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Abstract

We consider a one dimensional random walk in a random environment (RWRE) with
a positive speed limn→∞

Xn
n

= vα > 0. Gantert and Zeitouni [9] showed that if the
environment has both positive and negative local drifts then the quenched slowdown
probabilities Pω(Xn < xn) with x ∈ (0, vα) decay approximately like exp{−n1−1/s}
for a deterministic s > 1. More precisely, they showed that n−γ logPω(Xn < xn)
converges to 0 or −∞ depending on whether γ > 1− 1/s or γ < 1− 1/s. In this paper,
we improve on this by showing that n−1+1/s logPω(Xn < xn) oscillates between 0 and
−∞, almost surely. This had previously been shown only in a very special case of
random environments [7].
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1 Introduction

Let ω = {ωz} ∈ [0, 1]Z be a sequence of independent, identically distributed random
variables called an environment, and let α be the distribution of ω on the space [0, 1]Z of
all environments. For a given environment ω, we can generate a random path, Xn, n ∈ N,
with transition probability

Pω(Xn+1 = x+ 1|Xn = x) = ωx

Pω(Xn+1 = x− 1|Xn = x) = 1− ωx.

The process generated in this way is called a random walk in a random environment
(RWRE). If the path Xn starting at x is generated under one particular environment ω,
the corresponding law is called quenched law denoted by P xω (·), and its expectation is
denoted by Exω[·]. Without conditioning on the environment ω, the law of Xn starting at x
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Oscillations of quenched slowdown asymptotics

is called the annealed law denoted by Pxα(·) = Eα[P xω (·)], where Eα[·] denotes expectation
with respect to the measure α on environments. Expectations under the annealed
measure will be denoted by Exα[·]. For simplicity we write Pω(·), Eω[·], Pα(·), Eα[·] when
the walk is started at x = 0.

The first mathematical result for RWRE was the limit behaviors of Xn by Solomon in
[18]. Solomon proved that the recurrence or transience of the RWRE is characterized by
the sign of Eα[log ρ0], where the random variables ρx are defined by ρx = (1− ωx)/ωx. In
Solomon’s paper, he showed that the RWRE is transient to +∞ if Eα[log ρ0] < 0, transient
to −∞ if Eα[log ρ0] > 0, and recurrent if Eα[log ρ0] = 0. Further, he also proved that Xn

satisfies a law of large numbers, developing an explicit formula of the speed of RWRE. In
particular, Solomon showed that the limit vα = limn→∞

Xn
n exists Pα-a.s., and if the walk

is transient to the right (i.e., Eα[log ρ0] < 0) the speed vα is given by

vα =

{
1−Eα[ρ0]
1+Eα[ρ0] if Eα[ρ0] < 1

0 if Eα[ρ0] ≥ 1.
(1.1)

An extension to Solomon’s work, the limiting distributions of transient RWRE under the
annealed law, was studied by Kesten, Kozlov, and Spitzer. In their paper, a parameter
s > 0, defined by the equation

Eα[ρs0] = 1, s > 0,

proved to be a key factor determining both the scaling factor and the limit law of the
random walk. In part,

• If s ∈ (1, 2), then under annealed law, Xn−nvα
n1/s ⇒ a stable law of index s.

• If s > 2, then under annealed law with a constant σ > 0, Xn−nvα
σ
√
n
⇒ a standard

normal law.

(Here, and throughout the paper, we will use⇒ to denote convergence in distribution.)
Limiting distributions for s ∈ (0, 1] and s = 2 are also shown in [12].

The main results in the present paper concern large deviations of RWRE. A large
deviation principle (LDP) for Xn/n under the quenched measure was first proved by
Greven and den Hollander [10]. Later, Comets, Gantert, and Zeitouni [1] used a different
approach, obtaining a LDP for Xn/n as a byproduct of a LDP for Tn/n, where Tn :=

inf{i ≥ 0 : Xi = n} is the hitting time of site n. This approach had the advantage of
giving LDPs under both the quenched and annealed measures. Moreover, the approach
in [1] led to a good qualitative description of the quenched and annealed large deviation
rate functions. Our interest in the present paper concerns certain large deviation
asymptotics when the RWRE is positive speed and with mixed local drifts; that is, vα > 0

and α(ω0 ≤ 1/2) > 0. In this case, the results in [1] show that both the quenched and
averaged large deviation rate functions vanish on the interval [0, vα]. That is,

lim
n→∞

1

n
logPω

(
Xn

n
< v

)
= lim
n→∞

1

n
logPα

(
Xn

n
< v

)
= 0, v ∈ [0, vα].

Thus, in the case of positive speed with mixed local drifts, the probability of the random
walk moving at a positive but slower than typical speed decays sub-exponentially in n.
It was shown in several papers that the precise rate of decay of these large deviation
slowdown probabilities is different under the quenched and annealed measures and that
the sub-exponential rate depends on the specifics of the distribution α on environments
[2, 9, 16]. Our interest in this paper concerns the rate of decay of the quenched
probabilities Pω(Xn < nv) under the following assumptions.
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Oscillations of quenched slowdown asymptotics

Assumption 1.1. The distribution α on environments is such that Eα[log ρ0] < 0 and
Eα[ρs0] = 1 for some s > 1.

Remark 1.2. It follows from Hölder’s inequality that γ 7→ Eα[ργ0 ] is a convex function.
Moreover, the slope of this function at γ = 0 is Eα[log ρ0] < 0 and thus it follows
from Assumption 1.1 that Eα[ρ0] < 1 and therefore the RWRE is transient to the right
with positive speed vα > 0. Moreover, since ρ0 < 1 ⇐⇒ ω0 > 1/2 it follows that
α(ω0 > 1/2) > 0 and α(ω0 < 1/2) > 0. Since the environment is assumed to be i.i.d. this
implies that α-a.e. environment has sites with local drifts to the right and to the left.

In addition to Assumption 1.1, we will also need the following technical assumptions.

Assumption 1.3. The distribution of log ρ0 is non-lattice under α and that Eα[ρs0 log ρ0] <

∞.

Remark 1.4. The conditions in Assumption 1.3 are needed for certain precise tail
asymptotics that we will use throughout the paper. It may be that the main results
of this paper are true without these additional technical assumptions, but this would
require dealing with rougher tail asymptotics throughout the paper. The conditions in
Assumption 1.3 have also been used in many previous papers in one-dimensional RWRE
[12],[8],[14],[5],[13],[4],[3].

The asymptotics of the quenched slowdown probabilities under Assumption 1.1 were
first studied by Gantert and Zeitouni in [9]. In particular, Gantert and Zeitouni proved
that for any v ∈ (0, vα) and any δ > 0,

lim
n→∞

1

n1−1/s+δ
logPω

(
Xn

n
≤ v
)

= 0, α-a.s.

lim
n→∞

1

n1−1/s−δ logPω

(
Xn

n
≤ v
)

= −∞, α-a.s.

One might suspect from this that Pω(Xn/n ≤ v) decays on a stretched exponential scale
like exp(−Cn1−1/s) for some deterministic constant C > 0 depending on v ∈ (0, vα).
However, in [9] Gantert and Zeitouni showed that for any v ∈ (0, vα),

lim sup
n→∞

1

n1−1/s
logPω(

Xn

n
< v) = 0, α-a.s., (1.2)

and conjectured that the corresponding lim inf is equal to −∞. The main result of our
paper complements (1.2) by proving this conjecture.

Theorem 1.5. If Assumptions 1.1 and 1.3 hold, then for any v ∈ (0, vα),

lim inf
n→∞

1

n1−1/s
logPω

(
Xn

n
< v

)
= −∞, α− a.s. (1.3)

Together with (1.2), we conclude that 1
n1−1/s logPω(Xn/x < v) fluctuates between 0

and −∞, α-a.s.

Remark 1.6. (i) Theorem 1.5 was proved in a special case by Gantert in [7] in which
α(ω0 ∈ {p, 1}) = 1 for some fixed p < 1/2. In this case, the environment ω consists
of scattered “one-way nodes” (i.e., sites x with ωx = 1) and all remaining sites have
a fixed drift to the left. We note that the results in [7] also include cases where the
distribution α is such that the environment ω = {ωx}x∈Z is ergodic rather than i.i.d.
In the present paper we restrict ourselves to only i.i.d. environments but remove
the requirement that the support of ω0 is {p, 1}.

(ii) In the same setting of Theorem 1.5, it was shown in [9] that the corresponding
annealed probabilities decay polynomially fast. In particular,

lim
n→∞

1

log n
logPα(Xn < nv) = 1− s, ∀v ∈ (0, vα).

EJP 21 (2016), paper 16.
Page 3/27

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4529
http://www.imstat.org/ejp/


Oscillations of quenched slowdown asymptotics

Observe that the decay rate of the annealed case is slower than that of the quenched
case due to the extra randomness available in choosing an environment ω from Ω.

(iii) The precise sub-exponential quenched and annealed rates of decay of the slowdown
probabilities has also been studied under the assumption that the environment
has “positive or zero drift;” that is, α(ω0 ≥ 1/2) = 1 and α0 := α(ω0 = 1/2) ∈ (0, 1).
In this case the precise quenched and annealed asymptotics of the slowdown
probabilities were given in [15] an [16], respectively. In particular,

lim
n→∞

(log n)2

n
logPω(Xn < nv) = − (π logα0)2

8

(
1− v

vα

)
, ∀v ∈ (0, vα), (1.4)

and

lim
n→∞

1

n1/3
logPα(Xn < nv) = −

{
27(π logα0)2

32

(
1− v

vα

)}1/3

, ∀v ∈ (0, vα).

In particular, note that the existence of the quenched limit in (1.4) contrasts with
Theorem 1.5 and (1.2).

1.1 Notation and background

Before beginning the proof of Theorem 1.5, we introduce some notation that will be
used throughout the remainder of the paper. First, we note that throughout paper, we
will use c, c′, C, C ′, ... as generic positive constants whose values are not important and
may differ by one usage to another, and use C0, C1, C2, ... as constants constructed for a
specific usage.

Recall that for an environment ω = (ωx)x∈Z, we have defined ρx = 1−ωx
ωx

. Then, for
any integers i ≤ j we define

Πi,j :=

j∏
k=i

ρk, Wi,j :=

j∑
k=i

Πk,j , Ri,j :=

j∑
k=i

Πi,k

Wj :=
∑
k≤j

Πk,j , Ri :=

∞∑
k=i

Πi,k.

(Note that Wi and Ri are finite for all i ∈ Z with probability one if Eα[log ρ0] < 0.)
We will use these notations frequently in the next sections in order to simplify various
expressions under the quenched law. In particular, note that we can obtain a quenched
expectation of τi = Ti+1 − Ti (the time to cross from i to i+ 1) by

Eω[τi] = 1 + 2Wi, (1.5)

which is derived from [19, (2.1.7) and (2.1.8)].
Throughout this paper, we will use the method introduced by Sinai of the “potential”

of an environment which allows us to visualize the environment as a sequence of
“valleys”[17]. This technique was originally developed by Sinai to study the limiting
distributions of recurrent RWRE but has also shown to be useful for transient RWRE
[14],[5],[13],[4]. For a fixed environment ω, let the potential V (x) be the function

V (x) =


∑x−1
i=0 log ρi if x ≥ 1

0 if x = 0

−
∑−1
i=x log ρi if x ≤ −1.
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0

ν0ν−1ν−2 ν1

V (x)

x
ν2 ν3ν−3

ν−5 ν−4

Figure 1: The locations of ladder points {νi}i∈Z on Z.

The potential V (x) enables us to cut an environment into blocks by “ladder points”,
{νi, i ∈ Z}, defined by

ν0 = sup{y ≤ 0 : V (y) < V (k),∀k < y}, (1.6)

and for i ≥ 1,

νi = inf{x > νi−1 : V (x) < V (νi−1)}, and ν−i = sup{y < ν−i+1 : V (y) < V (k),∀k < y}.

Equivalently,
ν0 = sup{y ≤ 0 : Πk,y−1 < 1,∀k < y}

and, for i ≥ 1,

νi = inf{x > νi−1 : Πνi−1,x−1 < 1}, and ν−i = sup{y < ν−i+1 : Πk,y−1 < 1,∀k < y}.

Figure 1 is an example of the locations of ladder points on Z. Let us denote the length
between consecutive ladder points by

li = νi+1 − νi, i ∈ Z,

and the exponential height of the potential between the ladder points by

Mi := max{Πνi,j : νi ≤ j ≤ νi+1} = max{eV (j)−V (νi) : νi < j ≤ νi+1}, i ∈ Z.

This exponential height has a crucial role in our analysis because our result shows that
the quenched expectation of the crossing times on sections with “big” Mi determines
which subsequence to take for Theorem 1.5 to be satisfied. Also, we will show that the
sums of the quenched expectation of crossing times on sections with a “small” Mi is
negligible in the limit.

The ladder points of the environment form a convenient structure for studying the
hitting times of the random walk. Since the environment is i.i.d. under the measure
α, it follows that the blocks of the environment between adjacent ladder points Bi =

{ωx : x ∈ [νi, νi+1)} are i.i.d. for i 6= 0. In particular, {li}i 6=0 and {Mi}i 6=0 are both i.i.d.
sequences of random variables. However, the interval of environment between the
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ladder points on either side of the origin has a different distribution. In particular, under
the measure α, the random variables l0 and M0 have a different distribution that li and
Mi with i 6= 0. For this reason, it is convenient to at times work with a related measure
on environments Q given by

Q(·) = α(·|ν0 = 0).

The sequence {ωx}x∈Z is no longer i.i.d. under the measure Q, but this distribution has
the convenient property that the environment is stationary under shifts of the ladder
points of the environment. More precisely, if θ is the natural left-shift operator on
environments given by (θω)x = ωx+1, then for any k ∈ Z the environments ω and θνkω

have the same distribution under Q. Moreover, under the measure Q the blocks between
adjacent ladder points Bi are i.i.d. for all i ∈ Z with each having the same distribution
as B1 under the original measure α on environments. In particular, this implies that
{li}i∈Z and {Mi}i∈Z are both i.i.d. sequences under the measure Q.

The distribution Q was first introduced in [14], and we will frequently refer to
estimates under the measure Q that were proved in this paper. We mention here a few
of these that we will use throughout the remainder of the paper. First of all, under the
measure Q the distances li between ladder points have exponential tails. That is, there
exist constants C,C ′ > 0 such that

Q(li > x) ≤ Ce−C
′x. (1.7)

Secondly, it follows from a result of Iglehart [11, Theorem 1] that there exists a constant
C0 > 0 such that

Q(Mi > x) ∼ C0x
−s, as x→∞. (1.8)

(Note that it follows from this asymptotic statement that Q(Mi > x) ≤ Cx−s for all x > 0

and some C > 0. At times we will use this upper bound rather than the asymptotics in
(1.8).) One of the main ideas that will be used throughout the paper is that the expected
time for the random walk to cross between adjacent ladder points Eνiω [Tνi+1

] is roughly
comparable to the exponential height of the potential Mi between the ladder points.
Thus, we expect that Eω[Tν1 ] also has polynomial tails similar to (1.8). Indeed, it was
shown in [14] that

Q(Eω[Tν1 ] > x) ∼ K∞x−s, ∀x ≥ 0, (1.9)

for some K∞ > 0.

We conclude the introduction with an overview of the proof of Theorem 1.5. As in
[9], we will study the slowdown probabilities through the hitting times of the random
walk. That is, we will prove Theorem 1.5 by proving that lim infn→∞ n−1+1/s logPω(Tn >

un) = −∞ for all u > 1/vα. We will first show that this limit holds for Q-a.e. environment
ω and then from this deduce that the limit also holds almost surely under the original
measure α on environments. The proof of the quenched slowdown asymptotics for the
hitting times is structured as follows. In Section 2, we give an explicit upper bound
of the quenched moment generating function of the hitting times with a one way node
placed on a site to the left of the starting point. This explicit form shows that the sums of
quenched expected time between ladder locations control the quenched subexponential
tail of hitting times. In Section 3, we will show the sums of the quenched expected
crossing time between ladder locations with “small” Mi are negligible in the limit under
a measure Q. Finally, in Section 4 we will prove the needed quenched asymptotics of
slowdown probabilities for hitting times to complete the proof of Theorem 1.5.
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2 The moment generating function of hitting times with an added
reflection point

In this section, we show an upper bound of the quenched moment generating function
of hitting time with a reflection point. We say a site x is a reflection point if ωx = 1.
Under our assumptions, if α(ω0 = 1) = 0 (that is, there are no reflection points in the
environment) then for α-a.e. environment ω the moment generating function Eω[eλτ1 ] =

∞ for all λ > 0 [1]. However, if we place a reflection point to the left of the starting point
of the random walk then the moment generating function is finite for small enough λ > 0

and we will give an upper bound for this modified moment generating function. For
any environment ω and any m ∈ Z, let ω(m) be the environment ω modified by adding a
reflection point at m. That is,

ω(m)x =

{
ωx x 6= m

1 x = m.

The main result in this section is the following lemma which gives an upper bound on
quenched moment generating functions of hitting times with a reflection point added to
the left of the starting point.

Lemma 2.1. Let m ≤ n. If λ is small enough such that

e−λ − sinh(λ)
(
Emω(m)[Tn+1]− (n+ 1−m)

)
> 0 (2.1)

where sinh(λ) = eλ−e−λ
2 , then for all m ≤ k ≤ n,

Eω(m)[e
λτk ] ≤ eλ

e−λ − sinh(λ)
(
Emω(m)[Tn]− (k −m)

)
e−λ − sinh(λ)

(
Emω(m)[Tk+1]− (k + 1−m)

) . (2.2)

Remark 2.2. Since Emω(m)[Tn+1]− (n+ 1−m) =
∑n
k=m(Eω(n)[τk]− 1) is non-decreasing

in n, if λ > 0 is such that (2.1) holds then it follows that e−λ − sinh(λ)(Emω(m)[Tk+1]− (k +

1 −m)) > 0 for all m ≤ k ≤ n, and this is the condition that will be used in the proof
below to obtain the upper bound (2.2).

Proof. Clearly, it is enough to prove the statement of the lemma when m = 0. Therefore,
for convenience of notation, let g(k) = Eω(0)[e

λτk ] for k ≥ 0. We need to show that

g(k) ≤ eλ
e−λ − sinh(λ)(Eω(0)[Tk]− k)

e−λ − sinh(λ)(Eω(0)[Tk+1]− (k + 1))
, for 0 ≤ k ≤ n, (2.3)

whenever λ is small enough so that

e−λ − sinh(λ)(Eω(0)[Tn+1]− n− 1) > 0. (2.4)

For n = k = 0, g(0) = eλ because a reflection point to the right is placed at a site 0. Thus,
(2.3) clearly holds when n = 0 and so we need only to consider n ≥ 1. For any 1 ≤ k ≤ n,
let us decompose τk into a series of crossing times from k − 1 to k before reaching k + 1.
Let N be a number of times a walk steps from k to k − 1 before stepping from k to k + 1.
Then, N is a geometric random variable with a success probability of ωk and

τk = N + 1 +

N∑
i=1

τ
(i)
k−1 in distribution,
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where τ (i)
k−1 is an independent copy of τk−1 for each i. Therefore, we have that

g(k) =

∞∑
n=0

Eω(0)

[
eλ(N+1+

∑N
i=1 τ

(i)
k−1)|N = n

]
P (N = n)

=

∞∑
n=0

eλ(n+1)g(k − 1)n(1− ωk)nωk

= ωke
λ
∞∑
n=0

(
(1− ωk)eλg(k − 1)

)n
.

Here, we claim the following statement and postpone its proof until the end that (2.4) is
a sufficient condition for

(1− ωk)eλg(k − 1) < 1, 1 ≤ k ≤ n. (2.5)

Then with a sufficiently small λ, we obtain a representation of the moment generating
function introduced in terms of continued fraction or

g(k) =
ωke

λ

1− (1− ωk)eλg(k − 1)
, 1 ≤ k ≤ n. (2.6)

Using (2.6), we will give a proof of (2.3) by induction in k. If k = 1, then

g(1) =
ω1e

λ

1− (1− ω1)eλg(0)
=

ω1e
λ

1− (1− ω1)e2λ
=

1

e−λ + ρ1e−λ − ρ1eλ

=
1

e−λ − sinh(λ)(E0
ω(0)[T2]− 2)

,

where the last equality is obtained by noting that (1.5) implies Eω(0)[T2] = 2 + 2ρ1.
Suppose that the inequality in (2.3) holds for g(k − 1). Then

g(k) =
ωke

λ

1− (1− ωk)eλg(k − 1)
=

1

e−λ + ρke−λ − ρkg(k − 1)

≤ 1

e−λ + ρke−λ − ρkeλ
(
e−λ−sinh(λ)(Eω(0)[Tk−1]−(k−1))

e−λ−sinh(λ)(Eω(0)[Tk]−k)

)
=

e−λ− sinh(λ)(Eω(0)[Tk]− k)

(e−λ + ρke−λ)(e−λ− sinh(λ)(Eω(0)[Tk]−k))− ρkeλ(e−λ− sinh(λ)(Eω(0)[Tk−1]− (k− 1)))

= eλ
e−λ − sinh(λ)(Eω(0)[Tk]− k)

(1 + ρk)(e−λ − sinh(λ)(Eω(0)[Tk]− k))− ρke2λ(e−λ − sinh(λ)(Eω(0)[Tk−1]− (k − 1)))

≤ eλ
e−λ − sinh(λ)(Eω(0)[Tk]− k)

(1 + ρk)(e−λ − sinh(λ)(Eω(0)[Tk]− k))− ρk(eλ − sinh(λ)(Eω(0)[Tk−1]− (k − 1)))
.

(2.7)

The proof of (2.2) will then be complete if we can show the denominator in (2.7) is equal
to the denominator in (2.3). To this end, note that (1.5) implies that

Eω(0)[Tk] = k + 2

k−1∑
j=1

j∑
i=1

Πi,j . (2.8)
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Therefore, the denominator in (2.7) is equal to

(1 + ρk)

e−λ − 2 sinh(λ)

k−1∑
j=1

j∑
i=1

Πi,j

− ρk
eλ − 2 sinh(λ)

k−2∑
j=1

j∑
i=1

Πi,j


= e−λ − ρk(eλ − e−λ)− 2 sinh(λ)

k−1∑
j=1

j∑
i=1

Πi,j + ρk

k−1∑
j=1

j∑
i=1

Πi,j − ρk
k−2∑
j=1

j∑
i=1

Πi,j


= e−λ − 2 sinh(λ)

ρk +

k−1∑
j=1

j∑
i=1

Πi,j +

k−1∑
i=1

Πi,k


= e−λ − 2 sinh(λ)

k∑
j=1

j∑
i=1

Πi,j

= e−λ − sinh(λ)(Eω(0)[Tk+1]− (k + 1)). (2.9)

Finally, it remains to prove that (2.4) implies (2.5). The proof uses a mathematical
induction in k which is very similar to the proof of (2.3). If k = 1, (2.4) and Remark 2.2
implies

e−λ > sinh(λ)(Eω(0)[T2]− 2) = (eλ − e−λ)ρ1.

Since ρ1 = (1− ω1)/ω1 and g(0) = eλ, this is equivalent to

1 > e2λ(1− ω1) = eλg(0)(1− ω1).

This verifies (2.5) for k = 1. Suppose now that (2.5) holds up to k − 1 < n. Then, the
above proof shows that the inequality (2.3) holds for g(k − 1). Therefore,

1− eλg(k − 1)(1− ωk)

≥ 1− eλ(1− ωk)eλ
e−λ − sinh(λ)(Eω(0)[Tk−1]− (k − 1))

e−λ − sinh(λ)(Eω(0)[Tk]− k)

=
e−λ − sinh(λ)(Eω(0)[Tk]− k)− e2λ(1− ωk)(e−λ − sinh(λ)(Eω(0)[Tk−1]− (k − 1)))

e−λ − sinh(λ)(Eω(0)[Tk]− k)

≥
e−λ − sinh(λ)(Eω(0)[Tk]− k)− (1− ωk)(eλ − sinh(λ)(Eω(0)[Tk−1]− (k − 1)))

e−λ − sinh(λ)(Eω(0)[Tk]− k)

≥ ωk
(1 + ρk)(e−λ − sinh(λ)(Eω(0)[Tk]− k))− ρk(eλ − sinh(λ)(Eω(0)[Tk−1]− (k − 1)))

e−λ − sinh(λ)(Eω(0)[Tk]− k)

= ωk
e−λ − sinh(λ)(Eω(0)[Tk+1]− (k + 1))

e−λ − sinh(λ)(Eω(0)[Tk]− k)
,

where the last equality comes from (2.9). Since Eα[log ρ0] < 0 implies ωk > 0 and Remark
2.2 implies

e−λ − sinh(λ)(Eω(0)[Tk+1]− (k + 1))

e−λ − sinh(λ)(Eω(0)[Tk]− k)
> 0,

we get that 1 > eλg(k − 1)(1− ωk).

As a corollary of Lemma 2.1 we obtain the following upper bound for the quenched
moment generating function of the time to cross an interval with a reflection point at
some point to the left of X0.
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Corollary 2.3. Suppose m < k0 < k1 for any m, k0, k1 ∈ Z. If λ > 0 is sufficiently small
enough such that

e−λ − sinh(λ)Emω(m)[Tk1 ] > 0, (2.10)

then,

Ek0ω(m)[e
λTk1 ] ≤ exp

(
sinh(λ)Ek0ω(m)[Tk1 ]

e−λ − sinh(λ)Emω(m)[Tk1 ]

)
. (2.11)

Proof. First of all, if λ > 0 is small enough so that (2.10) holds then Remark 2.2 implies
that

e−λ − sinh(λ)
(
Emω(m)[Ti+1]− (i+ 1−m)

)
> 0, for all k0 ≤ i ≤ k1 − 1.

By Lemma 2.1 and using the fact that the sequence {τi}k0≤i≤k1−1 is independent under
Pω(m), we have

Ek0ω(m)[e
λTk1 ] = Eω(m)[e

λ
∑k1−1

i=k0
τi ] =

k1−1∏
i=k0

Eω(m)[e
λτi ]

≤
k1−1∏
i=k0

eλ
e−λ − sinh(λ)

(
Emω(m)[Ti]− (i−m)

)
e−λ − sinh(λ)

(
Emω(m)[Ti+1]− (i+ 1−m)

)
= eλ(k1−k0)

e−λ − sinh(λ)
(
Emω(m)[Tk0 ]− (k0 −m)

)
e−λ − sinh(λ)

(
Emω(m)[Tk1 ]− (k1 −m)

)
= eλ(k1−k0)

1 +
sinh(λ)

(
Ek0ω(m)[Tk1 ]− (k1 − k0)

)
e−λ − sinh(λ)

(
Emω(m)[Tk1 ]− (k1 −m)

)
 .

Since 1 + x ≤ ex for any x ∈ R we can conclude that

eλ(k1−k0)

1 +
sinh(λ)

(
Ek0ω(m)[Tk1 ]− (k1 − k0)

)
e−λ − sinh(λ)

(
Emω(m)[Tk1 ]− (k1 −m)

)


≤ exp

λ(k1 − k0) +
sinh(λ)

(
Ek0ω(m)[Tk1 ]− (k1 − k0)

)
e−λ − sinh(λ)

(
Emω(m)[Tk1 ]− (k1 −m)

)


≤ exp

λ(k1 − k0) + sinh(λ)
(
Ek0ω(m)[Tk1 ]− (k1 − k0)

)
e−λ − sinh(λ)

(
Emω(m)[Tk1 ]− (k1 −m)

)


≤ exp

(
sinh(λ)Ek0ω(m)[Tk1 ]

e−λ − sinh(λ)Emω(m)[Tk1 ]

)
,

where in the second inequality we used that the denominator inside the exponent is
at most e−λ ≤ 1, and in the last inequality we used that λ < sinh(λ) for λ > 0. This
completes the proof of the corollary.

3 Bounds for quenched expected crossing times

From the results of the previous section, we see that the quenched expected crossing
times are key to obtaining bounds on the quenched moment generating functions of
hitting times. In particular, it will be necessary to obtain control on how small λ > 0 must

EJP 21 (2016), paper 16.
Page 10/27

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4529
http://www.imstat.org/ejp/


Oscillations of quenched slowdown asymptotics

be for the bounds given by Corollary 2.3 to be valid. In order to consider this problem
in more general setting, let us define a sequence an = nη1 for some η1 > 0, and study
Eω[Tνan ] under the measure Q. First, we decompose Eω[Tνan ] to the series of crossing
time between consecutive ladder locations such that

Eω
[
Tνan

]
=

νan−1∑
i=0

Eνiω
[
Tνi+1

]
.

For simplicity, we will introduce some notation.

βi = Eνiω
[
Tνi+1

]
, i ∈ Z.

Under the measure Q, recall that ν0 = 0 and that θνiω has a same distribution for any
i ∈ Z. As a result, {βi}i∈Z is stationary under Q. Next, we determine i.i.d components in
i which mainly contribute to the size of each βi. It turns out that βi is roughly comparable
to Mi. Suppose bn = nη2 for some η1 > η2 > 0. The main goal of this section is to show
that the size of βi with Mi ≤ bn is small enough that the sums of such βi’s is unlikely
to play a large role in the size of Eω

[
Tνan

]
. Therefore, the large deviation events are

primarily dependent on the βi for indices i with Mi > bn. The following Proposition is
the main result of this section.

Proposition 3.1. Let an = nη1 and bn = nη2 for some η1 > η2 > 0. Let Assumption 1.1
and 1.3 hold. Then, for any ε > 0 there exist constants C, C ′ such that

Q

(
an−1∑
i=0

(βiI{Mi≤bn} − EQ[β0]) > anε

)
≤ C ′ane−C(logn)2 . (3.1)

The remainder of this section is devoted to the proof of Proposition 3.1. First of all,
let cn := b(log n)2c and define β(cn)

i to be a quenched expected crossing time from νi to
νi+1 with a reflection point located at νi−(cn−1). That is,

β
(cn)
i := Eνiω(νi−(cn−1))

[
Tνi+1

]
.

The strategy of proof for (3.1) is first to show that the sums of differences of βiI{Mi≤bn}

and β(cn)
i I{Mi≤bn} are negligible in the limit, and then prove the inequality of (3.1) with

βi replaced by β(cn)
i . More precisely, we have

Q

(
an−1∑
i=0

(βiI{Mi≤bn} − EQ[β0]) > anε

)

≤ Q

(
an−1∑
i=0

(βi − β(cn)
i )I{Mi≤bn} >

ε

2
an

)
+Q

(
an−1∑
i=0

(β
(cn)
i I{Mi≤bn} − EQ[β0]) >

ε

2
an

)
,

(3.2)

and we will show that each term in (3.2) is bounded above by Cane
−C′(logn)2 . The

following lemma does this for the first term of (3.2).

Lemma 3.2. For any ε > 0, there exist C, C ′ > 0 such that

Q

(
an−1∑
i=0

(βi − β(cn)
i )I{Mi≤bn} >

ε

2
an

)
< C ′ane

−C(logn)2 .
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Proof. Using (1.5), we may write

βi =

νi+1−1∑
j=νi

(1 + 2Wj)

= li + 2

νi+1−1∑
j=νi

Wνi,j + 2Wνi−1Rνi,νi+1−1. (3.3)

Similarly, applying (1.5) with a reflection at ωνi−(cn−1)
(so that ρνi−(cn−1)

= 0) gives

β
(cn)
i = li + 2

νi+1−1∑
j=νi

Wνi,j + 2Rνi,νi+1−1Wνi−(cn−1),νi−1. (3.4)

Then by (3.3) and (3.4), we get

βi − β(cn)
i = 2(1 +Wνi−(cn−1)−1)Πνi−(cn−1),νi−1Rνi,νi+1−1

Hence,

Q

(
an−1∑
i=0

(
βi − β(cn)

i

)
I{Mi≤bn} > an

ε

2

)

= Q

(
an−1∑
i=0

(1 +Wνi−(cn−1)−1)Πνi−(cn−1),νi−1Rνi,νi+1−1I{Mi≤bn} > an
ε

4

)

Since Πi1,i2 ≤Mi for any i1, i2 such that νi ≤ i1 ≤ i2 ≤ νi+1 − 1,

Rνi,νi+1−1I{Mi≤bn} =

νi+1−1∑
k=νi

Πνi,kI{Mi≤bn} ≤ liMiI{Mi≤bn} ≤ libn.

Also, from (1.7) and Lemma 2.2 in [14] there exist c, c′ > 0 such that

Q(l0 > x) < ce−c
′x, and Q(1 +W−1 > x) < ce−c

′x. (3.5)

Applying (3.5) and Chebyshev Inequality,

Q

(
an−1∑
i=0

(1 +Wνi−(cn−1)−1)Πνi−(cn−1),νi−1Rνi,νi+1−1I{Mi≤bn} > an
ε

4

)
≤ Q

(
∃i ∈ [0, an − 1] : li > (log n)2

)
+Q

(
∃i ∈ [−cn + 1, an − cn] : 1 +Wνi−1 > (log n)2

)
+Q

(
an−1∑
i=0

Πνi−(cn−1),νi−1 >
εan

4(log n)4bn

)

≤ 2cane
−c′(logn)2 +

4(log n)4bn
ε

EQ[Π0,ν1−1]cn−1 ≤ Cane−C(logn)2 for some C, C ′ > 0,

where the second to last inequality comes from the fact that EQ[Πνi−k,νi−1] = EQ[Π0,ν1−1]

(since blocks between ladder points are i.i.d. under Q), and the last inequality follows
from EQ[Π0,ν1−1] < 1, bn(log n)4 � an, and cn = b(log n)2c.

Regarding the second term of (3.2), we will begin by decomposing β(cn)
i in a way that

will help us to get control the dependence in the sequence. Recall the decomposition of
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β
(cn)
i in (3.4). Observe that the first two terms are i.i.d as sequences indexed by i, and

the last term is stationary in i but dependent under measure Q. Since (1.5) implies that

EQ[β0] = EQ[l0] + 2EQ

ν1−1∑
j=0

W0,j

+ 2EQ[W−1R0,ν1−1],

we can bound the second term of (3.2) by three different probabilities such that

Q

(
an−1∑
i=0

(β
(cn)
i I{Mi≤bn} − EQ[β0]) >

ε

2
an

)

≤ Q

(
an−1∑
i=0

(li − EQ[l0]) > an
ε

6

)

+Q

an−1∑
i=0

νi+1−1∑
j=νi

Wνi,jI{Mi<bn} − EQ

ν1−1∑
j=ν0

Wν0,j

 >
ε

12
an


+Q

(
an−1∑
i=0

{
Wνi−(cn−1),νi−1Rνi,νi+1−1I{Mi≤bn} − EQ[W−1R0,ν1−1]

}
> an

ε

12

)
.

The proof of Proposition 3.1 then follows easily from the following three lemmas.

Lemma 3.3. For any ε > 0, there exists c(ε) > 0 such that

Q

(
an−1∑
i=0

(li − EQ[l0]) > anε

)
= O

(
e−c(ε)an

)
.

Lemma 3.4. For any ε > 0, there exists C, C ′ > 0 such that

Q

an−1∑
i=0

νi+1−1∑
j=νi

Wνi,jI{Mi<bn} − EQ

ν1−1∑
j=ν0

Wν0,j

 > anε

 ≤ Cane−C′(logn)2 . (3.6)

Lemma 3.5. For any ε > 0, there exists constants C, C ′ > 0 such that

Q

(
an−1∑
i=0

{
Wνi−(cn−1),νi−1Rνi,νi+1−1I{Mi≤bn} − EQ[W−1R0,ν1−1]

}
> anε

)
≤ Cane−C

′(logn)2

(3.7)

The proof of Lemma 3.3 is a standard result in large deviation theory since the li are
i.i.d. with exponential tails. We will therefore only give the proofs of Lemmas 3.4 and 3.5.
Although the summands in (3.6) are i.i.d, we cannot use the standard large deviation
techniques involving exponential moments to obtain a bound like in Lemma 3.3 because
the exponential moment is infinite as

∑νi+1−1
j=νi

Wνi,j > Mi and Q(Mi > x) ∼ C ′′/xs for
1 < s. Instead, we adapt a technique of Nagaev and Fuk used on estimating for large
deviation probability of sums of heavy tailed independent random variables [6]. Let X
be a random variable on arbitrary probability space Ω and let A be a measurable subset
of Ω. If X ≤ y, we claim that for any h > 0,

E
[
ehX − 1− hX

]
≤ ehy − 1− hy

y2
E
[
X2
]
. (3.8)

It is easy to verify (3.8) by the fact that (ehx−1−hx)/x2 is non-decreasing in x. Secondly,
we state the following lemma which follows easily from the tail asymptotics (1.8) for Mi

under the measure Q.
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Lemma 3.6. Let Assumptions 1.1 and 1.3 hold.

1. If s < 2, then EQ[M2
0 IM0≤x] ∼ C0s

2−sx
2−s as x→∞.

2. If s = 2, then EQ[M2
0 IM0≤x] ∼ 2C0 log x as x→∞.

3. If s > 2, then EQ[M2
0 ] <∞.

Now we are ready to give the proof of Lemma 3.4.

Proof of Lemma 3.4. For the simplicity, let us first introduce a notation.

W := EQ

ν1−1∑
j=ν0

Wν0,j

 .
Also, define a positive function ζ(i, n) such that

ζ(i, n) :=

νi+1−1∑
j=νi

Wνi,jI{Mi<bn}∩{li<(logn)2}.

Since Πi1,i2 ≤Mi for any i1, i2 such that νi ≤ i1 ≤ i2 ≤ νi+1 − 1,

νi+1−1∑
j=νi

Wνi,j =

νi+1−1∑
j=νi

j∑
k=νi

Πk,j ≤
νi+1−1∑
j=νi

j∑
k=νi

Mi ≤
νi+1−1∑
j=νi

liMi ≤ l2iMi.

As a result, we have a following bound of ζ(i, n).

ζ(i, n) ≤ (log n)4MiI{Mi<bn} ≤ (log n)4bn. (3.9)

Replacing the notations in the problem by ζ(i, n) and W the notation above, the problem
is simplified to

Q

an−1∑
i=0

νi+1−1∑
j=νi

Wνi,jI{Mi<bn} −W

 > anε


≤ Q

(
∃i ∈ [0, an − 1] : li > (log n)2

)
+Q

(
an−1∑
i=0

ζ(i, n) > an(ε+W )

)
. (3.10)

By (3.5) and the stationarity of li under Q, the first term is bounded by cane−c
′(logn)2

for some c, c′ > 0. So, it remains to prove a similar upper bound for the second term
of (3.10). Recall that ζ(i, n) are i.i.d. sequences in i under the measure Q. Then by
Chebyshev Inequality, for any λ ≥ 0

Q

(
an−1∑
i=0

ζ(i, n) > an(ε+W )

)
≤ EQ[eλ

∑dane−1
i=0 ζ(i,n)]e−λan(W+ε)

= e−λan(ε+W )EQ[eλζ(0,n)]dane. (3.11)

Note that EQ[ζ(0, n)] ≤W , and ζ(0, n) ≤ (log n)4bn. Then using (3.8) and (3.9),

EQ

[
eλζ(0,n)

]
= 1 + λEQ [ζ(0, n)] + EQ

[
eλζ(0,n) − 1− λζ(0, n)

]
≤ 1 + λW +

eλ(logn)4bn − 1− λ(log n)4bn
((log n)4bn)2

E
[
ζ(0, n)2

]
≤ 1 + λW +

eλ(logn)4bn − 1− λ(log n)4bn
b2n

E
[
M2

0 I{M0<bn}
]
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With a choice of λ = 1
(logn)4bn

, we get

EQ

[
eλζ(0,n)

]
≤ 1 +

W

(log n)4bn
+

2

b2n
E
[
M2

0 I{M0<bn}
]

≤ exp

(
W

(log n)4bn
+

2

b2n
E
[
M2

0 I{M0<bn}
])

.

Applying Lemma 3.6, we obtain that there exists some constant C > 0 such that

EQ

[
eλζ(0,n)

]
≤


exp

(
W

(logn)4bn
+ C

bsn

)
if 1 < s < 2

exp
(

W
(logn)4bn

+ C logn
b2n

)
if s = 2

exp
(

W
(logn)4bn

+ C
b2n

)
if 2 < s.

(3.12)

Combining (3.11) and (3.12) we get that there exists a constant c > 0 such that

Q

(
an−1∑
i=0

ζ(i, n) > an(ε+W )

)
≤


c× exp

(
an

(
C
bsn
− ε

(logn)4bn

))
if 1 < s < 2

c× exp
(
an

(
C logn
b2n
− ε

(logn)4bn

))
if s = 2

c× exp
(
an

(
C
b2n
− ε

(logn)4bn

))
if 2 < s.

Note that all three cases are bounded above by ce
−c′ an

(logn)4bn for some c, c′ > 0 for n
large enough. Hence, the second term of (3.10) is bounded above by the right-hand side
of (3.6) for large n.

In preparation for the proof of Lemma 3.5, we introduce the following notation.

W̃i,n := Wνi−(cn−1),νi−1
and R̃i := Rνi,νi+1−1,

and define

ψ(i, n) := R̃iI{Mi≤bn, li≤(logn)2}W̃i,nI{W̃i,n<(logn)2}.

Note that ψ(i + cn, n) is independent of ψ(i, n) under the measure Q. Also, since R̃i =∑νi+1−1
k=νi

Πνi,k ≤ liMi,

ψ(i, n) ≤ (log n)4MiI{Mi<bn} ≤ (log n)4bn. (3.13)

Finally, we give the proof of Lemma 3.5.

Proof of Lemma 3.5. For the simplification to notation, denote W ′ := EQ[W−1] and
R := E[R0,ν1−1]. Note that R0,ν1−1 and W−1 are independent because R0,ν1−1 ∈ {ωx :

0 ≤ x ≤ ν1 − 1} while W−1 ∈ {ωx : x ≤ −1}, so we get

EQ[W−1R0,ν1−1] = EQ[W−1]EQ[R0,ν1−1] = W ′R.

With new notations described above, the problem is simplified to

Q

(
an−1∑
i=0

{
W̃i,nR̃i −W ′R

}
> anε

)
≤ Q

(
∃i ∈ [0, an − 1] : li > (log n)2

)
+Q

(
∃i ∈ [0, an − 1] : Wνi−1 > (log n)2

)
+Q

(
an−1∑
i=0

(ψ(i, n)−W ′R) > anε

)
. (3.14)
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By (3.5), the first and second terms of (3.14) are bounded by 2cane
−c′(logn)2 for some

constant c, c′ > 0. Hence, it is enough to show that there exist some constants C,C ′ > 0,

such that

Q

(
an−1∑
i=0

ψ(i, n) > an(ε+W ′R)

)
≤ Cane−C

′(logn)2 (3.15)

A proof of (3.15) begins with grouping {ψ(i, n)}{0≤i≤an−1} into cn = b(log n)2c smaller
sums as follows. In particular, since

an−1∑
i=0

ψ(i, n) ≤
cn−1∑
j=0

ban/cnc∑
i=0

ψ(j + i cn, n)

 ,

then the third term of (3.14) is bounded above by

Q

cn−1∑
j=0

ban/cnc∑
i=0

ψ(j + i cn, n)

 > an(ε+W ′R)


≤
cn−1∑
j=0

Q

ban/cnc∑
i=0

ψ(j + i cn, n) >
an
cn

(ε+W ′R)


= cnQ

ban/cnc∑
i=0

ψ(i cn, n) >
an
cn

(ε+W ′R)

 , (3.16)

where the last equality follows by the stationarity of ψ(i, n) under Q. Notice terms in
the sum inside the probability in (3.16) are i.i.d. under Q. Hence, applying Chebyshev
Inequality to (3.16), for any λ > 0

Q

ban/cnc∑
i=0

ψ(i cn, n) >
an
cn

(ε+W ′R)

 ≤ EQ [e∑ban/cnci=0 λψ(i cn,n)
]
e−

λan
cn

(ε+W ′R)

= EQ

[
eλψ(0,n)

]ban/cnc+1

e−
λan
cn

(ε+W ′R). (3.17)

Note that E[ψ(0, n)] ≤W ′R and recall that ψ(0, n) ≤ (log n)4bn. Therefore, using (3.8)

EQ

[
eλψ(0,n)

]
= 1 + λEQ [ψ(0, n)] + EQ

[
eλψ(0,n) − 1− λψ(0, n)

]
≤ 1 + λW ′R+

eλ(logn)4bn − 1− λ(log n)4bn
((log n)4bn)2

E
[
ψ(0, n)2

]
≤ 1 + λW ′R+

eλ(logn)4bn − 1− λ(log n)4bn
b2n

E
[
M2

0 I{M0<bn}
]
,

where in the last line we used the first inequality in (3.13). With a choice of λ = 1
(logn)4bn

,

we get

EQ

[
eλψ(0,n)

]
≤ 1 +

W ′R

(log n)4bn
+

2

b2n
E
[
M2

0 I{M0<bn}
]

≤ exp

(
W ′R

(log n)4bn
+

2

b2n
E
[
M2

0 I{M0<bn}
])

,

and thus, applying Lemma 3.6, there exists a constant C > 0 such that

EQ

[
eλψ(0,n)

]
≤


exp

(
W ′R

(logn)4bn
+ C

bsn

)
if 1 < s < 2

exp
(

W ′R
(logn)4bn

+ C logn
b2n

)
if s = 2

exp
(

W ′R
(logn)4bn

+ C
b2n

)
if 2 < s.

(3.18)
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Combining (3.16), (3.17) and (3.18), there exist constants c, C > 0 such that, for large n,

Q

(
an−1∑
i=0

(ψ(i, n)−W ′R) > anε

)
≤


c× cn × exp

(
an
cn

(
C
bsn
− ε

(logn)4bn

))
if 1 < s < 2

c× cn × exp
(
an
cn

(
C logn
b2n
− ε

(logn)4bn

))
if s = 2

c× cn × exp
(
an
cn

(
C
b2n
− ε

(logn)4bn

))
if 2 < s.

Note that all three cases are bounded above by c× cne
−c′ an

cn(logn)4bn < Cane
−C′(logn)2 for

some c, c′, C, C ′ > 0 with n large enough, which completes the proof of (3.15).

4 The quenched subexponential tail of hitting time large devia-
tions

The main goal of this section is to prove the following.

Proposition 4.1. Under the same assumptions as Theorem 1.5, for any u ∈ ( 1
vα
,∞),

lim inf
n→∞

1

n1−1/s
logPω(Tνn > uνn) = −∞, α-a.s. (4.1)

Before giving the proof of Proposition 4.1, we will first show how it can be used to
complete the proof of Theorem 1.5.

Proof of Theorem 1.5. Let v < v′ < vα, then

Pω(Xn < nv) ≤ Pω(Tnv′ > n) + Pnv
′

ω (Tnv <∞). (4.2)

First, we will show that Proposition 4.1 implies that

lim inf
n→∞

1

n1−1/s
logPω(Tnv′ > n) = −∞, α-a.s. (4.3)

To this end, let µ and µ′ be such that v′ < µ < µ′ < vα and let c1 = µ
EQ[ν1] . Since

limn→∞
νn
n = EQ[ν1], α-a.s., it follows that

lim
n→∞

vbc1nc

n
= c1EQ[ν1] = µ.

That is,
νbc1nc
n ∈ (v′, µ′) for all n sufficiently large (depending on ω). Thus, for α-a.e.

environment and all n large enough we have that

Pω(Tnv′ > n) ≤ Pω(Tνbc1nc > n) = Pω

(
Tνbc1nc >

n

νbc1nc
νbc1nc

)
≤ Pω

(
Tνbc1nc >

1

µ′
νbc1nc

)
,

and since 1/µ′ > 1/vα it follows from Proposition 4.1 that (4.3) holds. Regarding the
second term on the right of (4.2), it was shown in [8, Lemma 3.3] that there is some
constant C > 0 such that Pα[Tm <∞] ≤ exp(Cm) for any m < 0. Therefore, we have a
following upper bound with a choice of small ε > 0 such that

Pα(Pnv
′

ω (Tnv <∞) ≥ e−εn) ≤ eεnPnv
′

α (Tnv <∞)

= eεnPα(Tn(v−v′) <∞) ≤ eεneCn(v−v′).

Since v < v′, if ε > 0 is chosen sufficiently small then the upper bound given above is
exponentially decreasing in n and so the Borel-Cantelli Lemma implies that Pnv

′

ω (Tnv <

∞) is almost surely eventually less than e−C
′n for some constant C ′ > 0 for all n large.

In particular, this implies that

lim
n→∞

1

n1−1/s
logPnv

′

ω (Tnv <∞) = −∞, α-a.s.,

which concludes our proof.
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To prove Proposition 4.1 let us first define a new measure α̃ on environments by
α̃(ω ∈ ·) = α(θν0ω ∈ ·). That is, α is the distribution of the environment shifted so that
the ladder point ν0 ≤ 0 is at the origin. Compare this with the distribution Q which is
obtained instead by conditioning ν0 to be at the origin. We show next that α̃ is in fact
absolutely continuous with respect to Q.

Lemma 4.2. α̃ is absolutely continuous with respect to Q.

Proof. First of all, note that

{ν0 = −k} = {Πj,−k−1 < 1 for j < −k, Π−k,j ≥ 1 for − k ≤ j ≤ −1} .

Therefore, for any event A ∈ σ({ωz}, z ∈ Z),

α̃(ω ∈ A)

=

∞∑
k=0

α(ν0 = −k)α(θ−kω ∈ A | ν0 = −k)

=

∞∑
k=0

α(ν0 = −k)α(θ−kω ∈ A |Πj,−k−1 < 1 for j < −k, Π−k,j ≥ 1 for − k ≤ j ≤ −1)

=

∞∑
k=0

α(ν0 = −k)α(ω ∈ A |Πj,−1 < 1 for j < 0, Π0,j ≥ 1 for 0 ≤ j ≤ k − 1)

=

∞∑
k=0

α(ν0 = −k)
α(ω ∈ A, Π0,j ≥ 1 for 0 ≤ j ≤ k − 1 |Πj,−1 < 1 for j < 0)

α(Π0,j ≥ 1 for 0 ≤ j ≤ k − 1 |Πj,−1 < 1 for j < 0)

=

∞∑
k=0

α(ν0 = −k)
Q(ω ∈ A, ν1 > k)

Q(ν1 > k)
.

Therefore, if Q(ω ∈ A) = 0 then α̃(ω ∈ A) = 0 also. That is, α̃ is absolutely continuous
with respect to Q.

Remark 4.3. In fact, the above proof shows that dα̃
dQ (ω) =

∑ν1(ω)−1
k=0 rk, where rk =

α(ν0=−k)
Q(ν1>k) .

We now show how the measure α̃ is helpful for proving Proposition 4.1. Since ν0 ≤ 0

for any environment ω, we have

Pω(Tνn > uνn) ≤ P ν0ω (Tνn > uνn),

and thus to prove Proposition (4.1) it will be enough to show that the conclusion holds
with α̃ in place of α. That is, we need to show that

lim inf
n→∞

1

n1−1/s
logPω(Tνn > uνn) = −∞, α̃-a.s.

However, since Lemma 4.2 shows that α̃ is absolutely continuous with respect to Q, the
above limit will follow if we can show the same almost sure limit under the measure Q.
That is, we have reduced the proof of Proposition 4.1 to the following.

Proposition 4.4. Under the same assumptions as Theorem 1.5, for any u ∈ ( 1
vα
,∞),

lim inf
n→∞

1

n1−1/s
logPω(Tνn > uνn) = −∞, Q-a.s. (4.4)

The remainder of the paper is devoted to the proof of Proposition 4.4. We will follow
the approach of [9] by dividing the environment into large blocks and then analyzing

EJP 21 (2016), paper 16.
Page 18/27

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4529
http://www.imstat.org/ejp/
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the crossing times of these large blocks. The main improvement we make is that we
obtain better estimates on the quenched moment generating functions of these crossing
times using the results from Section 2. To decompose the environment into blocks, fix
an integer m > s, let us define subsequence nk such that

nk = mmk for k ≥ 0,

and ak = n
1/s
k /D for some fixed D > 1, which will later allow to be arbitrarily large. The

blocks of the environment will be the intervals between ladder locations νjak and ν(j+1)ak

for j ∈ Z. To simplify notation, let us denote the ladder locations at the edges of the
blocks by

ν(j, k) := νjak , j ∈ Z, k ≥ 1.

The path of the random walk Xn on Z naturally defines a birth-death chain by
observing how the random walk moves from one ν(j, k) to either ν(j − 1, k) or ν(j + 1, k).
To be precise, let {ti}i≥0 be the sequence of times when the random walk reaches a
ladder point ν(j, k) different from the last such ladder point visited. That is, t0 = 0 and

ti = inf
{
n > ti−1 : Xn ∈ {ν(j, k)}j∈Z and Xn 6= Xti−1

}
, i ≥ 1.

We then obtain a birth-death process {Zi}i≥0 on Z by letting Xti = ν(Zi, k). If we let
Θi = ti − ti−1, then it follows that

Tνnk ≤
Nk∑
i=1

Θi,

where Nk = inf{i ≥ 1 : Zi ≥ nk/ak} is the time needed for the induced birth-death
process to move at least nk/ak to the right. If we also define Ñk = inf{i ≥ 1 : |Zi| ≥
nk/ak} to be the time for the birth-death process to exit (−nk/ak, nk/ak) then it follows
for any fixed L that

Pω(Tνnk > uνnk) ≤ Pω(Nk 6= Ñk)+Pω(Ñk > L, Nk = Ñk)+Pω

 Ñk∑
i=1

Θi > uνnk , Ñk ≤ L

 .

(4.5)
We will show below that the environment is such that for k large enough the induced
birth-death process has a very strong drift to the right so that by choosing L large
enough we can make the first two probabilities on the right above very small. The last
probability on the right is the key term, and we will obtain control on this by obtaining
certain uniform upper bounds on the time it takes a random walk started at ν(j, k) to
reach either ν(j − 1, k) or ν(j + 1, k).

The following result shows that the first term in (4.5) has an exponential tail.

Lemma 4.5. There exist δ > 0 such that for Q-a.e. environment ω there is an integer
K(ω) <∞ such that

Pω(Nk 6= Ñk) ≤ e−δnk , ∀k ≥ K(ω).

Proof. The event

{Nk 6= Ñk} ⊂ {Tν−nk <∞} ⊂ {T−nk <∞}.

Therefore,

Q
(
Pω(Nk 6= Ñk) > e−δnk

)
≤ Q

(
Pω(T−nk <∞) > e−δnk

)
≤ eδnkEQ [Pω(T−nk <∞)] .

(4.6)
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Since α(ν0 = 0) > 0 and Q(·) = α(·|ν0 = 0), we have

EQ [Pω(T−nk <∞)] =
Eα [Pω(T−nk <∞)1ν0=0]

α(ν0 = 0)
≤ Pα(T−nk <∞)

α(ν0 = 0)
≤ e−Cnk

α(ν0 = 0)
, (4.7)

where the last inequality holds by Lemma 3.3 in [8]. Finally, if δ > 0 is chosen sufficiently
small then (4.6) is summable in k and so the Borel-Cantelli Lemma completes the
proof.

In order to determine the decay rate of the second and third term in (4.5), we first
define a set

Jnk = [−nk/ak, nk/ak] ∩Z =

{
−
⌊
nk
ak

⌋
,−
⌊
nk
ak

⌋
+ 1, . . . ,

⌊
nk
ak

⌋}
.

Clearly, if Nk = Ñk then the birth-death process Zi ∈ Jnk when ti < Tνnk . So, we only
need to observe paths of the birth-death process {Zi}i≥0 restricted to Jnk and analyze its
associated probability. The following lemma gives a uniform upper bound (for all k large
enough) on the probability that the birth-death process steps to the left before time Ñk.

Lemma 4.6. There exist δ′ > 0 such that

Q

(
max
j∈Jnk

P ν(j,k)
ω (Tν(j−1,k) < Tν(j+1,k)) > e−δ

′ak i.o.

)
= 0. (4.8)

Proof. First, note that

Q

(
max
j∈Jnk

P ν(j,k)
ω (Tν(j−1,k) < Tν(j+1,k)) > e−δ

′ak

)
≤
∑
j∈Jnk

Q
(
P ν(j,k)
ω (Tν(j−1,k) < Tν(j+1,k)) > e−δ

′ak
)

≤ 3
nk
ak
Q
(
Pω(Tν(−1,k) < Tν(1,k)) > e−δ

′ak
)

≤ 3
nk
ak
Q
(
Pω(T−ak <∞) > e−δ

′ak
)

≤ 3
nk
ak
EQ [Pω(T−ak <∞)] eδ

′ak ,

where the second inequality holds because |Jnk | ≤ 3nk/ak andQ is stationary under shifts
of the ladder points of the environment, and the third inequality holds by {Tν(−1,k) <

Tν(1,k)} ⊆ {Tν−ak < ∞} ⊆ {T−ak < ∞}. Finally, it follows from (4.7) that the last line

is bounded above by C ′ nkak e
−(C−δ′)ak . Since this is summable in k for sufficiently small

δ′ > 0, the Borel-Cantelli Lemma finishes the proof of (4.8).

Let {Si}i≥0 be a simple random walk with

P (Si+1 = Si + 1|Si) = 1− P (Si+1 = Si − 1|Si) = 1− e−δ
′ak .

Since this random walk steps to the right with very high probability, it is unlikely that
the random walk takes too long to travel bnk/akc steps to the right. In particular, if we
fix δ > 0 and let Lk = nk

ak(1−δ) then it was shown in [9, Lemma 9] that

P

(
inf

{
i > 0 : Si =

⌈
nk
ak

⌉}
> Lk

)
≤ e−δ1nk .

for some δ1 > 0. It follows from Lemma 4.6 that the probability of jumping to left under
Si dominates the probability of jumping to left under Zi when Zi = j ∈ Jnk . As a result,
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if the process Zi stays within Jnk , then the random walk Si will take longer than the
process Zi to reach bnk/akc. That is, for k sufficiently large (depending on ω),

Pω(Ñk > Lk, Nk = Ñk) ≤ P
(

inf

{
i > 0 : Si =

⌈
nk
ak

⌉}
> Lk

)
≤ e−δ1nk . (4.9)

In order to estimate the decaying rate of the last term in (4.5), we first find an explicit
upper bound of the exponential moment of Θi. Recall that, each Θi is a crossing time
from ν(Zi−1, k) to either ν(Zi−1 − 1, k) or ν(Zi−1 + 1, k) that the walk visits first. Then,
each Θi is less than the crossing time from ν(Zi−1, k) to ν(Zi−1 + 1, k) with a reflection
at ν(Zi−1 − 1, k) for Zi−1 ∈ Z. Therefore, we have for λ > 0 that

Eω

[
e
λΘiI{Zi−1∈Jnk}

]
=
∑
j∈Jnk

P (Zi−1 = j)× Eν(j,k)
ω(ν(j−1,k))

[
eλTν(j+1,k)

]
+ P (Zi−1 /∈ Jnk)

≤ max
j∈Jnk

E
ν(j,k)
ω(ν(j−1,k))

[
eλTν(j+1,k)

]
. (4.10)

By Corollary 2.3 with m = ν(j − 1, k), k0 = ν(j, k) and k1 = ν(j + 1, k), the right side of
inequality in (4.10) has an upper bound in an explicit form. That is, with λ > 0 sufficiently
small enough such that

max
j∈Jnk

E
ν(j−1,k)
ω(ν(j−1,k))[Tν(j+1,k)] <

e−λ

sinhλ
, (4.11)

we have

E
ν(j,k)
ω(ν(j−1,k))[e

λTν(j+1,k) ] ≤ exp

 sinhλ(E
ν(j,k)
ω(ν(j−1,k))[Tν(j+1,k)])

e−λ − sinhλ(E
ν(j−1,k)
ω(ν(j−1,k))[Tν(j+1,k)])


for each j ∈ Jnk . Therefore, we get

Eω[e
λΘiI{Zi−1∈Jnk} ] ≤ max

j∈Jnk
exp

 sinhλ(E
ν(j,k)
ω(ν(j−1,k))[Tν(j+1,k)])

e−λ − sinhλ(E
ν(j−1,k)
ω(ν(j−1,k))[Tν(j+1,k)])

 . (4.12)

Note that the requirement that λ > 0 is small enough so that (4.11) is satisfied is
needed for (4.12) to ensure that certain moment generating functions are finite. Since
e−λ/ sinhλ → ∞ as λ → 0+, (4.11) is always satisfied for some small λ > 0. However,
we will later want to apply the upper bound (4.12) with a deterministic choice of
λ = λk = D0n

−1/s
k with some fixed D0 > 0, and in this case the bound (4.11) may not

necessarily be satisfied. However, we will prove a following claim and show that with this
choice of λk there is an environment dependent subsequence of nk where the condition
(4.11) is met. For any fixed constant ε1 > 0, we will show that

Q

(
max
j∈Jnk

E
ν(j−1,k)
ω(ν(j−1,k))[Tν(j+1,k)] < 2(EQ[β0] + ε1)ak i.o

)
= 1. (4.13)

Recall that the sequence ak = n
1/s
k /D for someD > 1. Since e−λk

sinhλk
∼ 1

λk
=

n
1/s
k

D0
, it follows

from (4.13) that if the constants D,D0 and ε1 are chosen so that D > 2(EQ[β0] + ε1)D0

then

max
j∈Jnk

E
ν(j−1,k)
ω(ν(j−1,k))[Tν(j+1,k)] <

2(EQ[β0] + ε1)

D
n

1/s
k ≤ e−λk

sinhλk
, infinitely often.

Therefore, it is enough to prove (4.13) to show that there is almost surely a subsequence
of nk for which (4.11) holds when λ = λk = D0n

−1/s
k .
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To simplify notation, for any integers i, j such that i ∈ [(j − 1)ak, (j + 1)ak − 1] let
βji = Eνiω(ν(j−1,k))[Tνi+1

] be the quenched expected crossing time from νi to νi+1 with a

reflection added at ν(j − 1, k). Then, we can restate (4.13) as

Q

max
j∈Jnk

(j+1)ak−1∑
i=(j−1)ak

βji <
2(EQ[β0] + ε1)

D
n

1/s
k i.o

 = 1. (4.14)

A strategy for proving (4.14) is to classify the sums of βji into two groups by the size of
Mi and determine an upper bound of the sums of each group separately. For a fixed
ε > 0 we will refer to {i : Mi > n

(1−ε)/s
i } and {i : Mi ≤ n(1−ε)/s

i } as “big hills” and “small
hills,” respectively. Then, we begin by a lemma showing the upper bound of a group of βji
corresponding to small hills using Proposition 3.1. An upper bound of βji corresponding
to big hills requires a more careful estimation because βji with the biggest hill dominates
all of the other βji ’s. The first step is to prove that βji corresponding to big hills are
typically located outside of a small group of ladder blocks. Then, we show that at most
one big hill is typically observed at each ladder block. Finally, we estimate a uniform
bound of βji corresponding to big hills observed from each ladder block.

The following lemma shows that the maximums of sums of centered expected crossing
time with a small hill, {Mi ≤ n(1−ε)/s

k }, are negligible in the limit.

Lemma 4.7. Let us define J ′nk = Jnk ∪ {−bnk/akc − 1}. Then, for any ε1 > 0,

Q

max
j∈J′nk

(j+1)ak−1∑
i=(j)ak

(βji I{Mi≤n(1−ε)/s
k } − EQ[β0]) >

ε1
2
ak i.o.

 = 0.

Proof. Since βji < βi for any j ∈ J ′nk and i ∈ [(j)ak, (j + 1)ak − 1], it suffices to prove

Q

max
j∈J′nk

(j+1)ak−1∑
i=(j)ak

(βiI{Mi≤n(1−ε)/s
k } − EQ[β0]) >

ε1
2
ak i.o.

 = 0.

Recall that βi, i ∈ Z is stationary under Q. Hence,

Q

max
j∈J′nk

(j+1)ak−1∑
i=(j)ak

(βiI{Mi≤n(1−ε)/s
k } − EQ[β0]) >

ε1
2
ak


≤ 3nk

ak
Q

(
ak−1∑
i=0

(βiI{Mi≤n(1−ε)/s
k } − EQ[β0]) >

ε1
2
ak

)
≤ Cnke−C

′(lognk)2 , for some C, C ′ > 0,

where the last equality comes from Proposition 3.1. Then, the conclusion follows by the
Borel-Cantelli Lemma.

Next, a following lemma shows that the maximum βji with big hill always occurs in
j ∈ Jnk \ {−1, 0, 1} for k large enough.

Lemma 4.8. If 0 < ε < 1− 1/s, then

Q

 max
j∈Jnk

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } 6= max

j∈Jnk\{−1,0,1}
i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } i.o.

 = 0.
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Proof. We have the following inclusion, max
j∈Jnk

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } 6= max

j∈Jnk\{−1,0,1}
i∈[(j−1)ak,(j+1)ak−1]

βji I{Mk>n
(1−ε)/s
k }


=

 max
j∈{−1,0,1}

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } > max

j∈Jnk\{−1,0,1}
i∈[(j−1)ak,(j+1)ak−1]

βji I{Mk>n
(1−ε)/s
k }


⊂ { max
−2ak≤i≤2ak−1

Mi > n
(1−ε)/s
k }.

That is, in order for the two maximums to not be equal there must be at least one large
hill corresponding to some i ∈ [−2ak, 2ak − 1]. Moreover, for large nk,

Q

(
max

−2ak≤i≤2ak−1
Mi > n

(1−ε)/s
k

)
= (4ak)Q(M0 > n

(1−ε)/s
k ) =O

(
ak

n1−ε
k

)
=O

(
1

n
1−ε−1/s
k

)
,

where the second to last equality comes from the tail asymptotics of M0 in (1.8) and the
last equality comes from the definition of ak. Then, the conclusion of the lemma follows
from the Borel-Cantelli Lemma.

A following lemma shows that for nk large enough each interval [(i−1)ak, (i+1)ak−1]

with i ∈ Jnk contains at most one big hill.

Lemma 4.9. If 0 < ε < s−1
2s , then

Q
(
∃j ∈ Jnk such that ]{i ∈ [(j − 1)ak, (j + 1)ak − 1] : Mi > n

(1−ε)/s
k } ≥ 2

for infinitely many k
)

= 0.

Proof. Since {Mi}i∈Z is i.i.d. under Q,

Q
(
∃j ∈ Jnk such that ]{i ∈ [(j − 1)ak, (j + 1)ak − 1] : Mi > n

(1−ε)/s
k } ≥ 2

)
≤ 3

nk
ak
Q(]{i ∈ [0, 2ak − 1] : Mi > n

(1−ε)/s
k } ≥ 2).

For simplicity, let us denote N := ]{i ∈ [0, 2ak− 1] : Mi > n
(1−ε)/s
k }. Then, N is a binomial

random variable with parameter n = 2ak and p = Q(M0 > n
(1−ε)/s
k ). Using the inequality

(1− np) ≤ (1− p)n for n ≥ 0 and 0 ≤ p ≤ 1,

Q(N ≥ 2) = 1− (1− p)n − np(1− p)n−1 ≤ n(n− 1)p2 ≤ (np)2.

Recall that ak = n
1/s
k /D with some fixed constant D > 1 and Q(M0 > n

(1−ε)/s
k ) ≤ Cnε−1

for some constant C > 0. Then, we have

3
nk
ak
P (N ≥ 2) ≤ 3

nk
ak

(
2Cak

n1−ε
k

)2

≤ C ′

n
1−1/s−2ε
k

, for some C ′ > 0.

Since 1− 1/s− 2ε > 0 by our assumption, the conclusion follows from the Borel-Cantelli
Lemma.

Finally, we show that for some subsequence of nk the sums of βji corresponding to

big hills are bounded above by ε′n1/s
k for any ε′ > 0.
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Corollary 4.10. Suppose 0 < ε < s−1
2s . Then, for any ε′ > 0,

Q

max
j∈Jnk

(j+1)ak−1∑
i=(j−1)ak

βji I{Mi>n(1−ε)/s} < ε′n
1/s
k i.o.

 = 1.

Proof. First, we prove that,

Q

 max
j∈Jnk\{−1,0,1}

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } < ε′n

1/s
k i.o.

 = 1. (4.15)

Since nk = mmk for some m > s and ak = n
1/s
k /D we have that nk−1 < ak for all k

large enough. Therefore, [ν−nk−1
, νnk−1

] ⊂ [ν−ak , νak ] = [ν(−1, k), ν(1, k)] and due to

the reflections used in the definition of βji the event inside the probability in (4.15) is
independent of the environment in the interval [ν−nk−1

, νnk−1
]. Therefore, the events

inside (4.15) are an independent sequence for k large enough and so to prove (4.15) by
the second Borel-Cantelli Lemma it is enough to show that

∞∑
k=1

Q

 max
j∈Jnk\{−1,0,1}

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } < ε′n

1/s
k

 =∞. (4.16)

To prove (4.16), note that

Q

 max
j∈Jnk\{−1,0,1}

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } < ε′n

1/s
k


≥ Q

 max
j∈Jnk

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } < ε′n

1/s
k


≥ Q

 max
j∈Jnk

i∈[(j−1)ak,(j+1)ak−1]

βji
(2nk)1/s

<
ε′

2


≥ Q

(
max

i∈[−nk,nk−1]

βi
(2nk)1/s

<
ε′

2

)
. (4.17)

It was shown in [13, Proposition 5.1] that { βi
(2n)1/s

,−n ≤ i < n} converges weakly to a

nonhomogeneous Poisson point process with intensity measure γx−s−1dx for some γ > 0.
Hence, the probabilities in (4.17) are uniformly bounded away from 0 for all k and thus
(4.16) follows.

By Lemma 4.8 and 4.9, we have, for k large enough,

max
j∈Jnk\{−1,0,1}

i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k } = max

j∈Jnk
i∈[(j−1)ak,(j+1)ak−1]

βji I{Mi>n
(1−ε)/s
k }

= max
j∈Jnk

(j+1)ak−1∑
i=(j−1)ak

βji I{Mi>n
(1−ε)/s
k }. (4.18)

Hence, the conclusion of the Corollary follows from (4.15) and (4.18).

We are now ready to give the proof of the main result of this section.
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Proof of Proposition 4.1. Recall that ak =
n
1/s
k

D and Lk = nk
ak(1−δ) = D

1−δn
1−1/s
k for some

fixed δ > 0. And, choose λ = λk = D0

n
1/s
k

for any fixed D0 > 0. Taking L = Lk in (4.5),

Pω(Tνnk > uνnk) ≤ Pω(Nk 6= Ñk)+Pω(Ñk > Lk, Nk = Ñk)+Pω

 Ñk∑
i=1

Θi>unk, Ñk ≤Lk

 .

We have proved in Lemma 4.5 and (4.9) that the first two terms on the right side decay
exponentially for Q-a.e. environment ω. Consequently,

lim
n→∞

1

n1−1/s
log
{
Pω(Nk 6= Ñk) + Pω(Ñk > Lk, Nk = Ñk)

}
= −∞. (4.19)

Regarding the third term, for each i ≤ Ñk the distribution of the crossing time Θi is
determined by the location Zi−1 ∈ Jnk . Also, since Ñk ≤ Lk,

Pω

 Ñk∑
i=1

Θi > uνnk , Ñk ≤ Lk

 ≤ Pω ( Lk∑
i=1

ΘiI{Zi−1∈Jnk} > uνnk

)

≤ Eω

[
Lk∏
i=1

e
λkΘiI{Zi−1∈Jnk}

]
e−λkuνnk , (4.20)

where the second inequality comes from Chebyshev’s inequality. Now, we claim that

Eω

[
L∏
i=1

e
λkΘiI{Zi−1∈Jnk}

]
≤
(

max
j∈Jnk

E
ν(j,k)
ω(ν(j−1,k))[e

λkTν(j+1,k) ]

)L
, for any L ≥ 1. (4.21)

To see this, let Gi := σ(Xn : n ≤
∑i
l=1 Θl) be the σ-field generated by the walk up until

the i-th step of the induced birth-death process on the blocks. Then,

Eω

[
L∏
i=1

e
λkΘiI{Zi−1∈Jnk}

]
= Eω

[
Eω

[
L∏
i=1

e
λkΘiI{Zi−1∈Jnk} |GL−1

]]

= Eω

[
L−1∏
i=1

e
λkΘiI{Zi−1∈Jnk}Eω

[
e
λkΘLI{ZL−1∈Jnk} |GL−1

]]

≤ max
j∈Jnk

E
ν(j,k)
ω(ν(j−1,k))[e

λkTν(j+1,k) ]× Eω

[
L−1∏
i=1

e
λkΘiI{Zi−1∈Jnk}

]
,

where the last inequality comes from (4.10), and then (4.21) follows by induction. Apply-
ing (4.21) with L = Lk, we have

lim inf
k→∞

1

n
1−1/s
k

logPω

 Ñk∑
i=1

Θi > uνnk , Ñk ≤ Lk


≤ lim inf

k→∞

1

n
1−1/s
k

log

{(
max
j∈Jnk

E
ν(j,k)
ω(ν(j−1,k))[e

λkTν(j+1,k) ]

)Lk
e−λkuνnk

}

= lim inf
k→∞

Lk

n
1−1/s
k

(
log max

j∈Jnk
E
ν(j,k)
ω(ν(j−1,k))[e

λkTν(j+1,k) ]

)
− λkuνnk

n
1−1/s
k

≤ lim inf
k→∞

Lk

n
1−1/s
k

max
j∈Jnk

sinhλk(E
ν(j,k)
ω(ν(j−1,k))[Tν(j+1,k)])

e−λk − sinhλk(E
ν(j−1,k)
ω(ν(j−1,k))[Tν(j+1,k)])

− λkuνnk

n
1−1/s
k

, (4.22)
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where the first inequality comes from (4.20) and (4.21), and the last inequality comes
from (4.12). Recall from Lemma 4.7 that, for any ε1 > 0 and 0 < ε < s−1

2s , there is a K(ω)

such that for all k ≥ K(ω),

max
j∈Jnk

(j+1)ak−1∑
i=(j)ak

βji I{Mi≤n(1−ε)/s
k } ≤

EQ[β0] + ε1/2

D
n

1/s
k . (4.23)

On the other hand, by Corollary 4.10 with ε′ = ε1/D, we can find an environment
dependent subsequence of nk defined as nk′ such that

max
j∈Jn

k′

(j+1)ak′−1∑
i=(j−1)ak′

βji I{Mi>n
(1−ε)/s
k′ } <

ε1
D
n

1/s
k′ . (4.24)

Then, by a choice of D > 2(EQ[β0] + ε1)D0, (4.13) is satisfied for some subsequence k′.
Therefore, we can conclude that (4.22) is bounded above by

lim
k→∞

Lk

n
1−1/s
k

sinh(λk)
EQ[β0]+3ε1/2

D n
1/s
k

e−λk − 2 sinh(λk)
EQ[β0]+ε1

D n
1/s
k

− λku νnk

n
1−1/s
k

=
D0(EQ[β0] + 3ε1/2)

(1− δ)(1− 2D0(EQ[β0] + ε1)/C)
−D0uEQ[ν1], Q-a.s., (4.25)

where in the last equality we used that λk = D0n
−1/s
k , Lk = D

1−δn
1−1/s
k and the fact that

νn/n→ EQ[ν1], Q-a.s. In summary, we have shown that for any D0, ε1, δ > 0 and for all
sufficiently large D <∞ that

lim inf
n→∞

1

n1−1/s
logPω(Tνn > uνn)≤ D0(EQ[β0] + 3ε1/2)

(1− δ)(1− 2D0(EQ[β0] + ε1)/D)
−D0uEQ[ν1], Q-a.s..

By first taking D →∞ and then letting ε1, δ → 0, we can thus conclude that

lim inf
n→∞

1

n1−1/s
logPω(Tνn > uνn) ≤ D0EQ[ν1]

(
EQ[β0]

EQ[ν1]
− u
)
, Q-a.s., (4.26)

for any D0 <∞. Finally, since

1

vα
= lim
n→∞

Tn
n

= lim
n→∞

Tνn
νn

= lim
n→∞

Tνn
n

n

νn
=
EQ[β0]

EQ[ν1]
,

it follows that the term in parenthesis in (4.26) is negative for u > 1/vα, and thus the
right side of (4.26) can be made smaller than any negative number by choosing D0

sufficiently large.
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