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Dynamics of lattice triangulations on thin rectangles

Pietro Caputo* Fabio Martinelli† Alistair Sinclair‡

Alexandre Stauffer§

Abstract

We consider random lattice triangulations of n×k rectangular regions with weight λ|σ|

where λ > 0 is a parameter and |σ| denotes the total edge length of the triangulation.
When λ ∈ (0, 1) and k is fixed, we prove a tight upper bound of order n2 for the mixing
time of the edge-flip Glauber dynamics. Combined with the previously known lower
bound of order exp(Ω(n2)) for λ > 1 [3], this establishes the existence of a dynamical
phase transition for thin rectangles with critical point at λ = 1.
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1 Introduction

Consider an n× k lattice rectangle Λ0
n,k = {0, 1, . . . , n} × {0, 1, . . . , k} in the plane. A

triangulation of Λ0
n,k is defined as a maximal set of non-crossing edges (straight line

segments), each of which connects two points of Λ0
n,k and passes through no other point.

See Figure 1 for an example.
Call Ω(n, k) the set of all triangulations of Λ0

n,k. All σ ∈ Ω(n, k) have the same number
of edges and the set of midpoints of the edges of σ does not depend on σ. Thus, we may
view σ ∈ Ω(n, k) as a collection of edges {σx, x ∈ Λn,k} indexed by Λn,k, where

Λn,k := {0, 1
2 , 1,

3
2 , . . . , n− 1

2 , n} × {0, 1
2 , 1,

3
2 , . . . , k − 1

2 , k} \ Λ0
n,k,

is the set of all midpoints. Moreover, any element σ ∈ Ω(n, k) is unimodular, i.e., each
triangle in σ has area 1

2 ; see, e.g., [8, 6, 3] for these standard structural properties. If an
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Dynamics of lattice triangulations on thin rectangles

Figure 1: Two triangulations of a 5× 3 rectangle

edge σx of σ is the diagonal of a parallelogram, then it is said to be flippable: one can
delete this edge and add the opposite diagonal to obtain a new triangulation σ′ ∈ Ω(n, k).
In this case σ, σ′ differ by a single diagonal flip and are said to be adjacent. The
corresponding graph with vertex set Ω(n, k), and edges between adjacent triangulations,
called the flip graph, is known to be connected and to have interesting structural
properties; see [8, 3] and references therein.

We consider the following model of random triangulations. Fix λ ∈ (0,∞) and define
a probability measure µ on Ω(n, k) by

µ(σ) =
λ|σ|

Z
,

where Z =
∑
σ′∈Ω(n,k) λ

|σ′| and |σ| is the total `1 length of the edges in σ, i.e., the sum of
the horizontal and vertical lengths of each edge. The case λ = 1 is the uniform distribu-
tion, while λ < 1 (respectively, λ > 1) favors triangulations with shorter (respectively,
longer) edges. We refer to [3] and references therein for background and motivation
concerning this choice of weights.

A natural way to simulate triangulations distributed according to µ is to use the edge-
flip Glauber dynamics defined as follows. In state σ, pick a midpoint x ∈ Λn,k uniformly
at random; if the edge σx is flippable to edge σ′x (producing a new triangulation σ′), then
flip it with probability

µ(σ′)

µ(σ′) + µ(σ)
=

λ|σ
′
x|

λ|σ
′
x| + λ|σx|

, (1.1)

else do nothing. Since the flip graph is connected, this defines an irreducible Markov
chain on Ω(n, k), and the flip probabilities (1.1) ensure that the chain is reversible with
respect to µ. Hence the dynamics converges to the stationary distribution µ. We analyze
convergence to stationarity via the standard notion of mixing time, defined by

Tmix = inf
{
t ∈ N : max

σ∈Ω(n,k)
‖pt(σ, ·)− µ‖ ≤ 1/4

}
,

where pt(σ, ·) denotes the distribution after t steps when the initial state is σ, and
‖ν − µ‖ = 1

2

∑
σ∈Ω(n,k) |ν(σ) − µ(σ)| is the usual total variation distance between two

distributions µ, ν.
As discussed in [3], there is empirical evidence that the value λ = 1 represents a

critical point separating the sub-critical regime λ ∈ (0, 1), characterized by rapid decay
of both equilibrium and dynamical correlations, from the super-critical regime λ > 1,
characterized by the emergence of long-range correlations and a dramatic slowdown
in the convergence to equilibrium. We substantiated this picture by showing that there
exist constants C > 0 and λ1 ∈ (0, 1) such that

Tmix ≤ Ckn(k + n),

for all k, n ∈ N and for all λ ≤ λ1; see [3, Theorem 5.1]. This estimate is based on
a coupling argument that requires λ to be sufficiently small; in particular, λ1 = 1/8
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Dynamics of lattice triangulations on thin rectangles

suffices. We conjectured in [3] that the mixing time should satisfy Tmix = O(kn(k + n))

throughout the sub-critical regime λ ∈ (0, 1). However, except for the special case k = 1,
establishing even an arbitrary polynomial bound on Tmix in the whole region λ < 1 has
turned out to be very challenging. Regarding the super-critical regime, by [3, Theorem
6.1 and Theorem 6.2] it is known that, for λ > 1, one has Tmix = exp(Ω(k + n)) for all
k, n, and that Tmix = exp(Ω(n2/k)) if n > k2 .

In this paper we establish the conjectured behavior for all λ < 1 in the case of “thin”
rectangles, i.e., the case when k is fixed and n is large.

Theorem 1.1. For any λ ∈ (0, 1), k ∈ N, there exists a constant C = C(λ, k) > 0 such
that the mixing time of the Glauber dynamics for n×k triangulations satisfies Tmix ≤ C n2

for all n ≥ 1.

We remark that the above bound is sharp up to the value of the constant C since it is
known that Tmix ≥ C0kn(k + n) for some positive constant C0 for any k, n ∈ N and any
λ > 0; see [3, Proposition 6.3]. However, as a function of k the constant C in Theorem
1.1 can be exponentially large, and thus the interest of this bound is limited to the case
of thin rectangles.

In the special case k = 1, the above theorem can be obtained by a direct coupling
argument; see [3, Theorem 5.3]. Moreover, it is interesting to observe that in the case
k = 1 the set of triangulations is in 1-1 correspondence with the set of configurations of
a lattice path, and that diagonal flips are equivalent to so-called mountain/valley flips
in the lattice path representation. Weighted versions of lattice path models have been
studied extensively in the past (see, e.g., [4, 7]), and it is tempting to analyze the n× k
triangulation model as a multi-path system with k interacting lattice paths. While this
can be done in principle, it turns out that the interaction between the paths is technically
very complex. Even the case k = 2 apparently does not allow for significant simplification
with this representation.

The proof of Theorem 1.1 will rely crucially on some recent developments by one of
us [13] based on a Lyapunov function approach to the sub-critical regime λ ∈ (0, 1). As
detailed in subsequent sections, the main results of [13] will be used first to show that
after T = O(n2) steps of the chain we can reduce the problem to a restricted chain on
a “good” set of triangulations, each edge of which never exceeds logarithmic length,
and then to show that distant regions in our thin rectangles can be decoupled with an
exponentially small error. This will enable us to set up a recursive scheme for functional
inequalities related to mixing time such as the logarithmic Sobolev inequality. The
recursion, based on a bisection approach for the relative entropy functional inspired
by the spin system analysis of [10, 5], allows us to reduce the scale from n× k down to
polylog(n)× k. Once we reach the polylog(n)× k scale, we use a refinement from [2] of
the classical canonical paths argument [12]. This allows one to obtain an upper bound
on the relaxation time of a Markov chain in terms of the congestion ratio restricted to
a subspace Ω′ and the time the chain needs to visit Ω′ with large probability. Here we
use a further crucial input from [13] permitting us to identify a “canonical” subset of
triangulations Ω′ such that after T = O(n2) the chain enters Ω′ with large probability
and such that the chain restricted to Ω′ has small congestion ratio. A detailed high-level
overview of the proof will be given in Section 4.1.

The rest of the paper is organized as follows. In Section 2, we first recall some
important tools from [3] and then formulate the main ingredients we need from [13].
Then, in Section 3 we develop the applications of improved canonical path techniques to
our setting. In Section 4 we discuss the recursive scheme for the log-Sobolev inequality
and prove Theorem 1.1.
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Dynamics of lattice triangulations on thin rectangles

2 Main tools

2.1 Triangulations with boundary conditions

We will often consider subsets of Ω(n, k) consisting of triangulations in which some
edges are kept fixed, or “frozen”; we call these constraint edges. Formally, let Λ′ ⊂ Λn,k
denote a subset of the midpoints, and fix a collection of non-crossing edges {τy, y ∈ Λ′},
i.e., straight lines with midpoints in Λ′ each of which connects two points of Λ0

n,k and
passes through no other point of Λ0

n,k. If σ ∈ Ω(n, k) satisfies {σy = τy , y ∈ Λ′}, we say
that σ is compatible with the constraint edges τ . We interpret the constraint edges τ as
a boundary condition.

We shall actually need a more general notion of boundary condition, in order to deal
with the possibility of constraint edges whose midpoints lie outside the rectangle Λ0

n,k.
Let N be an integer and consider the set Q0

N,n,k = {−N, . . . , n+N} × {0, . . . , k}, i.e., a
(2N + n)× k rectangle containing Λ0

n,k, and let QN,n,k denote the set of midpoints of a
triangulation of Q0

N,n,k. Fix a triangulation τ̂ of the region Q0
N,n,k and call τ the set of

edges obtained from τ̂ by deleting some or all edges τ̂x with midpoint x ∈ Λn,k. Thus, τ is
a set of constraint edges for triangulations of Q0

N,n,k such that all edges with midpoints
in QN,n,k \ Λn,k are assigned. Given constraint edges τ as above, we define Ωτ (n, k) as
the set of all triangulations σ of Q0

N,n,k that are compatible with τ . Since the parameter
N will play no essential role in what follows we often omit it from our notation. Since all
elements of Ωτ (n, k) have the same edges at midpoints in QN,n,k \Λn,k, one can also view
a triangulation σ ∈ Ωτ (n, k) as an assignment of edges to midpoints in Λn,k with certain
constraints. Note that while the midpoint of a non-constraint edge of a triangulation
σ ∈ Ωτ (n, k) is always contained in Λn,k, its endpoints need not be contained in Λ0

n,k;
we refer to Lemma 3.4 below for a quantitative statement on the smallest rectangle
containing all non-constraint edges of any σ ∈ Ωτ (n, k) in terms of the length of the
largest edge in τ .

The random triangulation σ with boundary condition τ is the random variable σ ∈
Ωτ (n, k) with distribution

µτ (σ) =
λ|σ|

Z
, (2.1)

where Z =
∑
σ′∈Ωτ (n,k) λ

|σ′|. We sometimes write µ instead of µτ and Ω instead of Ωτ (n, k)

if there is no need to stress the dependence on the constraint edges. We say that there
is no boundary condition when N = 0 and the set of constraint edges τ is empty. In this
case Ωτ (n, k) coincides with Ω(n, k), the set of all triangulations of Λ0

n,k.

2.2 Ground states

It is a fact that for any set of constraint edges τ , the set of triangulations Ωτ (n, k)

that are compatible with τ is non-empty. Among the compatible triangulations, we are
particularly interested in those with minimal `1-edge length, which we call ground state
triangulations. These are the triangulations of maximum weight in (2.1) when λ < 1,
and they play a central role in our analysis. In the absence of boundary conditions, the
ground state triangulations are trivial: every edge is either horizontal or vertical or
a unit diagonal, so in particular the ground state is unique up to flipping of the unit
diagonals. The presence of constraint edges can change the ground state considerably.
However, the following result from [3, Lemma 3.4] reveals the strikingly simple structure
of ground states for any set of contraints.

Lemma 2.1. [Ground State Lemma] Given any set of constraint edges, the ground state
triangulation is unique (up to possible flipping of unit diagonals), and can be constructed
by placing each edge in its minimal length configuration consistent with the constraints,
independent of the other edges.
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Given a set of constraint edges, we denote by σ̄ the unique ground state triangulation.
(An arbitrary choice of the available unit diagonal orientations is understood in this
notation.) If no confusion arises, we omit to specify the dependence on the constraint
edges. An important structural property of triangulations with constraint edges, which
follows from Lemma 2.1, is that from any triangulation σ compatible with τ one can
reach the ground state σ̄ with a path in the flip graph with the property that no flip
increases the length of an edge.

2.3 The Glauber dynamics

The Glauber dynamics in the presence of a boundary condition τ is defined as before
(see equation (1.1)), with the modification that the midpoint x to be updated is picked
uniformly at random among all midpoints of non-constraint edges. For any λ > 0, this
defines an irreducible Markov chain on Ωτ (n, k) that is reversible w.r.t. the stationary
distribution µτ (see [3] for details). It was shown in [3, Theorem 5.1] that for some
constants C > 0 and λ1 ∈ (0, 1), the mixing time of this chain in an n × k rectangle
satisfies Tmix ≤ Ckn(k + n) uniformly in the choice of the constraint edges, whenever
λ ≤ λ1. We also conjectured in [3] that the O(kn(k + n)) mixing time should hold for all
λ ∈ (0, 1).

2.4 Key ingredients from [13]

We gather in Lemmas 2.2–2.5 below some estimates from [13] that will be crucial in
our analysis; for the proofs see [13]. Note that these estimates are valid throughout the
sub-critical regime λ ∈ (0, 1).

The first lemma applies to the case where there are no constraint edges, so that
the ground state is trivial. It follows from [13, Corollary 7.4], and establishes that
after running the Markov chain for O(n2) steps, the `1-length of a given edge has
an exponential tail. For a given initial triangulation σ = σ0, we denote by σt the
triangulation after t steps of the chain, and denote by P the probability measure induced
by the evolution of the chain.

Lemma 2.2. Fix λ ∈ (0, 1). There exist positive constants c1 = c1(λ) and c2 = c2(λ) such
that for n ≥ k ≥ 1, for any t ≥ c1n

2, any ` > 0, any midpoint x ∈ Λn,k, and any initial
triangulation σ ∈ Ω(n, k):

P
(
|σtx| ≥ `

)
≤ c1 exp (−c2`).

The next lemma deals with the evolution in the presence of constraint edges τ , and
follows from [13, Theorem 7.3]. We denote by σ̄x the ground state edge at x (compatible
with τ ). Given σ ∈ Ωτ (n, k) and y ∈ Λn,k, we write σy ∩ σ̄x 6= ∅ if the edge σy crosses σ̄x
(not including the case where σy and σ̄x intersect only at their endpoints).

Lemma 2.3. Fix λ ∈ (0, 1). There exist positive constants c1 = c1(λ) and c2 = c2(λ)

such that the following holds for any n ≥ k ≥ 1, any set of constraint edges τ , and
any midpoint x ∈ Λn,k. Let M be the `1 length of the largest edge in any triangulation
σ ∈ Ωτ (n, k). Then, for any t ≥ c1kn(M + log n), and any ` ≥ 0, we have

P

(⋃
y∈Λn,k

{
σty ∩ σ̄x 6= ∅

}
∩
{
|σty| ≥ |σ̄x|+ `

})
≤ c1 exp (−c2`) . (2.2)

Next we give a rough upper bound on the number of small edges intersecting a
given ground state edge. We assume that a set of constraint edges τ is given. For any
triangulation σ ∈ Ωτ (n, k), any ground state edge g, and any ` ∈ Z+, define

Ig(σ, `) = {σx , x ∈ Λn,k : σx ∩ g 6= ∅ and |σx| ≤ |g|+ `} .
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We denote by |Ig(σ, `)| the cardinality of Ig(σ, `). For a proof of the lemma below, see [13,
Proposition 4.4].

Lemma 2.4. Let g be a ground state edge, and let σ ∈ Ωτ (n, k) be a triangulation.

i) If σx ∩ g 6= ∅ then |σx| ≥ |g|, with strict inequality when the midpoint of g is not x.

ii) For any ` ≥ 1, all midpoints of edges in Ig(σ, `) are contained in the ball of radius 2`

centered at the midpoint of g.

iii) There exists a universal c > 0 such that for any ` ≥ 1 we have

|Ig(σ, `)| ≤ c `2 , and
∣∣⋃

σ
Ig(σ, `)

∣∣ ≤ c `4.
Finally, the lemma below establishes the probability of having a top-to-bottom crossing

of unit verticals in a random triangulation σ. By a “top-to-bottom crossing of unit verticals
in σ” we mean a straight line of length k made up of k vertical edges in σ each of length
1. The lemma below follows from [13, Theorems 8.1 and 8.2].

Lemma 2.5. Let k ∈ N and λ ∈ (0, 1) be fixed. There exist positive constants c = c(λ, k),
δ = δ(λ, k) and m0 = m0(λ, k) such that the following holds. Let R be an m× k rectangle
contained in [0, n]× [0, k] with m ≥ m0. Consider an arbitrary set of constraint edges τ
such that no edge from τ intersects R. For any triangulation σ ∈ Ωτ (n, k), let CR(σ) be
the number of disjoint top-to-bottom crossings of unit verticals from σ that are inside R.
Then,

µτ (CR(σ) ≤ δ m) ≤ e−cm.
Furthermore, let σ, σ′ be two triangulations sampled from the stationary distribution µ
given two different sets of constraint edges τ, τ ′ such that no edge of τ, τ ′ intersects R.
Then, there exists a coupling of σ, σ′ such that the probability that they have less than
δ m common top-to-bottom crossings of unit verticals is at most e−cm.

3 Estimates via canonical paths

We recall that the relaxation time Trel is defined as the inverse of the spectral gap of
the Markov chain. We start by showing that a direct application of the usual canonical
path argument [12] yields an exponential bound on the relaxation time of the Markov
chain that is valid for all λ ≤ 1. We recall the well known estimate relating Trel and Tmix

(see, e.g., [9, Theorem 12.3]):

Tmix ≤ Trel(2 + log(1/µ∗)), (3.1)

where µ∗ = minσ µ(σ).

Theorem 3.1. There exists a positive constant C such that for any λ ≤ 1, n, k ∈ N and
any set of constraint edges τ , the Glauber dynamics on Ωτ (n, k) satisfies

Trel ≤ exp(Ckn).

Before proving the above theorem we recall a useful structural fact. Given a set of
constraint edges τ and a midpoint x, consider the set Ωτx of possible values of σx, as σ
ranges in Ωτ (n, k). Two edges σx, σ′x ∈ Ωτx are said to be neighbors if σx is flippable to σ′x
within some triangulation σ ∈ Ωτ (n, k). Then it is known (see, e.g., [3]) that the induced
graph with vertex set Ωτx is a tree Gτx , and that for each edge σx ∈ Ωτx not in ground state
there is a unique edge σ′x ∈ Ωτx for which |σx| > |σ′x| and σx, σ′x are neighbors. It is useful
to see Gτx as a tree rooted at the ground state edges of midpoint x; recall that if there are
more than one ground state edges of midpoint x, then there are exactly two and they are

EJP 21 (2016), paper 29.
Page 6/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4321
http://www.imstat.org/ejp/


Dynamics of lattice triangulations on thin rectangles

the opposite unit diagonals, which are neighbors in Gτx . We then obtain that the shortest
path between σx and a ground state edge of midpoint x in Gτx is given by a sequence of
edges of decreasing lengths.

In order to describe the shortest path between any two edges σx, σ′x ∈ Ωτx in Gτx , we
introduce one piece of notation. If there is only one ground state edge of midpoint x, let
υ(σx, σ

′
x) = υ(σ′x, σx) be the lowest common ancestor of σx and σ′x in the tree Gτx . If there

are two ground state edges of midpoint x, but σx and σ′x belong to the same subtree
rooted at one of the ground state edges, then as before we define υ(σx, σ

′
x) = υ(σ′x, σx) to

be the lowest common ancestor of σx and σ′x. However, if σx and σ′x belong to different
subtrees, then we let υ(σx, σ

′
x) (resp., υ(σ′x, σx)) be the closest ground state edge to σx

(resp., σ′x) in Gτx . Then the shortest path from σx to σ′x in Gτx is composed of a sequence of
edges of decreasing lengths from σx to υ(σx, σ

′
x), and a sequence of edges of increasing

lengths from υ(σ′x, σx) to σ′x.
We will make use of the following technical lemma; see [3, Proposition 3.8] for the

proof. The lemma below establishes that, given any two triangulations σ, σ′ ∈ Ωτ (n, k)

and any midpoint x, if we observe the different edges of midpoint x that are obtained
in the shortest path between σ and σ′ in the flip graph, then we encounter the same
sequence of edges in the shortest path between σx and σ′x in the tree Gτx .

Lemma 3.2. Fix a set of constraint edges τ . For any midpoint x and any two trian-
gulations σ, σ′ ∈ Ωτ (n, k), the distance between σ and σ′ in the flip graph is equal to∑
x∈Λn,k

κ(σx, σ
′
x), where κ(σx, σ

′
x) is the distance between σx and σ′x in the tree Gτx .

We denote by an edge-decreasing flip (resp., edge-increasing flip) a flip that causes an
edge to decrease (resp., increase) its length. The proof of the above lemma, given in [3,
Proposition 3.8], constructs such a path by performing a sequence of edge-decreasing
flips to σ and σ′ until obtaining triangulations η, η′, respectively, such that ηx = υ(σx, σ

′
x)

and η′x = υ(σ′x, σx) for all x. This establishes a path from σ to σ′ which is first composed
by a sequence of edge-decreasing flips (transforming σ into η), followed by flips of
unit diagonals (transforming η into η′), and then by a sequence of edge-increasing flips
(transforming η′ into σ′).

Proof of Theorem 3.1. For each pair σ, σ′ ∈ Ωτ (n, k), let Γσ,σ′ be a shortest path be-
tween σ and σ′ in the flip graph. From Lemma 3.2 and the properties discussed right
after Lemma 3.2, we have that for any triangulation η in the path Γσ,σ′ and any midpoint
x,

|ηx| ≤ |σx| ∨ |σ′x|. (3.2)

We can also assume that Γσ,σ′ is a monotone path in the sense that it is composed of a
sequence of edge-decreasing flips, until for each midpoint x the edge with that midpoint
is υ(σx, σ

′
x), followed by a sequence of flips of unit diagonals, and then a sequence of

edge-increasing flips.
Now, for any function f : Ω→ R, we have

f(σ)− f(σ′) =
∑

(η,η′)∈Γσ,σ′

∇η,η′f,

where we employ the notation ∇η,η′f = f(η) − f(η′). For simplicity, below we write µ
instead of µτ and Ω instead of Ωτ (n, k). Thus, using Cauchy-Schwarz, the variance of f
with respect to µ satisfies

Var(f) =
1

2

∑
σ,σ′

µ(σ)µ(σ′)(f(σ)− f(σ′))2

≤ 1

2
C(Ω)

∑
η,η′ : η∼η′

µ(η)p(η, η′)(∇η,η′f)2,
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where p(η, η′) is the probability that the Glauber chain goes from η to η′ in one step,
η ∼ η′ denotes that η and η′ are adjacent triangulations, and we use the notation

C(Ω) = max
η,η′ : η∼η′

∑
σ,σ′ : (η,η′)∈Γσ,σ′

µ(σ)µ(σ′)

µ(η)p(η, η′)
|Γσ,σ′ |, (3.3)

for the so-called “congestion ratio.” Now assume that p(η, η′) ≥ p(η′, η), otherwise use
reversibility to write µ(η)p(η, η′) as µ(η′)p(η′, η). With this assumption we have that
p(η, η′) ≥ 1

2|Λn,k| . Also, from Lemma 3.2 we have |Γσ,σ′ | = O(nk(n + k)). This holds

because there are O(nk) midpoints, the largest length of an edge is O(n+ k), and each
flip that is not between two ground state edges must change the length of an edge by at
least 1. The key property we use is that (3.2) gives

µ(σ)µ(σ′)

µ(η)
= Z−1

∏
x

λ|σx|+|σ
′
x|−|ηx| ≤ Z−1

∏
x

λ|σx|∧|σ
′
x| ≤ 1,

where we used the bound
Z ≥

∏
x

λ|σ̄x| ≥
∏
x

λ|σx|∧|σ
′
x|.

Plugging this into (3.3), we obtain

C(Ω) ≤ Cnk(n+ k) |Λn,k| |Ωτ (n, k)|2. (3.4)

Using Anclin’s bound [1] one has |Ωτ (n, k)| ≤ 2|Λn,k|. The proof is then concluded by
recalling that Trel is the smallest constant γ such that the inequality

Var(f) ≤ γ

2

∑
η,η′ : η∼η′

µ(η)p(η, η′)(∇η,η′f)2

holds for all functions f : Ωτ (n, k) 7→ R.

3.1 An improved canonical paths argument

Here we establish a first polynomial bound on the relaxation time. The result here
can be formulated as follows.

Theorem 3.3. Fix λ ∈ (0, 1) and k ∈ N. There exists a positive constant c = c(λ, k) such
that for any boundary condition τ = {τx} such that |τx| ≤ n/4 for all x, the relaxation
time of the Glauber chain in Ωτ (n, k) satisfies

Trel ≤ nc.

The strategy of the proof is as follows. We shall identify a subset Ω′ of triangulations
such that the congestion ratio C(Ω′) defined as in (3.3) but restricted to Ω′ satisfies a
polynomial bound, in contrast with the exponential bound in (3.4). Using a key input
from [13], we show that the Glauber chain enters the set Ω′ with large probability after
a burn-in time of T = O(n2) steps. Following an idea already used in [2] we establish the
desired upper bound on Trel by combining the above facts.

We start with a deterministic estimate.

Lemma 3.4. Fix L > 0 and let σ ∈ Ωτ (n, k) be a triangulation of the n × k rectangle
with boundary condition τ = {τx} such that |τx| ≤ L for all x. Then, all edges of σ are
contained in the rectangle [−L, n+ L]× [−L, k + L].

Proof. First, note that the ground state triangulation must satisfy the lemma, because all
edges have size at most L. We use the notation σx to denote the triangulation obtained
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from σ by flipping σx, and call σx an increasing edge if it can be flipped and σxx is
larger than σx. Now it is enough to show that there cannot be an increasing edge σx
with x ∈ Λn,k such that σxx 6⊂ [−L, n + L] × [−L, k + L] but all edges of σ are inside
[−L, n + L] × [−L, k + L]. In order to achieve a contradiction, assume that such an
increasing edge σx exists and assume that σxx is at the left part of the triangulation (i.e.,
that its leftmost endpoint has horizontal coordinate smaller than −L). Let σy, σz be the
triangle containing σx such that the vertex v = σy ∩ σz has horizontal coordinate smaller
than −L. Since σ is completely inside [−L, n + L] × [−L, k + L], we obtain that σy and
σz are constraint edges. Also, since x ∈ Λ, σx must have one endpoint u of horizontal
coordinate at least 0. This gives that ‖v − u‖1 > L, and consequently, either σy or σz has
length larger than L, which is a contradiction.

Next, we formulate a general upper bound on Trel in terms of the congestion ratio
of a subset Ω′ of the state space Ω, a time T , and the probability needed to reach Ω′

within time T . A version of this lemma appears in [2, Theorem 2.4]. For the reader’s
convenience we give a detailed proof.

Lemma 3.5 (Canonical paths with burn-in time). Consider a Markov chain with state
space Ω, irreducible transition matrix p(·, ·) and reversible probability measure µ. Let
Ω′ ⊂ Ω be a subset so that between each σ, σ′ ∈ Ω′ there is a path Γσ,σ′ in the Markov
chain that is entirely contained in Ω′. Define the congestion ratio

C(Ω′) = max
η,η′∈Ω′ : η∼η′

∑
σ,σ′ : (η,η′)∈Γσ,σ′

µ(σ)µ(σ′)|Γσ,σ′ |
µ(η)p(η, η′)

,

where the sum is over all pairs of states σ, σ′ ∈ Ω′ so that the path Γσ,σ′ uses the transition
(η, η′). Fix T ∈ N and let ρ be a lower bound on the probability that at time T the chain
is inside Ω′, uniformly over the starting state in Ω. Then the relaxation time satisfies

Trel ≤
6T 2

ρ
+

3 C(Ω′)
ρ2

.

Proof. We run the Markov chain for T steps. For σ, τ ∈ Ω, let µσ(τ) be the probability
that, starting from σ, the Markov chain is at τ after T steps. Note that µσ(Ω′) ≥ ρ. For
σ, τ ∈ Ω, and for any path γ of length T in the chain starting at σ and ending at τ , let
νσ,τ (γ) be the conditional probability that, given the initial state σ at time 0 and the final
state τ after T steps, the Markov chain traverses the path γ. Then, for any function
f : Ω→ R, we have

Var(f) =
1

2

∑
σ,σ′∈Ω

µ(σ)µ(σ′)(f(σ)− f(σ′))2 =
1

2

∑
σ,σ′∈Ω

∑
η,η′∈Ω′

µ(σ)µ(σ′)
µσ(η)µσ′(η

′)

µσ(Ω′)µσ′(Ω′)
×

×
∑
γ1,γ2

νσ,η(γ1)νσ′,η′(γ2)
(∑

e∈γ1
∇ef +

∑
e∈γ2
∇ef +

∑
e∈Γη,η′

∇ef
)2

,

where the three sums inside the parenthesis are over the edges of the paths γ1, γ2, and
Γη,η′ , respectively, with γ1 being a path from σ to η and γ2 being a path from η′ to σ′.
Then, applying Cauchy-Schwarz, we obtain

Var(f) ≤ 3

2

∑
σ,σ′∈Ω

∑
η,η′∈Ω′

µ(σ)µ(σ′)
µσ(η)µσ′(η

′)

µσ(Ω′)µσ′(Ω′)
×

×
∑
γ1,γ2

νσ,η(γ1)νσ′,η′(γ2)
(
T
∑
e∈γ1

(∇ef)2 + T
∑
e∈γ2

(∇ef)2 + |Γη,η′ |
∑
e∈Γη,η′

(∇ef)2
)
.
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We write the right-hand side above as A1 +A2 +A3, where

A1 =
3

2

∑
σ,σ′∈Ω

∑
η,η′∈Ω′

µ(σ)µ(σ′)
µσ(η)µσ′(η

′)

µσ(Ω′)µσ′(Ω′)

∑
γ1,γ2

νσ,η(γ1)νσ′,η′(γ2)T
∑
e∈γ1

(∇ef)2

A2 =
3

2

∑
σ,σ′∈Ω

∑
η,η′∈Ω′

µ(σ)µ(σ′)
µσ(η)µσ′(η

′)

µσ(Ω′)µσ′(Ω′)

∑
γ1,γ2

νσ,η(γ1)νσ′,η′(γ2)T
∑
e∈γ2

(∇ef)2

A3 =
3

2

∑
σ,σ′∈Ω

∑
η,η′∈Ω′

µ(σ)µ(σ′)
µσ(η)µσ′(η

′)

µσ(Ω′)µσ′(Ω′)

∑
γ1,γ2

νσ,η(γ1)νσ′,η′(γ2) |Γη,η′ |
∑

e∈Γη,η′

(∇ef)2.

We start with A1. Summing over γ2, σ
′, η′, and using

∑
γ2
νσ′,η′(γ2) = 1, we have

A1 =
3

2
T
∑
σ∈Ω

∑
η∈Ω′

µ(σ)
µσ(η)

µσ(Ω′)

∑
γ1

νσ,η(γ1)
∑
e∈γ1

(∇ef)2.

Changing the order of the summations, and summing first over all pairs of adjacent
states τ ∼ τ ′, we get

A1 =
3

2
T

∑
τ,τ ′∈Ω: τ∼τ ′

µ(τ)p(τ, τ ′)(∇τ,τ ′f)2
∑

σ∈Ω,η∈Ω′,γ : (τ,τ ′)∈γ

µ(σ)µσ(η)νσ,η(γ)

µσ(Ω′)µ(τ)p(τ, τ ′)

≤ 3T

2ρ

∑
τ,τ ′∈Ω: τ∼τ ′

µ(τ)p(τ, τ ′)(∇τ,τ ′f)2
∑

σ∈Ω,η∈Ω′,γ : (τ,τ ′)∈γ

µ(σ)µσ(η)νσ,η(γ)

µ(τ)p(τ, τ ′)

≤ 3T

2ρ

∑
τ,τ ′∈Ω: τ∼τ ′

µ(τ)p(τ, τ ′)(∇τ,τ ′f)2Pµ (Markov chain traverses (τ, τ ′) within T steps)

µ(τ)p(τ, τ ′)

≤ 3T

2ρ

∑
τ,τ ′∈Ω: τ∼τ ′

µ(τ)p(τ, τ ′)(∇τ,τ ′f)2Tµ(τ)p(τ, τ ′)

µ(τ)p(τ, τ ′)
=

3T 2

ρ
D(f, f),

where Pµ(·) denotes the measure induced by the Markov chain started from stationarity,
and we use the notation

D(f, f) =
1

2

∑
τ,τ ′∈Ω: τ∼τ ′

µ(τ)p(τ, τ ′)(∇τ,τ ′f)2

for the so-called Dirichlet form. For the second term, we have by symmetry that A2 = A1.
For A3, we use ρ ≤ µσ(Ω′), µσ′(Ω

′), and sum over γ1, γ2, σ, σ
′ to obtain

A3 ≤
3

2ρ2

∑
η,η′∈Ω′

µ(η)µ(η′)|Γη,η′ |
∑

e∈Γη,η′

(∇ef)2.

Changing the order of summations, we get

A3 ≤
3 C(Ω′)
ρ2

D(f, f).

The result now follows since Trel is the smallest constant γ such that the inequality

Var(f) ≤ γD(f, f)

holds for all functions f : Ω 7→ R.

Proof of Theorem 3.3. Let T = c1n
2k for some large enough constant c1 = c1(λ) > 0.

Thanks to Lemma 3.4 we may apply Lemma 2.3 with M = 2n+ k. Thus, for any given
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x ∈ Λn,k and ground-state edge σ̄x with midpoint x, taking ` = c2 log |Λn,k| for some large
enough constant c2 = c2(λ) > 0, and taking the union bound over all x ∈ Λn,k in (2.2) we
obtain that the triangulation σT at time T , for an arbitrary initial condition σ, satisfies

P

(⋃
x∈Λn,k

⋃
y∈Λn,k

{
σTy ∩ σ̄x 6= ∅

}
∩
{
|σTy | > |σ̄x|+ `

})
≤ n−1. (3.5)

Let

Ω′ =
{
σ : for all x, y ∈ Λn,k, |σx| ≤ |σ̄x|+ ` and 1 (σy ∩ σ̄x 6= ∅) ≤ 1 (|σy| ≤ |σ̄x|+ `)

}
.

Thus (3.5) implies that P
(
σT ∈ Ω′

)
≥ 1 − n−1. Note that Ω′ is a decreasing set in the

sense that if σ ∈ Ω′ then for all σ′ that can be obtained from σ by performing decreasing
flips, we have σ′ ∈ Ω′. This allows us to construct a path Γσ,σ′ within Ω′ between any
pair of triangulations σ, σ′ ∈ Ω′, as described right after Lemma 3.2.

We now describe the path Γσ,σ′ . Fix two triangulations σ, σ′ ∈ Ω′, and any midpoint
x ∈ Λn,k. Note that in order to transform σx into a ground state edge g, we only need to
perform a sequence of edge-decreasing flips on edges whose midpoints are in Ig(σ, `)

(recall the definition of Ig from Lemma 2.4). This holds because we can construct a
triangulation η by taking σ, removing all edges that cross g from σ, adding the edge
g and then completing the triangulation with ground state edges given all the other
edges already present. In this way, η contains all edges of σ that do not cross g, and can
be obtained from σ by a sequence of edge-decreasing flips since its other edges are in
ground state. Hence, since σ, σ′ ∈ Ω′, in order to transform σx into σ′x we do not need to
flip edges that do not cross a ground state edge g of midpoint x. So all edges that need
to be flipped belong to Ig(σ, `) ∪ Ig(σ′, `).

We will construct the path Γσ,σ′ as follows. Partition [0, n] × [0, k] into slabs of
horizontal width 2`, and number the slabs from left to right. We take the first slab and
perform the smallest number of flips needed to σ until all edges of midpoint inside the
first slab are equal to σ′. We do this by first doing a sequence of edge-decreasing flips so
that, for each midpoint x in the first slab, we obtain the edge υ(σx, σ

′
x). Then we perform

a sequence of flips of unit diagonals and then a sequence of edge-increasing flips until
for each such x we obtain the edge σ′x. From the explanation above, all edges that
needed to be flipped in this procedure are contained in

⋃
x(Igx(σ, `) ∪ Igx(σ′, `)), where

the first union is over all midpoints x inside the first slab, and gx stands for a ground
state edge of midpoint x. By Lemma 2.4 we have that all edges in

⋃
σ∈Ω′ Igx(σ, `) have

midpoint inside a ball of radius 2` centered at x. This implies that only edges of the first
and second slabs are flipped in the procedure above. Then we iterate this procedure,
finding a sequence of flips that transform σ into σ′ slab by slab, from left to right, so that
when transforming the ith slab, only edges with midpoints in the ith and (i+ 1)th slabs
need to be flipped, and edges with midpoint in the slabs 1, 2, . . . , i− 1 are already equal
to σ′. Note that, in each slab, we just perform the minimum number of flips needed to
transform that slab into σ′, and we do that by first performing all decreasing flips and
then all increasing flips.

Our goal is to apply Lemma 3.5, for which we need to bound the value of the
congestion ratio C(Ω′). To do this, consider a pair of adjacent triangulations η, η′. Assume
that η, η′ differ at an edge of the ith slab. Therefore, if σ, σ′ are two triangulations for
which the path between them includes the transition (η, η′) we know that triangulation η
has slabs 1, 2, . . . , i− 2 equal to σ′ and slabs i+ 2, i+ 3, . . . equal to σ. Let ξ be a partial
triangulation in Ω′ of the first i − 2 slabs and m be a partial triangulation in Ω′ of the
middle slabs so that ξ, m and σ are compatible, meaning that ξ, m and the edges of σ
inside slabs i+ 2, i+ 3, . . . can coexist to form a full triangulation. Similarly, let ξ′ be a
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partial triangulation in Ω′ of the last slabs (i+2, i+3, . . .) and m′ be a partial triangulation
in Ω′ of the middle slabs so that ξ′, m′ and the edges of σ′ inside slabs 1, 2, . . . , i − 2

are compatible. Assume that p(η, η′) ≥ p(η′, η), which implies that p(η, η′) ≥ 1
2|Λn,k|

(otherwise, replace µ(η)p(η, η′) with µ(η′)p(η′, η) in C(Ω′)). Let ηi be the part of η inside
slabs i − 1, i, i + 1. Then, summing over all ξ, ξ′,m,m′ as above such that (η, η′) is a
transition in the path from ξ,m, σ to σ′,m′, ξ′, and noting that the path between σ and σ′

has length at most 2`|Λn,k|, we obtain the following upper bound for C(Ω′):

C(Ω′) ≤ 4`|Λn,k|2
∑

ξ,ξ′,m,m′

λ|ξ|+|ξ
′|+|m|+|m′|−|ηi|

ZΩ′
,

where ZΩ′ =
∑
σ∈Ω′ λ

|σ|. Instead of summing over m,m′, we will sum over triangu-
lations m′′ of the middle slabs that are compatible with both ξ and ξ′ and are to be
interpreted as m ∧m′. Given m′′, we sum over m,m′ that can be obtained from m′′ by
increasing flips and such that (η, η′) is a transition in the path from ξ,m, σ to σ′,m′, ξ′.
Let A(m′′,m,m′, η) be the indicator that all four of them are compatible, as described
above. When A(m′′,m,m′, η) = 1 we have that |ηx| ≤ |mx| ∨ |m′x| for any midpoint x in
the middle slabs. Hence, |m′′|+ |m \m′′|+ |m′ \m′′| ≥ |ηi|, which gives

C(Ω′) ≤ 4`|Λn,k|2
∑

ξ,ξ′,m′′

λ|ξ|+|ξ
′|+|m′′|

ZΩ′

∑
m,m′

λ|m
′′|+|m\m′′|+|m′\m′′|−|ηi|A(m′′,m,m′, η).

Since λ < 1, we can simply use Anclin’s bound [1] saying that the number of trian-
gulations of an ` × k region with arbitrary constraint edges is at most 23k` to obtain
that

C(Ω′) ≤ 4`|Λn,k|226k`
∑

ξ,ξ′,m′′

λ|ξ|+|ξ
′|+|m′′|

ZΩ′
≤ 4`|Λn,k|226k`.

Plugging everything into Lemma 3.5 completes the proof.

4 Proof of Theorem 1.1

4.1 High-level overview

The proof is composed of three main ingredients: (i) a good ensemble, (ii) a decay of
correlation analysis, and (iii) a recursion for the logarithmic Sobolev inequality.

The good ensemble. The first step is to show that uniformly over the initial condition,
with high probability, for all times t ∈ [T, T + n2], with T = O(n2), the Markov chain
stays within a subset Ω̃ of triangulations where all edges have length at most C log n for
some constant C > 0. We will call this subset the good ensemble. This result will be a
consequence of the tail estimate of Lemma 2.2. Therefore, we will couple our evolution
in the time interval t ∈ [T, T +n2] with the Markov chain restricted to the good ensemble,
which evolves as before, by attempting to flip edges chosen uniformly at random, but
with the suppression of any edge flip that would render an edge longer than C log n.
The structural properties of triangulations imply that this Markov chain is irreducible.
Moreover, the reversible probability measure is given by µ̃ = µ(· | Ω̃), the measure µ
conditioned on the event σ ∈ Ω̃. Since µ and µ̃ can be coupled with high probability, it is
sufficient to analyze convergence to equilibrium for the restricted chain, and to show
that the latter mixes in time T ′ = O(n2). We will actually prove that the restricted chain
mixes in time T ′ = npolylog(n). For the rest of this discussion we assume that we are
working with the Markov chain restricted to the good ensemble Ω̃.

Decay of correlations. We split the set of midpoints Λn,k into two intersecting
slabs Λ` and Λr, where Λ` contains all midpoints with horizontal coordinate smaller
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than n/2 + 2C log n and Λr contains all midpoints with horizontal coordinate at least
n/2 − 2C log n. Note that Λ` ∩ Λr is a slab of height k and horizontal width 4C log n.
Let Fr,F` be the σ-algebras generated by the edges with midpoints in Λr \ Λ`,Λ` \ Λr

respectively. We want to show that, conditional on any event F ∈ Fr, the distribution of
the edges in Λ` \ Λr is not affected much, and similarly for events F ∈ F`. The intuition
for this is that the intersection Λ` ∩ Λr of the slabs is large enough to allow correlations
from Λ` \ Λr to decay. We will make this intuition rigorous by showing that there exists
a positive ε = ε(λ) such that, for all F`-measurable functions f` and all Fr-measurable
functions fr, we have

sup
F∈Fr

∣∣µ̃(f` | F )− µ̃(f`)
∣∣ ≤ n−ε‖f`‖1 and sup

F∈F`

∣∣µ̃(fr | F )− µ̃(fr)
∣∣ ≤ n−ε‖fr‖1, (4.1)

where µ̃(f | F ) stands for the expectation of f given the event F and we use ‖f‖1 to
denote the L1 norm ‖f‖1 =

∑
σ∈Ω̃ µ̃(σ)|f(σ)|.

The high-level argument for (4.1) is the following. Fix any valid collection of edges
with midpoints in Λ` \Λr, that is, a collection of edges that do not contain lattice points in
their interior and that do not intersect the interior of other edges of the collection. Such
a collection of edges can be viewed as a partial triangulation from Ω̃. This defines an
event F ∈ F`. We will construct a coupling of one triangulation σ distributed according
to µ̃(· | F ) and another triangulation σ′ distributed according to µ̃(·). We do this by first
sampling the edges of σ′ whose midpoint is in Λ` \ Λr. Call this event F ′ ∈ F`. Since we
are restricted to the good ensemble, the edges of F and F ′ have length at most C log n.
Therefore, none of them crosses into the right half of Λ` ∩ Λr. Lemma 2.5 therefore
ensures that we may couple the sampling of edges in Λr so that, with probability at least
1− e−ε logn, we put the same top-to-bottom crossing of unit verticals in σ and σ′ inside
the right half of Λ` ∩ Λr. In particular, this implies that we can couple σ and σ′ so that
they agree on Λr \ Λ`. This will establish (4.1).

The log-Sobolev inequality. An important ingredient in the proof of Theorem 1.1 is
the use of the logarithmic Sobolev inequality for the good ensemble. For any positive
function f , let µ̃(f) stand for the expectation of f in the good ensemble, and let

Ent(f) = µ̃
(
f log

(
f

µ̃(f)

))
=
∑
σ

µ̃(σ)f(σ) log
(
f(σ)
µ̃(f)

)
denote the entropy of f . Also, define

E(f, f) =
1

2

∑
σ,σ′∈Ω̃

µ̃(σ)ρ(σ, σ′)(f(σ)− f(σ′))2,

where

ρ(σ, σ′) =
λ|σ
′|

λ|σ| + λ|σ′|
1 (σ ∼ σ′) .

As usual σ ∼ σ′ means that σ, σ′ differ by a single edge flip. Note that ρ(σ, σ′) =

|Λn,k|p(σ, σ′), where p is the transition matrix of the discrete time chain. Thus E(f, f) can
be interpreted as the Dirichlet form of the continuous time Markov chain where every
edge of the triangulation independently attempts to flip at rate 1.

Let cS be the log-Sobolev constant of this Markov chain, defined as the smallest
constant c > 0 such that for all functions f one has

Ent(f2) ≤ c E(f, f). (4.2)

It is known (see e.g. [11, Theorem 2.9]) that cS is related to the mixing and relaxation
times via

T̃mix ≤
cS
4

(
4 + log+ log µ̃−1

∗
)

and 2 T̃rel ≤ cS ≤ T̃rel

(
log(µ̃−1

∗ )

1− 2µ̃∗

)
, (4.3)
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where µ̃∗ = minσ∈Ω̃ µ̃(σ), and we use T̃rel, T̃mix to denote the relaxation time and the
mixing time of the continuous time chain restricted to the good set. These bounds
should be compared with (3.1). In particular, it will be crucial for us to work with the
log-Sobolev constant rather than the relaxation time in order to obtain the strong bound
on mixing time claimed in Theorem 1.1.

Recursion. We will bound the (restricted) log-Sobolev constant via the so-called
bisection method introduced in [10]. Let Λ`,Λr and F`,Fr be as above. Using the decay
of correlations in (4.1), the decomposition estimate in [5, Proposition 2.1] implies that
for all functions f : Ω̃ 7→ R we have

Ent(f2) ≤
(
1 +O(n−ε)

)
µ̃
[
Ent(f2 | F`) + Ent(f2 | Fr)

]
≤
(
1 +O(n−ε)

)
2 c

(1)
S E(f, f),

(4.4)
where c(1)

S is the largest log-Sobolev constant among the systems conditioned on F` and
Fr and the factor 2 comes from the double counting of flips within the region Λ` ∩ Λr.
Hence, we obtain that cS ≤ (1 +O(n−ε)) 2c

(1)
S . We would then like to recursively apply

the same strategy to bound Ent(f2 | F`) and Ent(f2 | Fr). Indeed, µ̃(· | Fr) is a Gibbs
measure on triangulations with midpoints in Λ`, and we may split Λ` into two intersecting
slabs, establish decay of correlations and again use the decomposition above to further
reduce the original scale. One caveat is that now we have to take into account the
boundary conditions dictated by the conditioning on Fr. These consist of constraint
edges protruding from the right boundary, with midpoints in Λr \ Λ`. The boundary
conditions will not be a major problem since we are in the good ensemble so these
edges cannot protrude more than a distance C log n. After j such iterations, we will be
considering slabs of size roughly n2−j , with edges of size at most C log n protruding from
both the left and right boundaries. It will be convenient to iterate this procedure for
j = j∗ steps, where n2−j∗ is roughly log6 n, so that protruding boundary edges are still
far away from the middle of the slab, which is the crucial region for exploiting the decay
of correlations. With this strategy, after j∗ iterations we obtain

cS ≤
(
1 +O(n−ε)

)j∗
2j∗c

(j∗)
S .

Employing the general polynomial bound on the relaxation time of Theorem 3.3 and the
relation between cS and Trel, we obtain that c(j∗)S is at most polylog(n) uniformly over all
boundary conditions in the good ensemble. The main problem is that the term 2j∗ is
too large (of order n

log6 n
by our choice of j∗). As in [10] we overcome this difficulty by

randomizing the location of the split of Λn,k into Λ` and Λr, and similarly for the other
scales. The idea is to first split Λn,k into three disjoint slabs with height k, the left and
right slabs with horizontal length 1

2 (n− log3 n), and the middle slab with horizontal length
log3 n. Then we further split the middle slab into smaller slabs (that we call rectangles)
each with horizontal length 4C log n. We choose one such rectangle uniformly at random,
and define Λ` to be the midpoints to the left of this rectangle (including the rectangle)
and Λr to be the midpoints to the right of this rectangle (including the rectangle). With
this randomization, (4.4) will be improved to

Ent(f2) ≤
(
1 +O(1/ log2 n)

)
c
(1)
S E(f, f),

where log2 n is roughly the number of rectangles in the middle slab of Λn,k. Then,
iterating j∗ times (with j∗ as above) we get

cS ≤
(
1 +O(j∗/ log2 n)

)
c
(j∗)
S = polylog(n). (4.5)

Once we obtain (4.5), using (4.3) we can conclude that the continuous time Markov
chain restricted to the good ensemble satisfies T̃mix = polylog(n). From this the desired
conclusion for the discrete time Glauber dynamics will follow in a simple way.

We now proceed with the detailed proof of Theorem 1.1.
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Dynamics of lattice triangulations on thin rectangles

4.2 The good ensemble

Let σ0, σ1, . . . be the discrete time Markov chain on triangulations of Λ0
n,k with no

constraint edges. The first step is to show that after a burn-in time of order n2, during
a very long time interval, the largest edge of the triangulation is of order at most log n.
Let C = C(λ) be a large enough constant, and define

Ω̃ =
{
σ ∈ Ω: |σx| ≤ C log n for all x ∈ Λn,k

}
. (4.6)

The set Ω̃ represents the good ensemble. The next lemma will allow us to analyze the
Markov chain restricted to the set Ω̃.

Lemma 4.1. Fix λ ∈ (0, 1). There exists a constant c1 = c1(λ) so that if we set T = c1n
2

then for all n ≥ k ≥ 1

P

(⋂T+n2

t=T

{
σt ∈ Ω̃

})
≥ 1− n−2.

Proof. For any given x ∈ Λn,k and any t ≥ c1n2, Lemma 2.2 gives that

P
(
|σtx| > C log n

)
≤ exp(−c2C log n),

for some constant c2 independent of C and n. Setting C large enough and taking a union
bound over all x ∈ Λn,k and all integers t ∈ [T, T + n2] concludes the proof.

4.3 Decay of correlations

Let Γ ⊂ Λ be a slab of width w; that is, for some x ∈ Z,

Γ = Λn,k ∩ [x, x+ w]× [0, k].

We assume throughout that w ≥ 1
2 C

6 log6 n, where C is fixed as in (4.6).
Partition Γ into three slabs, two of width roughly 1

2 (w − C3 log3 n) and one of width
roughly C3 log3 n. More precisely, for Γ as above, let

Γ1 = Λn,k∩
[
x, x+ w−C3 log3 n

2

]
× [0, k], Γ2 = Λn,k∩

(
x+ w−C3 log3 n

2 , x+ w+C3 log3 n
2

]
× [0, k]

and Γ3 = Λn,k ∩
(
x+ w+C3 log3 n

2 , x+ w
]
× [0, k].

Partition the middle slab Γ2 into disjoint slabs J1, J2, . . . , Js (from left to right) each of
width 4C log n, with

s =
C3 log3 n

4C log n
=
C2 log2 n

4
. (4.7)

Let ι be an integer chosen uniformly at random from
{

1, 2, . . . , s
}

. Finally, define

Γ` = Γ1 ∪ J1 ∪ J2 ∪ · · · ∪ Jι and Γr = Γ3 ∪ Jι ∪ Jι+1 ∪ · · · ∪ Js. (4.8)

Then, Γ` represents the left portion of Γ, Γr represents the right portion of Γ, and
Γ` ∩ Γr = Jι.

We need to introduce some more notation to be precise about boundary conditions.
For any σ ∈ Ω̃, A ⊂ Λn,k, if σ = {σx, x ∈ Λn,k} then we write σA for the set of edges

{σx , x ∈ A}. If ξ = σA for some σ ∈ Ω̃ and A ⊂ Λn,k we say that σ contains ξ and we call

ξ a partial triangulation in Ω̃. If A ∩A′ = ∅ and ξ = σA, ξ′ = σA′ for some σ ∈ Ω̃, then we
define ξ ∪ ξ′ = σA∪A′ .

We use partial triangulations ξ in Ω̃ as boundary conditions for a region B ⊂ Γ. Fix a
partial triangulation ξ. We denote by Aξ ⊂ Λn,k the set of midpoints of the edges in ξ.
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Dynamics of lattice triangulations on thin rectangles

Let Ω̃ξ denote the set of full triangulations σ ∈ Ω̃ that contain ξ. We define for any B ⊂ Γ,
and any ξ such that Aξ ⊂ Λn,k \B,

Ω̃ξB = {σB : σ ∈ Ω̃ξ}.

For any ηB ∈ Ω̃ξB, let

µξB(ηB) =

∑
σ∈Ω̃ξ: σB=ηB

µ̃(σ)

µ̃(Ω̃ξ)
,

be the induced probability measure over Ω̃ξB; recall that µ̃(σ) = µ(σ)

µ(Ω̃)
. In words, µξB is the

marginal distribution over midpoints B when we impose a boundary condition ξ. If ξ is
empty (no boundary condition) we simply write Ω̃B and µB.

Lemma 4.2. There exists a positive constant c = c(λ, k) such that for any partial trian-
gulation ξ with Aξ ⊂ Λn,k \ Γ, for all functions f`, fr : Ω̃ 7→ R such that f` depends only
on edges with midpoint in Γ` \ Jι and fr depends only on edges with midpoint in Γr \ Jι,
and for any σ` ∈ Ω̃ξΓ`\Jι and σr ∈ Ω̃ξΓr\Jι , we have∣∣µξ∪σr

Γ`\Jι(f`)− µ
ξ
Γ`\Jι(f`)

∣∣ ≤ µξΓ`\Jι(|f`|) exp(−c log n)

and ∣∣µξ∪σ`Γr\Jι(fr)− µξΓr\Jι(fr)
∣∣ ≤ µξΓr\Jι(|fr|) exp(−c log n),

where we employ the notation µ(f) to denote the expected value of f with respect to the
measure µ.

Proof. We will establish only the first estimate; the second follows by a symmetrical
argument. Since f` depends only on edges with midpoint in Γ` \ Jι, it is enough to show
that, for any σr ∈ Ω̃ξΓr\Jι and any τ ∈ Ω̃ξ∪σr

Γ`\Jι , we have∣∣∣∣∣µ
ξ∪σr

Γ`\Jι(τ)

µξΓ`\Jι(τ)
− 1

∣∣∣∣∣ ≤ exp(−c2C log n), (4.9)

for some positive c2 = c2(λ, k), where C is the constant in the definition of the width of
Jι. Assuming (4.9), the proof is completed since∣∣µξ∪σr

Γ`\Jι(f`)− µ
ξ
Γ`\Jι(f`)

∣∣ =

∣∣∣∣∑τ∈Ω̃ξ∪σr
Γ`\Jι

(
µξ∪σr

Γ`\Jι(τ)− µξΓ`\Jι(τ)
)
f`(τ)

∣∣∣∣
≤
∑

τ∈Ω̃ξ∪σr
Γ`\Jι

∣∣µξ∪σr

Γ`\Jι(τ)− µξΓ`\Jι(τ)
∣∣ ∣∣f`(τ)

∣∣
≤
∑

τ∈Ω̃ξ∪σr
Γ`\Jι

µξΓ`\Jι(τ) exp(−c2C log n)
∣∣f`(τ)

∣∣.
Let η and η′ be random triangulations distributed as µξ∪σr

Γ`
and µξΓ` , respectively. Let

P denote the following coupling between η and η′; refer to Figure 2. The idea is to
sample recursively edges from the pair (η, η′) in vertical strips inside Jι from right to left
from a suitable coupling of µξJι and µξ∪σr

Jι
. Here we will use the estimate of Lemma 2.5

to ensure that, with large probability, there is a common top-to-bottom crossing of unit
verticals within Jι. On this event we can safely resample (ηΓ`\Jι , η

′
Γ`\Jι) in such a way

that ηΓ`\Jι = η′Γ`\Jι = τ .
We now present the details. Consider the midpoints of Γ in order of their horizontal

coordinate, from largest to smallest (i.e., from right to left in Figure 2). Let v0 be the
leftmost integer horizontal coordinate of points in Γr \ Jι, and let V0 = ξ ∪ σr and V ′0 = ξ.
Now for i ≥ 1, define vi, Vi, V

′
i inductively as follows. Let vi < vi−1 be the rightmost
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Dynamics of lattice triangulations on thin rectangles

Γr \ JιΓ` \ Jι Jι

v1v2v3v4

v1v2v3v4

v0

Figure 2: Coupling between µξ∪σr

Γ`
(above) and µξΓ` (below). Note that the figure is not to

scale: in reality, the middle region Jι is much smaller than the two outer regions.

integer horizontal coordinate that is not crossed by an edge of V0 ∪ V1 ∪ V ′1 ∪ V2 ∪ V ′2 ∪
· · · ∪Vi−1 ∪V ′i−1. Using the coupling from Lemma 2.5, sample all edges of η and η′ whose
midpoints have horizontal coordinate vi, and denote them by Vi and V ′i , respectively.
There are two cases. In the first case, at least one edge of Vi or V ′i is not a unit vertical
(as happens with i = 1, 2 and 3 in Figure 2). In this case, continue by defining vi+1

as described above. If vi+1 is a horizontal coordinate in Jι, sample Vi+1 and V ′i+1 as
described above and iterate. Otherwise, if vi+1 is not in Jι, stop this procedure and
sample the remaining edges of η and η′ independently. In the second case, all edges
in Vi and V ′i are unit verticals (i.e., they create a top-to-bottom crossing of Γ, as in
Figure 2 for i = 4). Then stop the procedure above and sample the edges with horizontal
coordinate smaller than vi identically in both η and η′ (as depicted by the gray edges
in Figure 2), and then sample the remaining edges (that necessarily have midpoints
in Γr) independently in η and η′. Let Iη,η′ be the event that η and η′ have a common
top-to-bottom crossing of unit verticals with midpoint in Jι.

Let η`, η′` be the edges of η, η′ with midpoints in Γ` \ Jι, and let ηr, η
′
r be the edges of

η, η′ with midpoints in Γr \ Jι. Using the above coupling, for any τ ′ ∈ Ω̃ξΓ`\Jι we obtain

µξΓ`\Jι(τ
′) = P(η′` = τ ′) =

∑
τ∈Ω̃ξ∪σr

Γ`\Jι

P(η` = τ, η′` = τ ′)

= P(η` = τ ′, η′` = τ ′) +
∑

τ∈Ω̃ξ∪σr
Γ`\Jι

: τ 6=τ ′
P(η` = τ, η′` = τ ′).

The first term on the right-hand side above is at most P(η` = τ ′) = µξ∪σr

Γ`\Jι(τ
′). The second

term is bounded above by

P(η′` = τ ′)P(η′` 6= η` | η′` = τ ′) ≤ P(η′` = τ ′)P(Ic
η,η′ | η′` = τ ′) ≤ P(η′` = τ ′) exp(−4cC log n),

where the first inequality follows since the coupling above gives that Iη,η′ implies η′` = η`,
and the last step follows from Lemma 2.5. Plugging this into the equation above, and
rearranging the terms, we obtain

µξ∪σr

Γ`\Jι(τ
′) ≥ (1− exp(−4cC log n))µξΓ`\Jι(τ

′),
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which holds uniformly over τ ′ and σr. Similarly, we write

µξ∪σr

Γ`\Jι(τ) = P(η` = τ) ≤ P(η′` = τ) + P(η` = τ)P(Ic
η,η′ | η` = τ)

≤ µξΓ`\Jι(τ) + µξ∪σr

Γ`\Jι(τ) exp(−4cC log n),

and the proof of (4.9) is completed by rearranging the terms and setting c2 appropriately.

4.4 Recursion via bisection

We consider slabs of different scales: we index the scale by j, where j = 0 corresponds
to the full slab Λn,k of width n, while at scale j, we have slabs of width w roughly equal
to n2−j . The finest scale will be

j∗ = min
{
j ≥ 0: n2−j ≤ C6 log6 n

}
;

in particular, n2−j∗ ≥ 1
2 (C6 log6 n).

Recall how slabs are split and the definition of ι from the construction of Γ` and Γr in
the paragraph culminating in (4.8). In this construction, a slab of scale 1 is defined by a
choice of ι ∈ {1, 2, . . . , s} and a choice between the left slab

Λn,k ∩
[
0, n−C

3 log3 n
2 + 4ιC log n

]
× [0, k]

and the right slab

Λn,k ∩
[
n−C3 log3 n

2 + 4(ι− 1)C log n, n
]
× [0, k].

Slabs of higher scale are obtained by inductively choosing a value of ι and one of the
two sides for each scale. Hence, there are (2s)j possible slabs at scale j. Furthermore,
setting W0 = n, we obtain that any slab of scale j must have width inside the interval

Wj =
[
n2−j − jC3 log3 n, n2−j + jC3 log3 n

]
.

Consider a given scale j ∈ {0, . . . , j∗}, and let Γ = Γj be any of the (2s)j possible

slabs at scale j. Let w ∈Wj be the width of Γ. Let σ ∈ Ω̃ be an arbitrary triangulation in

the good ensemble and set ξ = σΛn,k\Γ ∈ Ω̃Λn,k\Γ as a boundary condition for the region

Γ. Consider the continuous time Markov chain on Ω̃ξΓ with Dirichlet form

EξΓ(f, f) =
1

2

∑
σΓ,σ′Γ∈Ω̃ξΓ

µξΓ(σΓ)ρξΓ(σΓ, σ
′
Γ)(f(σΓ ∪ ξ)− f(σ′Γ ∪ ξ))2,

where f : Ω̃ 7→ R and

ρξΓ(σΓ, σ
′
Γ) =

λ|σ
′
Γ∪ξ|

λ|σΓ∪ξ| + λ|σ
′
Γ∪ξ|

1 (σΓ ∪ ξ ∼ σ′Γ ∪ ξ) . (4.10)

Let cS(Γ, ξ) denote the log-Sobolev constant defined as the smallest constant c > 0 such
that

EntξΓ(f2) ≤ c EξΓ(f, f), (4.11)

holds for all functions f , where EntξΓ(f2) denotes the entropy of f2 with respect to µξΓ.
Finally we define, for each j,

γj = sup
{
cS(Γ, ξ) : Γ ⊂ Λn,k is a slab of width w ∈Wj , and ξ ∈ Ω̃Λn,k\Γ

}
.

The following lemma summarizes the result of this recursion.
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Lemma 4.3. There exists a positive constant c2 such that, for any integer j ∈ {0, . . . , j∗−
1},

γj ≤
(
1 + e−c2 logn

) (
1 + 4

C2 log2 n

)
γj+1.

Proof. Let Γ be a fixed slab of width w ∈Wj , and let ξ be a given boundary condition. Let
s, ι, Γ` and Γr be as described in the paragraph culminating in (4.8). Using Lemma 4.2,
the condition in [5, Proposition 2.1] is satisfied with ε = exp(−c log n). Then for any
function f : Ω̃ 7→ R and for any choice of ι, which defines the way Γ is partitioned, [5,
Proposition 2.1] gives(

1− 84ε

(1− ε)2

)
EntξΓ(f2)

≤

 ∑
σr∈Ω̃ξ

Γr\Jι

µξΓr\Jι(σr)Entξ∪σr

Γ`
(f2) +

∑
σ`∈Ω̃ξ

Γ`\Jι

µξΓ`\Jι(σ`)Entξ∪σ`Γr
(f2)

 .

Taking expectation over the choice of ι, and rearranging the terms, we obtain a positive
constant c2 such that

EntξΓ(f2) ≤ 1

s

s∑
ι=1

(
1 + e−c2 logn

) ∑
σr∈Ω̃ξ

Γr\Jι

µξΓr\Jι(σr)Entξ∪σr

Γ`
(f2)

+
∑

σ`∈Ω̃ξ
Γ`\Jι

µξΓ`\Jι(σ`)Entξ∪σ`Γr
(f2)

 . (4.12)

Note that Entξ∪σr

Γ`
(f2) and Entξ∪σ`Γr

(f2) are entropy functions for slabs on scale j+1 given
boundary conditions ξ ∪ σr and ξ ∪ σ`, respectively. Therefore, by (4.11) we have

Entξ∪σr

Γ`
(f2) ≤ cS(Γ`, ξ ∪ σr)Eξ∪σr

Γ`
(f, f) ≤ γj+1Eξ∪σr

Γ`
(f, f), (4.13)

and similarly for the second term in (4.12). Now we claim that

s∑
ι=1

 ∑
σr∈Ω̃ξ

Γr\Jι

µξΓr\Jι(σr)Eξ∪σr

Γ`
(f, f) +

∑
σ`∈Ω̃ξ

Γ`\Jι

µξΓ`\Jι(σ`)E
ξ∪σ`
Γr

(f, f)

 ≤ (1 + s)EξΓ(f, f).

(4.14)
To prove (4.14) we proceed as follows. Since a given edge σx in a triangulation has at
most one value σ′x 6= σx it can flip to, we may write the flip rates (4.10) as

ρξΓ(σΓ, σ
′
Γ) =

∑
x∈Γ

λ|σ
′
x|

λ|σx| + λ|σ
′
x|
1 (σΓ ∪ ξ ∼ σ′Γ ∪ ξ; σx 6= σ′x) =:

∑
x∈Γ

ρξx,Γ(σΓ) .

Therefore,

EξΓ(f, f) =
1

2

∑
x

∑
σΓ∈Ω̃ξΓ

µξΓ(σΓ)ρξx,Γ(σΓ)(∇xf(σΓ ∪ ξ))2, (4.15)

where we use ∇xf to denote the difference in values of f before and after the flip at x.
It follows that∑

σr∈Ω̃ξ
Γr\Jι

µξΓr\Jι(σr)Eξ∪σr

Γ`
(f, f)

=
1

2

∑
x∈Γ`

∑
σr∈Ω̃ξ

Γr\Jι

µξΓr\Jι(σr)
∑

ηΓ`
∈Ω̃ξ∪σr

Γ`

µξ∪σr

Γ`
(ηΓ`)ρ

ξ∪σr

x,Γ`
(ηΓ`)(∇xf(σηΓ`

∪ ξ ∪ σr))
2,

EJP 21 (2016), paper 29.
Page 19/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4321
http://www.imstat.org/ejp/


Dynamics of lattice triangulations on thin rectangles

where, as before, we use the shortcut notation σr = σΓr\Jι . Using

µξΓr\Jι(σr)µ
ξ∪σr

Γ`
(ηΓ`)ρ

ξ∪σr

x,Γ`
(ηΓ`) = µξΓ(ηΓ` ∪ σr)ρ

ξ
x,Γ(ηΓ` ∪ σr)

and rearranging the sum, we obtain∑
σr∈Ω̃ξ

Γr\Jι

µξΓr\Jι(σr)Eξ∪σr

Γ`
(f, f) =

1

2

∑
x∈Γ`

∑
σΓ∈Ω̃ξΓ

µξΓ(σΓ)ρξx,Γ(σΓ)(∇xf(σΓ ∪ ξ))2.

A similar expression holds for the second term on the left-hand side of (4.14), and the
desired estimate follows from the expression (4.15).

Plugging (4.14) and (4.13) into the bound in (4.12) we have

EntξΓ(f2) ≤
(
1 + e−c2 logn

)
γj+1

(
1 + 1

s

)
EξΓ(f, f).

This establishes that cS(Γ, ξ) ≤
(
1 + e−c2 logn

)
γj+1

(
1 + 1

s

)
. Since this bound does not

depend on ξ and the choice of slab Γ at scale j, the proof is completed by using the value
of s from (4.7).

We conclude the proof with the base of the induction.

Lemma 4.4. There exists a constant c = c(λ, k) such that

γj∗ ≤ logc n.

Proof. Let Γ be a slab at scale j∗, so that the width of Γ is of order log6 n. Let ξ ∈ Ω̃Λn,k\Γ
be a boundary condition. We note that the argument of Theorem 3.3 can be repeated
with no modifications for the chain restricted to the good set Ω̃. Therefore, there exists a
constant c1 = c1(λ, k) independent of Γ and ξ such that the relaxation time of the discrete
time chain on Γ with boundary condition ξ is at most logc1 n. Passing to continuous time,
we have that T̃rel(Γ, ξ) ≤ logc1 n. Since triangulations in Ω̃ξΓ have edges of length at most
C log n, there exists a constant c2 such that

min
σΓ∈Ω̃ξΓ

µξΓ(σΓ) ≥ n−c2 ,

uniformly over all slabs Γ at scale j∗ and boundary conditions ξ. Therefore, using the
relation between the relaxation time and the log-Sobolev constant from (4.2) we have
that

cS(Γ, ξ) ≤ T̃rel(Γ, ξ)

(
log(nc2)

1/2

)
.

Since the bound above is uniform Γ and ξ, this proves the desired bound on γj∗ .

4.5 Completing the proof

Proof of Theorem 1.1. We start by bounding the mixing time of the discrete time Markov
chain on Ω̃. Lemma 4.3 implies that the log-Sobolev constant of the continuous time
Markov chain on Λn,k with no boundary condition is at most

cS(Λn,k) ≤ γ0 ≤
(
1 + e−c2 logn

)j∗−1
(

1 + 4
C2 log2 n

)j∗−1

γj∗ ≤ 2γj∗ ,

where the last step follows since j∗ ≤ log2 n. Also, we have that

min
σ∈Ω̃

µ(σ) ≥ λ|Λn,k|C logn

(2λ)|Λn,k|
,
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where (2λ)|Λn,k| comes from Anclin’s bound of 2|Λn,k| for the number of lattice trian-
gulations [1], and the fact that the total edge length of any triangulation is at least
|Λn,k|. Therefore, using the relation between the mixing time and log-Sobolev constant

in (4.2), we deduce that the mixing time T̃mix of the continuous time Markov chain on
Ω̃ is bounded above by cγj∗ log n. Thus, the mixing time of the discrete chain in Ω̃ is at
most |Λn,k|cγj∗ log n, for some constant c. Using Lemma 4.4 and the fact that |Λn,k| is of

order nk, we obtain that the mixing time of the Markov chain restricted to Ω̃ is at most
cn logc n, for some new positive constant c (which depends on k and λ).

Now we compare the restricted chain on Ω̃ to the original unrestricted chain on
Ω = Ω(n, k). Let T1 = cn logc n and fix the constant c > 0 so that the total variation
distance between the restricted chain at time T1 and the restricted stationary distribution
µ̃ is at most 1/8. We obtain the mixing time of the unrestricted chain via the following
coupling. Let T0 = c1n

2, where c1 is the constant in Lemma 4.1. Let the unrestricted
Markov chain run for T0 + T1 steps. With probability at least 1− n−2, the unrestricted
chain never leaves the set Ω̃ during the time interval [T0, T0 + T1]; therefore, we can
couple its steps with those of the restricted chain. This gives that the total variation
distance between the unrestricted chain at time T0 + T1 and the stationary distribution
is at most n−2 + 1/8 + µ(Ω \ Ω̃). Since Ω \ Ω̃ only contains triangulations for which the
largest edge is larger than C log n, Lemma 2.2 ensures that µ(Ω \ Ω̃) ≤ n−2 for large
enough C, and therefore the total variation distance between the unrestricted chain at
time T0 + T1 and its stationary distribution is at most 1/4. This completes the proof of
Theorem 1.1.
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