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Abstract

Consider the perpetuity equation X
D
= AX +B, where (A,B) and X on the right-hand

side are independent. The Kesten–Grincevičius–Goldie theorem states that if EAκ = 1,
EAκ log+A <∞, and E|B|κ <∞, then P{X > x} ∼ cx−κ. Assume that E|B|ν <∞
for some ν > κ, and consider two cases (i) EAκ = 1, EAκ log+A = ∞; (ii) EAκ < 1,
EAt =∞ for all t > κ. We show that under appropriate additional assumptions on A
the asymptotic P{X > x} ∼ cx−κ`(x) holds, where ` is a nonconstant slowly varying
function. We use Goldie’s renewal theoretic approach.
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1 Introduction and results

Consider the perpetuity equation

X
D
= AX +B, (1.1)

where (A,B) and X on the right-hand side are independent. To exclude degenerate
cases as usual we assume that P{Ax+B = x} < 1 for any x ∈ R. We also assume that
A ≥ 0, A 6≡ 1, and that logA conditioned on A 6= 0 is nonarithmetic.

The first results on existence and tail behavior of the solution are due to Kesten [23],
who proved that if

EAκ = 1, EAκ log+A <∞, logA conditioned on A 6= 0 is nonarithmetic,

and E|B|κ <∞ for some κ > 0,
(1.2)

where log+ x = max{log x, 0}, then the solution of (1.1) has Pareto-like tail, i.e.

P{X > x} ∼ c+x−κ and P{X < −x} ∼ c−x−κ as x→∞ (1.3)

for some c+, c− ≥ 0, c+ + c− > 0. (In the following any nonspecified limit relation
is meant as x → ∞.) Actually, Kesten proved a similar statement in d dimension.
Later Goldie [16] simplified the proof of the same result in the one-dimensional case
(for more general equations) using renewal theoretic methods. His method is based
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on ideas from Grincevičius [19], who partly rediscovered Kesten’s results. We refer
to the implication (1.2) ⇒ (1.3) as the Kesten–Grincevičius–Goldie theorem. That is,
under general conditions on A, if P{A > 1} > 0 the tail decreases at least polynomially.
Dyszewski [10] showed that the tail of the solution of (1.1) can even be slowly varying. On
the other hand, Goldie and Grübel [17] showed that the solution has at least exponential
tail under the assumption A ≤ 1 a.s. For further results in the thin-tailed case see
Hitczenko and Wesołowski [20]. Returning to the heavy-tailed case Grey [18] showed
that if EAκ < 1, EAκ+ε < ∞, then the tail of X is regularly varying with parameter
−κ if and only if the tail of B is. Grey’s results are also based on previous results by
Grincevičius [19].

That is, the regular variation of the solution X of (1.1) is either caused by A alone,
or by B alone (under some weak condition on the other variable). Our intention in the
present note is to explore more the role of A, i.e. to extend the Kesten–Grincevičius–
Goldie theorem. More precisely, we assume that E|B|ν < ∞ for some ν > κ, and we
obtain sufficient conditions on A that imply P{X > x} ∼ `(x)x−κ, where `(·) is some
nonconstant slowly varying function.

The perpetuity equation (1.1) has a wide range of applications; we only mention the
ARCH and GARCH models in financial time series analysis, see Embrechts, Klüppelberg
and Mikosch [11, Section 8.4 Perpetuities and ARCH Processes]. For a complete account
on the equation (1.1) refer to Buraczewski, Damek and Mikosch [5].

The key idea in Goldie’s proof is to introduce the new probability measure

Pκ{logA ∈ C} = E[I(logA ∈ C)Aκ], (1.4)

where I(·) stands for the indicator function. Since EAκ = 1, this is indeed a probability
measure. If F is the distribution function (df) of logA under P, then under Pκ

Fκ(x) = Pκ{logA ≤ x} =

∫ x

−∞
eκyF (dy). (1.5)

Under Pκ equation (1.1) can be rewritten as a renewal equation, where the renewal
function corresponds to Fκ. If Eκ logA = EAκ logA ∈ (0,∞), then a renewal theorem
on the line implies the required tail asymptotics. Yet a smoothing transformation and
a Tauberian argument is needed, since key renewal theorems apply only for direct
Riemann integrable functions.

What we assume instead of the finiteness of the mean is that under Pκ the variable
logA is in the domain of attraction of a stable law with index α ∈ (0, 1], i.e. logA ∈ D(α).
Since

Fκ(−x) = Pκ{logA ≤ −x} = EI(logA ≤ −x)Aκ ≤ e−κx, (1.6)

under Pκ the variable logA belongs to D(α) if and only if

1− Fκ(x) = Fκ(x) =
`(x)

xα
, (1.7)

where ` is a slowly varying function. Let U(x) =
∑∞
n=0 F

∗n
κ (x) be the renewal function of

logA under Pκ. Since the random walk (logA1 + . . .+ logAn)n≥1 drifts to infinity under
Pκ and Eκ[(logA)−]2 <∞ by (1.6), we have U(x) <∞ for all x ∈ R; see Theorem 2.1 by
Kesten and Maller [24]. Put

m(x) =

∫ x

0

[Fκ(−u) + Fκ(u)]du ∼
∫ x

0

Fκ(u)du ∼ `(x)x1−α

1− α

for the truncated expectation; the first asymptotic follows from (1.6), the second from
(1.7), and holds only for α 6= 1. To obtain the asymptotic behavior of the solution of
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the renewal equation we have to use a key renewal theorem for random variables with
infinite mean. The infinite mean analogue of the strong renewal theorem (SRT) is the
convergence

lim
x→∞

m(x)[U(x+ h)− U(x)] = hCα, ∀h > 0, where Cα = [Γ(α)Γ(2− α)]−1. (1.8)

The first infinite mean SRT was shown by Garsia and Lamperti [15] in 1963 for nonneg-
ative integer valued random variables, which was extended to the nonarithmetic case
by Erickson [12, 13]. In both cases it was shown that for α ∈ (1/2, 1] (in [15] α < 1)
assumption (1.7) implies the SRT, while for α ≤ 1/2 further assumptions are needed.
For α ≤ 1/2 sufficient conditions for (1.8) were given by Chi [7], Doney [8], Vatutin and
Topchii [28]. The necessary and sufficient condition for nonnegative random variables
was given independently by Caravenna [6] and Doney [9]. They showed that if for a
nonnegative random variable with df H (1.7) holds with α ≤ 1/2, then (1.8) holds if and
only if

lim
δ→0

lim sup
x→∞

xH(x)

∫ δx

1

1

yH(y)2
H(x− dy) = 0. (1.9)

We need this result in our case, where the random variable is not necessarily positive,
but the left tail is exponential. This is Theorem 3.1 in the Appendix. The proof follows
along the same lines as the proof of the SRT in [6]. For further results and history about
the infinite mean SRT we refer to [6, 9] and the references therein. In Lemma 2.2 below,
which is a modification of Erickson’s Theorem 3 [12], we prove the corresponding key
renewal theorem. Since in the literature ([27, Lemma 3], [28, Theorem 4]) this lemma
is stated incorrectly, we give a counterexample in the Appendix. We use the notation
x+ = max{x, 0}, x− = max{−x, 0}, x ∈ R. Summarizing, our assumptions on A are the
following:

EAκ = 1, (1.7) and (1.9) holds for Fκ for some κ > 0 and α ∈ (0, 1],

and logA conditioned on A 6= 0 is nonarithmetic.
(1.10)

Theorem 1.1. Assume (1.10) and E|B|ν < ∞ for some ν > κ. Then for the tail of the
solution of the perpetuity equation (1.1) we have

lim
x→∞

m(log x)xκP{X > x} = Cα
1

κ
E[(AX +B)κ+ − (AX)κ+],

lim
x→∞

m(log x)xκP{X ≤ −x} = Cα
1

κ
E[(AX +B)κ− − (AX)κ−].

(1.11)

Moreover, E[(AX + B)κ+ − (AX)κ+] + E[(AX + B)κ− − (AX)κ−] > 0 if P{Ax+ B = x} < 1

for any x ∈ R.

Theorem 1.1 is stated as a conjecture/open problem in [21, Problem 1.4.2] by Iksanov.
The conditions of the theorem are stated in terms of the properties of A under

the new measure Pκ. Simple properties of regularly varying functions imply that if
eκxF (x) = α `(x)/(κxα+1) with a slowly varying function `, then (1.7) holds. See the
remark after Theorem 2 [26] by Korshunov.

Using the same methods, Goldie obtained tail asymptotics for solutions of more
general random equations. The extension of these results to our setup is straightforward.
We mention a particular example, because in the proof of the positivity of the constant in
Theorems 1.1 and 1.3 we need a result on the maximum of a random walk.

Consider the equation

X
D
= AX ∨B, (1.12)

where a ∨ b = max{a, b}, A ≥ 0 and (A,B) and X on the right-hand side are independent.
Theorem 5.2 in [16] states that if (1.2) holds, then there is a unique solution X to (1.12),
and P{X > x} ∼ cx−κ, with some c ≥ 0, and c > 0 if and only if P{B > 0} > 0.
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Theorem 1.2. Assume (1.10), E|B|ν < ∞ for some ν > κ. Then for the tail of the
solution of (1.12) we have

lim
x→∞

m(log x)xκP{X > x} = Cα
1

κ
E[(AX+ ∨B+)κ − (AX+)κ]. (1.13)

Equation (1.12) has an important application in the analysis of the maximum of
perturbed random walks; see Iksanov [22].

Finally, we note that the tail behavior (1.11) with nontrivial slowly varying function
was noted before by Rivero for exponential functionals of Lévy processes; see [27,
Counterexample 1].

Assume now that EAκ = θ < 1 for some κ > 0, and EAt =∞ for any t > κ. Consider
the new probability measure

Pκ{logA ∈ C} = θ−1E[I(logA ∈ C)Aκ],

that is under the new measure logA has df

Fκ(x) = θ−1

∫ x

−∞
eκyF (dy).

The assumption EAt = ∞ for all t > κ means that Fκ is heavy-tailed. Rewriting again
(1.1) under the new measure Pκ leads now to a defective renewal equation for the tail of
X. To analyze the asymptotic behavior of the resulting equation we use the techniques
and results developed by Asmussen, Foss and Korshunov [4]. A slight modification of
their setup is necessary, since our df Fκ is not concentrated on [0,∞).

For some T ∈ (0,∞] let ∆ = (0, T ]. For a df H we put H(x+ ∆) = H(x+ T )−H(x).
A df H on R is in the class L∆ if H(x + t + ∆)/H(x + ∆) → 1 uniformly in t ∈ [0, 1],
and it belongs to the class of ∆-subexponential distributions, H ∈ S∆, if H(x+ ∆) > 0

for x large enough, H ∈ L∆, and (H ∗ H)(x + ∆) ∼ 2H(x + ∆). If H ∈ S∆ for every
T > 0, then it is called locally subexponential, H ∈ Sloc. The definition of the class
S∆ is given by Asmussen, Foss and Korshunov [4] for distributions on [0,∞) and by
Foss, Korshunov and Zachary [14, Section 4.7] for distributions on R. In order to
use a slight extension of Theorem 5 [4] we need the additional natural assumption
supy>x Fκ(y + ∆) = O(Fκ(x + ∆)) for x large enough. Our assumptions on A are the
following:

EAκ = θ < 1, κ > 0, Fκ ∈ Sloc, sup{Fκ(y + ∆) : y > x} = O(Fκ(x+ ∆))

for x large enough, and logA conditioned on A 6= 0 is nonarithmetic.
(1.14)

Theorem 1.3. Assume (1.14) and E|B|ν < ∞ for some ν > κ. Then for the tail of the
solution of the perpetuity equation (1.1) we have

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2κ
E[(AX +B)κ+ − (AX)κ+],

lim
x→∞

g(log x)−1xκP{X ≤ −x} =
θ

(1− θ)2κ
E[(AX +B)κ− − (AX)κ−],

(1.15)

where g(x) = Fκ(x + 1) − Fκ(x). Moreover, if P{Ax + B = x} < 1 for any x ∈ R, then
E[(AX +B)κ+ − (AX)κ+] + E[(AX +B)κ− − (AX)κ−] > 0.

Note that the condition Fκ ∈ L∆ with ∆ = (0, 1] implies that g(log x) is slowly varying.
Indeed, for any λ > 0

g(log(λx))

g(log x)
=
Fκ(log x+ log λ+ ∆)

Fκ(log x+ ∆)
→ 1.
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The condition Fκ ∈ Sloc is much stronger than the corresponding regularly varying
condition in Theorem 1.1. Typical examples satisfying this condition are the Pareto,
lognormal and Weibull (with parameter less than 1) distributions, see [4, Section 4]. For
example in the Pareto case, i.e. if for large enough x we have Fκ(x) = c x−β for some
c > 0, β > 0, then g(x) ∼ cβx−β−1, and so P{X > x} ∼ c′x−κ(log x)−β−1. In the lognormal
case, when Fκ(x) = Φ(log x) for x large enough, with Φ being the standard normal df,
(1.15) gives the asymptotic P{X > x} ∼ cx−κe−(log log x)2/2/ log x, c > 0. Finally, for

Weibull tails Fκ(x) = e−x
β

, β ∈ (0, 1), we obtain P{X > x} ∼ cx−κ(log x)β−1e−(log x)β ,
c > 0.

Theorem 1.4. Assume (1.14), E|B|ν < ∞ for some ν > κ. Then for the tail of the
solution of (1.12) we have

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2κ
E[(AX+ ∨B+)κ − (AX+)κ], (1.16)

where g(x) = Fκ(x+ 1)− Fκ(x).

In the special case B ≡ 1 we obtain a new result for the tail asymptotic of the
maximum of a random walk.

In this direction we note that assuming (1.7) Korshunov [26] showed for α > 1/2 (all
he needs is the SRT, so the same holds under (1.9) for α ∈ (0, 1)) that for some constant
c > 0

lim
x→∞

P{M > x}eκxm(x) = c.

Thus Theorem 1.2 contains Korshunov’s result [26]. However, note that Korshunov
obtained the corresponding liminf result in (1.13), when the SRT does not hold. With
our method the liminf result does not follow due to the smoothing transform (2.4). The
problem is to ‘unsmooth’ the liminf version of (2.10). The same difficulty appears in the
perpetuity case.

It turns out that in some special cases the regular variation of the tail of X and of eM

are equivalent. This can be deduced from Theorem 4 by Arista and Rivero [3].
Finally, we note that using Alsmeyer’s sandwich method [1] it is possible to apply our

results to iterated function systems.

2 Proofs

First, we prove the analogue of Goldie’s implicit renewal theorem [16, Theorem 2.3]
in both cases.

Theorem 2.1. Assume (1.10), and for some random variable X∫ ∞
0

|P{X > x} −P{AX > x}|xκ+δ−1dx <∞

for some δ > 0, where X and A are independent. Then

lim
x→∞

m(log x)xκP{X > x} = Cα

∫ ∞
0

[P{X > x} −P{AX > x}]xκ−1dx.

Proof. We follow closely Goldie’s proof. Put

ψ(x) = eκx(P{X > ex} −P{AX > ex}), f(x) = eκxP{X > ex}. (2.1)

Using that X and A are independent we obtain the equation

f(x) = ψ(x) + Ef(x− logA)Aκ. (2.2)
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By (1.4) we have Eκg(logA) = E(g(logA)Aκ), thus under Pκ equation (2.2) reads as

f(x) = ψ(x) + Eκf(x− logA). (2.3)

Since ψ is not necessarily directly Riemann integrable (dRi), we introduce the smoothing
transform of a function g as

ĝ(s) =

∫ s

−∞
e−(s−x)g(x)dx. (2.4)

Applying this transform to both sides of (2.3) we get the renewal equation

f̂(s) = ψ̂(s) + Eκf̂(s− logA). (2.5)

Iterating (2.5) we obtain for any n ≥ 1

f̂(s) =

n−1∑
k=0

∫
R

ψ̂(s− y)F ∗kκ (dy) + Eκf̂(s− Sn), (2.6)

where logA1, logA2, . . . are independent copies of logA (under P and Pκ), independent
of X, and Sn = logA1 + . . .+ logAn. Since Sn → −∞ P-a.s.

Eκf̂(s− Sn) = e−s
∫ s

−∞
e(κ+1)yP{XeSn > ey}dy → 0 as n→∞,

where we also used that Eκg(Sn) = E(g(Sn)eκSn). Therefore as n → ∞ from (2.6) we
have

f̂(s) =

∫
R

ψ̂(s− y)U(dy), (2.7)

where U(x) =
∑∞
n=0 F

∗n
κ (x) is the renewal function of Fκ. The question is under what

conditions of z the key renewal theorem

m(x)

∫
R

z(x− y)U(dy)→ Cα

∫
R

z(y)dy (2.8)

holds. In the following lemma, which is a modification of Erickson’s Theorem 3 [12], we
give sufficient condition for z to (2.8) hold. We note that both in Lemma 3 [27] and in
Theorem 4 of [28] the authors wrongly claim that (2.8) holds if z is dRi. A counterexample
is given in the Appendix. The same statement under less restrictive condition is shown
using stopping time argument in [21, Proposition 6.4.2]. For the sake of completeness
we give a proof here.

Lemma 2.2. Assume that z is dRi, z(x) = O(x−1) as x→∞, and (1.10) holds. Then (1.8)
implies (2.8).

Proof. Using the decomposition z = z+−z− we may and do assume that z is nonnegative.
Write

m(x)

∫
R

z(x− y)U(dy) =: I1(x) + I2(x) + I3(x),

where I1, I2, and I3 are the integrals on (x,∞), (0, x], and on (−∞, 0], respectively.
We first show that I1(x)→ Cα

∫ 0

−∞ z(y)dy whenever z is dRi. Fix h > 0. Introduce the
functions zk(x) = I(x ∈ [(k − 1)h, kh)), and put ak = inf{z(x) : x ∈ [(k − 1)h, kh)}, and
bk = sup{z(x) : x ∈ [(k − 1)h, kh)}, k ∈ Z. Simply

m(x)

0∑
k=−∞

ak(U ∗ zk)(x) ≤ I1(x) ≤ m(x)

0∑
k=−∞

bk(U ∗ zk)(x).
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As x→∞ by (1.8) for any fixed k

m(x)(U ∗ zk)(x) =
m(x)

m(x− kh)
m(x− kh)[U(x− kh+ h)− U(x− kh)]→ Cαh,

where the convergence m(x)/m(x − kh) → 1 follows from the fact that m is regularly
varying with index 1 − α. Since m is nondecreasing and k ≤ 0 this also gives us an
integrable majorant uniformly in k ≤ 0, i.e. supk<0m(x)(U ∗ zk)(x) ≤ 2Cαh for x large
enough. Thus by Lebesgue’s dominated convergence theorem

lim
x→∞

m(x)

0∑
k=−∞

ak(U ∗ zk)(x) = Cα

0∑
k=−∞

akh,

and similarly for the upper bound. Since z is dRi the statement follows.

The convergence I2(x)→ Cα
∫∞

0
z(x)dx follows exactly as in the proof of [12, Theorem

3], since in that proof only formula (1.8) and its consequence U(x) ∼ Cαx/(αm(x)) are
used.

Finally, we show that I3(x)→ 0. Indeed, with K = supx>0 xz(x),

m(x)

∫ 0

−∞
z(x− y)U(dy) ≤ Km(x)

∫ 0

−∞
(x− y)−1U(dy) ≤ Km(x)

x
U(0)→ 0.

Recall (2.1). Next we show that ψ̂ satisfies the condition of Lemma 2.2. Indeed,

ψ̂(s) = e−s
∫ s

−∞
e(κ+1)x[P{X > ex} −P{AX > ex}]dx

≤ e−s
∫ es

0

yκ|P{X > y} −P{AX > y}|dy

≤ e−δs
∫ ∞

0

yκ+δ−1|P{X > y} −P{AX > y}|dy,

(2.9)

and the last integral is finite due to our assumptions. The same calculation shows that∫
R

ψ̂(s)ds =

∫
R

ψ(x)dx =

∫ ∞
0

yκ−1[P{X > y} −P{AX > y}]dy.

It follows from [16, Lemma 9.2] that ψ̂ is dRi, thus from Lemma 2.2 and (2.9) we obtain
that for the solution of (2.7)

lim
s→∞

m(s)f̂(s) = Cα

∫
R

ψ(y)dy. (2.10)

From (2.10) the statement follows in the same way as in [16, Lemma 9.3].

Theorem 2.3. Assume (1.14), and for some random variable X∫ ∞
0

|P{X > x} −P{AX > x}|xκ+δ−1dx <∞

for some δ > 0, where X and A are independent. Then

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2

∫ ∞
0

[P{X > x} −P{AX > x}]xκ−1dx.
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Proof. Following the same steps as in the proof of Theorem 2.1 we obtain

f̂(s) =

∫
R

ψ̂(s− y)U(dy),

where U is the defective renewal function U(x) =
∑∞
n=0(θFκ)∗n(x). Since θ < 1 we have

U(R) = (1 − θ)−1 < ∞. A modification of Theorem 5 [4] gives the following. Recall g
from Theorem 1.3.

Lemma 2.4. Assume (1.14), z is dRi, and z(x) = o(g(x)). Then∫
R

z(x− y)U(dy) ∼ θg(x)

(1− θ)2

∫
R

z(y)dy.

Proof. By the decomposition z = z+ − z−, we may and do assume that z is nonnegative.
We again split the integral∫

R

z(x− y)U(dy) = I1(x) + I2(x) + I3(x),

where I1, I2, and I3 are the integrals on (x,∞), (0, x], and on (−∞, 0], respectively.
The asymptotics I1(x) ∼ θg(x)

∫ 0

−∞ z(y)dy/(1− θ)2 follows along the same lines as in

the proof of Lemma 2.2. Theorem 5(i) [4] gives I2(x) ∼ θg(x)
∫∞

0
z(y)dy/(1− θ)2. (In the

Appendix we explain why the results for ∆-subexponential distributions on [0,∞) remain
true in our case.) Finally, for I3 we have

I3(x) ≤ U(0) sup{z(y) : y ≥ x} = o(g(x)),

where we used that supy≥x Fκ(y + ∆) = O(Fκ(x+ ∆)).

As in (2.9) we have ψ̂(x) = O(e−δx) for some δ > 0. Since Fκ is subexponential
ψ̂(x) = o(g(x)). That is, the condition of Lemma 2.4 holds, and we obtain the asymptotic

f̂(s) ∼ θg(s)

(1− θ)2

∫
R

ψ(y)dy as s→∞.

Since g(x) is subexponential, g(log x) is slowly varying, and the proof follows again along
the same lines as in [16, Lemma 9.3].

The proofs of Theorems 1.1, 1.3, and 1.2, 1.4 are applications of the corresponding
implicit renewal theorem.

Proofs of Theorems 1.2 and 1.4. The existence of the unique solution of (1.12) follows
from [16, Proposition 5.1]. Choose δ ∈ (0, ν−κ). Since |P{AX ∨B > x}−P{AX > x}| =
P{AX ∨B > x ≥ AX}, Fubini’s theorem gives∫ ∞

0

|P{AX ∨B > x} −P{AX > x}|xκ+δ−1dx =

∫ ∞
0

P{AX ∨B > x ≥ AX}xκ+δ−1dx

= (κ+ δ)−1E[(AX ∨B)κ+δ
+ − (AX)κ+δ

+ ] ≤ (κ+ δ)−1EBκ+δ
+ .

Therefore (1.13) and (1.16) follows from Theorem 2.1 and 2.3, respectively. The form
of the limit constant follows similarly. Note that for B ≡ 1, i.e. when logX = M is the
maximum of a random walk with negative drift, the constant is strictly positive.

Proofs of Theorems 1.1 and 1.3. The existence of the unique solution of (1.1) is well-
known. Let us choose δ > 0 so small that

κ+
3κδ

1− δ
< ν for κ ≥ 1, and κ+ δ ≤ min{1, ν} for κ < 1. (2.11)
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Note that

|P{AX +B > y} −P{AX > y}| ≤ P{AX +B > y ≥ AX}+ P{AX > y ≥ AX +B}.

Now Fubini’s theorem gives for the first term∫ ∞
0

P{AX +B > y ≥ AX}yκ−1+δdy ≤ (κ+ δ)−1EI(B ≥ 0)((AX +B)κ+δ
+ − (AX)κ+δ

+ ).

The same calculation for the second term implies∫ ∞
0

|P{AX +B > y} −P{AX > y}|yκ+δ−1dy ≤ (κ+ δ)−1E|(AX +B)κ+δ
+ − (AX)κ+δ

+ |.

We show that the expectation on the right-hand side is finite. Indeed, for a, b ∈ R we have
|(a+ b)γ+− a

γ
+| ≤ |b|γ for γ ≤ 1 and |(a+ b)γ+− a

γ
+| ≤ 2γ|b|(|a|γ−1 + |b|γ−1) for γ > 1. From

Theorem 1.4 by Alsmeyer, Iksanov and Rösler [2] we know that E|X|γ <∞ for any γ < κ.
(We note that for κ > 1 this also follows from Theorem 5.1 by Vervaat [29]. Actually,
[2, Theorem 1.4] states equivalence.) Assume that κ ≥ 1 and let p = κ + 2κδ/(1 − δ),
1/q = 1− 1/p. By Hölder’s inequality and by the choice of δ in (2.11)

E|(AX +B)κ+δ
+ − (AX)κ+δ

+ | ≤ 2(κ+ δ)
[
E|B||AX|κ+δ−1 + E|B|κ+δ

]
≤ 2(κ+ δ)

[
E|X|κ+δ−1(E|B|p)1/p(EAq(κ+δ−1))1/q + E|B|κ+δ

]
<∞,

which proves the statement for κ ≥ 1. For κ < 1 we choose δ such that κ+ δ ≤ 1, so

E||AX +B|κ+δ − |AX|κ+δ| ≤ E|B|κ+δ <∞.

Finally, the positivity of the limit follows in exactly the same way as in [16]. Goldie
shows [16, p.157] that for some positive constants c, C > 0

P{|X| > x} ≥ cP {max{0, S1, S2, . . .} > C + log x} .

Now the positivity follows from Theorem 1.2 and 1.4, respectively, with B ≡ 1.

3 Appendix

3.1 Strong renewal theorem

We state a slight extension of the strong renewal theorem by Caravenna [6] and
Doney [9]. The proof follows along the same lines as the proof of Caravenna [6], and it is
given in [25]. For convenience, we also use Caravenna’s notation.

Theorem 3.1. Assume that the distribution function H is nonarithmetic, and for some
c, κ > 0, α ∈ (0, 1), and for a slowly varying function ` we have

H(−x) ≤ ce−κx, 1−H(x) = H(x) =
`(x)

xα
, x > 0.

Then, for the renewal function U(x) =
∑∞
n=0H

∗n(x)

lim
x→∞

m(x)[U(x+ h)− U(x)] = hCα

holds for any h > 0 with m(x) =
∫ x

0
H(u)du, if and only if

lim
δ→0

lim sup
x→∞

xH(x)

∫ δx

1

1

yH(y)2
H(x− dy) = 0.
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3.2 A counterexample

Here we give a counterexample to [27, Lemma 3] and [28, Theorem 4], which shows
that alone from the direct Riemann integrability of z the key renewal theorem (2.8) does
not follow.

Let an = n−β, with some β > 1, and let dn ↑ ∞ a sequence of integers. Consider
the function z that satisfies z(dn) = an, z(dn ± 1/2) = 0, is linearly interpolated on the
intervals [dn − 1/2, dn + 1/2], and 0 otherwise. Since

∑∞
n=1 an < ∞ the function z is

directly Riemann integrable.
Consider a renewal measure U for which SRT (1.8) holds. Let a > 0 be such that

U(a+ 1/4)− U(a− 1/4) > 0. From the proof of [12, Theorem 3] it is clear that for any
ν ∈ (0, 1)

m(x)

∫ x

νx

z(x− y)U(dy)→ Cα

∫ ∞
0

z(y)dy.

On the other hand for x = a+ dn∫ a+1/4

a−1/4

z(x− y)U(dy) ≥ an
2

[U(a+ 1/4)− U(a− 1/4)]

Choosing dn = n2 and β such that 2α+ β < 2, and recalling that m is regularly varying
with index 1− α, we see that m(a+ dn)an →∞, so the asymptotic (2.8) cannot hold.

3.3 Local subexponentiality

We claim that Theorem 5 in [4] remains true in our setup. Additionally to the local
subexponential property, we assume that supy≥xH(y + ∆) = O(H(x + ∆)). The main
technical tool in [4] is the equivalence in Proposition 2. In our setup it has the following
form.

Lemma 3.2. Assume that H ∈ L∆, and supy≥xH(y+ ∆) = O(H(x+ ∆)). Let X,Y be iid
H. The following are equivalent:

(i) H ∈ S∆;

(ii) there is a function h such that h(x) → ∞, h(x) < x/2, H(x − y + ∆) ∼ H(x + ∆)

uniformly in |y| ≤ h(x), and

P{X + Y ∈ x+ ∆, X > h(x), Y > h(x)} = o(H(x+ ∆)).

The proof is similar to the proof of Proposition 2 in [4], so it is omitted. Assuming the
extra growth condition all the results in [4] hold true with the obvious modification of
the proof.
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[6] Francesco Caravenna, The strong renewal theorem, arXiv:1507.07502, 2015.

[7] Zhiyi Chi, Strong renewal theorems with infinite mean beyond local large deviations, Ann.
Appl. Probab. 25 (2015), no. 3, 1513–1539. MR-3325280

[8] R. A. Doney, One-sided local large deviation and renewal theorems in the case of infinite
mean, Probab. Theory Related Fields 107 (1997), no. 4, 451–465. MR-1440141

[9] R. A. Doney, The strong renewal theorem with infinite mean via local large deviations,
arXiv:1507.06790, 2015.

[10] Piotr Dyszewski, Iterated random functions and slowly varying tails, Stochastic Process. Appl.
126 (2016), no. 2, 392–413. MR-3434988

[11] Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch, Modelling extremal events,
Applications of Mathematics (New York), vol. 33, Springer-Verlag, Berlin, 1997. MR-1458613

[12] K. Bruce Erickson, Strong renewal theorems with infinite mean, Trans. Amer. Math. Soc. 151
(1970), 263–291. MR-0268976

[13] K. Bruce Erickson, A renewal theorem for distributions on R1 without expectation, Bull. Amer.
Math. Soc. 77 (1971), 406–410. MR-0279906

[14] Sergey Foss, Dmitry Korshunov, and Stan Zachary, An introduction to heavy-tailed and subex-
ponential distributions, second ed., Springer Series in Operations Research and Financial
Engineering, Springer, New York, 2013. MR-3097424

[15] Adriano Garsia and John Lamperti, A discrete renewal theorem with infinite mean, Comment.
Math. Helv. 37 (1962/1963), 221–234. MR-0148121

[16] Charles M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann.
Appl. Probab. 1 (1991), no. 1, 126–166. MR-1097468

[17] Charles M. Goldie and Rudolf Grübel, Perpetuities with thin tails, Adv. in Appl. Probab. 28
(1996), no. 2, 463–480. MR-1387886

[18] D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations,
Ann. Appl. Probab. 4 (1994), no. 1, 169–183. MR-1258178
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