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Abstract

In this paper we investigate the behavior of the bridges of a Markov counting process
in several directions. We first characterize convexity(concavity) in time of the mean
value in terms of lower (upper) bounds on the so called reciprocal characteristics. This
result gives a natural criterion to determine whether bridges are “lazy” or “hurried”.
Under the hypothesis of global bounds on the reciprocal characteristics we prove
sharp estimates for the marginal distributions and a comparison theorem for the jump
times. When the height of the bridge tends to infinity we show the convergence to a
deterministic curve, after a proper rescaling.
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Introduction

Counting processes are among the simplest stochastic processes but still feature
a very broad set of applications in social sciences and engineering, see [1],[3],[7].
Moreover, some of the prototypes of jump processes, such as the Poisson processes, fall
into this class, and the development of a stochastic calculus adjusted to these (and more
general) pure jump processes led to important contributions, see [2],[8],[11]. In this
paper we give a new criterion which allows to quantify the behavior of the bridges of
a Markov counting process. One of the most popular interpretations is that counting
processes model the number of people arriving in a line. Using this interpretation, our
aim is to find robust and easy-to-check conditions on the intensity of the counting process
under which we can pull out quantitative information on the conditional distribution of
the i-th arrival time, or on how many customers have arrived by time t, given that n
customers arrived in a day.

Despite the simplicity of the non pinned dynamics, bridges tend to be more com-
plicated to study because their jump intensity is time-dependent and not explicit, but
depends on the solution to a Kolmogorov-type equation, which is in general not available.
Moreover, jump intensities and bridges are not in one-to-one correspondence, in the
sense that different counting processes give raise to the same family of bridges. A well
known example of this is the fact that all Poisson processes, independently from their
jump intensity, have identical bridges. Good estimates have to take into account only
those features of the jump intensity which play an effective role in the construction of
bridges.
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Bridges of counting processes: quantitative estimates

Our answers are inspired by the theory of reciprocal processes, which provides the
main computational tool: the so called reciprocal characteristics. They should be thought
at some invariants associated with bridges. Reciprocal characteristics have been first
discovered for diffusions in [9] and are by now available for a much larger class of
processes, including several classes of jump processes, see e.g.[5]. However, to the best
of our knowledge, it is for the first time in this note that such invariants are used to
make quantitative estimates on the behavior of bridges.

As a by-product of our analysis we also obtain a natural way of defining when a
counting process has lazy bridges, meaning that “most customers tend to arrive at the
end of the day”.

It is interesting to remark that, since counting processes are among the building
blocks for general queuing models, our results might open the way for a detailed
quantitative study of queuing model under partial information, such as the final state of
the queue.

The paper is organized as follows: in Section 1 we recall some basics about Markov
counting processes and recall some results which we are going to use later on. In Section
2 we present our main results,Theorem 2.1, Theorem 2.2, and Theorem 2.5. In Section 3
we make their proofs.

1 Markov counting processes and their bridges

The sample path space Ω of the counting processes consists of all càdlàg step
functions over the time interval [0, 1] with finitely many jumps with amplitude +1 and an
initial value in N, from which we exclude paths which jumps either in t = 0 or t = 1. The
space of probability measures over Ω is denoted P(Ω). Any path ω ∈ Ω is described by the
collection (x; t1, . . . , tn) of its initial position x ∈ N and its n = ω1 − ω0 instants of jumps
0 < t1 < · · · < tn < 1. We denote Ti(ω) := ti the i-th instant of jump of ω. The canonical
process is denoted by X = (Xt)0≤t≤1, and we call counting process any probability law
on Ω Any counting process P admits an almost surely unique non-decreasing process
A : [0, 1] × Ω → R+ such that P (A(0) = 0) = 1 and t 7→ Xt − X0 − A(t) is a local P -
martingale, (see Jacod [8, Thm. 2.1], for instance). A characterizes the dynamics of P ,
and it is called the compensator. When the compensator is absolutely continuous, we
call its derivative the intensity of P . We consider Markov counting processes, meaning
that the intensity depends only on time and the current state. We assume that the jump
intensity ` : [0, 1]×N→ R+ satisfies the following:

i) For all z ∈ N, t 7→ `(t, z) is continuously differentiable in [0, 1].
ii) The function (t, z) 7→ `(t, z + 1) − `(t, z) is globally upper and lower bounded on

[0, 1]×N.
iii) For all z ∈ N, t ∈ [0, 1], `(t, z) > 0.

From now on, a reference counting process P with intensity satisfying i),ii),iii) and whose
initial measure has full support is fixed. In the rest of the paper whenever we refer to
the intensity of a Markov counting process, we always assume that it satisfies i),ii), and
iii) even if we do not specify it. i),ii) ensure existence and non-explosion of the process,
(for the non explosion part, see [10, Theorem 2.5.2]), while iii) ensures that bridges are
well defined between any pair of states x, y with x ≤ y. We denote by P xysu the xy bridge
between s and u.

P xysu (·) := P (· |Xs = x,Xu = y)

When s = 0, u = 1 we simply write P xy. We will call u− s the time-length of the bridge
whereas y − x is the height of the bridge. Moreover, for any s ∈ [0, 1], x ∈ N we define

P xs (·) = P (· |Xs = x)
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Expectation under P is denoted EP . EPxysu and EPxy ,EPxs are defined analogously.

1.1 Duality formula for the bridge of a Markov counting process

The reciprocal characteristic is a map Ξ` : N× [0, 1]→ R derived from the intensity
of P , which encodes all the necessary and sufficient information on ` to construct the
family of bridges {P xysu }x≤y∈N,s≤u. It is defined as1:

Ξ`(t, z) :=

{
∂t log `(t, z) + `(t, z + 1)− `(t, z), if `(t, z) 6= 0

0, if `(t, z) = 0

A short-time probabilistic interpretation of Ξ` can be found in a larger generality in [5,
Theorem 2.6]: it describes the asymptotic distribution of jump times in a bridge whose
time length is very short. It is part of this paper to extract quantitative bounds in a non
asymptotic time scale. At this point, it is worth recalling a duality formula proved in
[6], building on earlier work in [4], characterizing the bridges of P , as we are going to
use it in the proofs. To streamline the presentation, we omit some minor details. For
precise statements we refer to [6, Theorem 2.12]. The duality formula is an integration
by parts formula on the path space Ω which puts in relation a derivative operator with a
stochastic integral operator. The derivative operator acts on test functions Φ : Ω→ R of
the form:

Φ = ϕ
(
X0;T1, . . . , Tm

)
, m ≥ 1, ϕ : N× [0, 1]m → R

where ϕ is such that for all x ∈ Z, the partial functions ϕ(x; ·) are C∞-differentiable. The
directions of differentiation are given by the set of periodic functions

U =
{
u ∈ C1([0, 1];R) : u(0) = u(1) = 0

}
The derivative operator acts as follows on a test function Φ:

DuΦ = −
m∑
j=1

∂tjϕ(X0;T1, . . . , Tm)u(Tj) (1.1)

After recalling that the stochastic integral
∫ 1

0
f(t,Xt−)dXt is, as usual,

∑
Ti<1 f(Ti, XT−

i
)

we can state the formula.

Theorem 1.1. Let P be a counting process of intensity `. Then P xy is the only element
of P(Ω) such that P xy(X0 = x,X1 = y) = 1 and

EPxy (DuΦ) = EPxy
(

Φ

∫ 1

0

[
u̇(t) + Ξ`(t,Xt−)u(t)

]
dXt

)
(1.2)

holds for any test function Φ and any u ∈ U .

2 Quantitative estimates

2.1 Convexity and concavity in time of the mean value

Our first result is the equivalence between global bounds on Ξ` and the convex-
ity/concavity of the mean value, as a function of time.

1In the definition of the reciprocal characteristic we allowed for `(t, z) = 0, which was excluded by our
hypothesis iii). This is because in the proof of Theorem 2.1 we will consider the reciprocal characteristics of
the intensities of the bridges of P , which fail to satisfy iii). However, the reference intensity ` always satisfies
this condition
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Theorem 2.1. Let P be a counting process. If

inf
t∈[0,1],z∈N

Ξ`(t, z) ≥ 0,

then for all 0 ≤ s ≤ u ≤ 1 and for all x ≤ y ∈ N the function [s, u] 3 t 7→ EPxysu (Xt) is
convex. Conversely, if

sup
t∈[0,1],z∈N

Ξ`(t, z) ≤ 0,

then for all 0 ≤ s ≤ u ≤ 1, and for all x ≤ y ∈ N the function [s, u] 3 t 7→ EPxysu (Xt) is
concave.

Thanks to this result, it makes sense to say that the bridges of a counting process are
“lazy” when Ξ` is a non negative function. Indeed, using the interpretation that Xt counts
the number of arrivals of customers, Theorem 2.1 states that, on average, customers
arrive at a slow rate at the beginning of the day, and this rate always increases over time
in order to match the information that y − x customers arrived in the whole day: hence
arrivals are concentrated towards the end of the day.

In particular, at time t, one expects to have observed less than n t arrivals, as the
curve [0, 1] 3 t 7→ EPxy (Xt) lies below the straight line between x and y.

On the contrary, if Ξ` is non-positive we can say that bridges are “hurried”. Customers
arrive very quickly at the beginning, and the graph of [0, 1] 3 t 7→ EPxy (Xt) lies above
the straight line between x and y. The arrival of customers has to slow down as time
grows (concavity), due to the constraint that y − x customers, and not more, have to be
arrived at the end of the day. We refer to Figure 1 for an illustration of these concepts.

2.2 Estimates for the marginals

Next result turns the qualitative statement of Theorem 2.1 into a quantitative one.
We start from the observation that there are three main families of Markov counting
processes such that Ξ` is a time-space constant function:

• The Poisson processes, i.e. `(t, z) ≡ α > 0. Regardless of the value of α, their
bridges are neither lazy nor hurried. The average rate which customers arrive is
constantly equal to y − x.

• Markov counting processes with time homogeneous and space linear rates, i.e.
`(t, z) = λz + α for some λ, α > 0.

• The space-homogeneous counting processes with exponential rate, i.e. `(t, z) =

α exp(λt), for some λ ∈ R, α > 0. Their bridges may be lazy or hurried, depending
on whether λ is positive or not.

For this kind of models all sort of explicit computations are possible: we will use them
as a benchmark in the next theorem. As we will see in Lemma 3.3, the marginal at time t
of the xy bridge of a process with Ξ` ≡ λ is a binomial distribution whose parameters are
determined by λ, x, y and t. This is a generalization of the well known fact that marginals
of Poisson bridges are binomial distributions.

We make use of this explicit computation to provide estimates for the case when the
marginal distributions are not known in closed form. We shall see that if Ξ` admits a non
negative lower bound, say λ, then any bridge of P has marginals which have lighter tails
than the marginals of the same bridge built from a process satisfying Ξ` ≡ λ. Therefore
we prove that the tails are lighter than the tails of a certain binomial law. In this sense,
Theorem 2.2 strengthens the definition of lazy bridge, giving a parameter to measure
quantitatively such laziness, and creating a partial order in the family of processes with
lazy bridges. All statements can be reversed when lower bounds become upper bounds.
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To state the next Theorem, some notation is needed: we denote by Bn,p the binomial
distribution associated with n trials and probability of success p.

∀ 0 ≤ k ≤ n, Bn,p(k) =

(
n

k

)
pk(1− p)n−k

We define for all λ ∈ R the function πλ : [0, 1]→ [0, 1] as

πλ(t) =
exp(λt)− 1

exp(λ)− 1
. (2.1)

Theorem 2.2. Let P be a Markov counting process of intensity `, x ≤ y ∈ N. If for some
λ ∈ R,

inf
t∈[0,1],x≤z≤y−1

Ξ`(t, z) ≥ λ (2.2)

then for 1 ≤ i ≤ y − x and t ∈ [0, 1]:

P xy(Xt ≥ x+ i) ≤ By−x,πλ(t)({i, · · · , y − x}).

In other words, P xy(Xt − x ∈ ·) is stochastically dominated by the Bernoulli distribution
By−x,πλ(t). Conversely, if for some λ ∈ R,

sup
t∈[0,1],x≤z≤y−1

Ξ`(t, z) ≤ λ

then for any 1 ≤ i ≤ y − x and t ∈ [0, 1]:

P xy(Xt ≥ x+ i) ≥ By−x,πλ(t)({i, · · · , y − x}).

Remark 2.3. The inequalities we obtain in this Theorem are equalities when Ξ`(t, z) ≡ λ
(see Lemma 3.3) , and therefore are sharp.

A simple consequence of Theorem 2.2 is the following mean value estimate.

Corollary 2.1. Let P be a Markov counting process of intensity `, x ≤ y ∈ N. If

inf
t∈[0,1],z∈N

Ξ`(t, z) ≥ λ

then for any x ≤ y and t ∈ [0, 1]:

EPxy (Xt) ≤ x+ (y − x)
exp(λt)− 1

exp(λ)− 1
.

Remark 2.4. About Theorem 2.1 and 2.2, we will provide a full proof only for the
assertions concerning lower bounds on the characteristics. The assertions concerning
the upper bounds can be proved with a time-reversal argument. Indeed, if P is a Markov
counting process, then the time-reversed process P ∗ is pure-death Markov process (i.e.
a process that can only make jumps of height −1) with values in N. The reciprocal
characteristics associated with P ∗ (in the precise sense of [5, Def 2.3]), which we denote
by Ξ∗j (·, ·) satisfy the following relation

Ξ∗j (t, z) = −Ξj(1− t, z).

The proof of this fact is an easy consequence of the formula relating the intensities of a
Markov process and its time-reversal. Therefore global upper bounds for Ξj are global
lower bounds for Ξ∗j , and one can follow the proofs we present in this article to get the
statements about upper bounds on the reciprocal characteristics. One could also prove
these statements by carefully repeating the proofs presented here, and changing the
sign of the inequalities when needed. However, the former approach is more elegant.
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Figure 1: Top: We plot for λ ∈ {−5,−3, 0, 3, 5} the function t 7→ EP 0,20(Xt) = 20πλ(t),
where the intensity ` of P satisfies Ξ` ≡ λ. For negative values of λ we have a concave
function, whereas for positive values a convex one. Moreover, we see that, as a function
of λ, EP 0,20(Xt) is decreasing. Bottom: A sample path of a lazy bridge (λ = 3): it displays
very little activity close to zero: almost all jump times accumulate around t = 1.

2.3 Law of large numbers

Here, we prove an asymptotic result under the hypothesis that the map Ξ`(t, z)

converges as z → +∞ to λ ∈ R. We will see that as N → +∞, the bridge of length
one between 0 and N , after a suitable rescaling, converges to the deterministic curve
t 7→ πλ(t). In Figure 1 we plot the curve 20πλ(t) for different values of λ.

Theorem 2.5. Let P be a Markov counting process of intensity `. Assume that for some
λ ∈ R:

lim
z→+∞

sup
t∈[0,1]

|Ξ`(t, z)− λ| = 0. (2.3)

Then for every ε > 0:

lim
N→+∞

P 0N

(
sup
t∈[0,1]

∣∣∣ 1

N
Xt − πλ(t)

∣∣∣ ≥ ε) = 0.
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3 Proofs of the results

Proof of Theorem 2.1

The proof of Theorem 2.1 builds on the earlier results of [6] and on Lemma 3.1below.
There, we prove the statement under P instead of P xy. Unless in the rest of the paper,
we do not assume ` to satisfy point iii) in the proof of this theorem. This is because we
will eventually apply it to a bridge P xy, whose intensity does not satisfy this condition.

Lemma 3.1. Let P be a Markov counting process of intensity `. Then

inf
t∈[0,1],z∈N

Ξ`(t, z) ≥ 0

if and only if for all s, x ∈ [0, 1]×N the function [s, 1] 3 t 7→ EPxs (Xt) is convex.

Conversely,

sup
t∈[0,1],z∈N

Ξ`(t, z) ≤ 0

if and only if for all s, x ∈ [0, 1]×N the function [s, 1] 3 t 7→ EPxs (Xt) is concave.

Proof. We only prove the convexity statement, the other being analogous (see Remark
2.4).

(⇒) Fix s ∈ [0, 1], x ∈ N and define ϕt := EPxs (Xt) for t ∈ [s, 1]. Differentiating twice
we obtain:

ϕ̇t = EPxs (`(t,Xt−))

ϕ̈t = EPxs (∂t`(t,Xt−) + (`(t,Xt− + 1)− `(t,Xt−))`(t,Xt−))

= EPxs (Ξ`(t,Xt−)`(t,Xt−)1{`(t,Xt− )>0} + ∂t`(t,Xt−)1{`(t,Xt− )=0})

Since `(s, z) is continuously differentiable and for all t ∈ [0, 1] P (Xt −Xt− 6= 0) = 0, we
have that, for a fixed t, `(t,Xt−) = 0 a.s. implies that ∂t`(t,Xt−) = 0. Therefore:

ϕ̈t = EPxs (Ξ`(t,Xt−)`(t,Xt−))

If inft,z Ξ`(t, z) ≥ 0, we then have ϕ̈t ≥ 0, which gives the convexity.

(⇐) Consider s ∈ [0, 1],x ∈ N such that `(s, x) > 0 (note that if `(s, x) = 0, Ξ`(s, x) = 0

and there is nothing to prove). Then, defining ϕ as above and repeating the same
computations we obtain, by evaluating the second derivative at s, and exploiting the fact
that Xs = x almost surely:

ϕ̈s = Ξ`(s, x)`(s, x)

Since ϕ̈s ≥ 0 by assumption and `(s, x) > 0, then Ξ`(s, x) ≥ 0. Because of the arbitrary
choice of s and x the conclusion follows.

The proof of Theorem 2.1 becomes now almost straightforward.

Proof. We exploit the fact P xysu is also a counting process whose intensity `x,ys,u(t, z) is
continuously differentiable on [0, 1)×N and satisfies:

Ξ`x,ys,u (t, z) =

{
Ξ`(t, z), if x ≤ z ≤ y − 1, s < t < u

0, otherwise

This is proven in [6, Theorem 1.11]. An application of Lemma 3.1 gives then the
conclusion.
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Proof of Theorem 2.2

Prior to the proof, we introduce some useful notation which simplifies many compu-
tations therein. We call n := y − x the total number of jumps that the xy bridge makes.
Moreover, we adopt the following conventions:

• For (t1, .., tn) ∈ [0, 1]n we adopt the compact notation t. For any 1 ≤ i ≤ k ≤ n the
vector (ti, .., tk) is denoted ti,k.

• For 1 ≤ i ≤ k ≤ n, 0 ≤ s ≤ r ≤ 1, we call ∆s,r
i,k the set :

∆s,r
i,k := {(ti, ..., tk) ∈ [0, 1]k−i+1 : s < ti < ti+1 < .. < tk < r}

When s = 0, r = 1, i = 1, k = n, we simply write ∆n .
• For any 1 ≤ j ≤ nwe define ξj : [0, 1] −→ R as the only primitive of t 7→ Ξ`(t, x+j−1)

such that ξj(0) = 0. We then define

ξ : ∆n −→ R, ξ(t) =

n∑
j=1

ξj(tj)

We also define for all 1 ≤ i ≤ k ≤ n:

ξi,k(ti,k) =
k∑
j=i

ξj(tj)

The proof is structured as follows: we first prove two Lemmas, Lemma 3.2 Lemma 3.3,
which contain the two main ingredients of the proof. Then we do the proof of Theorem
2.2, relying on the more technical Lemma 3.4, which is proven later, together with the
simple auxiliary Lemma 3.5.

Lemma 3.2. The distribution of jump times (T1, .., Tn) under P xy is given by:

∀A ⊆ ∆n, P xy
(
(T1, .., Tn) ∈ A

)
=

1

Z`

∫
A

exp
(
ξ(t)

)
dt (3.1)

Proof. For convenience, we denote the vector (T1, .., Tn) by T. Let us define the proba-
bility measure Q ∈ P(Ω) by:

dQ =
1

Z`
exp(ξ(T))dRxy

where Rxy is the Poisson bridge from x to y. Thanks to the duality formula (1.2), the
Poisson bridge is characterized by:

∀Φ, u ∈ U , ERxy (DuΦ) = ERxy
(

Φ

∫ 1

0

u̇(t) dXt

)
(3.2)

Consider now a test function Φ, using the duality formula (1.2) and the fact that Du is a
true derivative operator satisfying Leibniz’s product rule:

EQ(DuΦ) = ERxy
(

exp(ξ(T))DuΦ
)

= ERxy
(
Du
[

exp(ξ(T)) Φ
])
− ERxy

(
ΦDu

[
exp(ξ(T))

])
=︸︷︷︸

eq. (3.2)+eq.(1.1)

ERxy
(

exp(ξ(T))Φ

∫ 1

0

u̇(t)dXt

)
+ERxy

(
Φ exp(ξ(T)

n∑
j=1

∂tjξ(T)︸ ︷︷ ︸
=Ξ`(Tj ,XT−

j
)

u(Tj))
)

= EQ

(
Φ

∫ 1

0

[
u̇(t) + Ξ`(t,Xt−)u(t)

]
dXt

)
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An application of Theorem 1.1 allows to deduce that Q = P xy. Therefore, the density
of P xy ◦T−1 with respect to Rxy ◦T−1 is proportional to exp(ξ(t)). It is well known that
Rxy ◦T−1 is the normalized Lebesgue measure on ∆n. The conclusion then follows.

Let us compute explicitly the distribution of the jump times of a bridge of a counting
process such that Ξ` is constantly equal to λ.

Lemma 3.3. Let P be a Markov counting process of intensity `, x ≤ y ∈ N. Let ` be
such that for some λ ∈ R :

∀t ∈ [0, 1], x ≤ z ≤ y − 1, Ξ`(t, z) = λ

Then, for all t ∈ [0, 1], the law of Xt − x under P xy is By−x,πλ(t), where πλ(t) is defined by
(2.1).

Proof. As a direct consequence of Lemma 3.2 combined with the current hypothesis we
have:

P xy(Xt ≥ x+ i) = P xy(Ti ≤ t) =
1

Zλ

∫
∆n∩{ti≤t}

exp(λ

n∑
j=1

tj)dt (3.3)

where Zλ is a normalization constant. Thanks to the invariance of the integrand under
permutations we have:

1

Zλ

∫
∆n∩{ti≤t}

exp
(
λ

n∑
j=1

tj
)
dt =

1

(exp(λ)− 1)n

∫
A

exp(λ

n∑
j=1

tj)dt (3.4)

with

A :=
⋃
σ∈Sn

{t : tσ(1) < .. < tσ(n), tσ(i) ≤ t}

where Sn is the symmetric group with n elements. We can rewrite A in a convenient way,
using some simple combinatorial arguments. We have:

A := {t ∈ [0, 1]ns.t.|{j : tj ≤ t}| ≥ i}

But then the right hand side of (3.4) is nothing but the probability that at least i among
n i.i.d. random variables are less than t, each variable being supported on [0, 1] and
having a density proportional to exp(λs). The conclusion then follows after a simple
calculation.

We can now prove Theorem 2.2.

Proof. Again, because of Remark 2.4, we only prove the Theorem when Ξj(·, ·) is bounded
below. Because of Lemma 3.2 and Lemma 3.3, and the elementary fact that {Xt ≥ x+i} =

{Ti ≤ t}, all what we need to do is to prove that for all 1 ≤ i ≤ n, 0 ≤ t ≤ 1:

1

Z`

∫
t∈∆n∩{ti≤t}

exp(ξ(t))dt ≤ 1

Zλ

∫
t∈∆n∩{ti≤t}

exp
(
λ

n∑
j=1

tj
)
dt (3.5)

where Z`, Zλ are normalization constants.
To this aim, we define the function ρ : [0, 1]→ R+ by:

ρ(r) :=

∫
t∈∆n∩{ti≤r} exp(ξ(t))dt∫

t∈∆n∩{ti≤r} exp
(
λ
∑n
j=1 tj

)
dt
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Observing that ρ(1) = Z`
Zλ

, (3.5) is equivalent to ρ(t) ≤ ρ(1), and therefore it is sufficient
to prove that ρ is non-decreasing. For this, we rewrite ρ(t) in a convenient way, by
conditioning on the value of ti:

ρ(r) =

∫ r
0
p(s)ds∫ r

0
q(s)ds

(3.6)

with:

p(s) :=

∫
t∈∆n∩{ti=s}

exp
(
ξ(t)

)
dt1,i−1dti,n

= exp(ξi(s))

∫
∆0,s

1,i−1

exp
(
ξ1,i−1(t1,i−1)

)
dt1,i−1

∫
∆s,1
i+1,n

exp
(
ξi+1,n(ti+1,n)

)
dti+1,n

q(s) :=

∫
t∈∆n∩{ti=s}

exp
(
λ

n∑
j=1

tj
)
dt1,i−1dti+1,n

= exp(λs)

∫
∆0,s

1,i−1

exp
(
λ

i−1∑
j=1

tj
)
dt1,i−1

∫
∆s,1
i+1,n

exp
(
λ

n∑
j=i+1

tj
)
dti+1,n

Let us first show that p(s)/q(s) is non-decreasing. Lemma 3.4 ensures that both

s 7→

∫
∆0,s

1,i−1
exp(ξ1,i−1(t1,i−1))dt1,i−1∫

∆0,s
1,i−1

exp(λ
∑i−1
j=1)dt1,i−1

and s 7→

∫
∆s,1
i+1,n

exp(ξi+1,n(ti+1,n))dti+1,n∫
∆s,1
i+1,n

exp(λ
∑n
j=i+1 tj)dti+1,n

are non-decreasing in s. Moreover, exp(ξi(s) − λs) is also non-decreasing in s since
ξ̇i(·) = Ξ`(·, x + i − 1) ≥ λ by hypothesis. We have thus shown that p(s)/q(s) is non-
decreasing. By Lemma 3.5 and (3.6) we get that ρ is non-decreasing too, and the
conclusion follows.

Lemma 3.4. The functions

s 7→

∫
∆0,s

1,i−1
exp(ξ1,i−1(t1,i−1))dt1,i−1∫

∆0,s
1,i−1

exp(λ
∑i−1
j=1)dt1,i−1

and

s 7→

∫
∆s,1
i+1,n

exp(ξi+1,n(ti+1,n))dti+1,n∫
∆s,1
i+1,n

exp(λ
∑n
j=i+1 tj)dti+1,n

are non-decreasing in s.

Proof. We only prove the first statement, the other case being completely analogous. We
work by induction on i. For the case i = 2, we have to show that

s 7→
∫ s

0
exp(ξ1(t1))dt1∫ s

0
exp(λt1)dt1

is non-decreasing. The assumption of Theorem 2.2 ensures that ξ1(t1) − λt1 is non-
decreasing, since λ ≤ Ξ`(·, x) = ξ̇1(·) by hypothesis. But then we conclude by applying
Lemma 3.5. For the inductive step we rewrite∫

∆0,s
1,i−1

exp(ξ1,i−1(t1,i−1))dt1,i−1

=

∫ s

0

exp(ξi−1(ti−1))

{∫
∆

0,ti−1
1,i−2

exp(ξ1,i−2(t1,i−2))dt1,i−2

}
dti−1
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and similarly∫
∆0,s

1,i−1

exp(λ

i−1∑
j=1

tj)dt1,i−1 =

∫ s

0

exp(λti−1)


∫

∆
0,ti−1
1,i−2

exp(

i−2∑
j=1

tj)dt1,i−2

 dti−1

Using the inductive hypothesis, we have that

ti−1 7→

∫
∆

0,ti−1
1,i−2

exp(ξ1,i−2(t1,i−2))dt1,i−2∫
∆

0,ti−2
1,i−1

exp(
∑i−2
j=1 tj)dt1,i−2

is non-decreasing. Moreover, ti−1 7→ exp(ξi−1(ti−1))
exp(λti−1) is also non-decreasing, since by

assumption λ ≤ Ξ`(·, x+ i− 2) = ξ̇i−1(·). The conclusion follows by Lemma 3.5.

Lemma 3.5. Let p, q be continuously differentiable strictly positive functions such that
p
q (s) is non-decreasing. Then

t 7→
∫ t

0
p(s)ds∫ t

0
q(s)ds

(3.7)

is also non-decreasing.

Proof. We differentiate the map defined by (3.7) in t. We obtain:

1( ∫ t
0
q(s)ds

)2 [p(t)∫ t

0

q(s)ds− q(t)
∫ t

0

p(s)ds
]

We observe that the conclusion follows if we can prove that

∀s ≤ t p(t)q(s) ≥ q(t)p(s)

Since s ≤ t, our hypothesis ensures this.

Let us prove Corollary 2.1

Proof. We simply write:

EPxy (Xt) = x+
n∑
i=1

P xy(Ti ≤ t) ≤︸︷︷︸
Th. 2.2

n∑
i=1

Bn,πλ(t)({i, · · · , n}) = x+ n
exp(λt)− 1

exp(λ)− 1
.

Recalling that n = y − x the conclusion follows.

Proof of Theorem 2.5

Theorem 2.2 can be adapted to the case when we consider bridges of non-unitary
length. The proof is basically identical, and we do not include it here. However, we will
need this fact.

Proposition 3.1. Let P be a Markov counting process of intensity `, x ≤ y ∈ N and
0 ≤ s < u ≤ 1. If for some λ ∈ R,

inf
t∈[s,u],x≤z≤y−1

Ξ`(t, z) ≥ λ

then for 1 ≤ i ≤ y − x and t ∈ [s, u]:

P xysu (Xt ≥ x+ i) ≤ By−x,πs,uλ (t)({i, ., y − x}) (3.8)

where

πs,uλ (t) =
exp(λ(t− s))− 1

exp(λ(u− s))− 1
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Given the proposition, we can prove Theorem 2.5

Proof. Fix ε > 0 and k ≥ 2
ε supt∈[0,1] ∂tπλ(t). We show that:

A :=

{
sup

0≤j≤k
| 1

N
X j

k
− πλ(

j

n
))| ≤ ε

2

}
⊆

{
sup
t∈[0,1]

| 1

N
Xt − πλ(t)| ≤ ε

}
=: B

Indeed, assume that ω ∈ A and take t ∈ [0, 1]. Then t ∈ [ jk ,
j+1
k ] for some 0 ≤ j ≤ k − 1.

Because of the fact that both 1
NX· and πλ(·) are non-decreasing functions we have:

| 1

N
Xt − πλ(t)| ≤ max

{
1

N
X j+1

k
− πλ(

j

k
), πλ(

j + 1

k
)− 1

N
X j

k

}
Since X· ∈ A we have:

1

N
X j+1

k
− πλ(

j

k
) =

1

N
X j+1

k
− πλ(

j + 1

k
) + πλ(

j + 1

k
)− πλ(

j

k
) ≤ ε

2
+

1

k
sup
t
∂tπλ(t) ≤ ε

where the last inequality is justified by the choice of k. In the same way one shows
that πλ( j+1

k )− 1
NX j

k
≤ ε. Since t can be chosen arbitrarily in [0, 1], we have shown that

A ⊆ B. Because of this, to prove the theorem, it is sufficient to prove that for any finite
collection (t1, .., tk) and any ε > 0 we have:

lim
N→+∞

P 0N ( sup
1≤l≤k

| 1

N
Xtl − πλ(tl)| ≥ ε) = 0

Moreover, since we since the sup which appears in the above equation is taken over
finitely many terms, it suffices to consider one-time marginals. All we need to show is
that for all t ∈ [0, 1], ε ≥ 0

lim
N→+∞

P 0N

(
| 1

N
Xt − πλ(t)| ≥ ε

)
= 0

Fix now t ∈ [0, 1], ε > 0, and choose δ > 0 small enough such that

πλ(t) + ε ≥ πλ−δ(t) (3.9)

Because of the assumption (2.3), there exist k such that for all

∀z ≥ k sup
s∈[0,1]

|Ξ`(s, z)− λ| ≤ δ. (3.10)

We choose one such k. Let us observe that, if N is large enough we have{
1

N
Xt − πλ(t) ≥ ε

}
⊆ {Tk ≤ t} (3.11)

Using the Markov property we have, by conditioning on Tk and using (3.11):

P 0N

(
1

N
Xt − πλ(t) ≥ ε

)
= EP 0N

(
E0,N
P

(
1{ 1

NXt−πλ(t)≥ε}

∣∣∣Tk)1{Tk≤t})
= EP 0N

(
P k,NTk,1

(
1

N
Xt − πλ(t) ≥ ε

)
1{Tk≤t}

)
≤ sup

s∈[0,t]

P k,Ns,1

(
1

N
Xt − πλ(t) ≥ ε

)
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Thanks to our choice of k, see (3.10), we are entitled to apply Proposition 3.1. We get:

sup
s∈[0,t]

P k,Ns,1

(
1

N
Xt − πλ(t) ≥ ε

)
≤ sup
s∈[0,t]

BN−k,πs,1λ−δ(t)({N(πλ(t) + ε− k/N︸ ︷︷ ︸
:=ξN

), .., N − k})

Since πs,1λ−δ(t) is decreasing in s, we have:

sup
s∈[0,1]

BN−k,πs,1λ−δ(t)({NξN , .., N − k}) = BN−k,πλ−δ(t)({NξN , .., N − k})

With an application of the Law of large numbers, we have that, as N goes to infinity:

BN−k,πλ−δ(t)(NA)→ δπλ−δ(t)(A), ∀A ⊆ [0, 1]

Therefore limN→+∞ BN−k,πλ−δ(t)({NξN , .., N − k}) = 0 if lim infN→+∞ ξN > πλ−δ(t).
But this is ensured by our choice of δ, see (3.9). Therefore we have proven that
limN→+∞ P 0N ( 1

NXt − πλ(t) ≥ ε) = 0. With a similar argument one shows that
limN→+∞ P 0N ( 1

NXt − πλ(t) ≤ −ε) = 0, from which the conclusion follows.
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