
main result

The purpose of this section is to state our main result and to do this, we recall the
definition of the CβE and the Wasserstein-1 distance.

Definition 2.1. Let

∆n = {(x1, ..., xn) ∈ [0, 2π]n : x1 ≤ x2 ≤ ... ≤ xn} (2.1)

and β > 0. The n-dimensional CβE is the following probability measure on ∆n:

n!

Zn,β

∏
j<k

|eixj − eixk |β
n∏
j=1

dxj
2π

, (2.2)

where the normalization constant is a Selberg integral and can be evaluated exactly:

Zn,β =

∫
[0,2π]n

∏
j<k

|eixj − eixk |β
n∏
j=1

dxj
2π

=
Γ
(

1 + nβ2

)
Γ
(

1 + β
2

)n . (2.3)

Remark 2.2. We will often identify [0, 2π) with the unit circle and ∆n with a subset of
the n-fold product of the unit circle with itself.
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Linear statistics of the circular β-ensemble

The Wasserstein-1 distance is a metric on the space of random variables taking values
in a fixed underlying space (which we’ll take to be Euclidean, but more general cases are
possible) with finite first absolute moment. Convergence with respect to it is equivalent
to convergence in law along with convergence of the first absolute moment. Let us
recall its two equivalent definitions (see e.g. Chapter 6 in [26] for more information on
Wasserstein distances):

Definition 2.3. The Wasserstein-1 distance between the laws of two Rd (or Cd as we’ll
actually be interested in) valued random variables - X and Y - is

W(d)
1 (X,Y ) = inf E(|X − Y |), (2.4)

where the infimum is over all couplings of X and Y .
An equivalent definition for the metric (a result due to Kantorovich and Rubinstein)

is given by

W(d)
1 (X,Y ) = sup{ E(f(X))− E(f(Y ))| f : Rd → R,

|f(x)− f(y)| ≤ |x− y| for all x, y ∈ Rd}. (2.5)

We can now state our main result.

Theorem 2.4. Let (eixj )nj=1 be drawn from the n-dimensional CβE with β > 0, d = o(n
2
7 ),

Td =

 n∑
j=1

eikxj

d

k=1

(2.6)

and

Gd =

(√
2

β
jZj

)d
j=1

, (2.7)

where Zj are i.i.d. standard complex Gaussians. Then

W(d)
1 (Td, Gd) = O(d7/2/n) (2.8)

as n→∞.

Remark 2.5. As in [10], we could consider instead of Td a vector of the form n∑
j=1

eikxj

d

k=r

, (2.9)

where also r grows with n and one will get constraints on r and d for the vanishing of
the Wasserstein distance with similar methods as those we use. For simplicity, we only
consider the case of Td.

Remark 2.6. One can use this result to study linear statistics of functions on the unit
circle with nice enough regularity by Fourier expanding them and applying our result.

3 Stein’s method and circular Dyson Brownian motion

We’ll give a short informal sketch of the Stein’s method argument for multivariate
normal approximation that will be relevant for us. For a detailed treatment, see e.g. [21].
After this, we shall state the precise theorem (that appears in [10]) that we shall make
use of. Next we shall review the definition and some basic properties of circular Dyson
Brownian motion and how it ties into our Stein’s method argument.
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3.1 Stein’s method

For simplicity we’ll consider the case of real normal variables (the complex one
follows from this). Let us assume that Σ is a symmetric positive definite d × d matrix.
We’ll denote by Y a d-dimensional vector of i.i.d. standard Gaussians and by YΣ we
denote

√
ΣY .

We’ll also use the following notation: by 〈·, ·〉HS we denote the Hilbert-Schmidt inner
product of two matrices

〈A,B〉HS = Tr(AB∗), (3.1)

where B∗ denotes the Hermitian conjugate of B. We’ll denote by ‖·‖HS the corresponding
norm.

We will then make use of the following facts (see [21])

Fact 3.1 (Fact 1). A random d-dimensional vector X agrees in law with YΣ if

E (〈Hessf(X),Σ〉HS − 〈X,∇f(X)〉) = 0 (3.2)

for each f ∈ C2(Rd) for which the above integrand is in L1 (with respect to the ran-
domness). Here Hessf is the Hessian matrix of f , and the second inner product is the
Euclidean inner product of Rd.

Fact 3.2 (Fact 2). If g ∈ C∞(Rd), then

h(x) = Uog(x) :=

∫ 1

0

1

2t
(Eg(

√
tx+

√
1− tYΣ)− Eg(YΣ))dt (3.3)

is a solution to the differential equation

〈x,∇h(x)〉 − 〈Hess h(x),Σ〉HS = g(x)− Eg(YΣ). (3.4)

Let us now assume that we have a random vector X for which we wish to show that
the law of X is close to that of YΣ in the sense of the Wasserstein distance, and let us
further assume that we have another random vector X ′ on the same probability space as

X and X ′
d
= X. Moreover, let us assume that

E(X ′ −X|X) = −ΛX + V, (3.5)

for some invertible deterministic matrix Λ and some random vector V . We’ll want to
think of X ′ being close to X so that when for example Taylor expanding f(X ′) around X
for some function f , we can ignore high enough order terms. Also we assume that

E((X ′ −X)(X ′ −X)T |X) = 2ΛΣ +M, (3.6)

where Σ is again our deterministic symmetric positive definite matrix and M is a random
d× d-dimensional matrix.

Let us fix some g ∈ C∞(Rd) and let f = Uog. Then as X
d
= X ′

0 =
1

2
E
(
〈Λ−1(X ′ −X),∇f(X ′) +∇f(X)〉

)
=

1

2
E
(
〈Λ−1(X ′ −X),∇f(X ′)−∇f(X)〉

)
+ E

(
〈Λ−1(X ′ −X),∇f(X)〉

)
(3.7)

=
1

2
E
(
〈Λ−1(X ′ −X),Hessf(X)(X ′ −X)〉

)
+ E

(
〈Λ−1(X ′ −X),∇f(X)〉

)
+ ...,

where we Taylor expanded ∇f(X ′)−∇f(X) around X and ... denotes higher order terms
in the expansion. Noting that

〈Λ−1(X ′ −X),Hessf(X)(X ′ −X)〉 = 〈Λ−1(X ′ −X)(X ′ −X)T ,Hessf(X)〉HS (3.8)
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and conditioning on X, we find that

0 = E(Hessf(X),Σ〉HS − E(〈X,∇f(X)〉)

+
1

2
E(〈Λ−1M,Hessf(X)〉HS) + E(〈Λ−1V,∇f(X)〉) + ... (3.9)

From Fact 2, we then find

Eg(X)− Eg(YΣ) =
1

2
E(〈Λ−1M,Hessf(X)〉HS) + E(〈Λ−1V,∇f(X)〉) + ... (3.10)

As Hessf and ∇f are bounded, if we can control Λ−1M and Λ−1V (and the higher
order terms), this suggests that we can control the Wasserstein distance. This is indeed
the case. We’ll actually construct a one parameter family of the vectors X ′ through
Dyson Brownian motion started from an independent CβE realization and the closeness
of X and X ′ will come from the t → 0 limit. Let us state the actual theorem for the
Stein’s method argument in the following form (see Theorem 1.3 in [10] and Theorem 4
in [21] for proofs)

Theorem 3.3 (Döbler and Stolz, Meckes). Let W,Wt (for t > 0) be Cd valued L2(P)

random vectors on the same probability space (Ω,A,P) such that for each t > 0,

(W,Wt)
d
= (Wt,W ) (the pair (W,Wt) is exchangeable). Let Z ∈ Cd be a d-dimensional

random vector whose entries are i.i.d. standard complex Gaussians. Suppose that there
exist non-random matrices Λ,Σ ∈ Cd×d such that Λ is invertible and Σ is positive definite.
Assume further that there exists a random vector R ∈ Cd, random matrices S, T ∈ Cd×d,
and a deterministic function s : (0,∞)→ R with the following properties

(i)
1

s(t)
E (Wt −W |W )

t→0→ −ΛW +R in L1(P)

(ii)
1

s(t)
E ((Wt −W )(Wt −W )∗|W )

t→0→ 2ΛΣ + S in L1(‖ · ‖HS,P)

(iii)
1

s(t)
E
(
(Wt −W )(Wt −W )T |W

) t→0→ T in L1(‖ · ‖HS,P)

(iv) lim
t→0

1

s(t)
E
(
|Wt −W |21{|Wt−W |2>ε}

)
= 0,

for each ε > 0.

Then

W(d)
1 (W,

√
ΣZ) ≤ ‖Λ−1‖op

(
E|R|+ 1

2π
‖Σ− 1

2 ‖opE(‖S‖HS + ‖T‖HS)

)
, (3.11)

where ‖ · ‖op denotes the operator norm: for A ∈ Cd×d

‖A‖op = sup
x∈Cd:|x|=1

|Ax|. (3.12)

Remark 3.4. As noted in [10], we can replace the estimate for E(|Wt −W |21|Wt−W |>ε)

by the weaker one

lim
t→0

1

s(t)
E|Wt −W |3 = 0 (3.13)

since

E(|Wt −W |21|Wt−W |>ε) ≤
1

ε
E(|Wt −W |3). (3.14)
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3.2 Circular Dyson Brownian motion

In this section we define circular Dyson Brownian motion and point out how it ties
into our Stein’s method argument.

Circular Dyson Brownian motion was introduced by Dyson [9] and discussed for
example in [25]. Its existence is proven in [5]. It is a model for diffusing particles confined
to the unit circle and interacting with each other through a logarithmic repulsion. The
main result of [5] is that one can make the following definition:

Definition 3.5 (Circular Dyson Brownian motion). Let β > 0. n-dimensional Circular
β-Dyson Brownian motion is a C([0,∞),∆n) valued semimartingale (which we denote
by (x(t))t≥0 = (x1(t), ..., xn(t))t≥0) which is the unique strong solution to the system of
stochastic differential equations

dxj(t) =
β

2

∑
1≤i≤n,i 6=j

cot
xj(t)− xi(t)

2
dt+

√
2dbj(t), (3.15)

for j = 1, ..., n. Here bj are i.i.d. standard Brownian motions.

Remark 3.6. It is proven in [5], that for β ≥ 1 the particles almost surely do not collide
(so xi(t) 6= xj(t) for i 6= j for all t), but for β ∈ (0, 1) they almost surely do.

In the following remark we’ll informally recall some basic facts from diffusion theory
applied to our setting.

Remark 3.7. As we are dealing with continuous semimartingales, we can make use
of Itô’s lemma, and general facts from diffusion theory hold. In particular, a simple
application of Itô’s lemma implies that we have for some fixed x(0) ∈ ∆n and C2 function
f

Ex(0) [f(x(t))] = f(x(0)) + Ex(0)

[∫ t

0

[Lβf ](x(s))ds

]
, (3.16)

where Ex(0) denotes expectation with respect to the law of the process started from x(0),
and Lβ can be viewed as the infinitesimal generator of the process:

Lβ =
β

2

n∑
k=1

∑
l 6=k

cot
xk − xl

2

∂

∂xk
+

(
√

2)2

2

n∑
k=1

∂2

∂x2
k

=
β

2
i

n∑
k=1

∑
l 6=k

eixk + eixl

eixk − eixl
∂

∂xk
+

n∑
k=1

∂2

∂x2
k

. (3.17)

As for β < 1 there can be collisions, there is some care to be taken about what
the precise domain of the infinitesimal generator is (for example, if f ∈ C2(∆n) is a
function in the domain of the generator, then one must have that limxj+1→xj cot[(xj+1 −
xj)/2](∂j+1 − ∂j)f is finite, or in other words, ∂j+1f(x)|xj+1=xj = ∂jf(x)|xj+1=xj ).

From (3.16) we see that if ρt(x;x(0)) is the density of the law of x(t) started at x(0),
then it satisfies the equation

∂tρt(x, x(0)) = L∗βρt(x, x(0)), (3.18)

where L∗β is the adjoint of Lβ:

L∗βf =

n∑
k=1

∂2

∂x2
k

f − β

2

n∑
k=1

∑
l 6=k

∂

∂xk

[
cot

(
xk − xl

2

)
f

]
. (3.19)
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This implies that the CβE is a stationary distribution for circular Dyson Brownian
motion. To see this, note that for

ρ(x) = Cn,β
∏
j<k

|eixj − eixk |β (3.20)

= Cn,βe
−β

∑
j<k V (xj−xk),

where Cn,β is a normalization constant, and V (x) = − log |2 sin x
2 |, a simple calculation

making use of the fact that 1
2 cot(x/2) = −V ′(x) shows that

L∗βρ = 0. (3.21)

Thus the unique solution to ∂tρt(x, x(0)) = L∗βρt(x, x(0)) with initial data given by the
CβE: ρ0(x, x(0)) = ρ(x), is ρt(x, x(0)) = ρ(x) - or the CβE is a stationary distribution for
circular Dyson Brownian motion.

A similar argument shows that for g in the domain of Lβ, L∗β [gρ] = [Lβg]ρ, i.e.
that Lβ is in fact self-adjoint on L2(ρ). Thus the CβE is a reversible measure for
Dyson Brownian motion which implies that the pair (x(0), x(t)) is exchangeable (i.e.

(x(0), x(t))
d
= (x(t), x(0))) for each t > 0.

Let us now prove our main estimates required for applying Theorem 3.3. This entails
estimating E(f(x(t))|x(0)), when f is a function relevant to Theorem 3.3. This will be
done through estimates on Lβf for relevant f . For β = 2 [12, 10] make use of similar
results for the heat kernel of the unitary group found in [23, 19] with a different kind of
approach.

Lemma 3.8. Let x(0) be distributed according to the CβE and independent of (bj(t)).
Also let k ∈ Z and write for x ∈ [0, 2π]n, pk(x) =

∑n
j=1 e

ikxj . Then

1

t

[
Ex(0)[pk(x(t))]− pk(x(0))

]
t→0→ [Lβpk](x(0)), (3.22)

and

Lβpk = −nβ
2
|k|pk −

(
1− β

2

)
k2pk −

β

2
|k|
|k|−1∑
l=1

psgn(k)lpsgn(k)(|k|−l), (3.23)

where sgn(k) = k/|k| for k 6= 0 and Lβ is the operator from (3.17).

Moreover, for k, l ∈ Z

1

t

[
Ex(0)[pk(x(t))pl(x(t))]− pk(x(0))pl(x(0))

]
t→0→ [Lβ(pkpl)](x(0)), (3.24)

and

Lβ(pkpl) = pkLβpl + plLβpk − 2klpk+l. (3.25)

In both cases, the convergence is in L1 with respect to the law of the CβE.

Proof. Let us first establish the claims about the action of Lβ on pk and pkpl. We have
from (3.17)

Lβpk(x) = −k2pk(x) +
β

2
i

n∑
l=1

∑
m 6=l

eixm + eixl

eixm − eixl
ikeikxm . (3.26)
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Then note that

Sk :=

n∑
m=1

∑
l 6=m

eixm + eixl

eixm − eixl
eikxm (3.27)

=

n∑
m=1

∑
l 6=m

(eixm + eixl)
eikxm − eikxl
eixm − eixl

+

n∑
m=1

∑
l 6=m

(eixm + eixl)
eikxl

eixm − eixl

=

n∑
m=1

∑
l 6=m

(eixm + eixl)
eikxm − eikxl
eixm − eixl

− Sk.

We thus conclude that

Lβpk(x) = −k2pk(x)− β

4
k

n∑
m=1

∑
l 6=m

(eixm + eixl)
eikxm − eikxl
eixm − eixl

. (3.28)

For k ∈ Z+, we expand the difference quotient and find (using for example p0(x) = n)

Lβpk(x) = −k2pk(x)− β

4
k

n∑
m=1

∑
l 6=m

(eixm + eixl)
k−1∑
j=0

eijxmei(k−1−j)xl (3.29)

= −k2pk(x)− β

4
k

n∑
m=1

n∑
l=1

(eixm + eixl)

k−1∑
j=0

eijxmei(k−1−j)xl

+
β

4
k

n∑
m=1

2eixmkei(k−1)xm

= −
[
1− β

2

]
k2pk(x)− β

4
k

k−1∑
j=0

[pj+1(x)pk−1−j(x) + pj(x)pk−j(x)]

= −
[
1− β

2

]
k2pk(x)− β

2
k

k−1∑
j=1

pj(x)pk−j(x)− β

2
knpk(x),

which was the claim for k > 0. For k = 0 the claim is clear, and for k < 0 it follows by
complex conjugating the k > 0 case. For calculating Lβ [pkpl], we note that if we write

∆ =
∑n
j=1

∂2

∂x2
j
, then in general for twice differentiable functions f and g one has

∆[fg] = f∆g + g∆f + 2

n∑
j=1

[
∂

∂xj
f

] [
∂

∂xj
g

]
. (3.30)

The first order part of Lβ satisfies a normal product rule so we find

Lβ [pkpl] = pkLβpl + plLβpk + 2

n∑
j=1

[
∂

∂xj
pk

] [
∂

∂xj
pl

]
(3.31)

= pkLβpl + plLβpk + 2

n∑
j=1

[
∂

∂xj
pk

] [
∂

∂xj
pl

]

= pkLβpl + plLβpk − 2kl

n∑
j=1

eikxjeilxj

= pkLβpl + plLβpk − 2klpk+l
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which was the claim concerning the action of Lβ on pkpl. Let us now turn to the
convergence part. From (3.16) we find that for any fixed x ∈ ∆n∣∣∣∣Ex [pk(x(t))]− pk(x)

t
− [Lβpk](x)

∣∣∣∣ ≤ Ex
∫ t

0
|[Lβpk](x(s))− [Lβpk](x)| ds

t
. (3.32)

As Lβpk is a polynomial in the variables eixj , we see that supx |[Lβpk](x)| is a finite
number depending on n and k. Thus the random variable we’re taking an expectation
of on the right side of the equation is uniformly bounded in t, and by the continuity of
t 7→ x(t) at t = 0, it converges to zero almost surely as t → 0. Thus by the dominated
convergence theorem (applied to the Ex integral) we conclude that the left side of the
equation tends to zero. The same argument implies that the left side of the equation
is bounded in x by a constant depending only on n and k, if we integrate over x with
respect to the law of the CβE, we can apply the dominated convergence theorem again
to achieve L1 convergence with respect to the law of the CβE. The argument for the L1

convergence of the pkpl-term is similar.

4 Moment estimates of power sums for the CβE

Before checking the conditions for Theorem 3.3, we need some moment estimates on
power sums. We need a simplified version of the main result in [16] (their results are
analogous to those of [7] though extended to general β from the unitary case through
Jack polynomial theory):

Theorem 4.1 (Jiang and Matsumoto). Let 0 ≤ m ≤ n,

A =

(
1− | 2β−1|

n−m+ 2
β

1(β ≤ 2)

)m
, and B =

(
1 +

| 2β−1|
n−m+ 2

β

1(β > 2)

)m
. (4.1)

Then

E(|pm(x)|2) ≤ B 2

β
m (4.2)

and for 0 ≤ m ≤ n with 0 ≤ j, k ≤ m,

|E(pj(x)pm−j(x)p−k(x)pk−m(x))|

≤

max{|A− 1|, |B − 1|}
(

2
β

)2

2
√
j(m− j)k(m− k) k 6= j

B
(

2
β

)2

2j(m− j), k = j.
(4.3)

In most of our applications, we will have m = o(n) and this becomes

Corollary 4.2. For 0 ≤ m = o(n) and n large enough

E(|pm(x)|2) ≤ 2
2

β
m (4.4)

and for 0 ≤ j, k ≤ m,

|E(pj(x)pm−j(x)p−k(x)pk−m(x))| ≤


√
j(m− j)k(m− k)O

(
m
n

)
k 6= j

4
(

2
β

)2

j(m− j), k = j.
(4.5)

Proof. This follows directly from the definition of A and B noting that for m = o(n)

A,B = 1 +O
(m
n

)
. (4.6)
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Linear statistics of the circular β-ensemble

5 Proof of Theorem 2.4

We can now check the conditions required for Theorem 3.3 and make the estimates
needed for the proof of Theorem 2.4. Let us begin by checking the conditions for
Theorem 3.3.

Let us write W = Td, x(t) = (x1(t), ..., xn(t)) for the n-dimensional circular β-Dyson
Brownian motion started from an independent CβE(n) vector x = (x1, ..., xn), and Wt =

(p1(x(t)), ..., pd(x(t))).
The first condition for Theorem 3.3 involved the conditional expectation of Wt given

W :

5.1 E(Wt −W |W ) as t→ 0

By Lemma 3.8, we have as t→ 0

lim
t→0

1

t
E(Wt −W |W ) = (Lβp1(x), ..., Lβpd(x)) (5.1)

= −ΛW +R, (5.2)

where Λ ∈ Cd×d with entries

Λk,l = δk,lnk
β

2
, (5.3)

and R ∈ Cd with entries

Rk = −k2

(
β

2
− 1

)
pk(x)− kβ

2

k−1∑
l=1

pl(x)pk−l(x). (5.4)

Next we need E((Wt −W )(Wt −W )∗|W ) as t→ 0.

5.2 E((Wt −W )(Wt −W )∗|W ) as t→ 0

For this, we need

E((pj(x(t))− pj(x))(p−k(x(t))− p−k(x))|x) (5.5)

for j, k ∈ Z+. To calculate this, we expand the product and consider each term separately:

E(pj(x(t))p−k(x(t))|x) = pj(x)p−k(x) + tLβ(pj(x)p−k(x)) + o(t), (5.6)

E(pj(x(t))p−k(x)|x) = pj(x)p−k(x) + tp−k(x)Lβpj(x) + o(t), (5.7)

and
E(pj(x)p−k(x(t))|x) = pj(x)p−k(x) + tpj(x)Lβp−k(x) + o(t). (5.8)

Thus

E((pj(x(t))− pj(x))(p−k(x(t))− p−k(x))|x)

= t (Lβ(pj(x)p−k(x))− pj(x)Lβp−k(x)− p−k(x)Lβpj(x)) + o(t). (5.9)

Making use of Lemma 3.8, we find

lim
t→0

1

t
E((pj(x(t))− pj(x))(p−k(x(t))− p−k(x))|x) = 2jkpj−k(x). (5.10)

We then write this as

lim
t→0

1

t
E((Wt −W )(Wt −W )∗|W ) = 2ΛΣ + S, (5.11)
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Linear statistics of the circular β-ensemble

where Σ ∈ Cd×d,
(ΛΣ)k,l = δk,lnk

2, (5.12)

or in other words

Σk,l =
2

β
δk,lk. (5.13)

Moreover S ∈ Cd×d with entries

Sk,l = (1− δk,l)2klpk−l(x). (5.14)

5.3 E((Wt −W )(Wt −W )T |W ) as t→ 0

Here we need
E((pj(x(t))− pj(x))(pk(x(t))− pk(x))|x) (5.15)

and a similar argument yields

lim
t→0

1

t
E((pj(x(t))− pj(x))(pk(x(t))− pk(x))|x) = −2jkpj+k(x) (5.16)

or (again with convergence in L1)

lim
t→0

1

t
E((Wt −W )(Wt −W )T |W ) = T, (5.17)

with
Tjk = −2jkpj+k(x). (5.18)

5.4 E(|Wt −W |3) as t→ 0

Following Remark 3.4, it is enough for us to estimate E|Wt−W |3 (which for a diffusion
one would expect to behave as t3/2, but we still outline an argument for checking it
directly) which in turn we can bound from above by

√
E|Wt −W |2

√
E|Wt −W |4. Condi-

tioning on W and using (5.10), one finds E|Wt −W |2 = O(t) as t→ 0 and using similar
arguments (in particular, the fact Lβ(fg) = fLβg + gLβf + 2

∑
j(∂jf)(∂jg) repeatedly)

one finds E|Wt −W |4 = o(t), and

lim
t→0

1

t
E(|Wt −W |3) = 0. (5.19)

5.5 The Wasserstein-1 distance

Thus the conditions for Theorem 3.3 are met (Λ is invertible and Σ positive definite)
and we have

W(d)
1 (Td,

√
ΣZ) ≤ ||Λ−1||op

(
E|R|+ 1

2π
||Σ− 1

2 ||opE(||S||HS + ||T ||HS)

)
, (5.20)

where Z a d-dimensional vector of i.i.d. standard complex Gaussians, || · ||op denotes the
operator norm (with respect to the underlying Euclidean norm), | · | the Euclidean norm,
and || · ||HS the Hilbert-Schmidt norm. Let us check what these quantities are.

Recall that

Λk,l = δk,lnk
β

2
(5.21)

and

Σk,l = δk,l
2

β
k. (5.22)

Being diagonal matrices, we note that

||Λ−1||op = max
k

Λ−1
kk =

2

β

1

n
(5.23)
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Linear statistics of the circular β-ensemble

and

||Σ− 1
2 ||op =

√
β

2
. (5.24)

We’ll estimate E|R| by
√∑

k E|Rk|2 and recall that Rk consisted of two types of terms
Rk = Ak +Bk for which we write |Rk|2 ≤ 2(|Ak|2 + |Bk|2) and estimate these separately.
We use a similar estimate for the Hilbert-Schmidt norms. More precisely, recalling the
definition of R, S, and T we have

E|R| ≤ C(β)

√√√√ d∑
k=1

k4E|pk(x)|2 +

d∑
k=1

k2

k−1∑
l,j=1

E(pl(x)pk−l(x)p−j(x)pj−k(x)), (5.25)

E||S||HS ≤

√√√√ d∑
j,k=1

E|Sj,k|2 =

√√√√ d∑
j,k=1

(1− δj,k)4k2j2E|pk−j(x)|2, (5.26)

and

E||T ||HS ≤

√√√√ d∑
j,k=1

4j2k2E|pj+k(x)|2. (5.27)

We then make use of Corollary 4.2 to get bounds on these:

Lemma 5.1. For d = O(
√
n)

E|R| = O(d3), (5.28)

E||S||HS = O
(
d

7
2

)
, (5.29)

and
E||T ||HS = O

(
d

7
2

)
. (5.30)

Proof. Plugging Corollary 4.2 into (5.25), we find

E|R| ≤ C(β)

√√√√√ d∑
k=1

k5 +

d∑
k=1

k2

k−1∑
j=1

j(k − j) +
k

n

∑
l 6=j

√
j(k − j)l(k − l)

. (5.31)

The first sum is of order d6. For the second sum, we note that

k−1∑
j=1

j(k − j) = k

k−1∑
j=1

j −
k−1∑
j=1

j2 = O(k3). (5.32)

For the third sum, we note that

∑
l 6=j

√
j(k − j)l(k − l) ≤

k−1∑
j=1

√
j(k − j)

2

(5.33)

and

k−1∑
j=1

√
j(k − j) =

√
k

k−1∑
j=1

√
j

√
1− j

k

≤
√
k

k−1∑
j=1

√
j

(
1− 1

2

j

k

)
(5.34)

= O(k2).
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Thus

E|R| ≤ C

√√√√d6 +

d∑
k=1

1

n
k7. (5.35)

As k = O(
√
n)

E|R| = O(d3). (5.36)

For S we find (plugging Corollary 4.2 into (5.26) and using similar arguments as for
R)

E||S||HS ≤
√ ∑

1≤j<k≤d

8j2k2
2

β
(k − j)

≤ C

√√√√ d∑
k=1

k6 (5.37)

= O
(
d

7
2

)
and in a similar manner

E||T ||HS = O
(
d

7
2

)
. (5.38)

Noting that
√

ΣZ = Gd and recalling that ||Λ−1||op = O(n−1), plugging this into (5.20)
gives for d = o(n2/7)

W(d)
1 (Td, Gd) = O(d7/2/n). (5.39)

and Theorem 2.4 is proven.

6 The logarithm of the characteristic polynomial of the CβE

One of the results proven in [15] is a limit theorem where they prove, using mainly
results of [7], that in a suitable Sobolev space of distributions, the real and imaginary
parts of the logarithm of the characteristic polynomial of the CUE converge jointly in law
to a pair of log-correlated Gaussian fields (in fact they can be understood as a restriction
of the two-dimensional Gaussian Free Field restricted to the unit circle with a suitable
convention for the “zero mode”).

As the results in [16] generalize those of [7] to β 6= 2, one can prove a similar result
for the characteristic polynomial of the CβE, though the estimates aren’t quite as strong
for the β 6= 2 case so one does not have quite as good a control on the roughness of the
field - one needs to consider slightly larger Sobolev spaces than in the β = 2 case. We’ll
give a brief argument for a proof of this fact here. First we recall the definition of the
relevant Sobolev spaces.

Definition 6.1. For s ∈ R let

Hs =

{
(fk)k∈Z :

∑
k∈Z

|fk|2(1 + k2)s

}
(6.1)

and equip it with the inner product (we write f = (fk)k∈Z and g = (gk)k∈Z)

〈f, g〉s =
∑
k∈Z

(1 + k2)sfkg
∗
k. (6.2)

With this inner product, Hs is a separable Hilbert space. We denote by ‖ · ‖s the
corresponding norm.

EJP 21 (2016), paper 25.
Page 13/16

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4535
http://www.imstat.org/ejp/


Linear statistics of the circular β-ensemble

Remark 6.2. For s > 0, Hs can be interpreted as a subspace of the square integrable
functions on the unit circle with s describing the degree of smoothness of the functions.
For s < 0, Hs can be interpreted as the dual space of H−s so it is a space of distribu-
tions. The quantities fk are interpreted as the Fourier coefficients of a function (or
distribution) f .

We then define our limiting object:

Definition 6.3. Let (Zj)
∞
j=1 be i.i.d. standard complex Gaussians and write formally

X(θ) =
1

2

∞∑
j=1

1√
j

(Zje
−ijθ + Z∗j e

ijθ). (6.3)

Remark 6.4. One can check that for any ε > 0, the above series converges almost surely
in H−ε so X can be understood as an element of H−ε.

We can now state the relevant limit theorem whose proof is essentially identical to
that in [15]. A similar argument also appears in [14] so we give only a brief proof.

Theorem 6.5. Let s > 1/2, β > 0, and

Pn(θ) =

n∏
j=1

(1− ei(xj−θ)), (6.4)

where (eixj )nj=1 is distributed according to the CβE(n). Moreover, let

Xn(θ) = Re logPn(θ) and Yn(θ) = Im logPn(θ), (6.5)

where the branch of log is such that Im log(1− ei(xj−θ)) ∈ (−π/2, π/2] for all j.
Then (Xn, Yn) converges in law in H−s × H−s to (

√
2/βX,

√
2/βY ) where X is the

field defined above and

Y (θ) =
1

2

∞∑
j=1

i√
j

(−Zje−ijθ + Z∗j e
ijθ). (6.6)

Proof. Following [15], we begin with the remark that expanding the logarithm gives (as
an element of H−ε)

logPn(θ) = −
∞∑
j=1

1

j

(
n∑
k=1

eijxk

)
e−ijθ = −

∞∑
j=1

1

j
pj(x)e−ijθ. (6.7)

This implies that

Xn(θ) =
1

2

∞∑
j=1

1√
j

(
−pj(x)√

j
e−ijθ − p−j(x)√

j
eijθ
)

(6.8)

and

Yn(θ) =
1

2i

∞∑
j=1

1√
j

(
−pj(x)√

j
e−ijθ +

p−j(x)√
j

eijθ
)

(6.9)

Thus in the Fourier basis, we have convergence in the sense of finite dimensional
distributions (as [16] or Theorem 2.4 imply the convergence of say finite collections of
the Fourier coefficients).

By Prokohorov’s theorem, to prove convergence it is then enough to prove tightness.
For this, one uses the fact that the unit ball in H−s′ is compact in H−s for 0 < s′ < s. Let
us then note that by Theorem 4.1, if we take some small ε ∈ (0, 1), there exists a constant
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Linear statistics of the circular β-ensemble

C such that for 0 ≤ j ≤ (1− ε)n, E|pj(x)|2 ≤ Cj while for j ≥ (1− ε)n we trivially have
E|pj(x)|2 ≤ n2.

Thus picking s′ ∈ (1/2, s) we have

E‖Xn‖2−s′ =

∞∑
j=1

1

j2
(1 + j2)−s

′
E|pj(x)|2

≤ C
∑

1≤j≤(1−ε)n

1

j1+2s′
+ n2

∑
j≥(1−ε)n

1

j2+2s′
. (6.10)

This is bounded as the first sum converges as n→∞ and the second one is O(n1−2s′). A
similar bound holds for Yn. Tightness then follows from the compactness of the unit ball
mentioned above, and Markov’s inequality.

An interesting question is could one use stronger results on the linear statistics to
give a stronger sense for this convergence. Here we essentially only used convergence
of finite collections of the linear statistics and in no way made use of the fact that the
number of them may grow with n. If one were able to extend d in Theorem 2.4 from
o(n2/7) to something close to n, it seems conceivable that one could estimate for example
the distance of the maximum of the field Xn to the maximum of the truncation of the
field X. Indeed, the superexponential rate of convergence for a single linear statistic
proven in e.g. [18] suggests that our bounds are likely to be far from optimal so perhaps
something like this could be possible.

This could be one way to try to prove a conjecture of Fyodorov and Keating in
[13] (for β = 2), where they conjectured that the maximum of the logarithm of the
characteristic polynomial of a CUE matrix behaves essentially like the maximum of a
log-correlated Gaussian field (see e.g. [20, 8]). For recent advances in proving this
conjecture, see [2, 22]. Another motivation for trying to improve this type of results
would be to make better sense of the connection between random matrix theory and
Gaussian Multiplicative Chaos (for a result in this direction, see [27] based on results in
[6, 4], and for a review and an elementary approach to Gaussian Multiplicative Chaos
see [24, 3]). Currently proving such results relies heavily on the determinantal structure
and Riemann-Hilbert arguments available only for β = 2.
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