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Abstract

Let P be the transition matrix of a finite, irreducible and reversible Markov chain.
We say the continuous time Markov chain X has transition matrix P and speed λ if it
jumps at rate λ according to the matrix P . Fix λX , λY , λZ ≥ 0, then let X,Y and Z
be independent Markov chains with transition matrix P and speeds λX , λY and λZ

respectively, all started from the stationary distribution. What is the chance that X
and Y meet before either of them collides with Z? For each choice of λX , λY and λZ

with max(λX , λY ) > 0, we prove a lower bound for this probability which is uniform
over all transitive, irreducible and reversible chains. In the case that λX = λY = 1 and
λZ = 0 we prove a strengthening of our main theorem using a martingale argument.
We provide an example showing the transitivity assumption cannot be removed for
general λX , λY and λZ .
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1 Introduction

Consider three independent random walks X,Y, Z over the same finite connected
graph. What is the probability that X,Y meet at the same vertex before either of them
meets Z? If the initial distributions of the three walkers are the same, this probability is
at least 1/3 by symmetry, at least if we assume that ties (i.e. triple meetings) are broken
symmetrically.

Now consider a similar problem where the initial states X0, Y0, Z0 are all sampled
independently from the same distribution, but Z stays put while X and Y move. What is
the probability that X and Y meet before hitting Z?

There are several examples of bounds [2, 4, 5] relating the meeting time of two
random walks to the hitting time of a fixed vertex by a single random walk. These
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Random walks colliding before getting trapped

typically provide upper bounds for meeting times in terms of worst-case or average
hitting times, sometimes up to constant factors. In light of this, it seems natural
to conjecture that the probability in question is at least 1/3. However, the previous
argument by symmetry fails. In fact, to the best of our knowledge, no known universal
lower bound for this probability is known.

It will be convenient to consider the problem in continuous time. For the remainder
of the paper let P be the transition matrix of an irreducible and reversible Markov chain
on a finite state space with stationary distribution π. Let X and Y be two independent
continuous time Markov chains that jump at rate 1 according to the transition matrix P
and let Z ∼ π be independent of X and Y .

We define MX,Y to be the first time X and Y meet, i.e.

MX,Y = inf{t ≥ 0 : Xt = Yt}.

We also define:

MW,Z = inf{t ≥ 0 : Wt = Z} (W ∈ {X,Y }).

We write Mgood = MX,Y and Mbad = MX,Z ∧MY,Z .

1.1 Main results

Our first result proves a universal lower bound on the probability P
(
Mgood < Mbad

)
for the class of transitive chains. First we recall the definition.

Definition 1.1. Fix a chain with transition matrix P and state space Ω. An automorphism
of P is a bijection ϕ : Ω→ Ω such that P (z, w) = P (ϕ(z), ϕ(w)) for all z, w ∈ Ω. The chain
P is transitive if for all x, y ∈ Ω there exists an automorphism ϕ of P with ϕ(x) = y.

Theorem 1.2. Let P be the transition matrix of a finite, irreducible and reversible chain
with two or more states. Assume X0 and Y0 are independent with law π. If P is transitive,
then

P
(
Mgood < Mbad

)
≥ 1

4
.

Next we consider a more general setup. We say that a random walk W has speed λW
and transition matrix P , if it jumps at rate λW according to the matrix P .

Suppose again that P is the transition matrix of an irreducible and reversible Markov
chain on a finite state space with stationary distribution π. Let λX = 1, 0 ≤ λY ≤ 1 and
0 ≤ λZ <∞. Let X,Y and Z be three independent continuous time Markov chains with
speeds λX , λY and λZ respectively and transition matrix P .

For the remainder of the paper, we write P for the probability measure under which
X0, Y0 and Z0 are independent with law π. We also write Pa,b,c in the case when
(X0, Y0, Z0) = (a, b, c). For computations that only involve two chains we drop one index
writing only Pa,b; which two chains are involved will always be clear from context.
Likewise, we write Pa when only one chain is involved. We define MX,Y as above and
redefine:

MW,Z = inf{t ≥ 0 : Wt = Zt} (W ∈ {X,Y }).

Note that when λZ = 0 this definition agrees with the previous one. We define Mgood =

MX,Y and Mbad = MX,Z ∧MY,Z as before. Again we are interested in uniform lower
bounds on the probability of the event {Mgood < Mbad} that have good dependence on
the three speeds.

Theorem 1.3. There exists c > 0 such that the following holds. Let P be the transition
matrix of a transitive, irreducible and reversible chain with stationary distribution π and
at least two states. Suppose that X,Y and Z are three independent continuous time
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Random walks colliding before getting trapped

Markov chains with speeds λX = 1, λY ≤ 1 and 0 ≤ λZ < ∞ and transition matrix P
started from π. Then

P
(
Mgood < Mbad

)
≥ c

(
√

1 + λZ +
√
λY + λZ)2

.

The proof shows that we may take c = 1/352, which implies a version of Theorem 1.2
with 1/4 replaced by 1/1408. The constant c most likely can be improved, but the
dependence of the lower bound on λZ is sharp when λZ ↗ +∞. Indeed, if P is simple
random walk over a large complete graph with n vertices, then

P
(
Mgood < Mbad

)
=

1 + λY
2(1 + λY + λZ)

−O
(

1

n

)
,

where the term O(1/n) corresponds to the possibility of meetings at time 0.
A key step in the proof of Theorem 1.3 is the following new occupation identity. We

will use it to estimate the time that (Xt, Yt)t≥0 spends on the diagonal of Ω2 up to time
Mbad. It applies to all reversible chains and we believe it is of independent interest.

Lemma 1.4. Suppose (Ut)t≥0, (Vt)t≥0 are independent, irreducible, continuous time
reversible Markov chains with finite state spaces ΩU and ΩV respectively. Assume µ
is a probability measure over ΩU × ΩV and that τ is a stopping time for the process
(Ut, Vt)t≥0 with the following properties.

(1) Pµ(τ > 0) = 1;

(2) Eµ [τ ] <∞ and

(3) Pµ (V0 = ·) = Pµ (Vτ = ·) .

Then for all v ∈ ΩV

Eµ

[∫ τ

0

1(Vt = v) dt

]
= Eµ [τ ] πV (v)

where πV is the stationary distribution of V .

It is natural to ask if our theorems can be extended to all (i.e. not necessarily
transitive) chains. The next theorem shows that the answer is no for the more general
Theorem 1.3. The theorem essentially asserts that there are graphs where typical
meeting times are much smaller than typical hitting times.

Theorem 1.5. For all ε > 0 there exists a finite connected graph G such that if P
corresponds to simple random walk on G and λX = 1, λY = 0 and λZ = 1, then
P
(
Mgood ≤Mbad

)
< ε.

On the other hand, we believe that for certain values of λX , λY and λZ , universal
lower bounds are possible without transitivity. Here is a concrete conjecture, which
relates to the setting of Theorem 1.2.

Conjecture 1.6. If λY = λX = 1 and λZ = 0, the inequality

P
(
Mgood ≤Mbad

)
≥ 1/3

holds for all finite irreducible and reversible chains P .

Alexander Holroyd (personal communication) pointed out an example showing that
for any δ > 0 there exist transitive chains for which P

(
Mgood ≤Mbad

)
≤ 1/3 + δ. We

describe this example in Section 6. This means that, if true, Conjecture 1.6 is best
possible even for transitive chains. However, we note that any uniform lower bound

P
(
Mgood ≤Mbad

)
≥ c > 0

for all P , and for λX , λY and λZ as in Conjecture 1.6, would be a new result.
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Remark 1.7. Without reversibility, the conjecture fails badly. Consider a clockwise con-
tinuous time random walk on a cycle of length 2n. More precisely, with P = (pij)1≤i,j≤n
we have pij = 1 if j = (i + 1) mod n and pij = 0 otherwise. The distance between
independent random walkers behaves as continuous time simple symmetric random walk
reflected at 0 and n. So started from stationarity, it typically takes such walkers time of
order n2 to meet. On the other hand, the hitting time of any point is at most of order n.

Before we continue, we say a few words about the main proof ideas and the structure
of the rest of the document. The unifying theme of the proofs of Theorems 1.2 and 1.3
is the relationship between meeting times and hitting times of single vertices when P
is transitive. Aldous and Fill [2, Chapter 14/Proposition 5 and Chapter 3] have related
the expected values of these random variables via martingales. We use similar ideas to
prove Theorem 1.2 in Section 2.

For the proof of Theorem 1.3, we need a stronger result establishing identities in
distribution of meeting and hitting times, which (somewhat surprisingly) seems to be
new: see Lemma 3.1 below. The proof of Theorem 1.3 requires several other tools,
including small time estimates for hitting times given in Section 3.2, as well as the
occupation time formula for product chains, Lemma 1.4. The start of Section 3 contains
a succinct but rigorous birds-eye view of our approach, proving Theorem 1.3 modulo
three lemmas, which are then proved in the remainder of the section, and the occupation
identity Lemma 1.4, whose proof occupies Section 4.

The proof of Theorem 1.5 builds a graph with two parts: the “Up” part concentrates
the bulk of the stationary measure, but the “Down” part is where meetings tend to
happen, and they happen quickly. As a result, only a negligible fraction of the “Up”
part is explored before X and Z meet, and the upshot is that MX,Y > MX,Z with high
probability. We prove Theorem 1.5 in Section 5.

2 The 1/4 lower bound

In this section we prove Theorem 1.2. The argument is fairly short, and much simpler
than the one for the more general Theorem 1.3.

We need some preliminaries on hitting times. The hitting time of a state z ∈ Ω by X
is the first time t at which Xt = z, i.e.

τXz := inf{t ≥ 0 : Xt = z} (2.1)

We define τYz , τZz similarly and we also let

t∗hit := max
x∈Ω

Eπ
[
τXx
]

and thit := max
(x,z)∈Ω

Ex
[
τXz
]
. (2.2)

Whenever there is no confusion, i.e. if there is a single chain in question, we will drop
the dependence on X or Y from the notation of the hitting times.

Lemma 2.1. For any irreducible and reversible chain with two or more states we have

0 < thit ≤ 2t∗hit.

Moreover, if X is transitive, then for all x, z ∈ Ω and all t ≥ 0 we have

Px(τz ≤ t) = Pz(τx ≤ t) .

Proof. For a proof of the first assertion see [3, Lemma 10.2]. (Note that mean hitting
times are the same in discrete and continuous time.) A proof of the symmetry property
specific to transitive chains can be found in [2, Lemma 1, Chapter 7].

We will also need the following lemma [2, Chapter 14/Proposition 5 and Chapter 3].
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Lemma 2.2 (Aldous). Let P be an irreducible and reversible transition matrix. Suppose
that X and Y are independent continuous time Markov chains that jump at rate 1

according to the transition matrix P . For all x, z ∈ Ω define f(x, z) := Ex
[
τXz
]
. Then

f(Xt, z) + t, f(Yt, z) + t and f(Xt, Yt) + 2t are martingales up to time

S := Mgood ∧Mbad = MX,Y ∧ τXz ∧ τYz ,

for any initial states (x, y) ∈ Ω2 and any z ∈ Ω.

Proof of Theorem 1.2. Since X and Y are two independent copies of the same chain,
we have Ea

[
τXb
]

= Ea
[
τYb
]

for all a, b. By Lemma 2.2 we now get that (Gt)t≥0 is a
martingale up to time S, where

Gt := EXt
[
τXz
]

+ EYt
[
τXz
]
− EXt

[
τXYt
]

(t ≥ 0).

This martingale is bounded (because the state space is finite). The fact that the chain is
finite and irreducible implies S <∞ almost surely for all initial states. We deduce from
optional stopping that

E[G0] = E[GS ] . (2.3)

The left hand side above is given by the quantity t∗hit defined in (2.2). This is because

E[G0] = Eπ
[
τXz
]

+ Eπ
[
τXz
]
−
∑
y∈Ω

π(y)Eπ
[
τXy
]

= Eπ
[
τXz
]
, (2.4)

where the second equality follows from the fact that for a transitive chain, Eπ
[
τXy
]

is
independent of y. Using this and (2.3) yields

t∗hit = E[GS ] . (2.5)

On the other hand, at time S we have two alternatives.

• If τXz ∧ τYz ≤Mgood, either XS = z, and then GS = EYS
[
τXz
]
− Ez

[
τXYs
]
, or YS = z,

in which case GS = EXS
[
τXz
]
− EXS

[
τXz
]
. In both cases GS = 0: this is obviously

true in the second case, and follows from Lemma 2.1 in the first case.

• On the other hand, if Mgood < τXz ∧ τYz , then GS = 2EXS
[
τXz
]
≤ 2thit.

We deduce that
GS ≤ 2thit1(Mgood < τXz ∧ τYz ).

Plugging this into (2.5) gives

t∗hit ≤ 2 thitP
(
Mgood < Mbad

)
.

Using that thit ≤ 2t∗hit from Lemma 2.1 finishes the proof.

Before moving on, we first argue that the obvious “fix” to the proof of Theorem 1.2
does not work in general when X,Y and Z have differing speeds. Indeed, a straightfor-
ward extension of Lemma 2.2 establishes that

Gt := f(Xt, Zt) + f(Yt, Zt)−
1 + λY + 2λZ

1 + λY
f(Xt, Yt)

is a martingale up to time S. One can see that in this case

E[G0] =

(
1− 2λZ

1 + λY

)
t∗hit,
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which easily yields

P
(
Mgood < Mbad

)
≥ 1

4
·
(

1− 2λZ
1 + λY

)
.

In particular, we obtain the same bound as in Theorem 1.2 provided that λZ = 0.
However, this bound becomes useless when λZ > (1 + λY )/2. Other linear combinations
of f(Xt, Zt), f(Yt, Zt) and f(Xt, Yt) also fail to achieve our goal when λZ is large. So, in
general a different strategy is needed.

3 Towards the theorem for general speeds

In this section we prove Theorem 1.3, assuming a handful of results whose proofs
we briefly postpone. Our proof of Theorem 1.3 is based on the analysis of the time that
(X,Y ) spends on the diagonal ∆ = {(x, x) : x ∈ Ω} prior to time Mbad, i.e.

T :=

∫ Mbad

0

1(Xt = Yt) dt =

∫ ∞
0

1(Xt = Yt, t < Mbad) dt. (3.1)

In order to gain some intuition for this quantity, note that T > 0 if and only if Mgood <

Mbad, i.e. (X,Y ) visits the diagonal before X or Y meet Z. The proof relies on obtaining
lower and upper bounds for E [T ].

We first derive an expression for E[T ] that requires only reversibility. For any t > 0,
using reversibility and the definitions of Mgood and Mbad, we have

P
(
Xt = Yt, t < Mbad

)
= P ({Xt = Yt} ∩ {∀s ≤ t : Xs 6= Zs and Ys 6= Zs})
= P ({X0 = Y0} ∩ {∀s ≤ t : Xs 6= Zs and Ys 6= Zs})
= P

(
Mgood = 0, t < Mbad

)
.

By Fubini’s theorem, it follows that

E[T ] =

∫ ∞
0

P
(
Xt = Yt, t < Mbad

)
dt

=

∫ ∞
0

P
(
Mgood = 0, t < Mbad

)
dt

= E
[
Mbad1(Mgood = 0)

]
=
∑
x,z

π(x)2π(z)E(x,x,z)

[
Mbad

]
.

The lower bound on E[T ] now exploits the following distributional identity, which
(surprisingly) appears to be new; its proof appears in Section 3.1. Recall from Section 2
that τXz := inf{t ≥ 0 : Xt = z} is the hitting time of z ∈ Ω by X.

Lemma 3.1. Let P be a reversible and transitive transition matrix. Let X,Y and Z

be three independent continuous time Markov chains with speeds λX = 1, λY ≥ 0 and
λZ ≥ 0 and transition matrix P . Assume also λY + λZ > 0. Then for all (x, z) ∈ Ω2, the

distribution of τXz
λY +λZ

under Px is the same as the distribution of MY,Z under P(x,z).

Since Mbad = MX,Y ∧MX,Z , it follows that for a transitive chain with n states, for
any fixed t > 0,

E[T ] ≥ t
∑
x,z

π(x)2π(z)P(x,x,z)

(
MX,Z ∧MY,Z > t

)
≥ t
∑
x,z

π(x)2π(z)(1− P(x,z)

(
MX,Z ≤ t

)
− P(x,z)

(
MY,Z ≤ t

)
)+

EJP 21 (2016), paper 42.
Page 6/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4414
http://www.imstat.org/ejp/


Random walks colliding before getting trapped

= t
∑
x,z

π(x)2π(z)(1− Px
(
τXz ≤ t(1 + λZ)

)
− Px

(
τXz ≤ t(λY + λZ)

)
)+

=
t

n

∑
x,z

π(x)π(z)(1− Px
(
τXz ≤ t(1 + λZ)

)
− Px

(
τXz ≤ t(λY + λZ)

)
)+ . (3.2)

Transitivity is used in the last step, to ensure that π(x) = 1/n for all x.
We can not expect useful bounds on the lower tail of τXz when the starting point x and

the point z are arbitrary (think of adjacent vertices on a graph). The next lemma shows
that, for transitive chains, we may nevertheless find a large set of states z for which
τXz ≥ θ t∗hit with high probability when θ is small. We hereafter drop the superscript X
from τXz to simplify notation.

Lemma 3.2. Suppose that P is irreducible, reversible and transitive. Then for any x ∈ Ω,
there exists a subset Ax ⊂ Ω with π(Ax) ≥ 1/2 such that, for any θ > 0,

1

π(Ax)

∑
z∈Ax

π(z)Px (τz ≤ θ t∗hit) ≤
√
θ

The proof of Lemma 3.2 appears in Section 3.2. We conclude our lower bound on
E[T ] by applying the lemma with

θ :=
1

4 (
√

1 + λZ +
√
λY + λZ)2

,

and taking t = θt∗hit in (3.2). We obtain:

E[T ] ≥ θt∗hit

n

∑
x

π(x)
∑
z∈Ax

π(z)(1− Px (τz ≤ t∗hitθ(1 + λZ))− Px (τz ≤ t∗hitθ(λY + λZ)))+

≥ θt∗hit

n

∑
x

π(x)π(Ax)(1−
√
θ(1 + λZ)−

√
θ(λY + λZ))

≥ t∗hit

16n (
√

1 + λZ +
√
λY + λZ)2

. (3.3)

The required upper bound for E [T ] is given by the next lemma.

Lemma 3.3. Let P be the transition matrix of a transitive, irreducible and reversible
chain on n ≥ 2 states with stationary distribution π. Suppose that X,Y and Z are
three independent continuous time Markov chains with speeds λX = 1, λY ≤ 1 and
0 ≤ λZ <∞ and transition matrix P started from π. Then

E[T ] ≤ 22 t∗hit

n
P
(
Mgood < Mbad

)
.

We prove Lemma 3.3, in Section 3.3, by applying the occupation identity Lemma 1.4
to a carefully chosen stopping time. The role of transitivity in this step is to control the
the law of the stopping state. With this lemma in hand, the proof of Theorem 1.3 is easily
completed.

Proof of Theorem 1.3. Combining Lemma 3.3 with (3.3) gives

t∗hit

16n (
√

1 + λZ +
√
λY + λZ)2

≤ E [T ] ≤ 22 t∗hit

n
P
(
Mgood < Mbad

)
,

from which the desired lower bound on P
(
Mgood < Mbad

)
is immediate.

The remainder of Section 3 is devoted to the proofs of Lemmas 3.1, 3.2 and 3.3.
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3.1 Proof of Lemma 3.1

Define the functions

g(x,z)(t) := Px (τz ≤ (λY + λZ) t) and f(x,z)(t) := P(x,z)

(
MY,Z ≤ t

)
((x, z) ∈ Ω2, t ≥ 0).

We will be done once we show that g(x,z)(t) = f(x,z)(t) for all (x, z) ∈ Ω2 and t ≥ 0.
These equalities are true (by inspection) when t = 0. We are going to show that the
functions (f(x,z)(·))(x,z)∈Ω2 and (g(x,z)(·))(x,z)∈Ω2 satisfy the same linear system of ordinary
differential equations (with the derivatives at t = 0 interpreted as right derivatives).
Then the equality for all t ≥ 0 will follow from the general uniqueness theory of linear
ODE’s.

To prove that f and g satisfy the same system of ODE’s, we will use a standard formula
for the cummulative distribution function of a hitting time. If (Vt)t≥0 is an irreducible
continuous time Markov chain over a set ΩV with transition rates q(v, w), and A ⊂ ΩV is
a nonempty subset of the state space, the hitting time τVA of A by V satisfies

d

dt
Pv
(
τVA ≤ t

)
=

{
0, v ∈ A;∑
w∈V q(v, w) (Pw

(
τVA ≤ t

)
− Pv

(
τVA ≤ t

)
), v ∈ ΩV \A.

(3.4)

(The derivative is understood as a right derivative at time t = 0.)
We first apply (3.4) to the product chain (Vt)t≥0 = (Yt, Zt)t≥0, with ΩV = Ω2, and A =

∆ := {(x, x) : x ∈ Ω} the diagonal set. In this case τVA = MY,Z , and a straightforward
computation with the transition rates gives:

d

dt
f(x,z)(t) =


0, x = z

λY
∑
x′∈Ω P (x, x′) (f(x′,z)(t)− f(x,z)(t))

+λZ
∑
z′∈Ω P (z, z′) (f(x,z′)(t)− f(x,z)(t)), x 6= z.

(3.5)

We now apply the same formula (3.4) with (Vt)t≥0 = (Xt)t≥0. Note that g(x,z)(t) :=

Px (τz ≤ s(t)) where s(t) = (λY + λZ) t, so the chain rule implies

d

dt
g(x,z)(t) =

{
0, x = z

(λY + λZ)
∑
x′∈Ω P (x, x′) (g(x′,z)(t)− g(x,z)(t)), x 6= z.

(3.6)

We will now make crucial use of transitivity, which allows us to use Lemma 2.1 to deduce
that Px

(
τXz ≤ (λY + λZ) t

)
is symmetric in x and z, i.e.

Px
(
τXz ≤ (λY + λZ) t

)
= Pz

(
τXx ≤ (λY + λZ) t

)
,

that is g(x,z)(·) = g(z,x)(·) for all x, z. This allows us to reverse the roles of x and z in (3.6)
to obtain:

d

dt
g(x,z)(t) =

{
0, x = z

(λY + λZ)
∑
z′∈Ω P (z, z′) (g(x,z′)(t)− g(x,z)(t)), x 6= z.

(3.7)

We add the two formulas (3.6) and (3.7) with weights λY /(λY + λZ) and λZ/(λY + λZ)

respectively. The upshot is:

d

dt
g(x,z)(t) =


0, x = z

λY
∑
x′∈Ω P (x, x′) (g(x′,z)(t)− g(x,z)(t))

+λZ
∑
z′∈Ω P (z, z′) (g(x,z′)(t)− g(x,z)(t)), x 6= z.

This is precisely the system of ODEs we obtained for the f ’s in (3.5), and it concludes
the proof.
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3.2 Small time estimates for hitting times

In this section we prove Lemma 3.2. Throughout the section we drop the superscript
X from τXz .

Recall from, e.g., [2, Section 3.4] that a reversible transition matrix P is always
diagonalizable with real eigenvalues 1 = λ1 ≥ λ2 ≥ λ3, . . .. When P is also irreducible,
λ2 < 1, and we may define the relaxation time via trel = (1− λ∗)−1. We will use the next
lemma to prove Lemma 3.2 in the case that trel and thit have similar magnitude.

Lemma 3.4. Let X be an irreducible and reversible chain. There exist x ∈ Ω and a
subset A ⊂ Ω with stationary measure π(A) ≥ 1/2 such that, if τA := minz∈A τz, then for
any t > 0,

Px (τA > t) ≥ e−t/trel .

Proof. The first step is to note that P has a non-zero eigenfunction ϕ : Ω→ R such that

Pϕ = λ2 ϕ =

(
1− 1

trel

)
ϕ.

By the general theory of reversible chains [2, Section 3.4], this eigenfunction is orthog-
onal to the constant eigenfunction in the inner product induced by π. In particular, it
must take both positive and negative values. We may assume without loss of generality
that the set

A := {z ∈ Ω : ϕ(z) ≤ 0}

has measure π(A) ≥ 1/2 (if that is not the case, replace ϕ with −ϕ). Choose x ∈ Ω with
ϕ(x) > 0 as large as possible. Next, note that

∀t > 0, u ∈ Ω : Eu [ϕ(Xt)] = [et(P−I) ϕ](u) = e−t/trel ϕ(u). (3.8)

In particular, for all u ∈ A and s ≥ 0 we have Eu[ϕ(Xs)] ≤ 0. Since XτA ∈ A, the strong
Markov property then gives

Ex [ϕ(Xt)1(τA ≤ t)] = Ex

[
EXτA [ϕ(Xt−τA)]1(τA ≤ t)

]
≤ Ex [0 · 1(τA ≤ t)] = 0.

Plugging this into (3.8) with the choice u = x, and recalling ϕ(Xt) ≤ ϕ(x) always, we
obtain

e−t/trelϕ(x) = Ex [ϕ(Xt)] ≤ Ex [ϕ(Xt)1(τA > t)] ≤ ϕ(x)Px (τA > t) .

Dividing both sides by ϕ(x) (which is > 0) finishes the proof.

Our next result is a different small-time estimate, which will be useful when trel � thit.

Lemma 3.5. Let P be an irreducible and reversible chain. Then, for all s > 0,

Pπ (τz > s) ≥ 1− s+ trel

Eπ [τz] + trel

To prove this lemma we will use the claim below which follows from estimates in
Aldous and Brown [1].

Claim 3.6 ([1]). Define

f(s) := Eπ[τz − s | τz > s] , s ≥ 0.

Then f is an increasing function and sups f(s) ≤ Eπ[τz] + trel.
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Proof of Lemma 3.5. Note that this claim implies the lemma once we note that

τz ≤ s+ (τz − s)1(τz > s)⇒ Eπ [τz] ≤ s+ f(s)Pπ (τz > s) ,

use f(s) ≤ Eπ[τz] + trel and then rearrange terms.

Proof of Claim 3.6. The proof is based on some estimates in Aldous and Brown [1]
which we recall and reprove here for convenience.

To prove the claim, let Q = I − P and Qz be the restriction of Q to Ω \ {z}. We recall
the complete positivity of the law of τz starting from π (see for instance [1, eqn. (18)]):
there exist non-negative constants (pi, 1 ≤ i ≤ m) such that for all t

Pπ(τz > t) =

m∑
i=1

pie
−γit,

where 0 < γ1 < . . . < γm are the distinct eigenvalues of −Qz. Note that γ−1
1 = Eα[τz],

where α is any quasistationary distribution on Ω \ {z} corresponding to the eigenvalue
γ1.

Using the above representation we can rewrite f as follows

f(s) =

∫ ∞
s

Pπ(τz > t)

Pπ(τz > s)
dt =

∑m
i=1 pie

−γis/γi∑m
i=1 pie

−γis
.

A straightforward differentiation now gives that f is increasing. From the above expres-
sion we also deduce

lim
s→∞

f(s) =
1

γ1
= Eα[τz] . (3.9)

From [1, Corollary 4] we have

Eα[τz] ≤ Eπ[τz] + trel.

Therefore, using this, the fact that f is increasing and (3.9) we conclude that for all s

f(s) ≤ Eα[τz] ≤ Eπ[τz] + trel

which completes the proof of the claim.

Proof of Lemma 3.2. Fix θ > 0. We will consider two cases separately: trel <
√
θ t∗hit

and trel ≥
√
θ t∗hit.

Suppose first that trel ≥
√
θ t∗hit. By Lemma 3.4 there exist x ∈ Ω and a set A = Ax

with π(A) ≥ 1/2 such that
Px (τA > t) ≥ e−t/trel .

Since the chain is transitive, this in fact holds for all x, with corresponding sets Ax.
Since Px (τz > t) ≥ Px (τA > t) for all z ∈ A, we obtain

1

π(Ax)

∑
z∈Ax

π(z)Px (τz > θ t∗hit) ≥ e−θ t
∗
hit/trel ≥ 1− θ t∗hit

trel
≥ 1−

√
θ

which concludes the proof in this case.
Suppose next that trel <

√
θ t∗hit. In this case it suffices to prove

∀z ∈ Ω : Pπ (τz > θ t∗hit) ≥ 1−
√
θ. (3.10)

To see that this suffices, we use the fact that P is transitive and apply Lemma 2.1 to
obtain that Px (τz > t) is symmetric in x and z. As a result, (3.10) implies

EJP 21 (2016), paper 42.
Page 10/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4414
http://www.imstat.org/ejp/


Random walks colliding before getting trapped

1−
√
θ ≤ Pπ (τx > θ t∗hit) =

∑
z∈Ω

π(z)Pz (τx > θ t∗hit) =
∑
z∈Ω

π(z)Px (τz > θ t∗hit) ,

and this implies the lemma with the choice of Ax = Ω.
It remains to prove (3.10). Since P is transitive, Eπ [τz] = t∗hit is independent of z.

Moreover, we are assuming that trel ≤
√
θ t∗hit, so

Eπ [τz] + trel ≤ (1 +
√
θ) t∗hit.

Lemma 3.5 gives

P (τz > θ t∗hit) ≥ 1− θ +
√
θ

1 +
√
θ

= 1−
√
θ.

This finishes the proof of (3.10) and of the lemma.

3.3 The upper bound on E[T ]

In this section we prove Lemma 3.3. We start by recalling a result relating meeting
times with deterministic trajectories to the quantity t∗hit. Notice that transitivity is not
required.

Lemma 3.7. Let X be an irreducible and reversible Markov chain taking values in Ω

and h = (ht)t≥0 a deterministic, càdlàg, Ω-valued trajectory. If

τh := inf{t ≥ 0 : Xt = ht},

then for any x ∈ Ω,
Ex [τh] ≤ 11 t∗hit.

Proof. In [5], using [4, Lemma 1.7], it is proved that

Ex [τh] ≤ c thit.

for a universal constant c > 0, where thit is as in (2.2). Inspection of the proof [5] shows
that c ≤ 4 + 5/4, therefore 2c ≤ 11. Lemma 2.1 finishes the proof.

Proof of Lemma 3.3. The first point is to note that, for any t, Xt = Yt implies t ≥Mgood.
In particular, Mgood ≥Mbad implies that T = 0, and any t ≤Mgood does not contribute
to the integral defining T (cf. (3.1)). We deduce:

T = T ◦ΘMgood 1(Mgood < Mbad), (3.11)

where Θ denotes the time shift operator.
Now consider the distribution µ of (XMgood , YMgood , ZMgood) conditionally on Mgood <

Mbad. Note that {Mgood < Mbad} is measurable with respect to the σ-field FMgood

generated by the process up to time Mgood. Equation (3.11) and the strong Markov
property imply:

E [T ] = E
[
1(Mgood < Mbad)E [T ◦ΘMgood | FMgood ]

]
= E

[
1(Mgood < Mbad)E(X

Mgood ,YMgood ,ZMgood ) [T ]
]

(3.12)

= P
(
Mgood < Mbad

)
Eµ [T ] (3.13)

= P
(
Mgood < Mbad

) ∑
x∈Ω

Eµ

[∫ Mbad

0

1((Xt, Yt) = (x, x)) dt

]
. (3.14)
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We will now use the occupation time identity of Lemma 1.4 to compute the RHS of the
display. More specifically, we will apply this lemma to (3.14), with Vt := (Xt, Yt), Ut = Zt,
µ as above and a time τ to be specified. The following claim gives us the distribution of
V0 = (X0, Y0) under µ.

Claim 3.8. The measure µ is invariant under automorphisms of P . Thus, if (X0, Y0, Z0)

has distribution µ, then (X0, Y0) is uniform over ∆ = {(x, x) : x ∈ Ω}.

Proof. The values of Mgood,Mbad and the law of X,Y, Z under P (·) are all invariant by
automorphisms, so µ must be invariant as well. Moreover, going back to the definition
of µ we see at once that X0 = Y0 µ-almost surely. Since the automorphism group of P
is transitive over Ω, the events {(XMgood , YMgood) = (x, x)} (x ∈ Ω) must all be equally
likely under µ.

We still need to define τ in order to apply Lemma 1.4 to (3.14). A seemingly natural
choice would be τ = Mbad, but this would violate the third condition of the lemma:
XMbad , YMbad in general are not uniform over ∆. We take instead

τ = inf{t ≥Mbad : Xt = Yt} = Mbad +Mgood ◦ΘMbad ,

noting that ∫ Mbad

0

1((Xt, Yt) = (x, x)) dt =

∫ τ

0

1((Xt, Yt) = (x, x)) dt

because there are no visits to the diagonal between times Mbad and τ . Analogously to
the previous claim, we observe that

Claim 3.9. The law of (Xτ , Yτ , Zτ ) under Pµ is invariant under automorphisms of P .
Therefore, (Xτ , Yτ ) is uniform over ∆.

Proof. Pµ and τ are invariant by automorphisms, so the law of (Xτ , Yτ , Zτ ) is also
invariant. Moreover, since τ = Mbad +Mgood ◦ΘMbad , we have Xτ = Yτ , and uniformity
over ∆ follows as in the previous claim.

We now see that all conditions of Lemma 1.4 are satisfied, so for all x ∈ Ω

Eµ

[∫ Mbad

0

1((Xt, Yt) = (x, x)) dt

]
= E

[∫ τ

0

1((Xt, Yt) = (x, x)) dt

]
= π(x)2Eµ [τ ] =

Eµ [τ ]

n2
.

Combining this with (3.14), and recalling τ = Mbad +Mgood ◦ΘMbad , we obtain

E [T ] = P
(
Mgood < Mbad

) Eµ [τ ]

n
= P

(
Mgood < Mbad

) (Eµ [Mbad
]

+ Eν
[
Mgood

]
n

)
(3.15)

for some distribution ν over Ω2.

Equation (3.15) gives an exact expression for E [T ]. Our last step is a simple upper
bound for the RHS of this identity. Note that Mbad ≤MX,Z and Mgood = MX,Y , so that
Mgood and Mbad are upper bounded by meeting times between (Xt)t≥0 and independent
trajectories. We may apply Lemma 3.7 conditionally on these trajectories to obtain
Eµ
[
Mbad

]
,Eν

[
Mgood

]
≤ 11 t∗hit. Plugging this back into (3.15) finishes the proof.
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4 The occupation time identity

It is well known that a finite irreducible chain (Vt)t≥0 with state space ΩV , started
from a point x and stopped at a stopping time τ > 0 with Vτ = x almost surely, satisfies

∀ v ∈ ΩV : Ex

[∫ τ

0

1(Xt = v) dt

]
= πV (v)Ex [τ ] ,

where πV is the unique stationary measure of (Vt)t≥0 (some simple conditions on τ are
necessary for this). There are also extensions of this lemma to the case where V0 and Vτ
are not necessarily equal, but have the same distribution [2, Proposition 2.4, Chapter 2].
In this section we prove Lemma 1.4 from the Introduction, which extends this idea even
further, and shows that τ may be a stopping time for a “larger” Markov chain.

Proof of Lemma 1.4. In this proof we will interchange integrals, expectations and
summations several times. Instead of justifying this at each step, we note right away
that all of these interchanges are valid, because the integrands are non-negative.

Consider the row vector h with nonnegative coordinates

h(v) := Eµ

[∫ τ

0

1(Vt = v) dt

]
=

∫ ∞
0

Pµ (Vt = v, τ > t) dt (v ∈ ΩV ).

Note that
∑
v∈V h(v) = Eµ [τ ] > 0 because τ > 0 a.s.. Letting Q be the generator of

(Vt)t≥0, we will show below that
hQ = 0. (4.1)

This identity implies that h/Eµ [τ ] is one invariant probability distribution for V . Since
πV is the unique invariant distribution, we deduce that for all v ∈ ΩV

h(v)

Eµ [τ ]
= πV (v),

which is precisely what we need to prove.
We will derive hQ = 0 from the limit

∀v ∈ ΩV : hQ(v) = lim
ε↘0

[h eεQ](v)− h(v)

ε
. (4.2)

In order to compute the limit we recall eεQ(w, v) = Pw (Vε = v) for all w, v ∈ ΩV . There-
fore

[h eεQ](v) =
∑
w∈ΩV

h(w)Pw (Vε = v) =

∫ ∞
0

∑
w∈ΩV

Pµ (Vt = w, τ > t) Pw (Vε = v) dt.

Crucially, the fact that τ is a stopping time for U, V implies that the event {Vt = w, τ > t}
is measurable with respect to (Us, Vs)s≤t. Using that V and U evolve independently and
the Markov property for V implies

Pµ (Vt = w, τ > t) Pw (Vε = v) = Pµ (Vt = w, τ > t) Pµ (Vt+ε = v | Vt = w, τ > t)

= Pµ (Vt = w, Vt+ε = v, τ > t) .

Plugging this back in the previous display gives

[h eεQ](v) =

∫ ∞
0

Pµ (Vt+ε = v, τ > t) dt

=

∫ ∞
0

Pµ (Vt+ε = v, τ > t+ ε) dt+

∫ ∞
0

Pµ (Vt+ε = v, t ≤ τ ≤ t+ ε) dt
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=: (I) + (II). (4.3)

The first term is

(I) =

∫ ∞
ε

Pµ (Vt = v, τ > t) dt = h(v)−
∫ ε

0

Pµ (Vt = v, τ > t) dt,

so
(I)− h(v)

ε
→ −Pµ (V0 = v, τ > 0) = −Pµ (V0 = v) (4.4)

because τ > 0 always. Regarding the second term, we have

(II) =

∫ ∞
0

Pµ(Vt = v, Vτ = v, τ ≤ t ≤ τ + ε) dt+

∫ ∞
0

Pµ(Vt = v, Vτ 6= v, τ ≤ t ≤ τ + ε) dt.

(4.5)

For the first term on the right hand side above we obtain

lim
ε→0

∫∞
0
Pµ(Vt = v, Vτ = v, τ ≤ t ≤ τ + ε) dt

ε
= Pµ(Vτ = v) . (4.6)

As for the second term in the sum in (4.5) we get∫ ∞
0

Pµ(Vt = v, Vτ 6= v, τ ≤ t ≤ τ + ε) dt

=

∫ ∞
0

Eµ[Pµ(Vt = v, Vτ 6= v, τ ≤ t ≤ τ + ε | τ)] dt

=

∫ ∞
0

Eµ[1(τ ≤ t ≤ τ + ε)Pµ(Vt = v, Vτ 6= v | τ)] dt.

On the event {τ ≤ t ≤ τ + ε} in order to have Vt = v and Vτ 6= v, there must exist at least
one jump of the Markov chain in the time interval [τ, t], which on this event has length
less than ε. Therefore, we obtain that on the event {τ ≤ t ≤ τ + ε}

Pµ(Vt = v, Vτ 6= v | τ) = O(ε).

Therefore we deduce∫ ∞
0

Eµ[1(τ ≤ t ≤ τ + ε)Pµ(Vt = v, Vτ 6= v | τ)] dt = O(ε2).

Hence this together with (4.6) gives that

(II)

ε
→ Pµ (Vτ = v) as ε↘ 0.

Combining this with (4.4) and (4.3) gives:

[h eεQ](v)− h(v)

ε
→ Pµ (Vτ = v)− Pµ (V0 = v)

Our assumption that Pµ (V0 = ·) = Pµ (Vτ = ·) implies that the right hand side above is
zero. Plugging this back into (4.2) gives hQ = 0 and finishes the proof.

5 Non transitive chains

The goal of this section is to prove Theorem 1.5. Throughout the section we fix ε > 0

and let C ∈ N be a perfect square satisfying C ≥ 6/ε2. In what follows Kr is the complete
graph on r ∈ N \ {0} vertices.
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For n ∈ N a perfect square, construct a graph Gn as follows: begin from a clique
Kn+1 and n disjoint copies of Kk with k =

√
Cn. Fix a vertex v ∈ Kn+1 and add exactly

one edge from v to each copy of Kk. See Figure 1 for a depiction of the graph.

v

Kn+1

Kk

Kk

Kk

n

Figure 1: The graph G

Let Ω be the vertex set of Gn. We call Down the set of vertices belonging to Kn+1

and Up = Ω \ Down the rest.
Let P be the transition matrix of a simple random walk over G and π its stationary

distribution. LetX,Y and Z be independent random walks starting from π with transition
matrix P and speeds λX = 1, λY = 0 and λZ = 1.

The idea is that by choosing ε sufficiently small, the stationary measure of Down
becomes arbitrarily small. So if we start X,Y and Z according to π, then it is very likely
they will all start from different cliques in Up. Let T be the

√
n-th time that X visits the

vertex v. We will show that as n→∞ the probability that X and Z collide after time T
is arbitrarily small. Moreover, we will show that the probability that X and Y collide
before T is arbitrarily small as n→∞. Combining these two assertions will complete
the proof.

For all r ≥ 0 we define τ (r)
v to be the time of the r-th visit to v. Formally,

τ (0)
v = inf{t ≥ 0 : Xt = v}

and for i ≥ 1 we define

τ (i)
v = inf{t > τ (i−1)

v : Xt = v, Xt− 6= v}.

Lemma 5.1. There exists α = α(C) > 0 independent of n such that for all x, z ∈ Ω and
all r ≥ 1 we have

Px,z

(
MX,Z > τ (r)

v

)
≤ (1− α)r−1.

Proof. First note that by the strong Markov property we have for all r ≥ 1

sup
x,z
Px,z

(
MX,Z > τ (r)

v

)
≤ sup

z
Pv,z

(
MX,Z > τ (r−1)

v

)
.
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Using the strong Markov property again, for r ≥ 1 we obtain

sup
z
Pv,z

(
MX,Z > τ (r)

v

)
= sup

z
Pv,z

(
MX,Z > τ (r)

v

∣∣∣MX,Z > τ (1)
v

)
Pv,z

(
MX,Z > τ (1)

v

)
≤ sup

w
Pv,w

(
MX,Z > τ (r−1)

v

)
sup
z
Pv,z

(
MX,Z > τ (1)

v

)
.

By induction for all r ≥ 1 this yields

sup
z
Pv,z

(
MX,Z > τ (r)

v

)
≤
(

sup
z
Pv,z

(
MX,Z > τ (1)

v

))r
.

So we complete the proof by showing that

sup
z
Pv,z

(
MX,Z > τ (1)

v

)
≤ 1− α (5.1)

for a positive constant α depending only on C.
Let τ = inf{t ≥ 0 : Zt ∈ Down \ {v}} and fix w ∈ Down \ {v}. By symmetry, for all z

we then have

Pv,z

(
MX,Z ≤ τ (1)

v

)
≥ 1

2
·min

z
Pw,z

(
τ ≤ τ (0)

v

)
min

a,b∈Down\{v}
Pa,b

(
MX,Z ≤ τ (0)

v

)
,

where the factor 1/2 corresponds to the probability that the first time X jumps it goes to
Down \ {v}.

If X0 = a ∈ Down \ {v}, then τ (0)
v = τXv , and hence if also b ∈ Down \ {v}, then

Pa,b

(
MX,Z ≤ τ (0)

v

)
≥ Pa,b

(
MX,Z ≤ τXv ∧ τZv

)
=

1

2
.

It remains to show that for a positive constant c1 we have

min
z
Pw,z

(
τ ≤ τ (0)

v

)
≥ c1 > 0. (5.2)

If z ∈ Down \ {v}, then this probability is 1 and if z = v it is easily seen to be at least
1/4. So we assume that z ∈ Up. Let x be the unique neighbour of v lying in the same
clique as z. Then the time τ can be expressed as τ = Tz,x + Tx,v + Tv,Down\{v}, where the
time Tr,S stands for the first hitting time of S starting from r. Using this, it is then not
hard to see that there exists a positive constant c such that uniformly over all z ∈ Up

we have E[τ ] ≤ ck2. Moreover, if X0 ∈ Down \ {v}, then τ
(0)
v is an exponential random

variable with mean n. By Markov’s inequality we obtain

Pw,z

(
τ ≤ τ (0)

v

)
≥ Pz(τ ≤ 2E[τ ]) · Pw

(
τ (0)
v ≥ 2E[τ ]

)
≥ 1

2
·
∫ ∞

2E[τ ]

ne−ns ds =
1

2
e−2nE[τ ].

Note that this bound does not depend on z. Since k =
√
Cn and E[τ ] ≤ ck2 the bound

in (5.2) follows.

Proof of Theorem 1.5. We show that for n sufficiently large, the graphG = Gn satisfies
the claim of the theorem.

It is not hard to verify that for n large enough, in Gn we have

π(Down) ≤ 2

C
.

Let A be the set of pairs (x, y) such that y ∈ Up and x is not in the same clique as y.
Then let E = {(X0, Y0) ∈ A}. By the preceding bound P(Ec) ≤ 3/C = ε/2 for n large
enough. We then have

P
(
Mgood ≤Mbad

)
≤ P

(
MX,Y ≤MX,Z

)
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= P
(
MX,Y ≤MX,Z , E

)
+ P

(
MX,Y ≤MX,Z , Ec

)
(5.3)

≤ sup
x,y,z: (x,y)∈A

Px,y,z
(
MX,Y ≤MX,Z

)
+
ε

2
. (5.4)

Therefore, it suffices to upper bound the last probability appearing above. Fix any z ∈ Ω

and (x, y) ∈ A. For r to be determined later we have

Px,y,z
(
MX,Y ≤MX,Z

)
≤ Px,y

(
MX,Y ≤ τ (r)

v

)
+ Px,z

(
MX,Z > τ (r)

v

)
. (5.5)

Because Y is not moving, we have MX,Y = τy, where y = Y0. Since x, y are not in the

same clique of Up, if τy ≤ τ (r)
v , then there exists 1 ≤ i ≤ r such that τ (i−1)

v < τy ≤ τ (i)
v . By

the strong Markov property and union bound we obtain

Px,y

(
MX,Y ≤ τ (r)

v

)
≤ rPv

(
τy ≤ τ (1)

v

)
≤ r

2n
,

since, when X0 = v, in order to hit y ∈ Up before returning to v, the first time X moves
it must jump into the clique that contains y.

Using the above bound and Lemma 5.1 in (5.5) we deduce

Px,y,z
(
MX,Y ≤MX,Z

)
≤ r

2n
+ (1− α)r−1.

Taking r =
√
n or any other function of n that goes to infinity slower than n gives that

Px,y,z
(
MX,Y ≤MX,Z

)
→ 0 as n→∞.

We conclude from (5.3) that
P
(
Mgood ≤Mbad

)
< ε

and this finishes the proof.

6 Sharpness of Conjecture 1.6

In this section we describe the example pointed out by Alexander Holroyd, mentioned
in the Introduction, of a family of transitive graphs for which P

(
Mgood ≤Mbad

)
≤ 1/3+δ.

In what follows we take λX = λY = 1 and λZ = 0.
To construct the example, fix ε ∈ (0, 1) and consider the chain with state space

{0, 1}n in which the j’th coordinate changes value (from 0 to 1 or vice-versa) at rate
qj = εj−1(1 − ε)/(1 − εn); note that

∑n
i=1 qi = 1. The idea is that for small ε, earlier

coordinates change state much more quickly than later coordinates, so the primary
obstacle to both meeting and hitting is simply the largest coordinate in which the value
differs. For u, v ∈ {0, 1}n, let k(u, v) = max{i : ui 6= vi}, or k(u, v) = 0 if u = v.

We claim that for x, y, z ∈ {0, 1}n, if k(x, y) > min(k(x, z), k(y, z)) then we have
Px,y,z

(
Mgood < Mbad

)
< 2εn. Assuming this, and taking ε = δ/(2n), it follows by symme-

try that, starting from stationarity,

P
(
Mgood < Mbad

)
≤ δ + P(k(X0, Y0) < min(k(X0, Z0), k(Y0, Z0)) < δ +

1

3
.

It thus remains to prove the preceding claim.
Fix x, y, z ∈ {0, 1}n with k(x, y) > min(k(x, z), k(y, z)), and assume by symmetry that

k(x, z) < k(x, y). For 1 ≤ k ≤ n, let τk = min{t : X
(i)
t = zi, 1 ≤ i ≤ k} be the first time

that Xt and z agree in the first k coordinates. It is convenient to set τ0 = 0. Also, let
σXk = min{t : ∃i ≥ k, X(i)

t 6= X
(i)
0 } be the first time one of the last n− k + 1 coordinates

of X changes, and define σYk accordingly.
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We will show that for all 1 ≤ k < n,

P
(
τk < σXk+1

)
≥ (1− ε)k ≥ 1− kε. (6.1)

Note that τk, σXk+1 and σYk+1 are all independent. Furthermore, σXk+1 and σYk+1 are
identically distributed, so if the preceding inequality holds as written then it also holds
with σYk+1 in place of σXk+1. We finish proving the claim assuming that (6.1) holds, then
conclude by proving (6.1).

At time τk(x,z), the first k(x, z) coordinates of X agree with those of z. If τk(x,z) <

σXk(x,z)+1 then the remaining coordinates of X and z also agree (because they did at

time 0 and they have not changed), so MX,Z = τk(x,z). Similarly, if τk(x,z) < σXk(x,z)+1 and

τk(x,z) < σYk(x,z)+1 then Mbad < Mgood. It then follows, using (6.1) and the subsequent
observation, that

Px,y,z
(
Mgood < Mbad

)
≤ P

(
σXk(x,z)+1 ≤ τk(x,z)

)
+P
(
σYk(x,z)+1 ≤ τk(x,z)

)
≤ 2k(x, z)ε < 2nε ,

as claimed. It thus remains to prove (6.1). In what follows we write σk = σXk .
Fix 1 ≤ k < n, and note that σk is exponential with rate

∑n
j=k qj = εk−1(1 −

εn+1−k)/(1− εn). Furthermore, σk < σk+1 precisely if the k’th coordinate of X changes
before any larger coordinate. It follows that P(σk < σk+1) = qk/

∑n
j=k qj .

Suppose that X(k)
0 = zk. In this case to have τk < σk+1 it suffices that τk−1 < σk, so

P
(
τk < σk+1

∣∣∣ X(k)
0 = zk

)
≥ P(τk−1 < σk) .

If X(k)
0 6= zk then the k-th coordinate must change before time τk, so to have τk < σk+1 it

is necessary that σk < σk+1.
By the strong Markov property, we then have

P
(
τk < σk+1

∣∣∣ X(k)
0 6= zk

)
= P(σk < σk+1)P

(
τk < σk+1

∣∣∣ X(k)
0 = zk

)
=

qk∑n
j=k qj

· P
(
τk < σk+1

∣∣∣ X(k)
0 = zk

)
≥ 1− ε

1− εn+1−kP(τk−1 < σk) .

We thus have the unconditional bound

P(τk < σk+1) ≥ 1− ε
1− εn+1−kP(τk−1 < σk) > (1− ε)P(τk−1 < σk) ,

This bound holds for all 1 ≤ k < n; since τ0 = 0 we also have P(τ0 < σ1) = 1, and (6.1)
follows.
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